Properties

Label 845.2.d.a.844.3
Level $845$
Weight $2$
Character 845.844
Analytic conductor $6.747$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(844,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.844");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 844.3
Root \(-0.854638 - 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 845.844
Dual form 845.2.d.a.844.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53919 q^{2} -3.17009i q^{3} +0.369102 q^{4} +(-2.17009 + 0.539189i) q^{5} +4.87936i q^{6} -1.70928 q^{7} +2.51026 q^{8} -7.04945 q^{9} +(3.34017 - 0.829914i) q^{10} +2.53919i q^{11} -1.17009i q^{12} +2.63090 q^{14} +(1.70928 + 6.87936i) q^{15} -4.60197 q^{16} -0.921622i q^{17} +10.8504 q^{18} +0.539189i q^{19} +(-0.800984 + 0.199016i) q^{20} +5.41855i q^{21} -3.90829i q^{22} +2.82991i q^{23} -7.95774i q^{24} +(4.41855 - 2.34017i) q^{25} +12.8371i q^{27} -0.630898 q^{28} +5.12783 q^{29} +(-2.63090 - 10.5886i) q^{30} +0.879362i q^{31} +2.06278 q^{32} +8.04945 q^{33} +1.41855i q^{34} +(3.70928 - 0.921622i) q^{35} -2.60197 q^{36} -6.04945 q^{37} -0.829914i q^{38} +(-5.44748 + 1.35350i) q^{40} +1.26180i q^{41} -8.34017i q^{42} +6.43188i q^{43} +0.937221i q^{44} +(15.2979 - 3.80098i) q^{45} -4.35577i q^{46} +5.70928 q^{47} +14.5886i q^{48} -4.07838 q^{49} +(-6.80098 + 3.60197i) q^{50} -2.92162 q^{51} -8.49693i q^{53} -19.7587i q^{54} +(-1.36910 - 5.51026i) q^{55} -4.29072 q^{56} +1.70928 q^{57} -7.89269 q^{58} -4.72261i q^{59} +(0.630898 + 2.53919i) q^{60} +8.04945 q^{61} -1.35350i q^{62} +12.0494 q^{63} +6.02893 q^{64} -12.3896 q^{66} -7.86603 q^{67} -0.340173i q^{68} +8.97107 q^{69} +(-5.70928 + 1.41855i) q^{70} -14.4813i q^{71} -17.6959 q^{72} +1.95055 q^{73} +9.31124 q^{74} +(-7.41855 - 14.0072i) q^{75} +0.199016i q^{76} -4.34017i q^{77} -0.496928 q^{79} +(9.98667 - 2.48133i) q^{80} +19.5464 q^{81} -1.94214i q^{82} +8.63090 q^{83} +2.00000i q^{84} +(0.496928 + 2.00000i) q^{85} -9.89988i q^{86} -16.2557i q^{87} +6.37402i q^{88} +12.8371i q^{89} +(-23.5464 + 5.85043i) q^{90} +1.04453i q^{92} +2.78765 q^{93} -8.78765 q^{94} +(-0.290725 - 1.17009i) q^{95} -6.53919i q^{96} -5.91548 q^{97} +6.27739 q^{98} -17.8999i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 10 q^{4} - 2 q^{5} + 4 q^{7} - 18 q^{8} - 6 q^{9} - 2 q^{10} + 8 q^{14} - 4 q^{15} + 10 q^{16} + 10 q^{18} + 14 q^{20} - 2 q^{25} + 4 q^{28} - 12 q^{29} - 8 q^{30} - 22 q^{32} + 12 q^{33}+ \cdots + 50 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.53919 −1.08837 −0.544185 0.838965i \(-0.683161\pi\)
−0.544185 + 0.838965i \(0.683161\pi\)
\(3\) 3.17009i 1.83025i −0.403170 0.915125i \(-0.632092\pi\)
0.403170 0.915125i \(-0.367908\pi\)
\(4\) 0.369102 0.184551
\(5\) −2.17009 + 0.539189i −0.970492 + 0.241133i
\(6\) 4.87936i 1.99199i
\(7\) −1.70928 −0.646045 −0.323023 0.946391i \(-0.604699\pi\)
−0.323023 + 0.946391i \(0.604699\pi\)
\(8\) 2.51026 0.887511
\(9\) −7.04945 −2.34982
\(10\) 3.34017 0.829914i 1.05626 0.262442i
\(11\) 2.53919i 0.765594i 0.923832 + 0.382797i \(0.125039\pi\)
−0.923832 + 0.382797i \(0.874961\pi\)
\(12\) 1.17009i 0.337775i
\(13\) 0 0
\(14\) 2.63090 0.703137
\(15\) 1.70928 + 6.87936i 0.441333 + 1.77624i
\(16\) −4.60197 −1.15049
\(17\) 0.921622i 0.223526i −0.993735 0.111763i \(-0.964350\pi\)
0.993735 0.111763i \(-0.0356498\pi\)
\(18\) 10.8504 2.55747
\(19\) 0.539189i 0.123698i 0.998086 + 0.0618492i \(0.0196998\pi\)
−0.998086 + 0.0618492i \(0.980300\pi\)
\(20\) −0.800984 + 0.199016i −0.179105 + 0.0445013i
\(21\) 5.41855i 1.18242i
\(22\) 3.90829i 0.833250i
\(23\) 2.82991i 0.590078i 0.955485 + 0.295039i \(0.0953326\pi\)
−0.955485 + 0.295039i \(0.904667\pi\)
\(24\) 7.95774i 1.62437i
\(25\) 4.41855 2.34017i 0.883710 0.468035i
\(26\) 0 0
\(27\) 12.8371i 2.47050i
\(28\) −0.630898 −0.119228
\(29\) 5.12783 0.952213 0.476107 0.879388i \(-0.342048\pi\)
0.476107 + 0.879388i \(0.342048\pi\)
\(30\) −2.63090 10.5886i −0.480334 1.93321i
\(31\) 0.879362i 0.157938i 0.996877 + 0.0789690i \(0.0251628\pi\)
−0.996877 + 0.0789690i \(0.974837\pi\)
\(32\) 2.06278 0.364651
\(33\) 8.04945 1.40123
\(34\) 1.41855i 0.243279i
\(35\) 3.70928 0.921622i 0.626982 0.155783i
\(36\) −2.60197 −0.433661
\(37\) −6.04945 −0.994523 −0.497262 0.867601i \(-0.665661\pi\)
−0.497262 + 0.867601i \(0.665661\pi\)
\(38\) 0.829914i 0.134630i
\(39\) 0 0
\(40\) −5.44748 + 1.35350i −0.861322 + 0.214008i
\(41\) 1.26180i 0.197059i 0.995134 + 0.0985297i \(0.0314139\pi\)
−0.995134 + 0.0985297i \(0.968586\pi\)
\(42\) 8.34017i 1.28692i
\(43\) 6.43188i 0.980853i 0.871483 + 0.490426i \(0.163159\pi\)
−0.871483 + 0.490426i \(0.836841\pi\)
\(44\) 0.937221i 0.141291i
\(45\) 15.2979 3.80098i 2.28048 0.566617i
\(46\) 4.35577i 0.642223i
\(47\) 5.70928 0.832783 0.416392 0.909185i \(-0.363295\pi\)
0.416392 + 0.909185i \(0.363295\pi\)
\(48\) 14.5886i 2.10569i
\(49\) −4.07838 −0.582625
\(50\) −6.80098 + 3.60197i −0.961804 + 0.509395i
\(51\) −2.92162 −0.409109
\(52\) 0 0
\(53\) 8.49693i 1.16714i −0.812062 0.583571i \(-0.801655\pi\)
0.812062 0.583571i \(-0.198345\pi\)
\(54\) 19.7587i 2.68882i
\(55\) −1.36910 5.51026i −0.184610 0.743003i
\(56\) −4.29072 −0.573372
\(57\) 1.70928 0.226399
\(58\) −7.89269 −1.03636
\(59\) 4.72261i 0.614831i −0.951575 0.307415i \(-0.900536\pi\)
0.951575 0.307415i \(-0.0994641\pi\)
\(60\) 0.630898 + 2.53919i 0.0814485 + 0.327808i
\(61\) 8.04945 1.03063 0.515313 0.857002i \(-0.327676\pi\)
0.515313 + 0.857002i \(0.327676\pi\)
\(62\) 1.35350i 0.171895i
\(63\) 12.0494 1.51809
\(64\) 6.02893 0.753616
\(65\) 0 0
\(66\) −12.3896 −1.52506
\(67\) −7.86603 −0.960989 −0.480494 0.876998i \(-0.659543\pi\)
−0.480494 + 0.876998i \(0.659543\pi\)
\(68\) 0.340173i 0.0412520i
\(69\) 8.97107 1.07999
\(70\) −5.70928 + 1.41855i −0.682389 + 0.169549i
\(71\) 14.4813i 1.71862i −0.511457 0.859309i \(-0.670894\pi\)
0.511457 0.859309i \(-0.329106\pi\)
\(72\) −17.6959 −2.08549
\(73\) 1.95055 0.228295 0.114147 0.993464i \(-0.463586\pi\)
0.114147 + 0.993464i \(0.463586\pi\)
\(74\) 9.31124 1.08241
\(75\) −7.41855 14.0072i −0.856620 1.61741i
\(76\) 0.199016i 0.0228287i
\(77\) 4.34017i 0.494609i
\(78\) 0 0
\(79\) −0.496928 −0.0559088 −0.0279544 0.999609i \(-0.508899\pi\)
−0.0279544 + 0.999609i \(0.508899\pi\)
\(80\) 9.98667 2.48133i 1.11654 0.277421i
\(81\) 19.5464 2.17182
\(82\) 1.94214i 0.214474i
\(83\) 8.63090 0.947364 0.473682 0.880696i \(-0.342925\pi\)
0.473682 + 0.880696i \(0.342925\pi\)
\(84\) 2.00000i 0.218218i
\(85\) 0.496928 + 2.00000i 0.0538995 + 0.216930i
\(86\) 9.89988i 1.06753i
\(87\) 16.2557i 1.74279i
\(88\) 6.37402i 0.679473i
\(89\) 12.8371i 1.36073i 0.732873 + 0.680365i \(0.238179\pi\)
−0.732873 + 0.680365i \(0.761821\pi\)
\(90\) −23.5464 + 5.85043i −2.48201 + 0.616690i
\(91\) 0 0
\(92\) 1.04453i 0.108900i
\(93\) 2.78765 0.289066
\(94\) −8.78765 −0.906377
\(95\) −0.290725 1.17009i −0.0298277 0.120048i
\(96\) 6.53919i 0.667403i
\(97\) −5.91548 −0.600626 −0.300313 0.953841i \(-0.597091\pi\)
−0.300313 + 0.953841i \(0.597091\pi\)
\(98\) 6.27739 0.634113
\(99\) 17.8999i 1.79901i
\(100\) 1.63090 0.863763i 0.163090 0.0863763i
\(101\) 16.4391 1.63575 0.817874 0.575397i \(-0.195152\pi\)
0.817874 + 0.575397i \(0.195152\pi\)
\(102\) 4.49693 0.445262
\(103\) 10.1906i 1.00411i −0.864836 0.502055i \(-0.832577\pi\)
0.864836 0.502055i \(-0.167423\pi\)
\(104\) 0 0
\(105\) −2.92162 11.7587i −0.285121 1.14753i
\(106\) 13.0784i 1.27028i
\(107\) 9.75154i 0.942717i 0.881942 + 0.471358i \(0.156236\pi\)
−0.881942 + 0.471358i \(0.843764\pi\)
\(108\) 4.73820i 0.455934i
\(109\) 16.8638i 1.61526i 0.589693 + 0.807628i \(0.299249\pi\)
−0.589693 + 0.807628i \(0.700751\pi\)
\(110\) 2.10731 + 8.48133i 0.200924 + 0.808663i
\(111\) 19.1773i 1.82023i
\(112\) 7.86603 0.743270
\(113\) 11.7587i 1.10617i 0.833126 + 0.553084i \(0.186549\pi\)
−0.833126 + 0.553084i \(0.813451\pi\)
\(114\) −2.63090 −0.246406
\(115\) −1.52586 6.14116i −0.142287 0.572666i
\(116\) 1.89269 0.175732
\(117\) 0 0
\(118\) 7.26898i 0.669164i
\(119\) 1.57531i 0.144408i
\(120\) 4.29072 + 17.2690i 0.391688 + 1.57644i
\(121\) 4.55252 0.413865
\(122\) −12.3896 −1.12170
\(123\) 4.00000 0.360668
\(124\) 0.324575i 0.0291477i
\(125\) −8.32684 + 7.46081i −0.744775 + 0.667315i
\(126\) −18.5464 −1.65224
\(127\) 18.0072i 1.59788i 0.601411 + 0.798940i \(0.294605\pi\)
−0.601411 + 0.798940i \(0.705395\pi\)
\(128\) −13.4052 −1.18487
\(129\) 20.3896 1.79521
\(130\) 0 0
\(131\) 14.2557 1.24552 0.622761 0.782412i \(-0.286011\pi\)
0.622761 + 0.782412i \(0.286011\pi\)
\(132\) 2.97107 0.258599
\(133\) 0.921622i 0.0799148i
\(134\) 12.1073 1.04591
\(135\) −6.92162 27.8576i −0.595718 2.39760i
\(136\) 2.31351i 0.198382i
\(137\) 13.7854 1.17776 0.588882 0.808219i \(-0.299568\pi\)
0.588882 + 0.808219i \(0.299568\pi\)
\(138\) −13.8082 −1.17543
\(139\) 6.65368 0.564358 0.282179 0.959362i \(-0.408943\pi\)
0.282179 + 0.959362i \(0.408943\pi\)
\(140\) 1.36910 0.340173i 0.115710 0.0287499i
\(141\) 18.0989i 1.52420i
\(142\) 22.2895i 1.87049i
\(143\) 0 0
\(144\) 32.4413 2.70344
\(145\) −11.1278 + 2.76487i −0.924116 + 0.229610i
\(146\) −3.00227 −0.248469
\(147\) 12.9288i 1.06635i
\(148\) −2.23287 −0.183540
\(149\) 9.07838i 0.743730i 0.928287 + 0.371865i \(0.121282\pi\)
−0.928287 + 0.371865i \(0.878718\pi\)
\(150\) 11.4186 + 21.5597i 0.932321 + 1.76034i
\(151\) 3.27739i 0.266711i −0.991068 0.133355i \(-0.957425\pi\)
0.991068 0.133355i \(-0.0425751\pi\)
\(152\) 1.35350i 0.109784i
\(153\) 6.49693i 0.525246i
\(154\) 6.68035i 0.538318i
\(155\) −0.474142 1.90829i −0.0380840 0.153278i
\(156\) 0 0
\(157\) 12.8371i 1.02451i 0.858833 + 0.512256i \(0.171190\pi\)
−0.858833 + 0.512256i \(0.828810\pi\)
\(158\) 0.764867 0.0608495
\(159\) −26.9360 −2.13616
\(160\) −4.47641 + 1.11223i −0.353891 + 0.0879293i
\(161\) 4.83710i 0.381217i
\(162\) −30.0856 −2.36375
\(163\) −12.0494 −0.943786 −0.471893 0.881656i \(-0.656429\pi\)
−0.471893 + 0.881656i \(0.656429\pi\)
\(164\) 0.465732i 0.0363675i
\(165\) −17.4680 + 4.34017i −1.35988 + 0.337882i
\(166\) −13.2846 −1.03108
\(167\) 8.72979 0.675532 0.337766 0.941230i \(-0.390329\pi\)
0.337766 + 0.941230i \(0.390329\pi\)
\(168\) 13.6020i 1.04941i
\(169\) 0 0
\(170\) −0.764867 3.07838i −0.0586626 0.236101i
\(171\) 3.80098i 0.290669i
\(172\) 2.37402i 0.181018i
\(173\) 0.863763i 0.0656707i 0.999461 + 0.0328354i \(0.0104537\pi\)
−0.999461 + 0.0328354i \(0.989546\pi\)
\(174\) 25.0205i 1.89680i
\(175\) −7.55252 + 4.00000i −0.570917 + 0.302372i
\(176\) 11.6853i 0.880810i
\(177\) −14.9711 −1.12529
\(178\) 19.7587i 1.48098i
\(179\) 19.9155 1.48855 0.744276 0.667872i \(-0.232795\pi\)
0.744276 + 0.667872i \(0.232795\pi\)
\(180\) 5.64650 1.40295i 0.420865 0.104570i
\(181\) −14.3896 −1.06957 −0.534786 0.844987i \(-0.679608\pi\)
−0.534786 + 0.844987i \(0.679608\pi\)
\(182\) 0 0
\(183\) 25.5174i 1.88630i
\(184\) 7.10382i 0.523700i
\(185\) 13.1278 3.26180i 0.965177 0.239812i
\(186\) −4.29072 −0.314611
\(187\) 2.34017 0.171130
\(188\) 2.10731 0.153691
\(189\) 21.9421i 1.59606i
\(190\) 0.447480 + 1.80098i 0.0324636 + 0.130657i
\(191\) 1.47641 0.106829 0.0534146 0.998572i \(-0.482990\pi\)
0.0534146 + 0.998572i \(0.482990\pi\)
\(192\) 19.1122i 1.37931i
\(193\) 17.7321 1.27638 0.638191 0.769878i \(-0.279683\pi\)
0.638191 + 0.769878i \(0.279683\pi\)
\(194\) 9.10504 0.653704
\(195\) 0 0
\(196\) −1.50534 −0.107524
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 27.5513i 1.95799i
\(199\) −5.39189 −0.382221 −0.191110 0.981569i \(-0.561209\pi\)
−0.191110 + 0.981569i \(0.561209\pi\)
\(200\) 11.0917 5.87444i 0.784302 0.415386i
\(201\) 24.9360i 1.75885i
\(202\) −25.3028 −1.78030
\(203\) −8.76487 −0.615173
\(204\) −1.07838 −0.0755015
\(205\) −0.680346 2.73820i −0.0475174 0.191245i
\(206\) 15.6853i 1.09284i
\(207\) 19.9493i 1.38657i
\(208\) 0 0
\(209\) −1.36910 −0.0947028
\(210\) 4.49693 + 18.0989i 0.310318 + 1.24894i
\(211\) −22.7526 −1.56635 −0.783176 0.621800i \(-0.786402\pi\)
−0.783176 + 0.621800i \(0.786402\pi\)
\(212\) 3.13624i 0.215398i
\(213\) −45.9071 −3.14550
\(214\) 15.0095i 1.02603i
\(215\) −3.46800 13.9577i −0.236516 0.951910i
\(216\) 32.2245i 2.19260i
\(217\) 1.50307i 0.102035i
\(218\) 25.9565i 1.75800i
\(219\) 6.18342i 0.417837i
\(220\) −0.505339 2.03385i −0.0340699 0.137122i
\(221\) 0 0
\(222\) 29.5174i 1.98108i
\(223\) 8.76099 0.586679 0.293340 0.956008i \(-0.405233\pi\)
0.293340 + 0.956008i \(0.405233\pi\)
\(224\) −3.52586 −0.235581
\(225\) −31.1483 + 16.4969i −2.07656 + 1.09980i
\(226\) 18.0989i 1.20392i
\(227\) 17.2267 1.14338 0.571689 0.820470i \(-0.306288\pi\)
0.571689 + 0.820470i \(0.306288\pi\)
\(228\) 0.630898 0.0417822
\(229\) 3.07838i 0.203425i 0.994814 + 0.101712i \(0.0324322\pi\)
−0.994814 + 0.101712i \(0.967568\pi\)
\(230\) 2.34858 + 9.45240i 0.154861 + 0.623273i
\(231\) −13.7587 −0.905258
\(232\) 12.8722 0.845100
\(233\) 18.9360i 1.24054i 0.784389 + 0.620269i \(0.212977\pi\)
−0.784389 + 0.620269i \(0.787023\pi\)
\(234\) 0 0
\(235\) −12.3896 + 3.07838i −0.808210 + 0.200811i
\(236\) 1.74313i 0.113468i
\(237\) 1.57531i 0.102327i
\(238\) 2.42469i 0.157170i
\(239\) 6.63809i 0.429382i −0.976682 0.214691i \(-0.931126\pi\)
0.976682 0.214691i \(-0.0688745\pi\)
\(240\) −7.86603 31.6586i −0.507750 2.04355i
\(241\) 9.47641i 0.610429i 0.952284 + 0.305215i \(0.0987282\pi\)
−0.952284 + 0.305215i \(0.901272\pi\)
\(242\) −7.00719 −0.450439
\(243\) 23.4524i 1.50447i
\(244\) 2.97107 0.190203
\(245\) 8.85043 2.19902i 0.565433 0.140490i
\(246\) −6.15676 −0.392540
\(247\) 0 0
\(248\) 2.20743i 0.140172i
\(249\) 27.3607i 1.73391i
\(250\) 12.8166 11.4836i 0.810592 0.726286i
\(251\) −29.4596 −1.85947 −0.929736 0.368226i \(-0.879965\pi\)
−0.929736 + 0.368226i \(0.879965\pi\)
\(252\) 4.44748 0.280165
\(253\) −7.18568 −0.451760
\(254\) 27.7165i 1.73909i
\(255\) 6.34017 1.57531i 0.397037 0.0986495i
\(256\) 8.57531 0.535957
\(257\) 20.4657i 1.27662i 0.769781 + 0.638309i \(0.220366\pi\)
−0.769781 + 0.638309i \(0.779634\pi\)
\(258\) −31.3835 −1.95385
\(259\) 10.3402 0.642507
\(260\) 0 0
\(261\) −36.1483 −2.23753
\(262\) −21.9421 −1.35559
\(263\) 9.14342i 0.563808i −0.959443 0.281904i \(-0.909034\pi\)
0.959443 0.281904i \(-0.0909659\pi\)
\(264\) 20.2062 1.24361
\(265\) 4.58145 + 18.4391i 0.281436 + 1.13270i
\(266\) 1.41855i 0.0869769i
\(267\) 40.6947 2.49048
\(268\) −2.90337 −0.177352
\(269\) −11.3919 −0.694576 −0.347288 0.937759i \(-0.612897\pi\)
−0.347288 + 0.937759i \(0.612897\pi\)
\(270\) 10.6537 + 42.8781i 0.648363 + 2.60948i
\(271\) 21.1350i 1.28386i 0.766763 + 0.641930i \(0.221866\pi\)
−0.766763 + 0.641930i \(0.778134\pi\)
\(272\) 4.24128i 0.257165i
\(273\) 0 0
\(274\) −21.2183 −1.28185
\(275\) 5.94214 + 11.2195i 0.358325 + 0.676563i
\(276\) 3.31124 0.199313
\(277\) 13.0784i 0.785804i 0.919580 + 0.392902i \(0.128529\pi\)
−0.919580 + 0.392902i \(0.871471\pi\)
\(278\) −10.2413 −0.614231
\(279\) 6.19902i 0.371125i
\(280\) 9.31124 2.31351i 0.556453 0.138259i
\(281\) 0.680346i 0.0405860i 0.999794 + 0.0202930i \(0.00645991\pi\)
−0.999794 + 0.0202930i \(0.993540\pi\)
\(282\) 27.8576i 1.65890i
\(283\) 19.2956i 1.14701i −0.819203 0.573504i \(-0.805584\pi\)
0.819203 0.573504i \(-0.194416\pi\)
\(284\) 5.34509i 0.317173i
\(285\) −3.70928 + 0.921622i −0.219719 + 0.0545922i
\(286\) 0 0
\(287\) 2.15676i 0.127309i
\(288\) −14.5415 −0.856864
\(289\) 16.1506 0.950036
\(290\) 17.1278 4.25565i 1.00578 0.249900i
\(291\) 18.7526i 1.09930i
\(292\) 0.719953 0.0421321
\(293\) 9.46800 0.553126 0.276563 0.960996i \(-0.410804\pi\)
0.276563 + 0.960996i \(0.410804\pi\)
\(294\) 19.8999i 1.16058i
\(295\) 2.54638 + 10.2485i 0.148256 + 0.596689i
\(296\) −15.1857 −0.882650
\(297\) −32.5958 −1.89140
\(298\) 13.9733i 0.809454i
\(299\) 0 0
\(300\) −2.73820 5.17009i −0.158090 0.298495i
\(301\) 10.9939i 0.633675i
\(302\) 5.04453i 0.290280i
\(303\) 52.1133i 2.99383i
\(304\) 2.48133i 0.142314i
\(305\) −17.4680 + 4.34017i −1.00021 + 0.248518i
\(306\) 10.0000i 0.571662i
\(307\) −0.264063 −0.0150709 −0.00753543 0.999972i \(-0.502399\pi\)
−0.00753543 + 0.999972i \(0.502399\pi\)
\(308\) 1.60197i 0.0912806i
\(309\) −32.3051 −1.83777
\(310\) 0.729794 + 2.93722i 0.0414495 + 0.166823i
\(311\) −13.0472 −0.739838 −0.369919 0.929064i \(-0.620615\pi\)
−0.369919 + 0.929064i \(0.620615\pi\)
\(312\) 0 0
\(313\) 33.7009i 1.90489i 0.304718 + 0.952443i \(0.401438\pi\)
−0.304718 + 0.952443i \(0.598562\pi\)
\(314\) 19.7587i 1.11505i
\(315\) −26.1483 + 6.49693i −1.47329 + 0.366060i
\(316\) −0.183417 −0.0103180
\(317\) 13.9506 0.783541 0.391771 0.920063i \(-0.371863\pi\)
0.391771 + 0.920063i \(0.371863\pi\)
\(318\) 41.4596 2.32494
\(319\) 13.0205i 0.729009i
\(320\) −13.0833 + 3.25073i −0.731379 + 0.181721i
\(321\) 30.9132 1.72541
\(322\) 7.44521i 0.414905i
\(323\) 0.496928 0.0276498
\(324\) 7.21461 0.400812
\(325\) 0 0
\(326\) 18.5464 1.02719
\(327\) 53.4596 2.95632
\(328\) 3.16743i 0.174892i
\(329\) −9.75872 −0.538016
\(330\) 26.8865 6.68035i 1.48006 0.367741i
\(331\) 18.4547i 1.01436i −0.861840 0.507180i \(-0.830688\pi\)
0.861840 0.507180i \(-0.169312\pi\)
\(332\) 3.18568 0.174837
\(333\) 42.6453 2.33695
\(334\) −13.4368 −0.735229
\(335\) 17.0700 4.24128i 0.932632 0.231726i
\(336\) 24.9360i 1.36037i
\(337\) 15.8576i 0.863820i 0.901917 + 0.431910i \(0.142160\pi\)
−0.901917 + 0.431910i \(0.857840\pi\)
\(338\) 0 0
\(339\) 37.2762 2.02456
\(340\) 0.183417 + 0.738205i 0.00994721 + 0.0400348i
\(341\) −2.23287 −0.120916
\(342\) 5.85043i 0.316355i
\(343\) 18.9360 1.02245
\(344\) 16.1457i 0.870517i
\(345\) −19.4680 + 4.83710i −1.04812 + 0.260421i
\(346\) 1.32950i 0.0714741i
\(347\) 9.72487i 0.522059i 0.965331 + 0.261029i \(0.0840619\pi\)
−0.965331 + 0.261029i \(0.915938\pi\)
\(348\) 6.00000i 0.321634i
\(349\) 30.9093i 1.65454i −0.561805 0.827269i \(-0.689893\pi\)
0.561805 0.827269i \(-0.310107\pi\)
\(350\) 11.6248 6.15676i 0.621369 0.329092i
\(351\) 0 0
\(352\) 5.23779i 0.279175i
\(353\) 5.95055 0.316716 0.158358 0.987382i \(-0.449380\pi\)
0.158358 + 0.987382i \(0.449380\pi\)
\(354\) 23.0433 1.22474
\(355\) 7.80817 + 31.4257i 0.414415 + 1.66791i
\(356\) 4.73820i 0.251124i
\(357\) 4.99386 0.264303
\(358\) −30.6537 −1.62010
\(359\) 10.9783i 0.579410i 0.957116 + 0.289705i \(0.0935573\pi\)
−0.957116 + 0.289705i \(0.906443\pi\)
\(360\) 38.4017 9.54146i 2.02395 0.502879i
\(361\) 18.7093 0.984699
\(362\) 22.1483 1.16409
\(363\) 14.4319i 0.757477i
\(364\) 0 0
\(365\) −4.23287 + 1.05172i −0.221558 + 0.0550493i
\(366\) 39.2762i 2.05300i
\(367\) 10.3740i 0.541520i 0.962647 + 0.270760i \(0.0872749\pi\)
−0.962647 + 0.270760i \(0.912725\pi\)
\(368\) 13.0232i 0.678880i
\(369\) 8.89496i 0.463053i
\(370\) −20.2062 + 5.02052i −1.05047 + 0.261004i
\(371\) 14.5236i 0.754027i
\(372\) 1.02893 0.0533475
\(373\) 23.9877i 1.24204i −0.783796 0.621018i \(-0.786719\pi\)
0.783796 0.621018i \(-0.213281\pi\)
\(374\) −3.60197 −0.186253
\(375\) 23.6514 + 26.3968i 1.22135 + 1.36313i
\(376\) 14.3318 0.739104
\(377\) 0 0
\(378\) 33.7731i 1.73710i
\(379\) 29.7575i 1.52854i −0.644896 0.764270i \(-0.723099\pi\)
0.644896 0.764270i \(-0.276901\pi\)
\(380\) −0.107307 0.431882i −0.00550474 0.0221551i
\(381\) 57.0843 2.92452
\(382\) −2.27247 −0.116270
\(383\) 12.4163 0.634442 0.317221 0.948352i \(-0.397250\pi\)
0.317221 + 0.948352i \(0.397250\pi\)
\(384\) 42.4957i 2.16860i
\(385\) 2.34017 + 9.41855i 0.119266 + 0.480014i
\(386\) −27.2930 −1.38918
\(387\) 45.3412i 2.30482i
\(388\) −2.18342 −0.110846
\(389\) −16.8371 −0.853675 −0.426837 0.904328i \(-0.640372\pi\)
−0.426837 + 0.904328i \(0.640372\pi\)
\(390\) 0 0
\(391\) 2.60811 0.131898
\(392\) −10.2378 −0.517086
\(393\) 45.1917i 2.27962i
\(394\) 3.07838 0.155086
\(395\) 1.07838 0.267938i 0.0542591 0.0134814i
\(396\) 6.60689i 0.332009i
\(397\) −3.89269 −0.195369 −0.0976843 0.995217i \(-0.531144\pi\)
−0.0976843 + 0.995217i \(0.531144\pi\)
\(398\) 8.29914 0.415998
\(399\) −2.92162 −0.146264
\(400\) −20.3340 + 10.7694i −1.01670 + 0.538470i
\(401\) 9.10504i 0.454684i 0.973815 + 0.227342i \(0.0730035\pi\)
−0.973815 + 0.227342i \(0.926996\pi\)
\(402\) 38.3812i 1.91428i
\(403\) 0 0
\(404\) 6.06770 0.301879
\(405\) −42.4173 + 10.5392i −2.10773 + 0.523697i
\(406\) 13.4908 0.669536
\(407\) 15.3607i 0.761401i
\(408\) −7.33403 −0.363089
\(409\) 19.4186i 0.960186i 0.877218 + 0.480093i \(0.159397\pi\)
−0.877218 + 0.480093i \(0.840603\pi\)
\(410\) 1.04718 + 4.21461i 0.0517166 + 0.208145i
\(411\) 43.7009i 2.15560i
\(412\) 3.76138i 0.185310i
\(413\) 8.07223i 0.397209i
\(414\) 30.7058i 1.50911i
\(415\) −18.7298 + 4.65368i −0.919409 + 0.228440i
\(416\) 0 0
\(417\) 21.0928i 1.03292i
\(418\) 2.10731 0.103072
\(419\) 16.7792 0.819720 0.409860 0.912149i \(-0.365578\pi\)
0.409860 + 0.912149i \(0.365578\pi\)
\(420\) −1.07838 4.34017i −0.0526194 0.211779i
\(421\) 19.0205i 0.927003i −0.886096 0.463502i \(-0.846593\pi\)
0.886096 0.463502i \(-0.153407\pi\)
\(422\) 35.0205 1.70477
\(423\) −40.2472 −1.95689
\(424\) 21.3295i 1.03585i
\(425\) −2.15676 4.07223i −0.104618 0.197532i
\(426\) 70.6596 3.42347
\(427\) −13.7587 −0.665831
\(428\) 3.59932i 0.173979i
\(429\) 0 0
\(430\) 5.33791 + 21.4836i 0.257417 + 1.03603i
\(431\) 8.02997i 0.386790i 0.981121 + 0.193395i \(0.0619499\pi\)
−0.981121 + 0.193395i \(0.938050\pi\)
\(432\) 59.0759i 2.84229i
\(433\) 13.0472i 0.627008i 0.949587 + 0.313504i \(0.101503\pi\)
−0.949587 + 0.313504i \(0.898497\pi\)
\(434\) 2.31351i 0.111052i
\(435\) 8.76487 + 35.2762i 0.420243 + 1.69136i
\(436\) 6.22446i 0.298097i
\(437\) −1.52586 −0.0729917
\(438\) 9.51745i 0.454761i
\(439\) −7.70086 −0.367542 −0.183771 0.982969i \(-0.558831\pi\)
−0.183771 + 0.982969i \(0.558831\pi\)
\(440\) −3.43680 13.8322i −0.163843 0.659423i
\(441\) 28.7503 1.36906
\(442\) 0 0
\(443\) 6.39084i 0.303638i −0.988408 0.151819i \(-0.951487\pi\)
0.988408 0.151819i \(-0.0485131\pi\)
\(444\) 7.07838i 0.335925i
\(445\) −6.92162 27.8576i −0.328116 1.32058i
\(446\) −13.4848 −0.638525
\(447\) 28.7792 1.36121
\(448\) −10.3051 −0.486870
\(449\) 31.6163i 1.49207i 0.665908 + 0.746034i \(0.268044\pi\)
−0.665908 + 0.746034i \(0.731956\pi\)
\(450\) 47.9432 25.3919i 2.26006 1.19699i
\(451\) −3.20394 −0.150867
\(452\) 4.34017i 0.204145i
\(453\) −10.3896 −0.488147
\(454\) −26.5152 −1.24442
\(455\) 0 0
\(456\) 4.29072 0.200932
\(457\) −35.6430 −1.66731 −0.833655 0.552286i \(-0.813756\pi\)
−0.833655 + 0.552286i \(0.813756\pi\)
\(458\) 4.73820i 0.221402i
\(459\) 11.8310 0.552222
\(460\) −0.563198 2.26672i −0.0262592 0.105686i
\(461\) 14.9795i 0.697664i −0.937185 0.348832i \(-0.886578\pi\)
0.937185 0.348832i \(-0.113422\pi\)
\(462\) 21.1773 0.985256
\(463\) −9.09663 −0.422756 −0.211378 0.977404i \(-0.567795\pi\)
−0.211378 + 0.977404i \(0.567795\pi\)
\(464\) −23.5981 −1.09551
\(465\) −6.04945 + 1.50307i −0.280536 + 0.0697033i
\(466\) 29.1461i 1.35017i
\(467\) 1.87709i 0.0868616i 0.999056 + 0.0434308i \(0.0138288\pi\)
−0.999056 + 0.0434308i \(0.986171\pi\)
\(468\) 0 0
\(469\) 13.4452 0.620842
\(470\) 19.0700 4.73820i 0.879632 0.218557i
\(471\) 40.6947 1.87511
\(472\) 11.8550i 0.545669i
\(473\) −16.3318 −0.750935
\(474\) 2.42469i 0.111370i
\(475\) 1.26180 + 2.38243i 0.0578951 + 0.109314i
\(476\) 0.581449i 0.0266507i
\(477\) 59.8987i 2.74257i
\(478\) 10.2173i 0.467327i
\(479\) 15.7431i 0.719322i −0.933083 0.359661i \(-0.882892\pi\)
0.933083 0.359661i \(-0.117108\pi\)
\(480\) 3.52586 + 14.1906i 0.160933 + 0.647710i
\(481\) 0 0
\(482\) 14.5860i 0.664373i
\(483\) −15.3340 −0.697723
\(484\) 1.68035 0.0763794
\(485\) 12.8371 3.18956i 0.582903 0.144830i
\(486\) 36.0977i 1.63742i
\(487\) 4.94441 0.224053 0.112026 0.993705i \(-0.464266\pi\)
0.112026 + 0.993705i \(0.464266\pi\)
\(488\) 20.2062 0.914692
\(489\) 38.1978i 1.72736i
\(490\) −13.6225 + 3.38470i −0.615401 + 0.152905i
\(491\) −39.4863 −1.78199 −0.890995 0.454014i \(-0.849992\pi\)
−0.890995 + 0.454014i \(0.849992\pi\)
\(492\) 1.47641 0.0665617
\(493\) 4.72592i 0.212845i
\(494\) 0 0
\(495\) 9.65142 + 38.8443i 0.433799 + 1.74592i
\(496\) 4.04680i 0.181706i
\(497\) 24.7526i 1.11030i
\(498\) 42.1133i 1.88714i
\(499\) 1.67089i 0.0747993i −0.999300 0.0373997i \(-0.988093\pi\)
0.999300 0.0373997i \(-0.0119075\pi\)
\(500\) −3.07346 + 2.75380i −0.137449 + 0.123154i
\(501\) 27.6742i 1.23639i
\(502\) 45.3439 2.02380
\(503\) 9.08557i 0.405105i 0.979271 + 0.202553i \(0.0649237\pi\)
−0.979271 + 0.202553i \(0.935076\pi\)
\(504\) 30.2472 1.34732
\(505\) −35.6742 + 8.86376i −1.58748 + 0.394432i
\(506\) 11.0601 0.491683
\(507\) 0 0
\(508\) 6.64650i 0.294891i
\(509\) 19.5441i 0.866277i 0.901327 + 0.433139i \(0.142594\pi\)
−0.901327 + 0.433139i \(0.857406\pi\)
\(510\) −9.75872 + 2.42469i −0.432124 + 0.107367i
\(511\) −3.33403 −0.147489
\(512\) 13.6114 0.601546
\(513\) −6.92162 −0.305597
\(514\) 31.5006i 1.38943i
\(515\) 5.49466 + 22.1145i 0.242124 + 0.974481i
\(516\) 7.52586 0.331307
\(517\) 14.4969i 0.637574i
\(518\) −15.9155 −0.699286
\(519\) 2.73820 0.120194
\(520\) 0 0
\(521\) 6.50534 0.285004 0.142502 0.989795i \(-0.454485\pi\)
0.142502 + 0.989795i \(0.454485\pi\)
\(522\) 55.6391 2.43526
\(523\) 36.5452i 1.59801i 0.601326 + 0.799004i \(0.294639\pi\)
−0.601326 + 0.799004i \(0.705361\pi\)
\(524\) 5.26180 0.229863
\(525\) 12.6803 + 23.9421i 0.553416 + 1.04492i
\(526\) 14.0735i 0.613632i
\(527\) 0.810439 0.0353033
\(528\) −37.0433 −1.61210
\(529\) 14.9916 0.651808
\(530\) −7.05172 28.3812i −0.306307 1.23280i
\(531\) 33.2918i 1.44474i
\(532\) 0.340173i 0.0147484i
\(533\) 0 0
\(534\) −62.6369 −2.71056
\(535\) −5.25792 21.1617i −0.227320 0.914899i
\(536\) −19.7458 −0.852888
\(537\) 63.1338i 2.72442i
\(538\) 17.5343 0.755956
\(539\) 10.3558i 0.446055i
\(540\) −2.55479 10.2823i −0.109941 0.442480i
\(541\) 20.3402i 0.874492i −0.899342 0.437246i \(-0.855954\pi\)
0.899342 0.437246i \(-0.144046\pi\)
\(542\) 32.5308i 1.39732i
\(543\) 45.6163i 1.95758i
\(544\) 1.90110i 0.0815091i
\(545\) −9.09275 36.5958i −0.389491 1.56759i
\(546\) 0 0
\(547\) 11.5948i 0.495757i 0.968791 + 0.247879i \(0.0797334\pi\)
−0.968791 + 0.247879i \(0.920267\pi\)
\(548\) 5.08822 0.217358
\(549\) −56.7442 −2.42178
\(550\) −9.14608 17.2690i −0.389990 0.736352i
\(551\) 2.76487i 0.117787i
\(552\) 22.5197 0.958503
\(553\) 0.849388 0.0361196
\(554\) 20.1301i 0.855246i
\(555\) −10.3402 41.6163i −0.438916 1.76652i
\(556\) 2.45589 0.104153
\(557\) −10.7298 −0.454636 −0.227318 0.973821i \(-0.572996\pi\)
−0.227318 + 0.973821i \(0.572996\pi\)
\(558\) 9.54146i 0.403922i
\(559\) 0 0
\(560\) −17.0700 + 4.24128i −0.721338 + 0.179227i
\(561\) 7.41855i 0.313211i
\(562\) 1.04718i 0.0441727i
\(563\) 10.2485i 0.431921i −0.976402 0.215961i \(-0.930712\pi\)
0.976402 0.215961i \(-0.0692883\pi\)
\(564\) 6.68035i 0.281293i
\(565\) −6.34017 25.5174i −0.266733 1.07353i
\(566\) 29.6996i 1.24837i
\(567\) −33.4101 −1.40309
\(568\) 36.3519i 1.52529i
\(569\) −8.84551 −0.370823 −0.185412 0.982661i \(-0.559362\pi\)
−0.185412 + 0.982661i \(0.559362\pi\)
\(570\) 5.70928 1.41855i 0.239135 0.0594166i
\(571\) −9.29299 −0.388900 −0.194450 0.980912i \(-0.562292\pi\)
−0.194450 + 0.980912i \(0.562292\pi\)
\(572\) 0 0
\(573\) 4.68035i 0.195524i
\(574\) 3.31965i 0.138560i
\(575\) 6.62249 + 12.5041i 0.276177 + 0.521458i
\(576\) −42.5006 −1.77086
\(577\) −19.5259 −0.812872 −0.406436 0.913679i \(-0.633229\pi\)
−0.406436 + 0.913679i \(0.633229\pi\)
\(578\) −24.8588 −1.03399
\(579\) 56.2122i 2.33610i
\(580\) −4.10731 + 1.02052i −0.170547 + 0.0423747i
\(581\) −14.7526 −0.612040
\(582\) 28.8638i 1.19644i
\(583\) 21.5753 0.893558
\(584\) 4.89639 0.202614
\(585\) 0 0
\(586\) −14.5730 −0.602007
\(587\) 22.5029 0.928794 0.464397 0.885627i \(-0.346271\pi\)
0.464397 + 0.885627i \(0.346271\pi\)
\(588\) 4.77205i 0.196796i
\(589\) −0.474142 −0.0195367
\(590\) −3.91935 15.7743i −0.161357 0.649419i
\(591\) 6.34017i 0.260800i
\(592\) 27.8394 1.14419
\(593\) 4.43907 0.182291 0.0911454 0.995838i \(-0.470947\pi\)
0.0911454 + 0.995838i \(0.470947\pi\)
\(594\) 50.1711 2.05855
\(595\) −0.849388 3.41855i −0.0348215 0.140147i
\(596\) 3.35085i 0.137256i
\(597\) 17.0928i 0.699560i
\(598\) 0 0
\(599\) −33.3607 −1.36308 −0.681540 0.731780i \(-0.738690\pi\)
−0.681540 + 0.731780i \(0.738690\pi\)
\(600\) −18.6225 35.1617i −0.760260 1.43547i
\(601\) 13.3197 0.543320 0.271660 0.962393i \(-0.412427\pi\)
0.271660 + 0.962393i \(0.412427\pi\)
\(602\) 16.9216i 0.689674i
\(603\) 55.4512 2.25815
\(604\) 1.20969i 0.0492217i
\(605\) −9.87936 + 2.45467i −0.401653 + 0.0997964i
\(606\) 80.2122i 3.25840i
\(607\) 14.1184i 0.573047i −0.958073 0.286523i \(-0.907500\pi\)
0.958073 0.286523i \(-0.0924996\pi\)
\(608\) 1.11223i 0.0451068i
\(609\) 27.7854i 1.12592i
\(610\) 26.8865 6.68035i 1.08860 0.270479i
\(611\) 0 0
\(612\) 2.39803i 0.0969347i
\(613\) 26.8104 1.08286 0.541432 0.840745i \(-0.317882\pi\)
0.541432 + 0.840745i \(0.317882\pi\)
\(614\) 0.406442 0.0164027
\(615\) −8.68035 + 2.15676i −0.350025 + 0.0869688i
\(616\) 10.8950i 0.438970i
\(617\) 14.8950 0.599649 0.299824 0.953994i \(-0.403072\pi\)
0.299824 + 0.953994i \(0.403072\pi\)
\(618\) 49.7237 2.00018
\(619\) 45.3184i 1.82150i 0.412956 + 0.910751i \(0.364496\pi\)
−0.412956 + 0.910751i \(0.635504\pi\)
\(620\) −0.175007 0.704355i −0.00702845 0.0282876i
\(621\) −36.3279 −1.45779
\(622\) 20.0821 0.805218
\(623\) 21.9421i 0.879093i
\(624\) 0 0
\(625\) 14.0472 20.6803i 0.561887 0.827214i
\(626\) 51.8720i 2.07322i
\(627\) 4.34017i 0.173330i
\(628\) 4.73820i 0.189075i
\(629\) 5.57531i 0.222302i
\(630\) 40.2472 10.0000i 1.60349 0.398410i
\(631\) 37.8876i 1.50828i −0.656713 0.754141i \(-0.728054\pi\)
0.656713 0.754141i \(-0.271946\pi\)
\(632\) −1.24742 −0.0496197
\(633\) 72.1276i 2.86682i
\(634\) −21.4725 −0.852783
\(635\) −9.70928 39.0772i −0.385301 1.55073i
\(636\) −9.94214 −0.394232
\(637\) 0 0
\(638\) 20.0410i 0.793432i
\(639\) 102.085i 4.03844i
\(640\) 29.0905 7.22795i 1.14990 0.285710i
\(641\) 8.47027 0.334555 0.167278 0.985910i \(-0.446502\pi\)
0.167278 + 0.985910i \(0.446502\pi\)
\(642\) −47.5813 −1.87788
\(643\) −34.1750 −1.34773 −0.673865 0.738854i \(-0.735367\pi\)
−0.673865 + 0.738854i \(0.735367\pi\)
\(644\) 1.78539i 0.0703541i
\(645\) −44.2472 + 10.9939i −1.74223 + 0.432883i
\(646\) −0.764867 −0.0300933
\(647\) 13.8238i 0.543468i −0.962372 0.271734i \(-0.912403\pi\)
0.962372 0.271734i \(-0.0875972\pi\)
\(648\) 49.0665 1.92751
\(649\) 11.9916 0.470711
\(650\) 0 0
\(651\) −4.76487 −0.186750
\(652\) −4.44748 −0.174177
\(653\) 42.8781i 1.67795i −0.544169 0.838976i \(-0.683155\pi\)
0.544169 0.838976i \(-0.316845\pi\)
\(654\) −82.2844 −3.21757
\(655\) −30.9360 + 7.68649i −1.20877 + 0.300336i
\(656\) 5.80674i 0.226715i
\(657\) −13.7503 −0.536451
\(658\) 15.0205 0.585561
\(659\) 23.2495 0.905672 0.452836 0.891594i \(-0.350412\pi\)
0.452836 + 0.891594i \(0.350412\pi\)
\(660\) −6.44748 + 1.60197i −0.250968 + 0.0623565i
\(661\) 27.0661i 1.05275i −0.850253 0.526374i \(-0.823551\pi\)
0.850253 0.526374i \(-0.176449\pi\)
\(662\) 28.4052i 1.10400i
\(663\) 0 0
\(664\) 21.6658 0.840796
\(665\) 0.496928 + 2.00000i 0.0192701 + 0.0775567i
\(666\) −65.6391 −2.54346
\(667\) 14.5113i 0.561880i
\(668\) 3.22219 0.124670
\(669\) 27.7731i 1.07377i
\(670\) −26.2739 + 6.52813i −1.01505 + 0.252203i
\(671\) 20.4391i 0.789042i
\(672\) 11.1773i 0.431173i
\(673\) 16.1711i 0.623351i −0.950189 0.311676i \(-0.899110\pi\)
0.950189 0.311676i \(-0.100890\pi\)
\(674\) 24.4079i 0.940156i
\(675\) 30.0410 + 56.7214i 1.15628 + 2.18321i
\(676\) 0 0
\(677\) 43.1194i 1.65721i −0.559831 0.828607i \(-0.689134\pi\)
0.559831 0.828607i \(-0.310866\pi\)
\(678\) −57.3751 −2.20348
\(679\) 10.1112 0.388032
\(680\) 1.24742 + 5.02052i 0.0478363 + 0.192528i
\(681\) 54.6102i 2.09267i
\(682\) 3.43680 0.131602
\(683\) −17.7093 −0.677627 −0.338813 0.940854i \(-0.610026\pi\)
−0.338813 + 0.940854i \(0.610026\pi\)
\(684\) 1.40295i 0.0536432i
\(685\) −29.9155 + 7.43293i −1.14301 + 0.283998i
\(686\) −29.1461 −1.11280
\(687\) 9.75872 0.372319
\(688\) 29.5993i 1.12846i
\(689\) 0 0
\(690\) 29.9649 7.44521i 1.14075 0.283434i
\(691\) 24.8794i 0.946456i −0.880940 0.473228i \(-0.843089\pi\)
0.880940 0.473228i \(-0.156911\pi\)
\(692\) 0.318817i 0.0121196i
\(693\) 30.5958i 1.16224i
\(694\) 14.9684i 0.568193i
\(695\) −14.4391 + 3.58759i −0.547705 + 0.136085i
\(696\) 40.8059i 1.54674i
\(697\) 1.16290 0.0440479
\(698\) 47.5753i 1.80075i
\(699\) 60.0288 2.27050
\(700\) −2.78765 + 1.47641i −0.105363 + 0.0558030i
\(701\) −33.0661 −1.24889 −0.624445 0.781069i \(-0.714675\pi\)
−0.624445 + 0.781069i \(0.714675\pi\)
\(702\) 0 0
\(703\) 3.26180i 0.123021i
\(704\) 15.3086i 0.576964i
\(705\) 9.75872 + 39.2762i 0.367535 + 1.47923i
\(706\) −9.15902 −0.344704
\(707\) −28.0989 −1.05677
\(708\) −5.52586 −0.207674
\(709\) 2.18342i 0.0820000i 0.999159 + 0.0410000i \(0.0130544\pi\)
−0.999159 + 0.0410000i \(0.986946\pi\)
\(710\) −12.0183 48.3701i −0.451037 1.81530i
\(711\) 3.50307 0.131375
\(712\) 32.2245i 1.20766i
\(713\) −2.48852 −0.0931957
\(714\) −7.68649 −0.287660
\(715\) 0 0
\(716\) 7.35085 0.274714
\(717\) −21.0433 −0.785877
\(718\) 16.8976i 0.630613i
\(719\) 5.20847 0.194243 0.0971216 0.995273i \(-0.469036\pi\)
0.0971216 + 0.995273i \(0.469036\pi\)
\(720\) −70.4005 + 17.4920i −2.62367 + 0.651889i
\(721\) 17.4186i 0.648701i
\(722\) −28.7971 −1.07172
\(723\) 30.0410 1.11724
\(724\) −5.31124 −0.197391
\(725\) 22.6576 12.0000i 0.841481 0.445669i
\(726\) 22.2134i 0.824416i
\(727\) 3.52464i 0.130721i −0.997862 0.0653607i \(-0.979180\pi\)
0.997862 0.0653607i \(-0.0208198\pi\)
\(728\) 0 0
\(729\) −15.7070 −0.581741
\(730\) 6.51518 1.61879i 0.241138 0.0599141i
\(731\) 5.92777 0.219246
\(732\) 9.41855i 0.348120i
\(733\) 21.8310 0.806345 0.403172 0.915124i \(-0.367907\pi\)
0.403172 + 0.915124i \(0.367907\pi\)
\(734\) 15.9676i 0.589374i
\(735\) −6.97107 28.0566i −0.257132 1.03488i
\(736\) 5.83749i 0.215173i
\(737\) 19.9733i 0.735727i
\(738\) 13.6910i 0.503974i
\(739\) 50.3533i 1.85228i 0.377184 + 0.926139i \(0.376893\pi\)
−0.377184 + 0.926139i \(0.623107\pi\)
\(740\) 4.84551 1.20394i 0.178125 0.0442576i
\(741\) 0 0
\(742\) 22.3545i 0.820661i
\(743\) −30.7877 −1.12949 −0.564745 0.825266i \(-0.691025\pi\)
−0.564745 + 0.825266i \(0.691025\pi\)
\(744\) 6.99773 0.256549
\(745\) −4.89496 19.7009i −0.179337 0.721784i
\(746\) 36.9216i 1.35180i
\(747\) −60.8431 −2.22613
\(748\) 0.863763 0.0315823
\(749\) 16.6681i 0.609038i
\(750\) −36.4040 40.6297i −1.32929 1.48359i
\(751\) 10.6225 0.387620 0.193810 0.981039i \(-0.437915\pi\)
0.193810 + 0.981039i \(0.437915\pi\)
\(752\) −26.2739 −0.958111
\(753\) 93.3894i 3.40330i
\(754\) 0 0
\(755\) 1.76713 + 7.11223i 0.0643126 + 0.258840i
\(756\) 8.09890i 0.294554i
\(757\) 7.98562i 0.290242i 0.989414 + 0.145121i \(0.0463572\pi\)
−0.989414 + 0.145121i \(0.953643\pi\)
\(758\) 45.8024i 1.66362i
\(759\) 22.7792i 0.826834i
\(760\) −0.729794 2.93722i −0.0264724 0.106544i
\(761\) 48.9360i 1.77393i 0.461838 + 0.886964i \(0.347190\pi\)
−0.461838 + 0.886964i \(0.652810\pi\)
\(762\) −87.8636 −3.18296
\(763\) 28.8248i 1.04353i
\(764\) 0.544946 0.0197155
\(765\) −3.50307 14.0989i −0.126654 0.509747i
\(766\) −19.1110 −0.690509
\(767\) 0 0
\(768\) 27.1845i 0.980935i
\(769\) 7.99547i 0.288324i 0.989554 + 0.144162i \(0.0460486\pi\)
−0.989554 + 0.144162i \(0.953951\pi\)
\(770\) −3.60197 14.4969i −0.129806 0.522433i
\(771\) 64.8781 2.33653
\(772\) 6.54495 0.235558
\(773\) −26.6141 −0.957242 −0.478621 0.878022i \(-0.658863\pi\)
−0.478621 + 0.878022i \(0.658863\pi\)
\(774\) 69.7887i 2.50850i
\(775\) 2.05786 + 3.88550i 0.0739205 + 0.139571i
\(776\) −14.8494 −0.533062
\(777\) 32.7792i 1.17595i
\(778\) 25.9155 0.929115
\(779\) −0.680346 −0.0243759
\(780\) 0 0
\(781\) 36.7708 1.31576
\(782\) −4.01438 −0.143554
\(783\) 65.8264i 2.35244i
\(784\) 18.7686 0.670306
\(785\) −6.92162 27.8576i −0.247043 0.994281i
\(786\) 69.5585i 2.48107i
\(787\) −9.25792 −0.330009 −0.165005 0.986293i \(-0.552764\pi\)
−0.165005 + 0.986293i \(0.552764\pi\)
\(788\) −0.738205 −0.0262975
\(789\) −28.9854 −1.03191
\(790\) −1.65983 + 0.412408i −0.0590540 + 0.0146728i
\(791\) 20.0989i 0.714634i
\(792\) 44.9333i 1.59664i
\(793\) 0 0
\(794\) 5.99159 0.212634
\(795\) 58.4534 14.5236i 2.07313 0.515099i
\(796\) −1.99016 −0.0705393
\(797\) 15.9421i 0.564700i 0.959312 + 0.282350i \(0.0911139\pi\)
−0.959312 + 0.282350i \(0.908886\pi\)
\(798\) 4.49693 0.159190
\(799\) 5.26180i 0.186149i
\(800\) 9.11450 4.82726i 0.322246 0.170669i
\(801\) 90.4945i 3.19747i
\(802\) 14.0144i 0.494865i
\(803\) 4.95282i 0.174781i
\(804\) 9.20394i 0.324598i
\(805\) 2.60811 + 10.4969i 0.0919238 + 0.369968i
\(806\) 0 0
\(807\) 36.1133i 1.27125i
\(808\) 41.2663 1.45174
\(809\) −17.9239 −0.630170 −0.315085 0.949063i \(-0.602033\pi\)
−0.315085 + 0.949063i \(0.602033\pi\)
\(810\) 65.2883 16.2218i 2.29400 0.569976i
\(811\) 7.43415i 0.261048i 0.991445 + 0.130524i \(0.0416660\pi\)
−0.991445 + 0.130524i \(0.958334\pi\)
\(812\) −3.23513 −0.113531
\(813\) 66.9998 2.34979
\(814\) 23.6430i 0.828687i
\(815\) 26.1483 6.49693i 0.915937 0.227577i
\(816\) 13.4452 0.470677
\(817\) −3.46800 −0.121330
\(818\) 29.8888i 1.04504i
\(819\) 0 0
\(820\) −0.251117 1.01068i −0.00876940 0.0352944i
\(821\) 20.4801i 0.714761i 0.933959 + 0.357380i \(0.116330\pi\)
−0.933959 + 0.357380i \(0.883670\pi\)
\(822\) 67.2639i 2.34610i
\(823\) 3.75154i 0.130770i 0.997860 + 0.0653852i \(0.0208276\pi\)
−0.997860 + 0.0653852i \(0.979172\pi\)
\(824\) 25.5811i 0.891159i
\(825\) 35.5669 18.8371i 1.23828 0.655824i
\(826\) 12.4247i 0.432310i
\(827\) 48.1483 1.67428 0.837141 0.546987i \(-0.184225\pi\)
0.837141 + 0.546987i \(0.184225\pi\)
\(828\) 7.36334i 0.255894i
\(829\) 36.5608 1.26981 0.634904 0.772591i \(-0.281040\pi\)
0.634904 + 0.772591i \(0.281040\pi\)
\(830\) 28.8287 7.16290i 1.00066 0.248628i
\(831\) 41.4596 1.43822
\(832\) 0 0
\(833\) 3.75872i 0.130232i
\(834\) 32.4657i 1.12420i
\(835\) −18.9444 + 4.70701i −0.655598 + 0.162893i
\(836\) −0.505339 −0.0174775
\(837\) −11.2885 −0.390186
\(838\) −25.8264 −0.892159
\(839\) 45.2294i 1.56149i 0.624849 + 0.780746i \(0.285161\pi\)
−0.624849 + 0.780746i \(0.714839\pi\)
\(840\) −7.33403 29.5174i −0.253048 1.01845i
\(841\) −2.70540 −0.0932896
\(842\) 29.2762i 1.00892i
\(843\) 2.15676 0.0742826
\(844\) −8.39803 −0.289072
\(845\) 0 0
\(846\) 61.9481 2.12982
\(847\) −7.78151 −0.267376
\(848\) 39.1026i 1.34279i
\(849\) −61.1689 −2.09931
\(850\) 3.31965 + 6.26794i 0.113863 + 0.214989i
\(851\) 17.1194i 0.586846i
\(852\) −16.9444 −0.580506
\(853\) −37.2534 −1.27553 −0.637766 0.770230i \(-0.720141\pi\)
−0.637766 + 0.770230i \(0.720141\pi\)
\(854\) 21.1773 0.724671
\(855\) 2.04945 + 8.24846i 0.0700897 + 0.282092i
\(856\) 24.4789i 0.836671i
\(857\) 10.8371i 0.370188i 0.982721 + 0.185094i \(0.0592590\pi\)
−0.982721 + 0.185094i \(0.940741\pi\)
\(858\) 0 0
\(859\) −14.6081 −0.498422 −0.249211 0.968449i \(-0.580171\pi\)
−0.249211 + 0.968449i \(0.580171\pi\)
\(860\) −1.28005 5.15183i −0.0436492 0.175676i
\(861\) −6.83710 −0.233008
\(862\) 12.3596i 0.420971i
\(863\) 10.3440 0.352116 0.176058 0.984380i \(-0.443665\pi\)
0.176058 + 0.984380i \(0.443665\pi\)
\(864\) 26.4801i 0.900872i
\(865\) −0.465732 1.87444i −0.0158354 0.0637329i
\(866\) 20.0821i 0.682417i
\(867\) 51.1988i 1.73880i
\(868\) 0.554787i 0.0188307i
\(869\) 1.26180i 0.0428035i
\(870\) −13.4908 54.2967i −0.457380 1.84083i
\(871\) 0 0
\(872\) 42.3324i 1.43356i
\(873\) 41.7009 1.41136
\(874\) 2.34858 0.0794420
\(875\) 14.2329 12.7526i 0.481159 0.431116i
\(876\) 2.28231i 0.0771122i
\(877\) 38.0677 1.28545 0.642727 0.766095i \(-0.277803\pi\)
0.642727 + 0.766095i \(0.277803\pi\)
\(878\) 11.8531 0.400022
\(879\) 30.0144i 1.01236i
\(880\) 6.30057 + 25.3580i 0.212392 + 0.854819i
\(881\) −12.0494 −0.405956 −0.202978 0.979183i \(-0.565062\pi\)
−0.202978 + 0.979183i \(0.565062\pi\)
\(882\) −44.2522 −1.49005
\(883\) 0.320699i 0.0107924i 0.999985 + 0.00539619i \(0.00171767\pi\)
−0.999985 + 0.00539619i \(0.998282\pi\)
\(884\) 0 0
\(885\) 32.4885 8.07223i 1.09209 0.271345i
\(886\) 9.83672i 0.330471i
\(887\) 3.62144i 0.121596i −0.998150 0.0607981i \(-0.980635\pi\)
0.998150 0.0607981i \(-0.0193646\pi\)
\(888\) 48.1399i 1.61547i
\(889\) 30.7792i 1.03230i
\(890\) 10.6537 + 42.8781i 0.357112 + 1.43728i
\(891\) 49.6319i 1.66273i
\(892\) 3.23370 0.108272
\(893\) 3.07838i 0.103014i
\(894\) −44.2967 −1.48150
\(895\) −43.2183 + 10.7382i −1.44463 + 0.358939i
\(896\) 22.9132 0.765477
\(897\) 0 0
\(898\) 48.6635i 1.62392i
\(899\) 4.50921i 0.150391i
\(900\) −11.4969 + 6.08906i −0.383231 + 0.202969i
\(901\) −7.83096 −0.260887
\(902\) 4.93146 0.164200
\(903\) −34.8515 −1.15978
\(904\) 29.5174i 0.981736i
\(905\) 31.2267 7.75872i 1.03801 0.257909i
\(906\) 15.9916 0.531285
\(907\) 10.9333i 0.363036i 0.983388 + 0.181518i \(0.0581010\pi\)
−0.983388 + 0.181518i \(0.941899\pi\)
\(908\) 6.35842 0.211012
\(909\) −115.886 −3.84371
\(910\) 0 0
\(911\) −37.5897 −1.24540 −0.622701 0.782460i \(-0.713965\pi\)
−0.622701 + 0.782460i \(0.713965\pi\)
\(912\) −7.86603 −0.260470
\(913\) 21.9155i 0.725297i
\(914\) 54.8613 1.81465
\(915\) 13.7587 + 55.3751i 0.454849 + 1.83064i
\(916\) 1.13624i 0.0375423i
\(917\) −24.3668 −0.804664
\(918\) −18.2101 −0.601022
\(919\) −33.6742 −1.11081 −0.555405 0.831580i \(-0.687437\pi\)
−0.555405 + 0.831580i \(0.687437\pi\)
\(920\) −3.83030 15.4159i −0.126281 0.508247i
\(921\) 0.837101i 0.0275834i
\(922\) 23.0563i 0.759317i
\(923\) 0 0
\(924\) −5.07838 −0.167066
\(925\) −26.7298 + 14.1568i −0.878870 + 0.465471i
\(926\) 14.0014 0.460116
\(927\) 71.8381i 2.35947i
\(928\) 10.5776 0.347226
\(929\) 43.2039i 1.41748i 0.705472 + 0.708738i \(0.250735\pi\)
−0.705472 + 0.708738i \(0.749265\pi\)
\(930\) 9.31124 2.31351i 0.305328 0.0758630i
\(931\) 2.19902i 0.0720698i
\(932\) 6.98932i 0.228943i
\(933\) 41.3607i 1.35409i
\(934\) 2.88920i 0.0945376i
\(935\) −5.07838 + 1.26180i −0.166081 + 0.0412651i
\(936\) 0 0
\(937\) 27.5630i 0.900445i 0.892916 + 0.450222i \(0.148655\pi\)
−0.892916 + 0.450222i \(0.851345\pi\)
\(938\) −20.6947 −0.675707
\(939\) 106.835 3.48642
\(940\) −4.57304 + 1.13624i −0.149156 + 0.0370600i
\(941\) 58.1666i 1.89618i 0.318007 + 0.948088i \(0.396987\pi\)
−0.318007 + 0.948088i \(0.603013\pi\)
\(942\) −62.6369 −2.04082
\(943\) −3.57077 −0.116280
\(944\) 21.7333i 0.707358i
\(945\) 11.8310 + 47.6163i 0.384861 + 1.54896i
\(946\) 25.1377 0.817296
\(947\) 48.5152 1.57653 0.788266 0.615335i \(-0.210979\pi\)
0.788266 + 0.615335i \(0.210979\pi\)
\(948\) 0.581449i 0.0188846i
\(949\) 0 0
\(950\) −1.94214 3.66701i −0.0630114 0.118974i
\(951\) 44.2245i 1.43408i
\(952\) 3.95443i 0.128164i
\(953\) 23.0349i 0.746173i −0.927796 0.373087i \(-0.878299\pi\)
0.927796 0.373087i \(-0.121701\pi\)
\(954\) 92.1953i 2.98493i
\(955\) −3.20394 + 0.796064i −0.103677 + 0.0257600i
\(956\) 2.45013i 0.0792430i
\(957\) 41.2762 1.33427
\(958\) 24.2316i 0.782889i
\(959\) −23.5630 −0.760890
\(960\) 10.3051 + 41.4752i 0.332596 + 1.33861i
\(961\) 30.2267 0.975056
\(962\) 0 0
\(963\) 68.7429i 2.21521i
\(964\) 3.49777i 0.112655i
\(965\) −38.4801 + 9.56093i −1.23872 + 0.307777i
\(966\) 23.6020 0.759381
\(967\) −54.9998 −1.76868 −0.884338 0.466848i \(-0.845389\pi\)
−0.884338 + 0.466848i \(0.845389\pi\)
\(968\) 11.4280 0.367310
\(969\) 1.57531i 0.0506061i
\(970\) −19.7587 + 4.90934i −0.634414 + 0.157629i
\(971\) 9.70540 0.311461 0.155731 0.987800i \(-0.450227\pi\)
0.155731 + 0.987800i \(0.450227\pi\)
\(972\) 8.65634i 0.277652i
\(973\) −11.3730 −0.364601
\(974\) −7.61038 −0.243852
\(975\) 0 0
\(976\) −37.0433 −1.18573
\(977\) −32.2062 −1.03037 −0.515184 0.857080i \(-0.672276\pi\)
−0.515184 + 0.857080i \(0.672276\pi\)
\(978\) 58.7936i 1.88001i
\(979\) −32.5958 −1.04177
\(980\) 3.26672 0.811662i 0.104351 0.0259276i
\(981\) 118.880i 3.79555i
\(982\) 60.7768 1.93947
\(983\) −44.0782 −1.40588 −0.702938 0.711251i \(-0.748129\pi\)
−0.702938 + 0.711251i \(0.748129\pi\)
\(984\) 10.0410 0.320097
\(985\) 4.34017 1.07838i 0.138289 0.0343600i
\(986\) 7.27408i 0.231654i
\(987\) 30.9360i 0.984704i
\(988\) 0 0
\(989\) −18.2017 −0.578779
\(990\) −14.8554 59.7887i −0.472134 1.90021i
\(991\) 12.0677 0.383343 0.191672 0.981459i \(-0.438609\pi\)
0.191672 + 0.981459i \(0.438609\pi\)
\(992\) 1.81393i 0.0575923i
\(993\) −58.5029 −1.85653
\(994\) 38.0989i 1.20842i
\(995\) 11.7009 2.90725i 0.370942 0.0921659i
\(996\) 10.0989i 0.319996i
\(997\) 45.7587i 1.44919i 0.689173 + 0.724597i \(0.257974\pi\)
−0.689173 + 0.724597i \(0.742026\pi\)
\(998\) 2.57182i 0.0814094i
\(999\) 77.6574i 2.45697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.d.a.844.3 6
5.4 even 2 845.2.d.b.844.4 6
13.2 odd 12 845.2.n.f.529.2 12
13.3 even 3 845.2.l.e.654.4 12
13.4 even 6 845.2.l.d.699.3 12
13.5 odd 4 65.2.b.a.14.5 yes 6
13.6 odd 12 845.2.n.f.484.5 12
13.7 odd 12 845.2.n.g.484.2 12
13.8 odd 4 845.2.b.c.339.2 6
13.9 even 3 845.2.l.e.699.3 12
13.10 even 6 845.2.l.d.654.4 12
13.11 odd 12 845.2.n.g.529.5 12
13.12 even 2 845.2.d.b.844.3 6
39.5 even 4 585.2.c.b.469.2 6
52.31 even 4 1040.2.d.c.209.6 6
65.4 even 6 845.2.l.e.699.4 12
65.8 even 4 4225.2.a.ba.1.2 3
65.9 even 6 845.2.l.d.699.4 12
65.18 even 4 325.2.a.k.1.2 3
65.19 odd 12 845.2.n.f.484.2 12
65.24 odd 12 845.2.n.g.529.2 12
65.29 even 6 845.2.l.d.654.3 12
65.34 odd 4 845.2.b.c.339.5 6
65.44 odd 4 65.2.b.a.14.2 6
65.47 even 4 4225.2.a.bh.1.2 3
65.49 even 6 845.2.l.e.654.3 12
65.54 odd 12 845.2.n.f.529.5 12
65.57 even 4 325.2.a.j.1.2 3
65.59 odd 12 845.2.n.g.484.5 12
65.64 even 2 inner 845.2.d.a.844.4 6
195.44 even 4 585.2.c.b.469.5 6
195.83 odd 4 2925.2.a.bf.1.2 3
195.122 odd 4 2925.2.a.bj.1.2 3
260.83 odd 4 5200.2.a.cb.1.1 3
260.187 odd 4 5200.2.a.cj.1.3 3
260.239 even 4 1040.2.d.c.209.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.2 6 65.44 odd 4
65.2.b.a.14.5 yes 6 13.5 odd 4
325.2.a.j.1.2 3 65.57 even 4
325.2.a.k.1.2 3 65.18 even 4
585.2.c.b.469.2 6 39.5 even 4
585.2.c.b.469.5 6 195.44 even 4
845.2.b.c.339.2 6 13.8 odd 4
845.2.b.c.339.5 6 65.34 odd 4
845.2.d.a.844.3 6 1.1 even 1 trivial
845.2.d.a.844.4 6 65.64 even 2 inner
845.2.d.b.844.3 6 13.12 even 2
845.2.d.b.844.4 6 5.4 even 2
845.2.l.d.654.3 12 65.29 even 6
845.2.l.d.654.4 12 13.10 even 6
845.2.l.d.699.3 12 13.4 even 6
845.2.l.d.699.4 12 65.9 even 6
845.2.l.e.654.3 12 65.49 even 6
845.2.l.e.654.4 12 13.3 even 3
845.2.l.e.699.3 12 13.9 even 3
845.2.l.e.699.4 12 65.4 even 6
845.2.n.f.484.2 12 65.19 odd 12
845.2.n.f.484.5 12 13.6 odd 12
845.2.n.f.529.2 12 13.2 odd 12
845.2.n.f.529.5 12 65.54 odd 12
845.2.n.g.484.2 12 13.7 odd 12
845.2.n.g.484.5 12 65.59 odd 12
845.2.n.g.529.2 12 65.24 odd 12
845.2.n.g.529.5 12 13.11 odd 12
1040.2.d.c.209.1 6 260.239 even 4
1040.2.d.c.209.6 6 52.31 even 4
2925.2.a.bf.1.2 3 195.83 odd 4
2925.2.a.bj.1.2 3 195.122 odd 4
4225.2.a.ba.1.2 3 65.8 even 4
4225.2.a.bh.1.2 3 65.47 even 4
5200.2.a.cb.1.1 3 260.83 odd 4
5200.2.a.cj.1.3 3 260.187 odd 4