Properties

Label 845.2.a.o.1.5
Level $845$
Weight $2$
Character 845.1
Self dual yes
Analytic conductor $6.747$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(1,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 17x^{7} - 9x^{6} + 59x^{5} + 32x^{4} - 44x^{3} - 23x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.421015\) of defining polynomial
Character \(\chi\) \(=\) 845.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0240266 q^{2} +2.93017 q^{3} -1.99942 q^{4} +1.00000 q^{5} +0.0704021 q^{6} -1.66541 q^{7} -0.0960927 q^{8} +5.58589 q^{9} +0.0240266 q^{10} +3.33397 q^{11} -5.85865 q^{12} -0.0400143 q^{14} +2.93017 q^{15} +3.99654 q^{16} +7.07621 q^{17} +0.134210 q^{18} -6.68286 q^{19} -1.99942 q^{20} -4.87994 q^{21} +0.0801041 q^{22} +4.02860 q^{23} -0.281568 q^{24} +1.00000 q^{25} +7.57710 q^{27} +3.32987 q^{28} -0.000401110 q^{29} +0.0704021 q^{30} +4.14759 q^{31} +0.288209 q^{32} +9.76910 q^{33} +0.170018 q^{34} -1.66541 q^{35} -11.1686 q^{36} -8.96459 q^{37} -0.160567 q^{38} -0.0960927 q^{40} +9.60848 q^{41} -0.117249 q^{42} +2.78606 q^{43} -6.66601 q^{44} +5.58589 q^{45} +0.0967937 q^{46} +0.958374 q^{47} +11.7105 q^{48} -4.22640 q^{49} +0.0240266 q^{50} +20.7345 q^{51} -3.68268 q^{53} +0.182052 q^{54} +3.33397 q^{55} +0.160034 q^{56} -19.5819 q^{57} -9.63732e-6 q^{58} +7.99148 q^{59} -5.85865 q^{60} -9.14117 q^{61} +0.0996526 q^{62} -9.30282 q^{63} -7.98615 q^{64} +0.234719 q^{66} -6.72871 q^{67} -14.1483 q^{68} +11.8045 q^{69} -0.0400143 q^{70} -4.38321 q^{71} -0.536763 q^{72} -1.97245 q^{73} -0.215389 q^{74} +2.93017 q^{75} +13.3619 q^{76} -5.55244 q^{77} -3.77988 q^{79} +3.99654 q^{80} +5.44451 q^{81} +0.230860 q^{82} +3.64818 q^{83} +9.75707 q^{84} +7.07621 q^{85} +0.0669397 q^{86} -0.00117532 q^{87} -0.320370 q^{88} -0.989573 q^{89} +0.134210 q^{90} -8.05487 q^{92} +12.1531 q^{93} +0.0230265 q^{94} -6.68286 q^{95} +0.844500 q^{96} -18.4460 q^{97} -0.101546 q^{98} +18.6232 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 3 q^{2} + 7 q^{3} + 17 q^{4} + 9 q^{5} - 2 q^{6} + 7 q^{7} + 12 q^{8} + 16 q^{9} + 3 q^{10} - 9 q^{11} + 12 q^{12} - 2 q^{14} + 7 q^{15} + 37 q^{16} - q^{17} - 10 q^{18} - 4 q^{19} + 17 q^{20} - q^{21}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0240266 0.0169894 0.00849470 0.999964i \(-0.497296\pi\)
0.00849470 + 0.999964i \(0.497296\pi\)
\(3\) 2.93017 1.69173 0.845867 0.533394i \(-0.179084\pi\)
0.845867 + 0.533394i \(0.179084\pi\)
\(4\) −1.99942 −0.999711
\(5\) 1.00000 0.447214
\(6\) 0.0704021 0.0287415
\(7\) −1.66541 −0.629467 −0.314734 0.949180i \(-0.601915\pi\)
−0.314734 + 0.949180i \(0.601915\pi\)
\(8\) −0.0960927 −0.0339739
\(9\) 5.58589 1.86196
\(10\) 0.0240266 0.00759789
\(11\) 3.33397 1.00523 0.502615 0.864510i \(-0.332371\pi\)
0.502615 + 0.864510i \(0.332371\pi\)
\(12\) −5.85865 −1.69125
\(13\) 0 0
\(14\) −0.0400143 −0.0106943
\(15\) 2.93017 0.756566
\(16\) 3.99654 0.999134
\(17\) 7.07621 1.71623 0.858116 0.513455i \(-0.171635\pi\)
0.858116 + 0.513455i \(0.171635\pi\)
\(18\) 0.134210 0.0316337
\(19\) −6.68286 −1.53315 −0.766577 0.642153i \(-0.778042\pi\)
−0.766577 + 0.642153i \(0.778042\pi\)
\(20\) −1.99942 −0.447085
\(21\) −4.87994 −1.06489
\(22\) 0.0801041 0.0170783
\(23\) 4.02860 0.840021 0.420011 0.907519i \(-0.362026\pi\)
0.420011 + 0.907519i \(0.362026\pi\)
\(24\) −0.281568 −0.0574748
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 7.57710 1.45821
\(28\) 3.32987 0.629286
\(29\) −0.000401110 0 −7.44842e−5 0 −3.72421e−5 1.00000i \(-0.500012\pi\)
−3.72421e−5 1.00000i \(0.500012\pi\)
\(30\) 0.0704021 0.0128536
\(31\) 4.14759 0.744929 0.372464 0.928046i \(-0.378513\pi\)
0.372464 + 0.928046i \(0.378513\pi\)
\(32\) 0.288209 0.0509486
\(33\) 9.76910 1.70058
\(34\) 0.170018 0.0291578
\(35\) −1.66541 −0.281506
\(36\) −11.1686 −1.86143
\(37\) −8.96459 −1.47377 −0.736885 0.676018i \(-0.763704\pi\)
−0.736885 + 0.676018i \(0.763704\pi\)
\(38\) −0.160567 −0.0260474
\(39\) 0 0
\(40\) −0.0960927 −0.0151936
\(41\) 9.60848 1.50059 0.750296 0.661102i \(-0.229911\pi\)
0.750296 + 0.661102i \(0.229911\pi\)
\(42\) −0.117249 −0.0180919
\(43\) 2.78606 0.424870 0.212435 0.977175i \(-0.431861\pi\)
0.212435 + 0.977175i \(0.431861\pi\)
\(44\) −6.66601 −1.00494
\(45\) 5.58589 0.832696
\(46\) 0.0967937 0.0142715
\(47\) 0.958374 0.139793 0.0698966 0.997554i \(-0.477733\pi\)
0.0698966 + 0.997554i \(0.477733\pi\)
\(48\) 11.7105 1.69027
\(49\) −4.22640 −0.603771
\(50\) 0.0240266 0.00339788
\(51\) 20.7345 2.90341
\(52\) 0 0
\(53\) −3.68268 −0.505855 −0.252928 0.967485i \(-0.581393\pi\)
−0.252928 + 0.967485i \(0.581393\pi\)
\(54\) 0.182052 0.0247742
\(55\) 3.33397 0.449552
\(56\) 0.160034 0.0213855
\(57\) −19.5819 −2.59369
\(58\) −9.63732e−6 0 −1.26544e−6 0
\(59\) 7.99148 1.04040 0.520201 0.854044i \(-0.325857\pi\)
0.520201 + 0.854044i \(0.325857\pi\)
\(60\) −5.85865 −0.756348
\(61\) −9.14117 −1.17041 −0.585203 0.810886i \(-0.698985\pi\)
−0.585203 + 0.810886i \(0.698985\pi\)
\(62\) 0.0996526 0.0126559
\(63\) −9.30282 −1.17205
\(64\) −7.98615 −0.998269
\(65\) 0 0
\(66\) 0.234719 0.0288919
\(67\) −6.72871 −0.822042 −0.411021 0.911626i \(-0.634828\pi\)
−0.411021 + 0.911626i \(0.634828\pi\)
\(68\) −14.1483 −1.71574
\(69\) 11.8045 1.42109
\(70\) −0.0400143 −0.00478262
\(71\) −4.38321 −0.520191 −0.260096 0.965583i \(-0.583754\pi\)
−0.260096 + 0.965583i \(0.583754\pi\)
\(72\) −0.536763 −0.0632582
\(73\) −1.97245 −0.230858 −0.115429 0.993316i \(-0.536824\pi\)
−0.115429 + 0.993316i \(0.536824\pi\)
\(74\) −0.215389 −0.0250385
\(75\) 2.93017 0.338347
\(76\) 13.3619 1.53271
\(77\) −5.55244 −0.632759
\(78\) 0 0
\(79\) −3.77988 −0.425269 −0.212635 0.977132i \(-0.568204\pi\)
−0.212635 + 0.977132i \(0.568204\pi\)
\(80\) 3.99654 0.446826
\(81\) 5.44451 0.604945
\(82\) 0.230860 0.0254942
\(83\) 3.64818 0.400440 0.200220 0.979751i \(-0.435834\pi\)
0.200220 + 0.979751i \(0.435834\pi\)
\(84\) 9.75707 1.06458
\(85\) 7.07621 0.767523
\(86\) 0.0669397 0.00721830
\(87\) −0.00117532 −0.000126007 0
\(88\) −0.320370 −0.0341516
\(89\) −0.989573 −0.104895 −0.0524473 0.998624i \(-0.516702\pi\)
−0.0524473 + 0.998624i \(0.516702\pi\)
\(90\) 0.134210 0.0141470
\(91\) 0 0
\(92\) −8.05487 −0.839779
\(93\) 12.1531 1.26022
\(94\) 0.0230265 0.00237500
\(95\) −6.68286 −0.685647
\(96\) 0.844500 0.0861915
\(97\) −18.4460 −1.87291 −0.936454 0.350790i \(-0.885913\pi\)
−0.936454 + 0.350790i \(0.885913\pi\)
\(98\) −0.101546 −0.0102577
\(99\) 18.6232 1.87170
\(100\) −1.99942 −0.199942
\(101\) −9.86892 −0.981994 −0.490997 0.871161i \(-0.663367\pi\)
−0.490997 + 0.871161i \(0.663367\pi\)
\(102\) 0.498180 0.0493272
\(103\) −15.1288 −1.49069 −0.745344 0.666680i \(-0.767715\pi\)
−0.745344 + 0.666680i \(0.767715\pi\)
\(104\) 0 0
\(105\) −4.87994 −0.476234
\(106\) −0.0884825 −0.00859418
\(107\) 2.99312 0.289356 0.144678 0.989479i \(-0.453785\pi\)
0.144678 + 0.989479i \(0.453785\pi\)
\(108\) −15.1498 −1.45779
\(109\) 13.4179 1.28520 0.642602 0.766200i \(-0.277855\pi\)
0.642602 + 0.766200i \(0.277855\pi\)
\(110\) 0.0801041 0.00763763
\(111\) −26.2678 −2.49323
\(112\) −6.65589 −0.628922
\(113\) −3.38444 −0.318382 −0.159191 0.987248i \(-0.550889\pi\)
−0.159191 + 0.987248i \(0.550889\pi\)
\(114\) −0.470488 −0.0440652
\(115\) 4.02860 0.375669
\(116\) 0.000801988 0 7.44627e−5 0
\(117\) 0 0
\(118\) 0.192009 0.0176758
\(119\) −11.7848 −1.08031
\(120\) −0.281568 −0.0257035
\(121\) 0.115354 0.0104868
\(122\) −0.219632 −0.0198845
\(123\) 28.1545 2.53860
\(124\) −8.29278 −0.744714
\(125\) 1.00000 0.0894427
\(126\) −0.223516 −0.0199124
\(127\) 8.29226 0.735819 0.367910 0.929862i \(-0.380074\pi\)
0.367910 + 0.929862i \(0.380074\pi\)
\(128\) −0.768298 −0.0679086
\(129\) 8.16363 0.718768
\(130\) 0 0
\(131\) 4.86438 0.425003 0.212501 0.977161i \(-0.431839\pi\)
0.212501 + 0.977161i \(0.431839\pi\)
\(132\) −19.5326 −1.70009
\(133\) 11.1297 0.965070
\(134\) −0.161668 −0.0139660
\(135\) 7.57710 0.652133
\(136\) −0.679972 −0.0583071
\(137\) −4.43432 −0.378850 −0.189425 0.981895i \(-0.560662\pi\)
−0.189425 + 0.981895i \(0.560662\pi\)
\(138\) 0.283622 0.0241435
\(139\) 6.07076 0.514915 0.257457 0.966290i \(-0.417115\pi\)
0.257457 + 0.966290i \(0.417115\pi\)
\(140\) 3.32987 0.281425
\(141\) 2.80820 0.236493
\(142\) −0.105314 −0.00883773
\(143\) 0 0
\(144\) 22.3242 1.86035
\(145\) −0.000401110 0 −3.33104e−5 0
\(146\) −0.0473914 −0.00392214
\(147\) −12.3841 −1.02142
\(148\) 17.9240 1.47334
\(149\) −12.0203 −0.984741 −0.492370 0.870386i \(-0.663869\pi\)
−0.492370 + 0.870386i \(0.663869\pi\)
\(150\) 0.0704021 0.00574831
\(151\) 6.64251 0.540560 0.270280 0.962782i \(-0.412884\pi\)
0.270280 + 0.962782i \(0.412884\pi\)
\(152\) 0.642174 0.0520872
\(153\) 39.5269 3.19556
\(154\) −0.133406 −0.0107502
\(155\) 4.14759 0.333142
\(156\) 0 0
\(157\) 8.94035 0.713517 0.356759 0.934197i \(-0.383882\pi\)
0.356759 + 0.934197i \(0.383882\pi\)
\(158\) −0.0908177 −0.00722507
\(159\) −10.7909 −0.855773
\(160\) 0.288209 0.0227849
\(161\) −6.70929 −0.528766
\(162\) 0.130813 0.0102777
\(163\) −4.49497 −0.352073 −0.176037 0.984384i \(-0.556328\pi\)
−0.176037 + 0.984384i \(0.556328\pi\)
\(164\) −19.2114 −1.50016
\(165\) 9.76910 0.760523
\(166\) 0.0876536 0.00680324
\(167\) 18.1721 1.40620 0.703098 0.711093i \(-0.251799\pi\)
0.703098 + 0.711093i \(0.251799\pi\)
\(168\) 0.468927 0.0361785
\(169\) 0 0
\(170\) 0.170018 0.0130398
\(171\) −37.3297 −2.85468
\(172\) −5.57052 −0.424748
\(173\) 0.0851909 0.00647694 0.00323847 0.999995i \(-0.498969\pi\)
0.00323847 + 0.999995i \(0.498969\pi\)
\(174\) −2.82390e−5 0 −2.14079e−6 0
\(175\) −1.66541 −0.125893
\(176\) 13.3243 1.00436
\(177\) 23.4164 1.76008
\(178\) −0.0237761 −0.00178210
\(179\) 9.57903 0.715970 0.357985 0.933727i \(-0.383464\pi\)
0.357985 + 0.933727i \(0.383464\pi\)
\(180\) −11.1686 −0.832455
\(181\) −11.0716 −0.822946 −0.411473 0.911422i \(-0.634986\pi\)
−0.411473 + 0.911422i \(0.634986\pi\)
\(182\) 0 0
\(183\) −26.7852 −1.98002
\(184\) −0.387119 −0.0285388
\(185\) −8.96459 −0.659090
\(186\) 0.291999 0.0214104
\(187\) 23.5919 1.72521
\(188\) −1.91619 −0.139753
\(189\) −12.6190 −0.917898
\(190\) −0.160567 −0.0116487
\(191\) −19.6800 −1.42399 −0.711996 0.702183i \(-0.752209\pi\)
−0.711996 + 0.702183i \(0.752209\pi\)
\(192\) −23.4008 −1.68880
\(193\) −2.22851 −0.160412 −0.0802060 0.996778i \(-0.525558\pi\)
−0.0802060 + 0.996778i \(0.525558\pi\)
\(194\) −0.443196 −0.0318196
\(195\) 0 0
\(196\) 8.45035 0.603597
\(197\) 9.53209 0.679134 0.339567 0.940582i \(-0.389720\pi\)
0.339567 + 0.940582i \(0.389720\pi\)
\(198\) 0.447453 0.0317991
\(199\) −20.4192 −1.44748 −0.723741 0.690072i \(-0.757579\pi\)
−0.723741 + 0.690072i \(0.757579\pi\)
\(200\) −0.0960927 −0.00679478
\(201\) −19.7162 −1.39068
\(202\) −0.237117 −0.0166835
\(203\) 0.000668014 0 4.68854e−5 0
\(204\) −41.4570 −2.90257
\(205\) 9.60848 0.671085
\(206\) −0.363495 −0.0253259
\(207\) 22.5033 1.56409
\(208\) 0 0
\(209\) −22.2805 −1.54117
\(210\) −0.117249 −0.00809093
\(211\) −6.41514 −0.441637 −0.220818 0.975315i \(-0.570873\pi\)
−0.220818 + 0.975315i \(0.570873\pi\)
\(212\) 7.36324 0.505709
\(213\) −12.8435 −0.880025
\(214\) 0.0719146 0.00491598
\(215\) 2.78606 0.190008
\(216\) −0.728104 −0.0495412
\(217\) −6.90745 −0.468908
\(218\) 0.322388 0.0218349
\(219\) −5.77962 −0.390550
\(220\) −6.66601 −0.449423
\(221\) 0 0
\(222\) −0.631127 −0.0423584
\(223\) 2.85750 0.191353 0.0956763 0.995412i \(-0.469499\pi\)
0.0956763 + 0.995412i \(0.469499\pi\)
\(224\) −0.479987 −0.0320705
\(225\) 5.58589 0.372393
\(226\) −0.0813168 −0.00540911
\(227\) 22.2069 1.47393 0.736963 0.675933i \(-0.236259\pi\)
0.736963 + 0.675933i \(0.236259\pi\)
\(228\) 39.1525 2.59294
\(229\) −20.0068 −1.32209 −0.661045 0.750347i \(-0.729887\pi\)
−0.661045 + 0.750347i \(0.729887\pi\)
\(230\) 0.0967937 0.00638239
\(231\) −16.2696 −1.07046
\(232\) 3.85437e−5 0 2.53052e−6 0
\(233\) 2.11070 0.138276 0.0691381 0.997607i \(-0.477975\pi\)
0.0691381 + 0.997607i \(0.477975\pi\)
\(234\) 0 0
\(235\) 0.958374 0.0625174
\(236\) −15.9784 −1.04010
\(237\) −11.0757 −0.719442
\(238\) −0.283150 −0.0183539
\(239\) −18.8655 −1.22031 −0.610154 0.792283i \(-0.708892\pi\)
−0.610154 + 0.792283i \(0.708892\pi\)
\(240\) 11.7105 0.755911
\(241\) −13.0649 −0.841584 −0.420792 0.907157i \(-0.638248\pi\)
−0.420792 + 0.907157i \(0.638248\pi\)
\(242\) 0.00277158 0.000178164 0
\(243\) −6.77797 −0.434807
\(244\) 18.2771 1.17007
\(245\) −4.22640 −0.270015
\(246\) 0.676458 0.0431294
\(247\) 0 0
\(248\) −0.398553 −0.0253081
\(249\) 10.6898 0.677438
\(250\) 0.0240266 0.00151958
\(251\) 11.9931 0.757001 0.378500 0.925601i \(-0.376440\pi\)
0.378500 + 0.925601i \(0.376440\pi\)
\(252\) 18.6003 1.17171
\(253\) 13.4312 0.844414
\(254\) 0.199235 0.0125011
\(255\) 20.7345 1.29844
\(256\) 15.9538 0.997115
\(257\) −26.6130 −1.66007 −0.830036 0.557709i \(-0.811680\pi\)
−0.830036 + 0.557709i \(0.811680\pi\)
\(258\) 0.196145 0.0122114
\(259\) 14.9298 0.927690
\(260\) 0 0
\(261\) −0.00224056 −0.000138687 0
\(262\) 0.116875 0.00722055
\(263\) −17.0235 −1.04971 −0.524856 0.851191i \(-0.675881\pi\)
−0.524856 + 0.851191i \(0.675881\pi\)
\(264\) −0.938739 −0.0577754
\(265\) −3.68268 −0.226225
\(266\) 0.267410 0.0163960
\(267\) −2.89962 −0.177454
\(268\) 13.4535 0.821805
\(269\) 5.98522 0.364925 0.182463 0.983213i \(-0.441593\pi\)
0.182463 + 0.983213i \(0.441593\pi\)
\(270\) 0.182052 0.0110793
\(271\) −7.11684 −0.432317 −0.216159 0.976358i \(-0.569353\pi\)
−0.216159 + 0.976358i \(0.569353\pi\)
\(272\) 28.2803 1.71475
\(273\) 0 0
\(274\) −0.106542 −0.00643643
\(275\) 3.33397 0.201046
\(276\) −23.6021 −1.42068
\(277\) 7.48738 0.449873 0.224936 0.974373i \(-0.427783\pi\)
0.224936 + 0.974373i \(0.427783\pi\)
\(278\) 0.145860 0.00874810
\(279\) 23.1680 1.38703
\(280\) 0.160034 0.00956387
\(281\) 24.8752 1.48393 0.741964 0.670440i \(-0.233895\pi\)
0.741964 + 0.670440i \(0.233895\pi\)
\(282\) 0.0674716 0.00401787
\(283\) 12.7413 0.757390 0.378695 0.925522i \(-0.376373\pi\)
0.378695 + 0.925522i \(0.376373\pi\)
\(284\) 8.76388 0.520041
\(285\) −19.5819 −1.15993
\(286\) 0 0
\(287\) −16.0021 −0.944574
\(288\) 1.60990 0.0948644
\(289\) 33.0727 1.94545
\(290\) −9.63732e−6 0 −5.65923e−7 0
\(291\) −54.0499 −3.16846
\(292\) 3.94377 0.230791
\(293\) −17.5748 −1.02673 −0.513365 0.858171i \(-0.671601\pi\)
−0.513365 + 0.858171i \(0.671601\pi\)
\(294\) −0.297547 −0.0173533
\(295\) 7.99148 0.465282
\(296\) 0.861432 0.0500697
\(297\) 25.2618 1.46584
\(298\) −0.288807 −0.0167302
\(299\) 0 0
\(300\) −5.85865 −0.338249
\(301\) −4.63995 −0.267442
\(302\) 0.159597 0.00918379
\(303\) −28.9176 −1.66127
\(304\) −26.7083 −1.53183
\(305\) −9.14117 −0.523422
\(306\) 0.949700 0.0542907
\(307\) 0.592094 0.0337926 0.0168963 0.999857i \(-0.494621\pi\)
0.0168963 + 0.999857i \(0.494621\pi\)
\(308\) 11.1017 0.632577
\(309\) −44.3300 −2.52185
\(310\) 0.0996526 0.00565989
\(311\) −23.6771 −1.34260 −0.671301 0.741185i \(-0.734264\pi\)
−0.671301 + 0.741185i \(0.734264\pi\)
\(312\) 0 0
\(313\) 9.09689 0.514187 0.257093 0.966387i \(-0.417235\pi\)
0.257093 + 0.966387i \(0.417235\pi\)
\(314\) 0.214807 0.0121222
\(315\) −9.30282 −0.524155
\(316\) 7.55757 0.425146
\(317\) 4.34397 0.243982 0.121991 0.992531i \(-0.461072\pi\)
0.121991 + 0.992531i \(0.461072\pi\)
\(318\) −0.259269 −0.0145391
\(319\) −0.00133729 −7.48737e−5 0
\(320\) −7.98615 −0.446439
\(321\) 8.77034 0.489513
\(322\) −0.161202 −0.00898342
\(323\) −47.2893 −2.63125
\(324\) −10.8859 −0.604771
\(325\) 0 0
\(326\) −0.107999 −0.00598152
\(327\) 39.3168 2.17422
\(328\) −0.923305 −0.0509810
\(329\) −1.59609 −0.0879953
\(330\) 0.234719 0.0129208
\(331\) −19.3221 −1.06204 −0.531019 0.847360i \(-0.678191\pi\)
−0.531019 + 0.847360i \(0.678191\pi\)
\(332\) −7.29426 −0.400324
\(333\) −50.0752 −2.74411
\(334\) 0.436614 0.0238904
\(335\) −6.72871 −0.367628
\(336\) −19.5029 −1.06397
\(337\) −5.22779 −0.284776 −0.142388 0.989811i \(-0.545478\pi\)
−0.142388 + 0.989811i \(0.545478\pi\)
\(338\) 0 0
\(339\) −9.91699 −0.538617
\(340\) −14.1483 −0.767301
\(341\) 13.8279 0.748825
\(342\) −0.896908 −0.0484992
\(343\) 18.6966 1.00952
\(344\) −0.267720 −0.0144345
\(345\) 11.8045 0.635532
\(346\) 0.00204685 0.000110039 0
\(347\) −18.8624 −1.01259 −0.506293 0.862361i \(-0.668985\pi\)
−0.506293 + 0.862361i \(0.668985\pi\)
\(348\) 0.00234996 0.000125971 0
\(349\) 27.8225 1.48930 0.744652 0.667453i \(-0.232616\pi\)
0.744652 + 0.667453i \(0.232616\pi\)
\(350\) −0.0400143 −0.00213885
\(351\) 0 0
\(352\) 0.960879 0.0512150
\(353\) 34.6884 1.84627 0.923137 0.384470i \(-0.125616\pi\)
0.923137 + 0.384470i \(0.125616\pi\)
\(354\) 0.562617 0.0299028
\(355\) −4.38321 −0.232636
\(356\) 1.97858 0.104864
\(357\) −34.5315 −1.82760
\(358\) 0.230152 0.0121639
\(359\) 27.1511 1.43298 0.716490 0.697597i \(-0.245747\pi\)
0.716490 + 0.697597i \(0.245747\pi\)
\(360\) −0.536763 −0.0282899
\(361\) 25.6606 1.35056
\(362\) −0.266014 −0.0139814
\(363\) 0.338008 0.0177408
\(364\) 0 0
\(365\) −1.97245 −0.103243
\(366\) −0.643558 −0.0336393
\(367\) 25.2613 1.31863 0.659315 0.751867i \(-0.270847\pi\)
0.659315 + 0.751867i \(0.270847\pi\)
\(368\) 16.1004 0.839294
\(369\) 53.6719 2.79405
\(370\) −0.215389 −0.0111975
\(371\) 6.13319 0.318419
\(372\) −24.2993 −1.25986
\(373\) 4.53353 0.234737 0.117369 0.993088i \(-0.462554\pi\)
0.117369 + 0.993088i \(0.462554\pi\)
\(374\) 0.566833 0.0293103
\(375\) 2.93017 0.151313
\(376\) −0.0920928 −0.00474932
\(377\) 0 0
\(378\) −0.303192 −0.0155945
\(379\) −5.35880 −0.275263 −0.137632 0.990483i \(-0.543949\pi\)
−0.137632 + 0.990483i \(0.543949\pi\)
\(380\) 13.3619 0.685449
\(381\) 24.2977 1.24481
\(382\) −0.472843 −0.0241928
\(383\) 5.61342 0.286832 0.143416 0.989662i \(-0.454191\pi\)
0.143416 + 0.989662i \(0.454191\pi\)
\(384\) −2.25124 −0.114883
\(385\) −5.55244 −0.282979
\(386\) −0.0535437 −0.00272530
\(387\) 15.5626 0.791093
\(388\) 36.8814 1.87237
\(389\) 2.71877 0.137847 0.0689236 0.997622i \(-0.478044\pi\)
0.0689236 + 0.997622i \(0.478044\pi\)
\(390\) 0 0
\(391\) 28.5072 1.44167
\(392\) 0.406126 0.0205125
\(393\) 14.2535 0.718992
\(394\) 0.229024 0.0115381
\(395\) −3.77988 −0.190186
\(396\) −37.2356 −1.87116
\(397\) 5.01013 0.251451 0.125726 0.992065i \(-0.459874\pi\)
0.125726 + 0.992065i \(0.459874\pi\)
\(398\) −0.490606 −0.0245919
\(399\) 32.6120 1.63264
\(400\) 3.99654 0.199827
\(401\) −19.0325 −0.950435 −0.475218 0.879868i \(-0.657631\pi\)
−0.475218 + 0.879868i \(0.657631\pi\)
\(402\) −0.473715 −0.0236268
\(403\) 0 0
\(404\) 19.7321 0.981711
\(405\) 5.44451 0.270540
\(406\) 1.60501e−5 0 7.96555e−7 0
\(407\) −29.8877 −1.48148
\(408\) −1.99243 −0.0986401
\(409\) −11.9424 −0.590513 −0.295256 0.955418i \(-0.595405\pi\)
−0.295256 + 0.955418i \(0.595405\pi\)
\(410\) 0.230860 0.0114013
\(411\) −12.9933 −0.640913
\(412\) 30.2489 1.49026
\(413\) −13.3091 −0.654899
\(414\) 0.540679 0.0265729
\(415\) 3.64818 0.179082
\(416\) 0 0
\(417\) 17.7883 0.871099
\(418\) −0.535325 −0.0261836
\(419\) −2.49593 −0.121934 −0.0609671 0.998140i \(-0.519418\pi\)
−0.0609671 + 0.998140i \(0.519418\pi\)
\(420\) 9.75707 0.476096
\(421\) 23.2220 1.13177 0.565885 0.824484i \(-0.308535\pi\)
0.565885 + 0.824484i \(0.308535\pi\)
\(422\) −0.154134 −0.00750314
\(423\) 5.35337 0.260290
\(424\) 0.353879 0.0171859
\(425\) 7.07621 0.343247
\(426\) −0.308587 −0.0149511
\(427\) 15.2238 0.736733
\(428\) −5.98451 −0.289272
\(429\) 0 0
\(430\) 0.0669397 0.00322812
\(431\) −18.6779 −0.899682 −0.449841 0.893109i \(-0.648519\pi\)
−0.449841 + 0.893109i \(0.648519\pi\)
\(432\) 30.2822 1.45695
\(433\) 26.2912 1.26348 0.631738 0.775182i \(-0.282342\pi\)
0.631738 + 0.775182i \(0.282342\pi\)
\(434\) −0.165963 −0.00796647
\(435\) −0.00117532 −5.63523e−5 0
\(436\) −26.8281 −1.28483
\(437\) −26.9226 −1.28788
\(438\) −0.138865 −0.00663522
\(439\) 7.98298 0.381007 0.190503 0.981687i \(-0.438988\pi\)
0.190503 + 0.981687i \(0.438988\pi\)
\(440\) −0.320370 −0.0152730
\(441\) −23.6082 −1.12420
\(442\) 0 0
\(443\) 40.4743 1.92299 0.961495 0.274823i \(-0.0886192\pi\)
0.961495 + 0.274823i \(0.0886192\pi\)
\(444\) 52.5204 2.49251
\(445\) −0.989573 −0.0469103
\(446\) 0.0686562 0.00325097
\(447\) −35.2215 −1.66592
\(448\) 13.3002 0.628377
\(449\) 15.7278 0.742241 0.371121 0.928585i \(-0.378974\pi\)
0.371121 + 0.928585i \(0.378974\pi\)
\(450\) 0.134210 0.00632673
\(451\) 32.0344 1.50844
\(452\) 6.76693 0.318290
\(453\) 19.4637 0.914483
\(454\) 0.533558 0.0250411
\(455\) 0 0
\(456\) 1.88168 0.0881177
\(457\) −21.2829 −0.995573 −0.497786 0.867300i \(-0.665854\pi\)
−0.497786 + 0.867300i \(0.665854\pi\)
\(458\) −0.480697 −0.0224615
\(459\) 53.6171 2.50263
\(460\) −8.05487 −0.375560
\(461\) 38.2892 1.78331 0.891653 0.452720i \(-0.149546\pi\)
0.891653 + 0.452720i \(0.149546\pi\)
\(462\) −0.390904 −0.0181865
\(463\) 12.1131 0.562944 0.281472 0.959569i \(-0.409177\pi\)
0.281472 + 0.959569i \(0.409177\pi\)
\(464\) −0.00160305 −7.44197e−5 0
\(465\) 12.1531 0.563588
\(466\) 0.0507129 0.00234923
\(467\) 23.2313 1.07502 0.537509 0.843258i \(-0.319365\pi\)
0.537509 + 0.843258i \(0.319365\pi\)
\(468\) 0 0
\(469\) 11.2061 0.517449
\(470\) 0.0230265 0.00106213
\(471\) 26.1967 1.20708
\(472\) −0.767923 −0.0353465
\(473\) 9.28865 0.427092
\(474\) −0.266111 −0.0122229
\(475\) −6.68286 −0.306631
\(476\) 23.5628 1.08000
\(477\) −20.5711 −0.941884
\(478\) −0.453275 −0.0207323
\(479\) −37.9716 −1.73497 −0.867483 0.497466i \(-0.834264\pi\)
−0.867483 + 0.497466i \(0.834264\pi\)
\(480\) 0.844500 0.0385460
\(481\) 0 0
\(482\) −0.313906 −0.0142980
\(483\) −19.6593 −0.894531
\(484\) −0.230642 −0.0104837
\(485\) −18.4460 −0.837590
\(486\) −0.162852 −0.00738711
\(487\) 22.1216 1.00242 0.501212 0.865324i \(-0.332888\pi\)
0.501212 + 0.865324i \(0.332888\pi\)
\(488\) 0.878400 0.0397633
\(489\) −13.1710 −0.595615
\(490\) −0.101546 −0.00458739
\(491\) −26.1440 −1.17986 −0.589931 0.807453i \(-0.700845\pi\)
−0.589931 + 0.807453i \(0.700845\pi\)
\(492\) −56.2927 −2.53787
\(493\) −0.00283834 −0.000127832 0
\(494\) 0 0
\(495\) 18.6232 0.837050
\(496\) 16.5760 0.744284
\(497\) 7.29986 0.327443
\(498\) 0.256840 0.0115093
\(499\) 22.5180 1.00805 0.504023 0.863690i \(-0.331853\pi\)
0.504023 + 0.863690i \(0.331853\pi\)
\(500\) −1.99942 −0.0894169
\(501\) 53.2472 2.37891
\(502\) 0.288155 0.0128610
\(503\) 20.4701 0.912716 0.456358 0.889796i \(-0.349154\pi\)
0.456358 + 0.889796i \(0.349154\pi\)
\(504\) 0.893933 0.0398190
\(505\) −9.86892 −0.439161
\(506\) 0.322707 0.0143461
\(507\) 0 0
\(508\) −16.5797 −0.735607
\(509\) −20.2724 −0.898557 −0.449278 0.893392i \(-0.648319\pi\)
−0.449278 + 0.893392i \(0.648319\pi\)
\(510\) 0.498180 0.0220598
\(511\) 3.28495 0.145318
\(512\) 1.91991 0.0848490
\(513\) −50.6367 −2.23567
\(514\) −0.639421 −0.0282036
\(515\) −15.1288 −0.666656
\(516\) −16.3226 −0.718560
\(517\) 3.19519 0.140524
\(518\) 0.358712 0.0157609
\(519\) 0.249624 0.0109573
\(520\) 0 0
\(521\) −30.1602 −1.32134 −0.660670 0.750676i \(-0.729728\pi\)
−0.660670 + 0.750676i \(0.729728\pi\)
\(522\) −5.38330e−5 0 −2.35621e−6 0
\(523\) 14.1082 0.616910 0.308455 0.951239i \(-0.400188\pi\)
0.308455 + 0.951239i \(0.400188\pi\)
\(524\) −9.72595 −0.424880
\(525\) −4.87994 −0.212978
\(526\) −0.409017 −0.0178340
\(527\) 29.3492 1.27847
\(528\) 39.0425 1.69911
\(529\) −6.77038 −0.294364
\(530\) −0.0884825 −0.00384343
\(531\) 44.6396 1.93719
\(532\) −22.2530 −0.964792
\(533\) 0 0
\(534\) −0.0696681 −0.00301483
\(535\) 2.99312 0.129404
\(536\) 0.646580 0.0279280
\(537\) 28.0682 1.21123
\(538\) 0.143805 0.00619986
\(539\) −14.0907 −0.606928
\(540\) −15.1498 −0.651945
\(541\) −33.5648 −1.44306 −0.721532 0.692381i \(-0.756562\pi\)
−0.721532 + 0.692381i \(0.756562\pi\)
\(542\) −0.170994 −0.00734481
\(543\) −32.4417 −1.39221
\(544\) 2.03943 0.0874396
\(545\) 13.4179 0.574761
\(546\) 0 0
\(547\) 34.8045 1.48813 0.744067 0.668106i \(-0.232895\pi\)
0.744067 + 0.668106i \(0.232895\pi\)
\(548\) 8.86609 0.378740
\(549\) −51.0616 −2.17926
\(550\) 0.0801041 0.00341565
\(551\) 0.00268056 0.000114196 0
\(552\) −1.13432 −0.0482801
\(553\) 6.29506 0.267693
\(554\) 0.179897 0.00764307
\(555\) −26.2678 −1.11501
\(556\) −12.1380 −0.514766
\(557\) 18.3989 0.779587 0.389794 0.920902i \(-0.372546\pi\)
0.389794 + 0.920902i \(0.372546\pi\)
\(558\) 0.556649 0.0235648
\(559\) 0 0
\(560\) −6.65589 −0.281263
\(561\) 69.1282 2.91859
\(562\) 0.597667 0.0252110
\(563\) 18.6109 0.784357 0.392178 0.919889i \(-0.371722\pi\)
0.392178 + 0.919889i \(0.371722\pi\)
\(564\) −5.61477 −0.236425
\(565\) −3.38444 −0.142385
\(566\) 0.306130 0.0128676
\(567\) −9.06736 −0.380793
\(568\) 0.421194 0.0176729
\(569\) −10.8666 −0.455550 −0.227775 0.973714i \(-0.573145\pi\)
−0.227775 + 0.973714i \(0.573145\pi\)
\(570\) −0.470488 −0.0197066
\(571\) 38.9376 1.62949 0.814743 0.579822i \(-0.196878\pi\)
0.814743 + 0.579822i \(0.196878\pi\)
\(572\) 0 0
\(573\) −57.6656 −2.40902
\(574\) −0.384477 −0.0160477
\(575\) 4.02860 0.168004
\(576\) −44.6098 −1.85874
\(577\) −33.9986 −1.41538 −0.707691 0.706522i \(-0.750263\pi\)
−0.707691 + 0.706522i \(0.750263\pi\)
\(578\) 0.794627 0.0330521
\(579\) −6.52992 −0.271374
\(580\) 0.000801988 0 3.33007e−5 0
\(581\) −6.07573 −0.252064
\(582\) −1.29864 −0.0538303
\(583\) −12.2780 −0.508501
\(584\) 0.189538 0.00784315
\(585\) 0 0
\(586\) −0.422263 −0.0174435
\(587\) 17.9777 0.742018 0.371009 0.928629i \(-0.379012\pi\)
0.371009 + 0.928629i \(0.379012\pi\)
\(588\) 24.7610 1.02112
\(589\) −27.7178 −1.14209
\(590\) 0.192009 0.00790487
\(591\) 27.9306 1.14891
\(592\) −35.8273 −1.47249
\(593\) 26.9189 1.10542 0.552712 0.833372i \(-0.313593\pi\)
0.552712 + 0.833372i \(0.313593\pi\)
\(594\) 0.606957 0.0249037
\(595\) −11.7848 −0.483130
\(596\) 24.0336 0.984457
\(597\) −59.8318 −2.44875
\(598\) 0 0
\(599\) −8.68542 −0.354877 −0.177438 0.984132i \(-0.556781\pi\)
−0.177438 + 0.984132i \(0.556781\pi\)
\(600\) −0.281568 −0.0114950
\(601\) −31.3757 −1.27984 −0.639921 0.768440i \(-0.721033\pi\)
−0.639921 + 0.768440i \(0.721033\pi\)
\(602\) −0.111482 −0.00454368
\(603\) −37.5858 −1.53061
\(604\) −13.2812 −0.540404
\(605\) 0.115354 0.00468982
\(606\) −0.694793 −0.0282240
\(607\) 3.77489 0.153218 0.0766091 0.997061i \(-0.475591\pi\)
0.0766091 + 0.997061i \(0.475591\pi\)
\(608\) −1.92606 −0.0781120
\(609\) 0.00195739 7.93176e−5 0
\(610\) −0.219632 −0.00889263
\(611\) 0 0
\(612\) −79.0310 −3.19464
\(613\) −28.6074 −1.15544 −0.577722 0.816234i \(-0.696058\pi\)
−0.577722 + 0.816234i \(0.696058\pi\)
\(614\) 0.0142260 0.000574116 0
\(615\) 28.1545 1.13530
\(616\) 0.533549 0.0214973
\(617\) 12.6947 0.511071 0.255535 0.966800i \(-0.417748\pi\)
0.255535 + 0.966800i \(0.417748\pi\)
\(618\) −1.06510 −0.0428447
\(619\) −24.5421 −0.986430 −0.493215 0.869907i \(-0.664178\pi\)
−0.493215 + 0.869907i \(0.664178\pi\)
\(620\) −8.29278 −0.333046
\(621\) 30.5251 1.22493
\(622\) −0.568880 −0.0228100
\(623\) 1.64805 0.0660277
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0.218568 0.00873573
\(627\) −65.2855 −2.60725
\(628\) −17.8755 −0.713311
\(629\) −63.4353 −2.52933
\(630\) −0.223516 −0.00890507
\(631\) −7.66905 −0.305300 −0.152650 0.988280i \(-0.548781\pi\)
−0.152650 + 0.988280i \(0.548781\pi\)
\(632\) 0.363218 0.0144481
\(633\) −18.7974 −0.747132
\(634\) 0.104371 0.00414510
\(635\) 8.29226 0.329068
\(636\) 21.5755 0.855526
\(637\) 0 0
\(638\) −3.21305e−5 0 −1.27206e−6 0
\(639\) −24.4841 −0.968577
\(640\) −0.768298 −0.0303696
\(641\) −8.98009 −0.354692 −0.177346 0.984149i \(-0.556751\pi\)
−0.177346 + 0.984149i \(0.556751\pi\)
\(642\) 0.210722 0.00831653
\(643\) 14.1503 0.558032 0.279016 0.960287i \(-0.409992\pi\)
0.279016 + 0.960287i \(0.409992\pi\)
\(644\) 13.4147 0.528613
\(645\) 8.16363 0.321443
\(646\) −1.13620 −0.0447033
\(647\) 21.8757 0.860024 0.430012 0.902823i \(-0.358509\pi\)
0.430012 + 0.902823i \(0.358509\pi\)
\(648\) −0.523177 −0.0205524
\(649\) 26.6434 1.04584
\(650\) 0 0
\(651\) −20.2400 −0.793268
\(652\) 8.98735 0.351972
\(653\) −45.1455 −1.76668 −0.883340 0.468733i \(-0.844711\pi\)
−0.883340 + 0.468733i \(0.844711\pi\)
\(654\) 0.944651 0.0369388
\(655\) 4.86438 0.190067
\(656\) 38.4006 1.49929
\(657\) −11.0179 −0.429849
\(658\) −0.0383487 −0.00149499
\(659\) 32.9439 1.28331 0.641656 0.766993i \(-0.278248\pi\)
0.641656 + 0.766993i \(0.278248\pi\)
\(660\) −19.5326 −0.760304
\(661\) −29.7714 −1.15798 −0.578988 0.815336i \(-0.696552\pi\)
−0.578988 + 0.815336i \(0.696552\pi\)
\(662\) −0.464245 −0.0180434
\(663\) 0 0
\(664\) −0.350564 −0.0136045
\(665\) 11.1297 0.431592
\(666\) −1.20314 −0.0466207
\(667\) −0.00161591 −6.25683e−5 0
\(668\) −36.3336 −1.40579
\(669\) 8.37297 0.323718
\(670\) −0.161668 −0.00624579
\(671\) −30.4764 −1.17653
\(672\) −1.40644 −0.0542547
\(673\) −24.7144 −0.952671 −0.476336 0.879264i \(-0.658035\pi\)
−0.476336 + 0.879264i \(0.658035\pi\)
\(674\) −0.125606 −0.00483817
\(675\) 7.57710 0.291643
\(676\) 0 0
\(677\) 47.2303 1.81521 0.907605 0.419826i \(-0.137909\pi\)
0.907605 + 0.419826i \(0.137909\pi\)
\(678\) −0.238272 −0.00915078
\(679\) 30.7202 1.17893
\(680\) −0.679972 −0.0260757
\(681\) 65.0700 2.49349
\(682\) 0.332239 0.0127221
\(683\) −32.6572 −1.24959 −0.624797 0.780787i \(-0.714818\pi\)
−0.624797 + 0.780787i \(0.714818\pi\)
\(684\) 74.6379 2.85385
\(685\) −4.43432 −0.169427
\(686\) 0.449216 0.0171512
\(687\) −58.6234 −2.23662
\(688\) 11.1346 0.424503
\(689\) 0 0
\(690\) 0.283622 0.0107973
\(691\) −2.93042 −0.111479 −0.0557393 0.998445i \(-0.517752\pi\)
−0.0557393 + 0.998445i \(0.517752\pi\)
\(692\) −0.170333 −0.00647507
\(693\) −31.0153 −1.17817
\(694\) −0.453200 −0.0172032
\(695\) 6.07076 0.230277
\(696\) 0.000112940 0 4.28097e−6 0
\(697\) 67.9916 2.57537
\(698\) 0.668481 0.0253024
\(699\) 6.18469 0.233927
\(700\) 3.32987 0.125857
\(701\) 14.4881 0.547210 0.273605 0.961842i \(-0.411784\pi\)
0.273605 + 0.961842i \(0.411784\pi\)
\(702\) 0 0
\(703\) 59.9091 2.25952
\(704\) −26.6256 −1.00349
\(705\) 2.80820 0.105763
\(706\) 0.833445 0.0313671
\(707\) 16.4358 0.618133
\(708\) −46.8193 −1.75958
\(709\) 49.2943 1.85129 0.925643 0.378397i \(-0.123525\pi\)
0.925643 + 0.378397i \(0.123525\pi\)
\(710\) −0.105314 −0.00395236
\(711\) −21.1140 −0.791836
\(712\) 0.0950908 0.00356368
\(713\) 16.7090 0.625756
\(714\) −0.829676 −0.0310499
\(715\) 0 0
\(716\) −19.1525 −0.715764
\(717\) −55.2791 −2.06444
\(718\) 0.652350 0.0243455
\(719\) −26.0709 −0.972282 −0.486141 0.873880i \(-0.661596\pi\)
−0.486141 + 0.873880i \(0.661596\pi\)
\(720\) 22.3242 0.831975
\(721\) 25.1958 0.938339
\(722\) 0.616539 0.0229452
\(723\) −38.2823 −1.42374
\(724\) 22.1368 0.822709
\(725\) −0.000401110 0 −1.48968e−5 0
\(726\) 0.00812119 0.000301405 0
\(727\) −53.8109 −1.99574 −0.997868 0.0652593i \(-0.979213\pi\)
−0.997868 + 0.0652593i \(0.979213\pi\)
\(728\) 0 0
\(729\) −36.1941 −1.34052
\(730\) −0.0473914 −0.00175403
\(731\) 19.7148 0.729177
\(732\) 53.5549 1.97945
\(733\) 16.4544 0.607758 0.303879 0.952711i \(-0.401718\pi\)
0.303879 + 0.952711i \(0.401718\pi\)
\(734\) 0.606944 0.0224027
\(735\) −12.3841 −0.456793
\(736\) 1.16108 0.0427979
\(737\) −22.4333 −0.826341
\(738\) 1.28956 0.0474692
\(739\) −8.56267 −0.314983 −0.157491 0.987520i \(-0.550341\pi\)
−0.157491 + 0.987520i \(0.550341\pi\)
\(740\) 17.9240 0.658900
\(741\) 0 0
\(742\) 0.147360 0.00540976
\(743\) −36.8946 −1.35353 −0.676766 0.736199i \(-0.736619\pi\)
−0.676766 + 0.736199i \(0.736619\pi\)
\(744\) −1.16783 −0.0428146
\(745\) −12.0203 −0.440389
\(746\) 0.108926 0.00398805
\(747\) 20.3783 0.745605
\(748\) −47.1701 −1.72471
\(749\) −4.98478 −0.182140
\(750\) 0.0704021 0.00257072
\(751\) −19.2206 −0.701369 −0.350685 0.936494i \(-0.614051\pi\)
−0.350685 + 0.936494i \(0.614051\pi\)
\(752\) 3.83018 0.139672
\(753\) 35.1420 1.28064
\(754\) 0 0
\(755\) 6.64251 0.241746
\(756\) 25.2307 0.917633
\(757\) −36.7110 −1.33428 −0.667142 0.744931i \(-0.732482\pi\)
−0.667142 + 0.744931i \(0.732482\pi\)
\(758\) −0.128754 −0.00467656
\(759\) 39.3558 1.42852
\(760\) 0.642174 0.0232941
\(761\) −12.8270 −0.464979 −0.232489 0.972599i \(-0.574687\pi\)
−0.232489 + 0.972599i \(0.574687\pi\)
\(762\) 0.583793 0.0211486
\(763\) −22.3464 −0.808994
\(764\) 39.3486 1.42358
\(765\) 39.5269 1.42910
\(766\) 0.134872 0.00487311
\(767\) 0 0
\(768\) 46.7474 1.68685
\(769\) −34.6300 −1.24879 −0.624396 0.781108i \(-0.714655\pi\)
−0.624396 + 0.781108i \(0.714655\pi\)
\(770\) −0.133406 −0.00480764
\(771\) −77.9806 −2.80840
\(772\) 4.45574 0.160366
\(773\) −21.1483 −0.760653 −0.380326 0.924852i \(-0.624188\pi\)
−0.380326 + 0.924852i \(0.624188\pi\)
\(774\) 0.373918 0.0134402
\(775\) 4.14759 0.148986
\(776\) 1.77253 0.0636300
\(777\) 43.7467 1.56941
\(778\) 0.0653229 0.00234194
\(779\) −64.2122 −2.30064
\(780\) 0 0
\(781\) −14.6135 −0.522911
\(782\) 0.684933 0.0244931
\(783\) −0.00303925 −0.000108614 0
\(784\) −16.8909 −0.603248
\(785\) 8.94035 0.319095
\(786\) 0.342463 0.0122152
\(787\) 20.7662 0.740235 0.370117 0.928985i \(-0.379317\pi\)
0.370117 + 0.928985i \(0.379317\pi\)
\(788\) −19.0587 −0.678938
\(789\) −49.8816 −1.77583
\(790\) −0.0908177 −0.00323115
\(791\) 5.63650 0.200411
\(792\) −1.78955 −0.0635890
\(793\) 0 0
\(794\) 0.120377 0.00427200
\(795\) −10.7909 −0.382713
\(796\) 40.8267 1.44706
\(797\) −15.7183 −0.556770 −0.278385 0.960470i \(-0.589799\pi\)
−0.278385 + 0.960470i \(0.589799\pi\)
\(798\) 0.783557 0.0277376
\(799\) 6.78165 0.239918
\(800\) 0.288209 0.0101897
\(801\) −5.52765 −0.195310
\(802\) −0.457286 −0.0161473
\(803\) −6.57610 −0.232065
\(804\) 39.4211 1.39028
\(805\) −6.70929 −0.236471
\(806\) 0 0
\(807\) 17.5377 0.617356
\(808\) 0.948331 0.0333622
\(809\) −5.08807 −0.178887 −0.0894435 0.995992i \(-0.528509\pi\)
−0.0894435 + 0.995992i \(0.528509\pi\)
\(810\) 0.130813 0.00459631
\(811\) 35.0950 1.23235 0.616176 0.787608i \(-0.288681\pi\)
0.616176 + 0.787608i \(0.288681\pi\)
\(812\) −0.00133564 −4.68718e−5 0
\(813\) −20.8536 −0.731366
\(814\) −0.718101 −0.0251694
\(815\) −4.49497 −0.157452
\(816\) 82.8661 2.90090
\(817\) −18.6189 −0.651392
\(818\) −0.286935 −0.0100325
\(819\) 0 0
\(820\) −19.2114 −0.670892
\(821\) 26.4352 0.922596 0.461298 0.887245i \(-0.347384\pi\)
0.461298 + 0.887245i \(0.347384\pi\)
\(822\) −0.312186 −0.0108887
\(823\) 45.9498 1.60171 0.800854 0.598859i \(-0.204379\pi\)
0.800854 + 0.598859i \(0.204379\pi\)
\(824\) 1.45377 0.0506445
\(825\) 9.76910 0.340116
\(826\) −0.319774 −0.0111263
\(827\) 25.1837 0.875723 0.437861 0.899042i \(-0.355736\pi\)
0.437861 + 0.899042i \(0.355736\pi\)
\(828\) −44.9937 −1.56364
\(829\) 19.5773 0.679947 0.339973 0.940435i \(-0.389582\pi\)
0.339973 + 0.940435i \(0.389582\pi\)
\(830\) 0.0876536 0.00304250
\(831\) 21.9393 0.761065
\(832\) 0 0
\(833\) −29.9069 −1.03621
\(834\) 0.427394 0.0147995
\(835\) 18.1721 0.628870
\(836\) 44.5481 1.54073
\(837\) 31.4267 1.08627
\(838\) −0.0599689 −0.00207159
\(839\) −14.1467 −0.488398 −0.244199 0.969725i \(-0.578525\pi\)
−0.244199 + 0.969725i \(0.578525\pi\)
\(840\) 0.468927 0.0161795
\(841\) −29.0000 −1.00000
\(842\) 0.557946 0.0192281
\(843\) 72.8884 2.51041
\(844\) 12.8266 0.441509
\(845\) 0 0
\(846\) 0.128624 0.00442217
\(847\) −0.192113 −0.00660107
\(848\) −14.7180 −0.505417
\(849\) 37.3341 1.28130
\(850\) 0.170018 0.00583155
\(851\) −36.1148 −1.23800
\(852\) 25.6797 0.879771
\(853\) −2.86179 −0.0979860 −0.0489930 0.998799i \(-0.515601\pi\)
−0.0489930 + 0.998799i \(0.515601\pi\)
\(854\) 0.365778 0.0125167
\(855\) −37.3297 −1.27665
\(856\) −0.287617 −0.00983054
\(857\) 28.2816 0.966082 0.483041 0.875598i \(-0.339532\pi\)
0.483041 + 0.875598i \(0.339532\pi\)
\(858\) 0 0
\(859\) −8.52025 −0.290707 −0.145354 0.989380i \(-0.546432\pi\)
−0.145354 + 0.989380i \(0.546432\pi\)
\(860\) −5.57052 −0.189953
\(861\) −46.8889 −1.59797
\(862\) −0.448767 −0.0152851
\(863\) 36.8913 1.25579 0.627897 0.778297i \(-0.283916\pi\)
0.627897 + 0.778297i \(0.283916\pi\)
\(864\) 2.18379 0.0742939
\(865\) 0.0851909 0.00289658
\(866\) 0.631690 0.0214657
\(867\) 96.9087 3.29119
\(868\) 13.8109 0.468773
\(869\) −12.6020 −0.427493
\(870\) −2.82390e−5 0 −9.57391e−7 0
\(871\) 0 0
\(872\) −1.28936 −0.0436634
\(873\) −103.037 −3.48729
\(874\) −0.646859 −0.0218803
\(875\) −1.66541 −0.0563013
\(876\) 11.5559 0.390438
\(877\) −37.6091 −1.26997 −0.634984 0.772525i \(-0.718994\pi\)
−0.634984 + 0.772525i \(0.718994\pi\)
\(878\) 0.191804 0.00647308
\(879\) −51.4971 −1.73695
\(880\) 13.3243 0.449163
\(881\) 39.3542 1.32588 0.662938 0.748675i \(-0.269309\pi\)
0.662938 + 0.748675i \(0.269309\pi\)
\(882\) −0.567226 −0.0190995
\(883\) −9.17085 −0.308624 −0.154312 0.988022i \(-0.549316\pi\)
−0.154312 + 0.988022i \(0.549316\pi\)
\(884\) 0 0
\(885\) 23.4164 0.787134
\(886\) 0.972460 0.0326704
\(887\) 35.6093 1.19564 0.597822 0.801629i \(-0.296033\pi\)
0.597822 + 0.801629i \(0.296033\pi\)
\(888\) 2.52414 0.0847047
\(889\) −13.8100 −0.463174
\(890\) −0.0237761 −0.000796977 0
\(891\) 18.1518 0.608109
\(892\) −5.71336 −0.191297
\(893\) −6.40468 −0.214324
\(894\) −0.846254 −0.0283030
\(895\) 9.57903 0.320192
\(896\) 1.27953 0.0427462
\(897\) 0 0
\(898\) 0.377886 0.0126102
\(899\) −0.00166364 −5.54855e−5 0
\(900\) −11.1686 −0.372285
\(901\) −26.0594 −0.868165
\(902\) 0.769679 0.0256275
\(903\) −13.5958 −0.452441
\(904\) 0.325220 0.0108167
\(905\) −11.0716 −0.368033
\(906\) 0.467647 0.0155365
\(907\) 32.1739 1.06832 0.534158 0.845385i \(-0.320629\pi\)
0.534158 + 0.845385i \(0.320629\pi\)
\(908\) −44.4010 −1.47350
\(909\) −55.1267 −1.82844
\(910\) 0 0
\(911\) 41.5764 1.37749 0.688743 0.725005i \(-0.258163\pi\)
0.688743 + 0.725005i \(0.258163\pi\)
\(912\) −78.2598 −2.59144
\(913\) 12.1629 0.402534
\(914\) −0.511357 −0.0169142
\(915\) −26.7852 −0.885491
\(916\) 40.0021 1.32171
\(917\) −8.10121 −0.267525
\(918\) 1.28824 0.0425182
\(919\) −29.1810 −0.962592 −0.481296 0.876558i \(-0.659834\pi\)
−0.481296 + 0.876558i \(0.659834\pi\)
\(920\) −0.387119 −0.0127629
\(921\) 1.73493 0.0571680
\(922\) 0.919961 0.0302973
\(923\) 0 0
\(924\) 32.5298 1.07015
\(925\) −8.96459 −0.294754
\(926\) 0.291037 0.00956408
\(927\) −84.5080 −2.77561
\(928\) −0.000115603 0 −3.79487e−6 0
\(929\) 0.0200966 0.000659349 0 0.000329675 1.00000i \(-0.499895\pi\)
0.000329675 1.00000i \(0.499895\pi\)
\(930\) 0.291999 0.00957503
\(931\) 28.2444 0.925674
\(932\) −4.22017 −0.138236
\(933\) −69.3778 −2.27133
\(934\) 0.558171 0.0182639
\(935\) 23.5919 0.771537
\(936\) 0 0
\(937\) −51.2388 −1.67390 −0.836949 0.547281i \(-0.815663\pi\)
−0.836949 + 0.547281i \(0.815663\pi\)
\(938\) 0.269245 0.00879114
\(939\) 26.6554 0.869867
\(940\) −1.91619 −0.0624994
\(941\) 32.4122 1.05661 0.528304 0.849055i \(-0.322828\pi\)
0.528304 + 0.849055i \(0.322828\pi\)
\(942\) 0.629419 0.0205076
\(943\) 38.7087 1.26053
\(944\) 31.9383 1.03950
\(945\) −12.6190 −0.410496
\(946\) 0.223175 0.00725605
\(947\) 29.2152 0.949365 0.474683 0.880157i \(-0.342563\pi\)
0.474683 + 0.880157i \(0.342563\pi\)
\(948\) 22.1450 0.719235
\(949\) 0 0
\(950\) −0.160567 −0.00520947
\(951\) 12.7286 0.412752
\(952\) 1.13243 0.0367024
\(953\) −13.0955 −0.424204 −0.212102 0.977248i \(-0.568031\pi\)
−0.212102 + 0.977248i \(0.568031\pi\)
\(954\) −0.494254 −0.0160021
\(955\) −19.6800 −0.636829
\(956\) 37.7201 1.21996
\(957\) −0.00391848 −0.000126666 0
\(958\) −0.912330 −0.0294761
\(959\) 7.38498 0.238474
\(960\) −23.4008 −0.755256
\(961\) −13.7975 −0.445081
\(962\) 0 0
\(963\) 16.7192 0.538770
\(964\) 26.1222 0.841341
\(965\) −2.22851 −0.0717384
\(966\) −0.472348 −0.0151976
\(967\) −28.4227 −0.914012 −0.457006 0.889464i \(-0.651078\pi\)
−0.457006 + 0.889464i \(0.651078\pi\)
\(968\) −0.0110847 −0.000356276 0
\(969\) −138.566 −4.45137
\(970\) −0.443196 −0.0142302
\(971\) 39.1760 1.25722 0.628608 0.777722i \(-0.283625\pi\)
0.628608 + 0.777722i \(0.283625\pi\)
\(972\) 13.5520 0.434681
\(973\) −10.1103 −0.324122
\(974\) 0.531507 0.0170306
\(975\) 0 0
\(976\) −36.5330 −1.16939
\(977\) 51.4703 1.64668 0.823340 0.567549i \(-0.192108\pi\)
0.823340 + 0.567549i \(0.192108\pi\)
\(978\) −0.316456 −0.0101191
\(979\) −3.29921 −0.105443
\(980\) 8.45035 0.269937
\(981\) 74.9511 2.39300
\(982\) −0.628153 −0.0200452
\(983\) 62.1330 1.98173 0.990867 0.134841i \(-0.0430522\pi\)
0.990867 + 0.134841i \(0.0430522\pi\)
\(984\) −2.70544 −0.0862463
\(985\) 9.53209 0.303718
\(986\) −6.81957e−5 0 −2.17179e−6 0
\(987\) −4.67681 −0.148865
\(988\) 0 0
\(989\) 11.2239 0.356900
\(990\) 0.447453 0.0142210
\(991\) 8.63773 0.274387 0.137193 0.990544i \(-0.456192\pi\)
0.137193 + 0.990544i \(0.456192\pi\)
\(992\) 1.19537 0.0379531
\(993\) −56.6170 −1.79669
\(994\) 0.175391 0.00556307
\(995\) −20.4192 −0.647334
\(996\) −21.3734 −0.677242
\(997\) 5.36590 0.169940 0.0849698 0.996384i \(-0.472921\pi\)
0.0849698 + 0.996384i \(0.472921\pi\)
\(998\) 0.541033 0.0171261
\(999\) −67.9256 −2.14907
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.a.o.1.5 yes 9
3.2 odd 2 7605.2.a.cp.1.5 9
5.4 even 2 4225.2.a.bs.1.5 9
13.2 odd 12 845.2.m.j.316.10 36
13.3 even 3 845.2.e.o.191.5 18
13.4 even 6 845.2.e.p.146.5 18
13.5 odd 4 845.2.c.h.506.9 18
13.6 odd 12 845.2.m.j.361.9 36
13.7 odd 12 845.2.m.j.361.10 36
13.8 odd 4 845.2.c.h.506.10 18
13.9 even 3 845.2.e.o.146.5 18
13.10 even 6 845.2.e.p.191.5 18
13.11 odd 12 845.2.m.j.316.9 36
13.12 even 2 845.2.a.n.1.5 9
39.38 odd 2 7605.2.a.cs.1.5 9
65.64 even 2 4225.2.a.bt.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.n.1.5 9 13.12 even 2
845.2.a.o.1.5 yes 9 1.1 even 1 trivial
845.2.c.h.506.9 18 13.5 odd 4
845.2.c.h.506.10 18 13.8 odd 4
845.2.e.o.146.5 18 13.9 even 3
845.2.e.o.191.5 18 13.3 even 3
845.2.e.p.146.5 18 13.4 even 6
845.2.e.p.191.5 18 13.10 even 6
845.2.m.j.316.9 36 13.11 odd 12
845.2.m.j.316.10 36 13.2 odd 12
845.2.m.j.361.9 36 13.6 odd 12
845.2.m.j.361.10 36 13.7 odd 12
4225.2.a.bs.1.5 9 5.4 even 2
4225.2.a.bt.1.5 9 65.64 even 2
7605.2.a.cp.1.5 9 3.2 odd 2
7605.2.a.cs.1.5 9 39.38 odd 2