Properties

Label 845.2.l.d.654.3
Level $845$
Weight $2$
Character 845.654
Analytic conductor $6.747$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(654,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.654");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 654.3
Root \(-1.16746 + 0.312819i\) of defining polynomial
Character \(\chi\) \(=\) 845.654
Dual form 845.2.l.d.699.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.769594 + 1.33298i) q^{2} +(-2.74538 - 1.58504i) q^{3} +(-0.184551 - 0.319652i) q^{4} +(2.17009 + 0.539189i) q^{5} +(4.22565 - 2.43968i) q^{6} +(-0.854638 - 1.48028i) q^{7} -2.51026 q^{8} +(3.52472 + 6.10500i) q^{9} +(-2.38881 + 2.47772i) q^{10} +(-2.19900 - 1.26959i) q^{11} +1.17009i q^{12} +2.63090 q^{14} +(-5.10306 - 4.91996i) q^{15} +(2.30098 - 3.98542i) q^{16} +(0.798148 - 0.460811i) q^{17} -10.8504 q^{18} +(0.466951 - 0.269594i) q^{19} +(-0.228139 - 0.793181i) q^{20} +5.41855i q^{21} +(3.38468 - 1.95415i) q^{22} +(2.45078 + 1.41496i) q^{23} +(6.89160 + 3.97887i) q^{24} +(4.41855 + 2.34017i) q^{25} -12.8371i q^{27} +(-0.315449 + 0.546373i) q^{28} +(-2.56391 + 4.44083i) q^{29} +(10.4855 - 3.01589i) q^{30} +0.879362i q^{31} +(1.03139 + 1.78642i) q^{32} +(4.02472 + 6.97103i) q^{33} +1.41855i q^{34} +(-1.05649 - 3.67314i) q^{35} +(1.30098 - 2.25337i) q^{36} +(-3.02472 + 5.23898i) q^{37} +0.829914i q^{38} +(-5.44748 - 1.35350i) q^{40} +(-1.09275 - 0.630898i) q^{41} +(-7.22280 - 4.17009i) q^{42} +(-5.57017 + 3.21594i) q^{43} +0.937221i q^{44} +(4.35721 + 15.1489i) q^{45} +(-3.77221 + 2.17789i) q^{46} -5.70928 q^{47} +(-12.6341 + 7.29432i) q^{48} +(2.03919 - 3.53198i) q^{49} +(-6.51989 + 4.08884i) q^{50} -2.92162 q^{51} +8.49693i q^{53} +(17.1116 + 9.87936i) q^{54} +(-4.08747 - 3.94081i) q^{55} +(2.14536 + 3.71588i) q^{56} -1.70928 q^{57} +(-3.94635 - 6.83527i) q^{58} +(-4.08990 + 2.36130i) q^{59} +(-0.630898 + 2.53919i) q^{60} +(-4.02472 - 6.97103i) q^{61} +(-1.17217 - 0.676752i) q^{62} +(6.02472 - 10.4351i) q^{63} +6.02893 q^{64} -12.3896 q^{66} +(-3.93302 + 6.81218i) q^{67} +(-0.294598 - 0.170086i) q^{68} +(-4.48554 - 7.76918i) q^{69} +(5.70928 + 1.41855i) q^{70} +(-12.5412 + 7.24067i) q^{71} +(-8.84797 - 15.3251i) q^{72} -1.95055 q^{73} +(-4.65562 - 8.06377i) q^{74} +(-8.42131 - 13.4282i) q^{75} +(-0.172353 - 0.0995079i) q^{76} +4.34017i q^{77} -0.496928 q^{79} +(7.14223 - 7.40804i) q^{80} +(-9.77319 + 16.9277i) q^{81} +(1.68194 - 0.971071i) q^{82} -8.63090 q^{83} +(1.73205 - 1.00000i) q^{84} +(1.98052 - 0.569647i) q^{85} -9.89988i q^{86} +(14.0778 - 8.12783i) q^{87} +(5.52007 + 3.18701i) q^{88} +(-11.1173 - 6.41855i) q^{89} +(-23.5464 - 5.85043i) q^{90} -1.04453i q^{92} +(1.39383 - 2.41418i) q^{93} +(4.39383 - 7.61033i) q^{94} +(1.15869 - 0.333268i) q^{95} -6.53919i q^{96} +(-2.95774 - 5.12296i) q^{97} +(3.13870 + 5.43638i) q^{98} -17.8999i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 10 q^{4} + 4 q^{5} + 4 q^{7} + 36 q^{8} + 6 q^{9} + 2 q^{10} + 16 q^{14} - 4 q^{15} - 10 q^{16} - 20 q^{18} + 14 q^{20} - 4 q^{25} + 4 q^{28} + 12 q^{29} + 8 q^{30} - 22 q^{32} + 12 q^{33}+ \cdots + 50 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.769594 + 1.33298i −0.544185 + 0.942557i 0.454472 + 0.890761i \(0.349828\pi\)
−0.998658 + 0.0517959i \(0.983505\pi\)
\(3\) −2.74538 1.58504i −1.58504 0.915125i −0.994107 0.108407i \(-0.965425\pi\)
−0.590937 0.806718i \(-0.701242\pi\)
\(4\) −0.184551 0.319652i −0.0922756 0.159826i
\(5\) 2.17009 + 0.539189i 0.970492 + 0.241133i
\(6\) 4.22565 2.43968i 1.72511 0.995996i
\(7\) −0.854638 1.48028i −0.323023 0.559492i 0.658088 0.752941i \(-0.271366\pi\)
−0.981110 + 0.193450i \(0.938032\pi\)
\(8\) −2.51026 −0.887511
\(9\) 3.52472 + 6.10500i 1.17491 + 2.03500i
\(10\) −2.38881 + 2.47772i −0.755409 + 0.783523i
\(11\) −2.19900 1.26959i −0.663024 0.382797i 0.130404 0.991461i \(-0.458373\pi\)
−0.793428 + 0.608664i \(0.791706\pi\)
\(12\) 1.17009i 0.337775i
\(13\) 0 0
\(14\) 2.63090 0.703137
\(15\) −5.10306 4.91996i −1.31761 1.27033i
\(16\) 2.30098 3.98542i 0.575246 0.996355i
\(17\) 0.798148 0.460811i 0.193579 0.111763i −0.400078 0.916481i \(-0.631017\pi\)
0.593657 + 0.804718i \(0.297684\pi\)
\(18\) −10.8504 −2.55747
\(19\) 0.466951 0.269594i 0.107126 0.0618492i −0.445480 0.895292i \(-0.646967\pi\)
0.552606 + 0.833443i \(0.313634\pi\)
\(20\) −0.228139 0.793181i −0.0510135 0.177361i
\(21\) 5.41855i 1.18242i
\(22\) 3.38468 1.95415i 0.721616 0.416625i
\(23\) 2.45078 + 1.41496i 0.511022 + 0.295039i 0.733254 0.679955i \(-0.238001\pi\)
−0.222231 + 0.974994i \(0.571334\pi\)
\(24\) 6.89160 + 3.97887i 1.40674 + 0.812183i
\(25\) 4.41855 + 2.34017i 0.883710 + 0.468035i
\(26\) 0 0
\(27\) 12.8371i 2.47050i
\(28\) −0.315449 + 0.546373i −0.0596142 + 0.103255i
\(29\) −2.56391 + 4.44083i −0.476107 + 0.824641i −0.999625 0.0273733i \(-0.991286\pi\)
0.523519 + 0.852014i \(0.324619\pi\)
\(30\) 10.4855 3.01589i 1.91438 0.550624i
\(31\) 0.879362i 0.157938i 0.996877 + 0.0789690i \(0.0251628\pi\)
−0.996877 + 0.0789690i \(0.974837\pi\)
\(32\) 1.03139 + 1.78642i 0.182326 + 0.315797i
\(33\) 4.02472 + 6.97103i 0.700615 + 1.21350i
\(34\) 1.41855i 0.243279i
\(35\) −1.05649 3.67314i −0.178579 0.620874i
\(36\) 1.30098 2.25337i 0.216831 0.375562i
\(37\) −3.02472 + 5.23898i −0.497262 + 0.861282i −0.999995 0.00315916i \(-0.998994\pi\)
0.502733 + 0.864442i \(0.332328\pi\)
\(38\) 0.829914i 0.134630i
\(39\) 0 0
\(40\) −5.44748 1.35350i −0.861322 0.214008i
\(41\) −1.09275 0.630898i −0.170658 0.0985297i 0.412238 0.911076i \(-0.364747\pi\)
−0.582896 + 0.812547i \(0.698081\pi\)
\(42\) −7.22280 4.17009i −1.11450 0.643458i
\(43\) −5.57017 + 3.21594i −0.849443 + 0.490426i −0.860463 0.509513i \(-0.829826\pi\)
0.0110196 + 0.999939i \(0.496492\pi\)
\(44\) 0.937221i 0.141291i
\(45\) 4.35721 + 15.1489i 0.649534 + 2.25826i
\(46\) −3.77221 + 2.17789i −0.556182 + 0.321112i
\(47\) −5.70928 −0.832783 −0.416392 0.909185i \(-0.636705\pi\)
−0.416392 + 0.909185i \(0.636705\pi\)
\(48\) −12.6341 + 7.29432i −1.82358 + 1.05284i
\(49\) 2.03919 3.53198i 0.291313 0.504568i
\(50\) −6.51989 + 4.08884i −0.922051 + 0.578249i
\(51\) −2.92162 −0.409109
\(52\) 0 0
\(53\) 8.49693i 1.16714i 0.812062 + 0.583571i \(0.198345\pi\)
−0.812062 + 0.583571i \(0.801655\pi\)
\(54\) 17.1116 + 9.87936i 2.32859 + 1.34441i
\(55\) −4.08747 3.94081i −0.551155 0.531378i
\(56\) 2.14536 + 3.71588i 0.286686 + 0.496555i
\(57\) −1.70928 −0.226399
\(58\) −3.94635 6.83527i −0.518181 0.897515i
\(59\) −4.08990 + 2.36130i −0.532459 + 0.307415i −0.742017 0.670381i \(-0.766131\pi\)
0.209558 + 0.977796i \(0.432797\pi\)
\(60\) −0.630898 + 2.53919i −0.0814485 + 0.327808i
\(61\) −4.02472 6.97103i −0.515313 0.892549i −0.999842 0.0177733i \(-0.994342\pi\)
0.484529 0.874775i \(-0.338991\pi\)
\(62\) −1.17217 0.676752i −0.148866 0.0859476i
\(63\) 6.02472 10.4351i 0.759044 1.31470i
\(64\) 6.02893 0.753616
\(65\) 0 0
\(66\) −12.3896 −1.52506
\(67\) −3.93302 + 6.81218i −0.480494 + 0.832241i −0.999750 0.0223786i \(-0.992876\pi\)
0.519255 + 0.854619i \(0.326209\pi\)
\(68\) −0.294598 0.170086i −0.0357253 0.0206260i
\(69\) −4.48554 7.76918i −0.539995 0.935299i
\(70\) 5.70928 + 1.41855i 0.682389 + 0.169549i
\(71\) −12.5412 + 7.24067i −1.48837 + 0.859309i −0.999912 0.0132804i \(-0.995773\pi\)
−0.488455 + 0.872589i \(0.662439\pi\)
\(72\) −8.84797 15.3251i −1.04274 1.80608i
\(73\) −1.95055 −0.228295 −0.114147 0.993464i \(-0.536414\pi\)
−0.114147 + 0.993464i \(0.536414\pi\)
\(74\) −4.65562 8.06377i −0.541205 0.937395i
\(75\) −8.42131 13.4282i −0.972409 1.55056i
\(76\) −0.172353 0.0995079i −0.0197702 0.0114143i
\(77\) 4.34017i 0.494609i
\(78\) 0 0
\(79\) −0.496928 −0.0559088 −0.0279544 0.999609i \(-0.508899\pi\)
−0.0279544 + 0.999609i \(0.508899\pi\)
\(80\) 7.14223 7.40804i 0.798526 0.828245i
\(81\) −9.77319 + 16.9277i −1.08591 + 1.88085i
\(82\) 1.68194 0.971071i 0.185740 0.107237i
\(83\) −8.63090 −0.947364 −0.473682 0.880696i \(-0.657075\pi\)
−0.473682 + 0.880696i \(0.657075\pi\)
\(84\) 1.73205 1.00000i 0.188982 0.109109i
\(85\) 1.98052 0.569647i 0.214817 0.0617869i
\(86\) 9.89988i 1.06753i
\(87\) 14.0778 8.12783i 1.50930 0.871394i
\(88\) 5.52007 + 3.18701i 0.588441 + 0.339737i
\(89\) −11.1173 6.41855i −1.17843 0.680365i −0.222777 0.974870i \(-0.571512\pi\)
−0.955650 + 0.294504i \(0.904845\pi\)
\(90\) −23.5464 5.85043i −2.48201 0.616690i
\(91\) 0 0
\(92\) 1.04453i 0.108900i
\(93\) 1.39383 2.41418i 0.144533 0.250339i
\(94\) 4.39383 7.61033i 0.453189 0.784946i
\(95\) 1.15869 0.333268i 0.118879 0.0341926i
\(96\) 6.53919i 0.667403i
\(97\) −2.95774 5.12296i −0.300313 0.520157i 0.675894 0.736999i \(-0.263758\pi\)
−0.976207 + 0.216842i \(0.930424\pi\)
\(98\) 3.13870 + 5.43638i 0.317056 + 0.549158i
\(99\) 17.8999i 1.79901i
\(100\) −0.0674077 1.84428i −0.00674077 0.184428i
\(101\) −8.21953 + 14.2367i −0.817874 + 1.41660i 0.0893712 + 0.995998i \(0.471514\pi\)
−0.907246 + 0.420601i \(0.861819\pi\)
\(102\) 2.24846 3.89445i 0.222631 0.385608i
\(103\) 10.1906i 1.00411i 0.864836 + 0.502055i \(0.167423\pi\)
−0.864836 + 0.502055i \(0.832577\pi\)
\(104\) 0 0
\(105\) −2.92162 + 11.7587i −0.285121 + 1.14753i
\(106\) −11.3262 6.53919i −1.10010 0.635142i
\(107\) 8.44508 + 4.87577i 0.816416 + 0.471358i 0.849179 0.528105i \(-0.177097\pi\)
−0.0327627 + 0.999463i \(0.510431\pi\)
\(108\) −4.10341 + 2.36910i −0.394850 + 0.227967i
\(109\) 16.8638i 1.61526i 0.589693 + 0.807628i \(0.299249\pi\)
−0.589693 + 0.807628i \(0.700751\pi\)
\(110\) 8.39870 2.41568i 0.800785 0.230326i
\(111\) 16.6080 9.58864i 1.57636 0.910113i
\(112\) −7.86603 −0.743270
\(113\) −10.1834 + 5.87936i −0.957969 + 0.553084i −0.895547 0.444966i \(-0.853216\pi\)
−0.0624219 + 0.998050i \(0.519882\pi\)
\(114\) 1.31545 2.27842i 0.123203 0.213394i
\(115\) 4.55547 + 4.39201i 0.424800 + 0.409557i
\(116\) 1.89269 0.175732
\(117\) 0 0
\(118\) 7.26898i 0.669164i
\(119\) −1.36426 0.787653i −0.125061 0.0722040i
\(120\) 12.8100 + 12.3504i 1.16939 + 1.12743i
\(121\) −2.27626 3.94260i −0.206933 0.358418i
\(122\) 12.3896 1.12170
\(123\) 2.00000 + 3.46410i 0.180334 + 0.312348i
\(124\) 0.281090 0.162287i 0.0252426 0.0145738i
\(125\) 8.32684 + 7.46081i 0.744775 + 0.667315i
\(126\) 9.27319 + 16.0616i 0.826121 + 1.43088i
\(127\) 15.5947 + 9.00359i 1.38380 + 0.798940i 0.992608 0.121367i \(-0.0387279\pi\)
0.391197 + 0.920307i \(0.372061\pi\)
\(128\) −6.70261 + 11.6093i −0.592433 + 1.02612i
\(129\) 20.3896 1.79521
\(130\) 0 0
\(131\) 14.2557 1.24552 0.622761 0.782412i \(-0.286011\pi\)
0.622761 + 0.782412i \(0.286011\pi\)
\(132\) 1.48554 2.57302i 0.129299 0.223953i
\(133\) −0.798148 0.460811i −0.0692082 0.0399574i
\(134\) −6.05365 10.4852i −0.522956 0.905786i
\(135\) 6.92162 27.8576i 0.595718 2.39760i
\(136\) −2.00356 + 1.15676i −0.171804 + 0.0991910i
\(137\) 6.89269 + 11.9385i 0.588882 + 1.01997i 0.994379 + 0.105878i \(0.0337653\pi\)
−0.405497 + 0.914097i \(0.632901\pi\)
\(138\) 13.8082 1.17543
\(139\) −3.32684 5.76226i −0.282179 0.488748i 0.689742 0.724055i \(-0.257724\pi\)
−0.971921 + 0.235307i \(0.924391\pi\)
\(140\) −0.979150 + 1.01559i −0.0827532 + 0.0858331i
\(141\) 15.6741 + 9.04945i 1.32000 + 0.762101i
\(142\) 22.2895i 1.87049i
\(143\) 0 0
\(144\) 32.4413 2.70344
\(145\) −7.95836 + 8.25455i −0.660906 + 0.685503i
\(146\) 1.50113 2.60004i 0.124235 0.215181i
\(147\) −11.1967 + 6.46441i −0.923486 + 0.533175i
\(148\) 2.23287 0.183540
\(149\) 7.86211 4.53919i 0.644089 0.371865i −0.142099 0.989852i \(-0.545385\pi\)
0.786188 + 0.617988i \(0.212052\pi\)
\(150\) 24.3805 0.891099i 1.99066 0.0727579i
\(151\) 3.27739i 0.266711i −0.991068 0.133355i \(-0.957425\pi\)
0.991068 0.133355i \(-0.0425751\pi\)
\(152\) −1.17217 + 0.676752i −0.0950754 + 0.0548918i
\(153\) 5.62651 + 3.24846i 0.454876 + 0.262623i
\(154\) −5.78535 3.34017i −0.466197 0.269159i
\(155\) −0.474142 + 1.90829i −0.0380840 + 0.153278i
\(156\) 0 0
\(157\) 12.8371i 1.02451i −0.858833 0.512256i \(-0.828810\pi\)
0.858833 0.512256i \(-0.171190\pi\)
\(158\) 0.382433 0.662394i 0.0304248 0.0526972i
\(159\) 13.4680 23.3273i 1.06808 1.84997i
\(160\) 1.27499 + 4.43280i 0.100797 + 0.350443i
\(161\) 4.83710i 0.381217i
\(162\) −15.0428 26.0549i −1.18187 2.04706i
\(163\) −6.02472 10.4351i −0.471893 0.817342i 0.527590 0.849499i \(-0.323096\pi\)
−0.999483 + 0.0321568i \(0.989762\pi\)
\(164\) 0.465732i 0.0363675i
\(165\) 4.97530 + 17.2978i 0.387327 + 1.34663i
\(166\) 6.64229 11.5048i 0.515542 0.892945i
\(167\) 4.36490 7.56022i 0.337766 0.585028i −0.646246 0.763129i \(-0.723662\pi\)
0.984012 + 0.178101i \(0.0569955\pi\)
\(168\) 13.6020i 1.04941i
\(169\) 0 0
\(170\) −0.764867 + 3.07838i −0.0586626 + 0.236101i
\(171\) 3.29175 + 1.90049i 0.251726 + 0.145334i
\(172\) 2.05596 + 1.18701i 0.156766 + 0.0905088i
\(173\) −0.748041 + 0.431882i −0.0568725 + 0.0328354i −0.528167 0.849141i \(-0.677120\pi\)
0.471294 + 0.881976i \(0.343787\pi\)
\(174\) 25.0205i 1.89680i
\(175\) −0.312158 8.54067i −0.0235970 0.645614i
\(176\) −10.1197 + 5.84263i −0.762804 + 0.440405i
\(177\) 14.9711 1.12529
\(178\) 17.1116 9.87936i 1.28257 0.740489i
\(179\) −9.95774 + 17.2473i −0.744276 + 1.28912i 0.206256 + 0.978498i \(0.433872\pi\)
−0.950532 + 0.310626i \(0.899461\pi\)
\(180\) 4.03824 4.18853i 0.300993 0.312195i
\(181\) −14.3896 −1.06957 −0.534786 0.844987i \(-0.679608\pi\)
−0.534786 + 0.844987i \(0.679608\pi\)
\(182\) 0 0
\(183\) 25.5174i 1.88630i
\(184\) −6.15209 3.55191i −0.453538 0.261850i
\(185\) −9.38871 + 9.73813i −0.690272 + 0.715962i
\(186\) 2.14536 + 3.71588i 0.157306 + 0.272461i
\(187\) −2.34017 −0.171130
\(188\) 1.05365 + 1.82498i 0.0768456 + 0.133100i
\(189\) −19.0025 + 10.9711i −1.38222 + 0.798028i
\(190\) −0.447480 + 1.80098i −0.0324636 + 0.130657i
\(191\) −0.738205 1.27861i −0.0534146 0.0925168i 0.838082 0.545545i \(-0.183677\pi\)
−0.891496 + 0.453028i \(0.850344\pi\)
\(192\) −16.5517 9.55611i −1.19451 0.689653i
\(193\) 8.86603 15.3564i 0.638191 1.10538i −0.347639 0.937629i \(-0.613016\pi\)
0.985829 0.167750i \(-0.0536503\pi\)
\(194\) 9.10504 0.653704
\(195\) 0 0
\(196\) −1.50534 −0.107524
\(197\) −1.00000 + 1.73205i −0.0712470 + 0.123404i −0.899448 0.437028i \(-0.856031\pi\)
0.828201 + 0.560431i \(0.189365\pi\)
\(198\) 23.8601 + 13.7756i 1.69567 + 0.978993i
\(199\) 2.69594 + 4.66951i 0.191110 + 0.331013i 0.945619 0.325278i \(-0.105458\pi\)
−0.754508 + 0.656291i \(0.772124\pi\)
\(200\) −11.0917 5.87444i −0.784302 0.415386i
\(201\) 21.5952 12.4680i 1.52321 0.879425i
\(202\) −12.6514 21.9129i −0.890151 1.54179i
\(203\) 8.76487 0.615173
\(204\) 0.539189 + 0.933903i 0.0377508 + 0.0653863i
\(205\) −2.03118 1.95830i −0.141864 0.136774i
\(206\) −13.5838 7.84263i −0.946431 0.546422i
\(207\) 19.9493i 1.38657i
\(208\) 0 0
\(209\) −1.36910 −0.0947028
\(210\) −13.4256 12.9439i −0.926457 0.893214i
\(211\) 11.3763 19.7043i 0.783176 1.35650i −0.146906 0.989150i \(-0.546932\pi\)
0.930083 0.367350i \(-0.119735\pi\)
\(212\) 2.71606 1.56812i 0.186540 0.107699i
\(213\) 45.9071 3.14550
\(214\) −12.9986 + 7.50473i −0.888564 + 0.513013i
\(215\) −13.8218 + 3.97549i −0.942636 + 0.271126i
\(216\) 32.2245i 2.19260i
\(217\) 1.30170 0.751536i 0.0883650 0.0510176i
\(218\) −22.4790 12.9783i −1.52247 0.878999i
\(219\) 5.35500 + 3.09171i 0.361857 + 0.208918i
\(220\) −0.505339 + 2.03385i −0.0340699 + 0.137122i
\(221\) 0 0
\(222\) 29.5174i 1.98108i
\(223\) 4.38050 7.58724i 0.293340 0.508079i −0.681258 0.732044i \(-0.738567\pi\)
0.974597 + 0.223965i \(0.0719000\pi\)
\(224\) 1.76293 3.05348i 0.117791 0.204019i
\(225\) 1.28741 + 35.2237i 0.0858276 + 2.34825i
\(226\) 18.0989i 1.20392i
\(227\) 8.61336 + 14.9188i 0.571689 + 0.990194i 0.996393 + 0.0848618i \(0.0270449\pi\)
−0.424704 + 0.905332i \(0.639622\pi\)
\(228\) 0.315449 + 0.546373i 0.0208911 + 0.0361845i
\(229\) 3.07838i 0.203425i 0.994814 + 0.101712i \(0.0324322\pi\)
−0.994814 + 0.101712i \(0.967568\pi\)
\(230\) −9.36031 + 2.69227i −0.617201 + 0.177523i
\(231\) 6.87936 11.9154i 0.452629 0.783976i
\(232\) 6.43609 11.1476i 0.422550 0.731878i
\(233\) 18.9360i 1.24054i −0.784389 0.620269i \(-0.787023\pi\)
0.784389 0.620269i \(-0.212977\pi\)
\(234\) 0 0
\(235\) −12.3896 3.07838i −0.808210 0.200811i
\(236\) 1.50959 + 0.871563i 0.0982660 + 0.0567339i
\(237\) 1.36426 + 0.787653i 0.0886179 + 0.0511636i
\(238\) 2.09985 1.21235i 0.136113 0.0785848i
\(239\) 6.63809i 0.429382i −0.976682 0.214691i \(-0.931126\pi\)
0.976682 0.214691i \(-0.0688745\pi\)
\(240\) −31.3502 + 9.01712i −2.02364 + 0.582053i
\(241\) 8.20681 4.73820i 0.528647 0.305215i −0.211818 0.977309i \(-0.567938\pi\)
0.740465 + 0.672094i \(0.234605\pi\)
\(242\) 7.00719 0.450439
\(243\) 20.3104 11.7262i 1.30291 0.752236i
\(244\) −1.48554 + 2.57302i −0.0951017 + 0.164721i
\(245\) 6.32962 6.56519i 0.404385 0.419435i
\(246\) −6.15676 −0.392540
\(247\) 0 0
\(248\) 2.20743i 0.140172i
\(249\) 23.6951 + 13.6803i 1.50161 + 0.866957i
\(250\) −16.3534 + 5.35769i −1.03428 + 0.338850i
\(251\) 14.7298 + 25.5128i 0.929736 + 1.61035i 0.783761 + 0.621062i \(0.213299\pi\)
0.145975 + 0.989288i \(0.453368\pi\)
\(252\) −4.44748 −0.280165
\(253\) −3.59284 6.22299i −0.225880 0.391236i
\(254\) −24.0032 + 13.8582i −1.50609 + 0.869543i
\(255\) −6.34017 1.57531i −0.397037 0.0986495i
\(256\) −4.28765 7.42643i −0.267978 0.464152i
\(257\) 17.7238 + 10.2329i 1.10558 + 0.638309i 0.937682 0.347495i \(-0.112968\pi\)
0.167901 + 0.985804i \(0.446301\pi\)
\(258\) −15.6917 + 27.1789i −0.976925 + 1.69208i
\(259\) 10.3402 0.642507
\(260\) 0 0
\(261\) −36.1483 −2.23753
\(262\) −10.9711 + 19.0025i −0.677795 + 1.17398i
\(263\) −7.91844 4.57171i −0.488272 0.281904i 0.235585 0.971854i \(-0.424299\pi\)
−0.723857 + 0.689950i \(0.757633\pi\)
\(264\) −10.1031 17.4991i −0.621803 1.07699i
\(265\) −4.58145 + 18.4391i −0.281436 + 1.13270i
\(266\) 1.22850 0.709275i 0.0753242 0.0434885i
\(267\) 20.3474 + 35.2427i 1.24524 + 2.15682i
\(268\) 2.90337 0.177352
\(269\) 5.69594 + 9.86567i 0.347288 + 0.601520i 0.985767 0.168119i \(-0.0537693\pi\)
−0.638479 + 0.769639i \(0.720436\pi\)
\(270\) 31.8067 + 30.6654i 1.93570 + 1.86624i
\(271\) −18.3035 10.5675i −1.11186 0.641930i −0.172546 0.985001i \(-0.555200\pi\)
−0.939309 + 0.343071i \(0.888533\pi\)
\(272\) 4.24128i 0.257165i
\(273\) 0 0
\(274\) −21.2183 −1.28185
\(275\) −6.74533 10.7558i −0.406759 0.648600i
\(276\) −1.65562 + 2.86762i −0.0996567 + 0.172611i
\(277\) −11.3262 + 6.53919i −0.680526 + 0.392902i −0.800053 0.599929i \(-0.795195\pi\)
0.119527 + 0.992831i \(0.461862\pi\)
\(278\) 10.2413 0.614231
\(279\) −5.36851 + 3.09951i −0.321404 + 0.185563i
\(280\) 2.65206 + 9.22053i 0.158491 + 0.551032i
\(281\) 0.680346i 0.0405860i 0.999794 + 0.0202930i \(0.00645991\pi\)
−0.999794 + 0.0202930i \(0.993540\pi\)
\(282\) −24.1254 + 13.9288i −1.43665 + 0.829449i
\(283\) −16.7105 9.64782i −0.993337 0.573504i −0.0870671 0.996202i \(-0.527749\pi\)
−0.906270 + 0.422699i \(0.861083\pi\)
\(284\) 4.62899 + 2.67255i 0.274680 + 0.158586i
\(285\) −3.70928 0.921622i −0.219719 0.0545922i
\(286\) 0 0
\(287\) 2.15676i 0.127309i
\(288\) −7.27073 + 12.5933i −0.428432 + 0.742066i
\(289\) −8.07531 + 13.9868i −0.475018 + 0.822755i
\(290\) −4.87841 16.9610i −0.286470 0.995982i
\(291\) 18.7526i 1.09930i
\(292\) 0.359977 + 0.623498i 0.0210660 + 0.0364875i
\(293\) 4.73400 + 8.19953i 0.276563 + 0.479022i 0.970528 0.240987i \(-0.0774712\pi\)
−0.693965 + 0.720009i \(0.744138\pi\)
\(294\) 19.8999i 1.16058i
\(295\) −10.1486 + 2.91901i −0.590875 + 0.169951i
\(296\) 7.59284 13.1512i 0.441325 0.764397i
\(297\) −16.2979 + 28.2288i −0.945701 + 1.63800i
\(298\) 13.9733i 0.809454i
\(299\) 0 0
\(300\) −2.73820 + 5.17009i −0.158090 + 0.298495i
\(301\) 9.52096 + 5.49693i 0.548779 + 0.316838i
\(302\) 4.36869 + 2.52226i 0.251390 + 0.145140i
\(303\) 45.1314 26.0566i 2.59273 1.49691i
\(304\) 2.48133i 0.142314i
\(305\) −4.97530 17.2978i −0.284885 0.990470i
\(306\) −8.66025 + 5.00000i −0.495074 + 0.285831i
\(307\) 0.264063 0.0150709 0.00753543 0.999972i \(-0.497601\pi\)
0.00753543 + 0.999972i \(0.497601\pi\)
\(308\) 1.38735 0.800984i 0.0790513 0.0456403i
\(309\) 16.1526 27.9770i 0.918886 1.59156i
\(310\) −2.17881 2.10063i −0.123748 0.119308i
\(311\) −13.0472 −0.739838 −0.369919 0.929064i \(-0.620615\pi\)
−0.369919 + 0.929064i \(0.620615\pi\)
\(312\) 0 0
\(313\) 33.7009i 1.90489i −0.304718 0.952443i \(-0.598562\pi\)
0.304718 0.952443i \(-0.401438\pi\)
\(314\) 17.1116 + 9.87936i 0.965661 + 0.557525i
\(315\) 18.7007 19.3967i 1.05366 1.09288i
\(316\) 0.0917087 + 0.158844i 0.00515902 + 0.00893568i
\(317\) −13.9506 −0.783541 −0.391771 0.920063i \(-0.628137\pi\)
−0.391771 + 0.920063i \(0.628137\pi\)
\(318\) 20.7298 + 35.9051i 1.16247 + 2.01346i
\(319\) 11.2761 6.51026i 0.631340 0.364505i
\(320\) 13.0833 + 3.25073i 0.731379 + 0.181721i
\(321\) −15.4566 26.7716i −0.862704 1.49425i
\(322\) 6.44774 + 3.72261i 0.359319 + 0.207453i
\(323\) 0.248464 0.430353i 0.0138249 0.0239455i
\(324\) 7.21461 0.400812
\(325\) 0 0
\(326\) 18.5464 1.02719
\(327\) 26.7298 46.2974i 1.47816 2.56025i
\(328\) 2.74308 + 1.58372i 0.151461 + 0.0874461i
\(329\) 4.87936 + 8.45130i 0.269008 + 0.465935i
\(330\) −26.8865 6.68035i −1.48006 0.367741i
\(331\) −15.9822 + 9.22733i −0.878462 + 0.507180i −0.870151 0.492785i \(-0.835979\pi\)
−0.00831086 + 0.999965i \(0.502645\pi\)
\(332\) 1.59284 + 2.75888i 0.0874186 + 0.151413i
\(333\) −42.6453 −2.33695
\(334\) 6.71840 + 11.6366i 0.367615 + 0.636727i
\(335\) −12.2080 + 12.6624i −0.666996 + 0.691820i
\(336\) 21.5952 + 12.4680i 1.17812 + 0.680185i
\(337\) 15.8576i 0.863820i −0.901917 0.431910i \(-0.857840\pi\)
0.901917 0.431910i \(-0.142160\pi\)
\(338\) 0 0
\(339\) 37.2762 2.02456
\(340\) −0.547595 0.527947i −0.0296975 0.0286319i
\(341\) 1.11643 1.93372i 0.0604582 0.104717i
\(342\) −5.06662 + 2.92522i −0.273972 + 0.158178i
\(343\) −18.9360 −1.02245
\(344\) 13.9826 8.07285i 0.753890 0.435259i
\(345\) −5.54495 19.2783i −0.298530 1.03791i
\(346\) 1.32950i 0.0714741i
\(347\) −8.42199 + 4.86244i −0.452116 + 0.261029i −0.708723 0.705486i \(-0.750729\pi\)
0.256607 + 0.966516i \(0.417395\pi\)
\(348\) −5.19615 3.00000i −0.278543 0.160817i
\(349\) 26.7683 + 15.4547i 1.43287 + 0.827269i 0.997339 0.0729030i \(-0.0232264\pi\)
0.435534 + 0.900172i \(0.356560\pi\)
\(350\) 11.6248 + 6.15676i 0.621369 + 0.329092i
\(351\) 0 0
\(352\) 5.23779i 0.279175i
\(353\) 2.97528 5.15333i 0.158358 0.274284i −0.775919 0.630833i \(-0.782713\pi\)
0.934277 + 0.356549i \(0.116047\pi\)
\(354\) −11.5217 + 19.9561i −0.612369 + 1.06065i
\(355\) −31.1196 + 8.95079i −1.65166 + 0.475059i
\(356\) 4.73820i 0.251124i
\(357\) 2.49693 + 4.32481i 0.132151 + 0.228893i
\(358\) −15.3268 26.5469i −0.810049 1.40305i
\(359\) 10.9783i 0.579410i 0.957116 + 0.289705i \(0.0935573\pi\)
−0.957116 + 0.289705i \(0.906443\pi\)
\(360\) −10.9377 38.0276i −0.576469 2.00423i
\(361\) −9.35464 + 16.2027i −0.492349 + 0.852774i
\(362\) 11.0742 19.1810i 0.582046 1.00813i
\(363\) 14.4319i 0.757477i
\(364\) 0 0
\(365\) −4.23287 1.05172i −0.221558 0.0550493i
\(366\) −34.0142 19.6381i −1.77795 1.02650i
\(367\) 8.98417 + 5.18701i 0.468970 + 0.270760i 0.715808 0.698297i \(-0.246058\pi\)
−0.246839 + 0.969057i \(0.579392\pi\)
\(368\) 11.2784 6.51159i 0.587927 0.339440i
\(369\) 8.89496i 0.463053i
\(370\) −5.75520 20.0093i −0.299199 1.04024i
\(371\) 12.5778 7.26180i 0.653007 0.377014i
\(372\) −1.02893 −0.0533475
\(373\) 20.7740 11.9939i 1.07564 0.621018i 0.145920 0.989296i \(-0.453386\pi\)
0.929716 + 0.368278i \(0.120053\pi\)
\(374\) 1.80098 3.11940i 0.0931267 0.161300i
\(375\) −11.0346 33.6811i −0.569824 1.73929i
\(376\) 14.3318 0.739104
\(377\) 0 0
\(378\) 33.7731i 1.73710i
\(379\) 25.7708 + 14.8788i 1.32375 + 0.764270i 0.984325 0.176362i \(-0.0564328\pi\)
0.339429 + 0.940632i \(0.389766\pi\)
\(380\) −0.320367 0.308872i −0.0164345 0.0158448i
\(381\) −28.5422 49.4365i −1.46226 2.53271i
\(382\) 2.27247 0.116270
\(383\) 6.20814 + 10.7528i 0.317221 + 0.549443i 0.979907 0.199454i \(-0.0639169\pi\)
−0.662686 + 0.748897i \(0.730584\pi\)
\(384\) 36.8024 21.2479i 1.87806 1.08430i
\(385\) −2.34017 + 9.41855i −0.119266 + 0.480014i
\(386\) 13.6465 + 23.6364i 0.694588 + 1.20306i
\(387\) −39.2666 22.6706i −1.99604 1.15241i
\(388\) −1.09171 + 1.89090i −0.0554231 + 0.0959956i
\(389\) −16.8371 −0.853675 −0.426837 0.904328i \(-0.640372\pi\)
−0.426837 + 0.904328i \(0.640372\pi\)
\(390\) 0 0
\(391\) 2.60811 0.131898
\(392\) −5.11889 + 8.86618i −0.258543 + 0.447810i
\(393\) −39.1371 22.5958i −1.97421 1.13981i
\(394\) −1.53919 2.66595i −0.0775432 0.134309i
\(395\) −1.07838 0.267938i −0.0542591 0.0134814i
\(396\) −5.72173 + 3.30344i −0.287528 + 0.166004i
\(397\) −1.94635 3.37117i −0.0976843 0.169194i 0.813041 0.582206i \(-0.197810\pi\)
−0.910726 + 0.413012i \(0.864477\pi\)
\(398\) −8.29914 −0.415998
\(399\) 1.46081 + 2.53020i 0.0731320 + 0.126668i
\(400\) 19.4936 12.2251i 0.974680 0.611254i
\(401\) −7.88520 4.55252i −0.393768 0.227342i 0.290024 0.957020i \(-0.406337\pi\)
−0.683791 + 0.729678i \(0.739670\pi\)
\(402\) 38.3812i 1.91428i
\(403\) 0 0
\(404\) 6.06770 0.301879
\(405\) −30.3359 + 31.4649i −1.50740 + 1.56350i
\(406\) −6.74539 + 11.6834i −0.334768 + 0.579836i
\(407\) 13.3027 7.68035i 0.659393 0.380701i
\(408\) 7.33403 0.363089
\(409\) 16.8170 9.70928i 0.831545 0.480093i −0.0228363 0.999739i \(-0.507270\pi\)
0.854381 + 0.519646i \(0.173936\pi\)
\(410\) 4.17355 1.20042i 0.206117 0.0592846i
\(411\) 43.7009i 2.15560i
\(412\) 3.25745 1.88069i 0.160483 0.0926549i
\(413\) 6.99076 + 4.03612i 0.343993 + 0.198604i
\(414\) −26.5920 15.3529i −1.30693 0.754554i
\(415\) −18.7298 4.65368i −0.919409 0.228440i
\(416\) 0 0
\(417\) 21.0928i 1.03292i
\(418\) 1.05365 1.82498i 0.0515359 0.0892628i
\(419\) −8.38962 + 14.5313i −0.409860 + 0.709898i −0.994874 0.101125i \(-0.967756\pi\)
0.585014 + 0.811023i \(0.301089\pi\)
\(420\) 4.29789 1.23618i 0.209716 0.0603196i
\(421\) 19.0205i 0.927003i −0.886096 0.463502i \(-0.846593\pi\)
0.886096 0.463502i \(-0.153407\pi\)
\(422\) 17.5103 + 30.3287i 0.852386 + 1.47638i
\(423\) −20.1236 34.8551i −0.978444 1.69471i
\(424\) 21.3295i 1.03585i
\(425\) 4.60504 0.168312i 0.223377 0.00816435i
\(426\) −35.3298 + 61.1931i −1.71174 + 2.96481i
\(427\) −6.87936 + 11.9154i −0.332916 + 0.576627i
\(428\) 3.59932i 0.173979i
\(429\) 0 0
\(430\) 5.33791 21.4836i 0.257417 1.03603i
\(431\) −6.95416 4.01499i −0.334970 0.193395i 0.323075 0.946373i \(-0.395283\pi\)
−0.658046 + 0.752978i \(0.728617\pi\)
\(432\) −51.1613 29.5380i −2.46150 1.42115i
\(433\) −11.2992 + 6.52359i −0.543004 + 0.313504i −0.746296 0.665615i \(-0.768170\pi\)
0.203291 + 0.979118i \(0.434836\pi\)
\(434\) 2.31351i 0.111052i
\(435\) 34.9325 10.0475i 1.67488 0.481740i
\(436\) 5.39054 3.11223i 0.258160 0.149049i
\(437\) 1.52586 0.0729917
\(438\) −8.24235 + 4.75872i −0.393835 + 0.227381i
\(439\) 3.85043 6.66914i 0.183771 0.318301i −0.759391 0.650635i \(-0.774503\pi\)
0.943162 + 0.332334i \(0.107836\pi\)
\(440\) 10.2606 + 9.89245i 0.489156 + 0.471604i
\(441\) 28.7503 1.36906
\(442\) 0 0
\(443\) 6.39084i 0.303638i 0.988408 + 0.151819i \(0.0485131\pi\)
−0.988408 + 0.151819i \(0.951487\pi\)
\(444\) −6.13005 3.53919i −0.290920 0.167962i
\(445\) −20.6646 19.9231i −0.979596 0.944446i
\(446\) 6.74241 + 11.6782i 0.319262 + 0.552979i
\(447\) −28.7792 −1.36121
\(448\) −5.15255 8.92448i −0.243435 0.421642i
\(449\) 27.3806 15.8082i 1.29217 0.746034i 0.313130 0.949710i \(-0.398622\pi\)
0.979038 + 0.203676i \(0.0652891\pi\)
\(450\) −47.9432 25.3919i −2.26006 1.19699i
\(451\) 1.60197 + 2.77469i 0.0754337 + 0.130655i
\(452\) 3.75870 + 2.17009i 0.176794 + 0.102072i
\(453\) −5.19481 + 8.99768i −0.244073 + 0.422748i
\(454\) −26.5152 −1.24442
\(455\) 0 0
\(456\) 4.29072 0.200932
\(457\) −17.8215 + 30.8677i −0.833655 + 1.44393i 0.0614663 + 0.998109i \(0.480422\pi\)
−0.895121 + 0.445823i \(0.852911\pi\)
\(458\) −4.10341 2.36910i −0.191740 0.110701i
\(459\) −5.91548 10.2459i −0.276111 0.478238i
\(460\) 0.563198 2.26672i 0.0262592 0.105686i
\(461\) −12.9726 + 7.48974i −0.604195 + 0.348832i −0.770690 0.637210i \(-0.780088\pi\)
0.166495 + 0.986042i \(0.446755\pi\)
\(462\) 10.5886 + 18.3401i 0.492628 + 0.853257i
\(463\) 9.09663 0.422756 0.211378 0.977404i \(-0.432205\pi\)
0.211378 + 0.977404i \(0.432205\pi\)
\(464\) 11.7990 + 20.4365i 0.547757 + 0.948743i
\(465\) 4.32642 4.48744i 0.200633 0.208100i
\(466\) 25.2412 + 14.5730i 1.16928 + 0.675083i
\(467\) 1.87709i 0.0868616i −0.999056 0.0434308i \(-0.986171\pi\)
0.999056 0.0434308i \(-0.0138288\pi\)
\(468\) 0 0
\(469\) 13.4452 0.620842
\(470\) 13.6384 14.1460i 0.629092 0.652505i
\(471\) −20.3474 + 35.2427i −0.937557 + 1.62390i
\(472\) 10.2667 5.92748i 0.472563 0.272835i
\(473\) 16.3318 0.750935
\(474\) −2.09985 + 1.21235i −0.0964491 + 0.0556849i
\(475\) 2.69415 0.0984700i 0.123616 0.00451811i
\(476\) 0.581449i 0.0266507i
\(477\) −51.8738 + 29.9493i −2.37514 + 1.37129i
\(478\) 8.84841 + 5.10863i 0.404717 + 0.233663i
\(479\) 13.6339 + 7.87156i 0.622951 + 0.359661i 0.778017 0.628243i \(-0.216226\pi\)
−0.155066 + 0.987904i \(0.549559\pi\)
\(480\) 3.52586 14.1906i 0.160933 0.647710i
\(481\) 0 0
\(482\) 14.5860i 0.664373i
\(483\) −7.66701 + 13.2797i −0.348861 + 0.604245i
\(484\) −0.840173 + 1.45522i −0.0381897 + 0.0661465i
\(485\) −3.65631 12.7120i −0.166024 0.577224i
\(486\) 36.0977i 1.63742i
\(487\) 2.47220 + 4.28198i 0.112026 + 0.194035i 0.916587 0.399835i \(-0.130933\pi\)
−0.804561 + 0.593870i \(0.797599\pi\)
\(488\) 10.1031 + 17.4991i 0.457346 + 0.792146i
\(489\) 38.1978i 1.72736i
\(490\) 3.88001 + 13.4898i 0.175281 + 0.609406i
\(491\) 19.7431 34.1961i 0.890995 1.54325i 0.0523101 0.998631i \(-0.483342\pi\)
0.838685 0.544617i \(-0.183325\pi\)
\(492\) 0.738205 1.27861i 0.0332808 0.0576441i
\(493\) 4.72592i 0.212845i
\(494\) 0 0
\(495\) 9.65142 38.8443i 0.433799 1.74592i
\(496\) 3.50463 + 2.02340i 0.157362 + 0.0908532i
\(497\) 21.4364 + 12.3763i 0.961552 + 0.555152i
\(498\) −36.4712 + 21.0566i −1.63431 + 0.943570i
\(499\) 1.67089i 0.0747993i −0.999300 0.0373997i \(-0.988093\pi\)
0.999300 0.0373997i \(-0.0119075\pi\)
\(500\) 0.848135 4.03859i 0.0379297 0.180611i
\(501\) −23.9666 + 13.8371i −1.07075 + 0.618196i
\(502\) −45.3439 −2.02380
\(503\) −7.86833 + 4.54278i −0.350832 + 0.202553i −0.665051 0.746798i \(-0.731590\pi\)
0.314220 + 0.949350i \(0.398257\pi\)
\(504\) −15.1236 + 26.1949i −0.673660 + 1.16681i
\(505\) −25.5133 + 26.4629i −1.13533 + 1.17758i
\(506\) 11.0601 0.491683
\(507\) 0 0
\(508\) 6.64650i 0.294891i
\(509\) −16.9257 9.77205i −0.750218 0.433139i 0.0755545 0.997142i \(-0.475927\pi\)
−0.825773 + 0.564003i \(0.809261\pi\)
\(510\) 6.97921 7.23896i 0.309045 0.320546i
\(511\) 1.66701 + 2.88735i 0.0737444 + 0.127729i
\(512\) −13.6114 −0.601546
\(513\) −3.46081 5.99430i −0.152799 0.264655i
\(514\) −27.2803 + 15.7503i −1.20328 + 0.694717i
\(515\) −5.49466 + 22.1145i −0.242124 + 0.974481i
\(516\) −3.76293 6.51758i −0.165654 0.286921i
\(517\) 12.5547 + 7.24846i 0.552155 + 0.318787i
\(518\) −7.95774 + 13.7832i −0.349643 + 0.605599i
\(519\) 2.73820 0.120194
\(520\) 0 0
\(521\) 6.50534 0.285004 0.142502 0.989795i \(-0.454485\pi\)
0.142502 + 0.989795i \(0.454485\pi\)
\(522\) 27.8196 48.1849i 1.21763 2.10900i
\(523\) 31.6490 + 18.2726i 1.38392 + 0.799004i 0.992621 0.121261i \(-0.0386939\pi\)
0.391295 + 0.920265i \(0.372027\pi\)
\(524\) −2.63090 4.55685i −0.114931 0.199067i
\(525\) −12.6803 + 23.9421i −0.553416 + 1.04492i
\(526\) 12.1880 7.03673i 0.531421 0.306816i
\(527\) 0.405220 + 0.701861i 0.0176516 + 0.0305736i
\(528\) 37.0433 1.61210
\(529\) −7.49579 12.9831i −0.325904 0.564482i
\(530\) −21.0530 20.2976i −0.914484 0.881670i
\(531\) −28.8315 16.6459i −1.25118 0.722370i
\(532\) 0.340173i 0.0147484i
\(533\) 0 0
\(534\) −62.6369 −2.71056
\(535\) 15.6976 + 15.1343i 0.678666 + 0.654314i
\(536\) 9.87289 17.1003i 0.426444 0.738622i
\(537\) 54.6755 31.5669i 2.35942 1.36221i
\(538\) −17.5343 −0.755956
\(539\) −8.96836 + 5.17789i −0.386295 + 0.223027i
\(540\) −10.1821 + 2.92865i −0.438169 + 0.126029i
\(541\) 20.3402i 0.874492i −0.899342 0.437246i \(-0.855954\pi\)
0.899342 0.437246i \(-0.144046\pi\)
\(542\) 28.1725 16.2654i 1.21011 0.698658i
\(543\) 39.5049 + 22.8082i 1.69532 + 0.978792i
\(544\) 1.64640 + 0.950552i 0.0705890 + 0.0407546i
\(545\) −9.09275 + 36.5958i −0.389491 + 1.56759i
\(546\) 0 0
\(547\) 11.5948i 0.495757i −0.968791 0.247879i \(-0.920267\pi\)
0.968791 0.247879i \(-0.0797334\pi\)
\(548\) 2.54411 4.40653i 0.108679 0.188237i
\(549\) 28.3721 49.1419i 1.21089 2.09732i
\(550\) 19.5284 0.713756i 0.832694 0.0304347i
\(551\) 2.76487i 0.117787i
\(552\) 11.2599 + 19.5026i 0.479251 + 0.830088i
\(553\) 0.424694 + 0.735591i 0.0180598 + 0.0312805i
\(554\) 20.1301i 0.855246i
\(555\) 41.2109 11.8533i 1.74931 0.503145i
\(556\) −1.22795 + 2.12686i −0.0520765 + 0.0901991i
\(557\) −5.36490 + 9.29227i −0.227318 + 0.393726i −0.957012 0.290047i \(-0.906329\pi\)
0.729694 + 0.683773i \(0.239662\pi\)
\(558\) 9.54146i 0.403922i
\(559\) 0 0
\(560\) −17.0700 4.24128i −0.721338 0.179227i
\(561\) 6.42465 + 3.70928i 0.271249 + 0.156606i
\(562\) −0.906885 0.523590i −0.0382546 0.0220863i
\(563\) 8.87543 5.12423i 0.374055 0.215961i −0.301174 0.953569i \(-0.597378\pi\)
0.675228 + 0.737609i \(0.264045\pi\)
\(564\) 6.68035i 0.281293i
\(565\) −25.2688 + 7.26797i −1.06307 + 0.305766i
\(566\) 25.7206 14.8498i 1.08112 0.624185i
\(567\) 33.4101 1.40309
\(568\) 31.4817 18.1759i 1.32094 0.762646i
\(569\) 4.42276 7.66044i 0.185412 0.321142i −0.758304 0.651902i \(-0.773972\pi\)
0.943715 + 0.330759i \(0.107305\pi\)
\(570\) 4.08314 4.23510i 0.171024 0.177389i
\(571\) −9.29299 −0.388900 −0.194450 0.980912i \(-0.562292\pi\)
−0.194450 + 0.980912i \(0.562292\pi\)
\(572\) 0 0
\(573\) 4.68035i 0.195524i
\(574\) −2.87490 1.65983i −0.119996 0.0692798i
\(575\) 7.51764 + 11.9873i 0.313507 + 0.499905i
\(576\) 21.2503 + 36.8066i 0.885430 + 1.53361i
\(577\) 19.5259 0.812872 0.406436 0.913679i \(-0.366771\pi\)
0.406436 + 0.913679i \(0.366771\pi\)
\(578\) −12.4294 21.5284i −0.516996 0.895463i
\(579\) −48.6812 + 28.1061i −2.02312 + 1.16805i
\(580\) 4.10731 + 1.02052i 0.170547 + 0.0423747i
\(581\) 7.37629 + 12.7761i 0.306020 + 0.530042i
\(582\) −24.9968 14.4319i −1.03615 0.598221i
\(583\) 10.7877 18.6848i 0.446779 0.773844i
\(584\) 4.89639 0.202614
\(585\) 0 0
\(586\) −14.5730 −0.602007
\(587\) 11.2514 19.4881i 0.464397 0.804359i −0.534777 0.844993i \(-0.679604\pi\)
0.999174 + 0.0406341i \(0.0129378\pi\)
\(588\) 4.13272 + 2.38603i 0.170431 + 0.0983981i
\(589\) 0.237071 + 0.410619i 0.00976834 + 0.0169193i
\(590\) 3.91935 15.7743i 0.161357 0.649419i
\(591\) 5.49075 3.17009i 0.225859 0.130400i
\(592\) 13.9197 + 24.1096i 0.572096 + 0.990898i
\(593\) −4.43907 −0.182291 −0.0911454 0.995838i \(-0.529053\pi\)
−0.0911454 + 0.995838i \(0.529053\pi\)
\(594\) −25.0856 43.4495i −1.02927 1.78275i
\(595\) −2.53586 2.44487i −0.103960 0.100230i
\(596\) −2.90192 1.67543i −0.118867 0.0686281i
\(597\) 17.0928i 0.699560i
\(598\) 0 0
\(599\) −33.3607 −1.36308 −0.681540 0.731780i \(-0.738690\pi\)
−0.681540 + 0.731780i \(0.738690\pi\)
\(600\) 21.1397 + 33.7084i 0.863023 + 1.37614i
\(601\) −6.65983 + 11.5352i −0.271660 + 0.470529i −0.969287 0.245932i \(-0.920906\pi\)
0.697627 + 0.716461i \(0.254239\pi\)
\(602\) −14.6546 + 8.46081i −0.597275 + 0.344837i
\(603\) −55.4512 −2.25815
\(604\) −1.04763 + 0.604847i −0.0426273 + 0.0246109i
\(605\) −2.81388 9.78311i −0.114400 0.397740i
\(606\) 80.2122i 3.25840i
\(607\) 12.2269 7.05919i 0.496273 0.286523i −0.230900 0.972977i \(-0.574167\pi\)
0.727173 + 0.686454i \(0.240834\pi\)
\(608\) 0.963217 + 0.556114i 0.0390636 + 0.0225534i
\(609\) −24.0628 13.8927i −0.975076 0.562960i
\(610\) 26.8865 + 6.68035i 1.08860 + 0.270479i
\(611\) 0 0
\(612\) 2.39803i 0.0969347i
\(613\) 13.4052 23.2185i 0.541432 0.937787i −0.457390 0.889266i \(-0.651216\pi\)
0.998822 0.0485213i \(-0.0154509\pi\)
\(614\) −0.203221 + 0.351989i −0.00820134 + 0.0142051i
\(615\) 2.47237 + 8.59578i 0.0996955 + 0.346615i
\(616\) 10.8950i 0.438970i
\(617\) 7.44748 + 12.8994i 0.299824 + 0.519311i 0.976096 0.217342i \(-0.0697386\pi\)
−0.676271 + 0.736653i \(0.736405\pi\)
\(618\) 24.8618 + 43.0619i 1.00009 + 1.73221i
\(619\) 45.3184i 1.82150i 0.412956 + 0.910751i \(0.364496\pi\)
−0.412956 + 0.910751i \(0.635504\pi\)
\(620\) 0.697493 0.200617i 0.0280120 0.00805697i
\(621\) 18.1639 31.4609i 0.728894 1.26248i
\(622\) 10.0410 17.3916i 0.402609 0.697339i
\(623\) 21.9421i 0.879093i
\(624\) 0 0
\(625\) 14.0472 + 20.6803i 0.561887 + 0.827214i
\(626\) 44.9225 + 25.9360i 1.79546 + 1.03661i
\(627\) 3.75870 + 2.17009i 0.150108 + 0.0866649i
\(628\) −4.10341 + 2.36910i −0.163744 + 0.0945375i
\(629\) 5.57531i 0.222302i
\(630\) 11.4634 + 39.8551i 0.456711 + 1.58787i
\(631\) −32.8116 + 18.9438i −1.30621 + 0.754141i −0.981461 0.191660i \(-0.938613\pi\)
−0.324749 + 0.945800i \(0.605280\pi\)
\(632\) 1.24742 0.0496197
\(633\) −62.4644 + 36.0638i −2.48274 + 1.43341i
\(634\) 10.7363 18.5958i 0.426392 0.738532i
\(635\) 28.9872 + 27.9471i 1.15032 + 1.10905i
\(636\) −9.94214 −0.394232
\(637\) 0 0
\(638\) 20.0410i 0.793432i
\(639\) −88.4085 51.0427i −3.49739 2.01922i
\(640\) −20.8048 + 21.5791i −0.822383 + 0.852990i
\(641\) −4.23513 7.33547i −0.167278 0.289733i 0.770184 0.637822i \(-0.220164\pi\)
−0.937462 + 0.348088i \(0.886831\pi\)
\(642\) 47.5813 1.87788
\(643\) −17.0875 29.5964i −0.673865 1.16717i −0.976799 0.214157i \(-0.931299\pi\)
0.302934 0.953012i \(-0.402034\pi\)
\(644\) −1.54619 + 0.892693i −0.0609284 + 0.0351770i
\(645\) 44.2472 + 10.9939i 1.74223 + 0.432883i
\(646\) 0.382433 + 0.662394i 0.0150466 + 0.0260615i
\(647\) −11.9717 6.91189i −0.470658 0.271734i 0.245857 0.969306i \(-0.420931\pi\)
−0.716515 + 0.697572i \(0.754264\pi\)
\(648\) 24.5332 42.4928i 0.963757 1.66928i
\(649\) 11.9916 0.470711
\(650\) 0 0
\(651\) −4.76487 −0.186750
\(652\) −2.22374 + 3.85163i −0.0870884 + 0.150842i
\(653\) −37.1336 21.4391i −1.45315 0.838976i −0.454490 0.890752i \(-0.650178\pi\)
−0.998659 + 0.0517764i \(0.983512\pi\)
\(654\) 41.1422 + 71.2604i 1.60879 + 2.78650i
\(655\) 30.9360 + 7.68649i 1.20877 + 0.300336i
\(656\) −5.02879 + 2.90337i −0.196341 + 0.113358i
\(657\) −6.87516 11.9081i −0.268225 0.464580i
\(658\) −15.0205 −0.585561
\(659\) −11.6248 20.1347i −0.452836 0.784335i 0.545725 0.837964i \(-0.316254\pi\)
−0.998561 + 0.0536293i \(0.982921\pi\)
\(660\) 4.61109 4.78270i 0.179486 0.186166i
\(661\) 23.4399 + 13.5330i 0.911707 + 0.526374i 0.880980 0.473153i \(-0.156884\pi\)
0.0307272 + 0.999528i \(0.490218\pi\)
\(662\) 28.4052i 1.10400i
\(663\) 0 0
\(664\) 21.6658 0.840796
\(665\) −1.48359 1.43035i −0.0575310 0.0554667i
\(666\) 32.8196 56.8452i 1.27173 2.20270i
\(667\) −12.5672 + 7.25565i −0.486602 + 0.280940i
\(668\) −3.22219 −0.124670
\(669\) −24.0522 + 13.8865i −0.929912 + 0.536885i
\(670\) −7.48343 26.0179i −0.289110 1.00516i
\(671\) 20.4391i 0.789042i
\(672\) −9.67980 + 5.58864i −0.373407 + 0.215586i
\(673\) −14.0046 8.08557i −0.539838 0.311676i 0.205175 0.978725i \(-0.434224\pi\)
−0.745013 + 0.667050i \(0.767557\pi\)
\(674\) 21.1378 + 12.2039i 0.814199 + 0.470078i
\(675\) 30.0410 56.7214i 1.15628 2.18321i
\(676\) 0 0
\(677\) 43.1194i 1.65721i 0.559831 + 0.828607i \(0.310866\pi\)
−0.559831 + 0.828607i \(0.689134\pi\)
\(678\) −28.6875 + 49.6883i −1.10174 + 1.90827i
\(679\) −5.05559 + 8.75654i −0.194016 + 0.336045i
\(680\) −4.97161 + 1.42996i −0.190652 + 0.0548366i
\(681\) 54.6102i 2.09267i
\(682\) 1.71840 + 2.97636i 0.0658010 + 0.113971i
\(683\) −8.85464 15.3367i −0.338813 0.586842i 0.645396 0.763848i \(-0.276692\pi\)
−0.984210 + 0.177006i \(0.943359\pi\)
\(684\) 1.40295i 0.0536432i
\(685\) 8.52064 + 29.6240i 0.325557 + 1.13188i
\(686\) 14.5730 25.2412i 0.556401 0.963715i
\(687\) 4.87936 8.45130i 0.186159 0.322437i
\(688\) 29.5993i 1.12846i
\(689\) 0 0
\(690\) 29.9649 + 7.44521i 1.14075 + 0.283434i
\(691\) 21.5462 + 12.4397i 0.819655 + 0.473228i 0.850297 0.526303i \(-0.176422\pi\)
−0.0306428 + 0.999530i \(0.509755\pi\)
\(692\) 0.276104 + 0.159409i 0.0104959 + 0.00605980i
\(693\) −26.4968 + 15.2979i −1.00653 + 0.581120i
\(694\) 14.9684i 0.568193i
\(695\) −4.11259 14.2984i −0.155999 0.542369i
\(696\) −35.3390 + 20.4030i −1.33952 + 0.773372i
\(697\) −1.16290 −0.0440479
\(698\) −41.2014 + 23.7877i −1.55950 + 0.900376i
\(699\) −30.0144 + 51.9864i −1.13525 + 1.96631i
\(700\) −2.67243 + 1.67597i −0.101009 + 0.0633458i
\(701\) −33.0661 −1.24889 −0.624445 0.781069i \(-0.714675\pi\)
−0.624445 + 0.781069i \(0.714675\pi\)
\(702\) 0 0
\(703\) 3.26180i 0.123021i
\(704\) −13.2576 7.65430i −0.499666 0.288482i
\(705\) 29.1348 + 28.0894i 1.09728 + 1.05791i
\(706\) 4.57951 + 7.93195i 0.172352 + 0.298523i
\(707\) 28.0989 1.05677
\(708\) −2.76293 4.78553i −0.103837 0.179851i
\(709\) 1.89090 1.09171i 0.0710141 0.0410000i −0.464073 0.885797i \(-0.653612\pi\)
0.535087 + 0.844797i \(0.320279\pi\)
\(710\) 12.0183 48.3701i 0.451037 1.81530i
\(711\) −1.75154 3.03375i −0.0656877 0.113774i
\(712\) 27.9072 + 16.1122i 1.04587 + 0.603831i
\(713\) −1.24426 + 2.15512i −0.0465979 + 0.0807099i
\(714\) −7.68649 −0.287660
\(715\) 0 0
\(716\) 7.35085 0.274714
\(717\) −10.5217 + 18.2240i −0.392938 + 0.680589i
\(718\) −14.6338 8.44881i −0.546127 0.315307i
\(719\) −2.60424 4.51067i −0.0971216 0.168220i 0.813370 0.581746i \(-0.197630\pi\)
−0.910492 + 0.413526i \(0.864297\pi\)
\(720\) 70.4005 + 17.4920i 2.62367 + 0.651889i
\(721\) 15.0849 8.70928i 0.561791 0.324350i
\(722\) −14.3986 24.9390i −0.535859 0.928134i
\(723\) −30.0410 −1.11724
\(724\) 2.65562 + 4.59967i 0.0986954 + 0.170945i
\(725\) −21.7211 + 13.6220i −0.806701 + 0.505909i
\(726\) −19.2374 11.1067i −0.713965 0.412208i
\(727\) 3.52464i 0.130721i 0.997862 + 0.0653607i \(0.0208198\pi\)
−0.997862 + 0.0653607i \(0.979180\pi\)
\(728\) 0 0
\(729\) −15.7070 −0.581741
\(730\) 4.65950 4.83292i 0.172456 0.178874i
\(731\) −2.96388 + 5.13360i −0.109623 + 0.189873i
\(732\) 8.15670 4.70928i 0.301480 0.174060i
\(733\) −21.8310 −0.806345 −0.403172 0.915124i \(-0.632093\pi\)
−0.403172 + 0.915124i \(0.632093\pi\)
\(734\) −13.8283 + 7.98379i −0.510413 + 0.294687i
\(735\) −27.7833 + 7.99119i −1.02480 + 0.294760i
\(736\) 5.83749i 0.215173i
\(737\) 17.2974 9.98667i 0.637159 0.367864i
\(738\) 11.8568 + 6.84551i 0.436454 + 0.251987i
\(739\) −43.6073 25.1767i −1.60412 0.926139i −0.990651 0.136419i \(-0.956441\pi\)
−0.613468 0.789720i \(-0.710226\pi\)
\(740\) 4.84551 + 1.20394i 0.178125 + 0.0442576i
\(741\) 0 0
\(742\) 22.3545i 0.820661i
\(743\) −15.3938 + 26.6629i −0.564745 + 0.978167i 0.432329 + 0.901716i \(0.357692\pi\)
−0.997073 + 0.0764505i \(0.975641\pi\)
\(744\) −3.49887 + 6.06021i −0.128275 + 0.222178i
\(745\) 19.5089 5.61127i 0.714752 0.205581i
\(746\) 36.9216i 1.35180i
\(747\) −30.4215 52.6916i −1.11307 1.92789i
\(748\) 0.431882 + 0.748041i 0.0157912 + 0.0273511i
\(749\) 16.6681i 0.609038i
\(750\) 53.3883 + 11.2119i 1.94947 + 0.409402i
\(751\) −5.31124 + 9.19934i −0.193810 + 0.335689i −0.946510 0.322675i \(-0.895418\pi\)
0.752700 + 0.658364i \(0.228751\pi\)
\(752\) −13.1370 + 22.7539i −0.479055 + 0.829748i
\(753\) 93.3894i 3.40330i
\(754\) 0 0
\(755\) 1.76713 7.11223i 0.0643126 0.258840i
\(756\) 7.01385 + 4.04945i 0.255091 + 0.147277i
\(757\) 6.91575 + 3.99281i 0.251357 + 0.145121i 0.620386 0.784297i \(-0.286976\pi\)
−0.369028 + 0.929418i \(0.620309\pi\)
\(758\) −39.6661 + 22.9012i −1.44074 + 0.831809i
\(759\) 22.7792i 0.826834i
\(760\) −2.90860 + 0.836590i −0.105506 + 0.0303463i
\(761\) 42.3798 24.4680i 1.53627 0.886964i 0.537215 0.843446i \(-0.319477\pi\)
0.999053 0.0435187i \(-0.0138568\pi\)
\(762\) 87.8636 3.18296
\(763\) 24.9630 14.4124i 0.903722 0.521764i
\(764\) −0.272473 + 0.471937i −0.00985773 + 0.0170741i
\(765\) 10.4585 + 10.0832i 0.378127 + 0.364559i
\(766\) −19.1110 −0.690509
\(767\) 0 0
\(768\) 27.1845i 0.980935i
\(769\) −6.92428 3.99773i −0.249696 0.144162i 0.369929 0.929060i \(-0.379382\pi\)
−0.619625 + 0.784898i \(0.712715\pi\)
\(770\) −10.7537 10.3679i −0.387537 0.373632i
\(771\) −32.4391 56.1861i −1.16826 2.02349i
\(772\) −6.54495 −0.235558
\(773\) −13.3070 23.0485i −0.478621 0.828996i 0.521079 0.853509i \(-0.325530\pi\)
−0.999700 + 0.0245130i \(0.992196\pi\)
\(774\) 60.4388 34.8943i 2.17243 1.25425i
\(775\) −2.05786 + 3.88550i −0.0739205 + 0.139571i
\(776\) 7.42469 + 12.8599i 0.266531 + 0.461645i
\(777\) −28.3877 16.3896i −1.01840 0.587974i
\(778\) 12.9577 22.4435i 0.464557 0.804637i
\(779\) −0.680346 −0.0243759
\(780\) 0 0
\(781\) 36.7708 1.31576
\(782\) −2.00719 + 3.47655i −0.0717769 + 0.124321i
\(783\) 57.0074 + 32.9132i 2.03728 + 1.17622i
\(784\) −9.38428 16.2541i −0.335153 0.580502i
\(785\) 6.92162 27.8576i 0.247043 0.994281i
\(786\) 60.2394 34.7792i 2.14867 1.24053i
\(787\) −4.62896 8.01759i −0.165005 0.285796i 0.771652 0.636045i \(-0.219431\pi\)
−0.936657 + 0.350248i \(0.886097\pi\)
\(788\) 0.738205 0.0262975
\(789\) 14.4927 + 25.1021i 0.515955 + 0.893660i
\(790\) 1.18707 1.23125i 0.0422340 0.0438059i
\(791\) 17.4062 + 10.0494i 0.618892 + 0.357317i
\(792\) 44.9333i 1.59664i
\(793\) 0 0
\(794\) 5.99159 0.212634
\(795\) 41.8045 43.3604i 1.48265 1.53783i
\(796\) 0.995079 1.72353i 0.0352697 0.0610888i
\(797\) −13.8063 + 7.97107i −0.489044 + 0.282350i −0.724178 0.689613i \(-0.757781\pi\)
0.235134 + 0.971963i \(0.424447\pi\)
\(798\) −4.49693 −0.159190
\(799\) −4.55685 + 2.63090i −0.161210 + 0.0930745i
\(800\) 0.376717 + 10.3070i 0.0133190 + 0.364408i
\(801\) 90.4945i 3.19747i
\(802\) 12.1368 7.00719i 0.428566 0.247432i
\(803\) 4.28927 + 2.47641i 0.151365 + 0.0873906i
\(804\) −7.97084 4.60197i −0.281110 0.162299i
\(805\) 2.60811 10.4969i 0.0919238 0.369968i
\(806\) 0 0
\(807\) 36.1133i 1.27125i
\(808\) 20.6332 35.7377i 0.725872 1.25725i
\(809\) 8.96194 15.5225i 0.315085 0.545744i −0.664370 0.747403i \(-0.731300\pi\)
0.979456 + 0.201660i \(0.0646336\pi\)
\(810\) −18.5956 64.6522i −0.653384 2.27165i
\(811\) 7.43415i 0.261048i 0.991445 + 0.130524i \(0.0416660\pi\)
−0.991445 + 0.130524i \(0.958334\pi\)
\(812\) −1.61757 2.80171i −0.0567655 0.0983207i
\(813\) 33.4999 + 58.0235i 1.17489 + 2.03497i
\(814\) 23.6430i 0.828687i
\(815\) −7.44767 25.8936i −0.260880 0.907013i
\(816\) −6.72261 + 11.6439i −0.235338 + 0.407618i
\(817\) −1.73400 + 3.00338i −0.0606650 + 0.105075i
\(818\) 29.8888i 1.04504i
\(819\) 0 0
\(820\) −0.251117 + 1.01068i −0.00876940 + 0.0352944i
\(821\) −17.7363 10.2401i −0.619001 0.357380i 0.157479 0.987522i \(-0.449663\pi\)
−0.776480 + 0.630142i \(0.782997\pi\)
\(822\) 58.2522 + 33.6319i 2.03178 + 1.17305i
\(823\) −3.24893 + 1.87577i −0.113250 + 0.0653852i −0.555555 0.831480i \(-0.687494\pi\)
0.442305 + 0.896865i \(0.354161\pi\)
\(824\) 25.5811i 0.891159i
\(825\) 1.47004 + 40.2204i 0.0511802 + 1.40029i
\(826\) −10.7601 + 6.21235i −0.374392 + 0.216155i
\(827\) −48.1483 −1.67428 −0.837141 0.546987i \(-0.815775\pi\)
−0.837141 + 0.546987i \(0.815775\pi\)
\(828\) 6.37684 3.68167i 0.221611 0.127947i
\(829\) −18.2804 + 31.6625i −0.634904 + 1.09969i 0.351632 + 0.936138i \(0.385627\pi\)
−0.986536 + 0.163547i \(0.947706\pi\)
\(830\) 20.6176 21.3849i 0.715647 0.742282i
\(831\) 41.4596 1.43822
\(832\) 0 0
\(833\) 3.75872i 0.130232i
\(834\) −28.1161 16.2329i −0.973583 0.562098i
\(835\) 13.5486 14.0528i 0.468868 0.486318i
\(836\) 0.252669 + 0.437636i 0.00873876 + 0.0151360i
\(837\) 11.2885 0.390186
\(838\) −12.9132 22.3663i −0.446079 0.772632i
\(839\) 39.1698 22.6147i 1.35229 0.780746i 0.363721 0.931508i \(-0.381506\pi\)
0.988570 + 0.150762i \(0.0481728\pi\)
\(840\) 7.33403 29.5174i 0.253048 1.01845i
\(841\) 1.35270 + 2.34294i 0.0466448 + 0.0807912i
\(842\) 25.3539 + 14.6381i 0.873753 + 0.504462i
\(843\) 1.07838 1.86781i 0.0371413 0.0643306i
\(844\) −8.39803 −0.289072
\(845\) 0 0
\(846\) 61.9481 2.12982
\(847\) −3.89076 + 6.73899i −0.133688 + 0.231554i
\(848\) 33.8638 + 19.5513i 1.16289 + 0.671394i
\(849\) 30.5844 + 52.9738i 1.04965 + 1.81806i
\(850\) −3.31965 + 6.26794i −0.113863 + 0.214989i
\(851\) −14.8258 + 8.55971i −0.508224 + 0.293423i
\(852\) −8.47220 14.6743i −0.290253 0.502733i
\(853\) 37.2534 1.27553 0.637766 0.770230i \(-0.279859\pi\)
0.637766 + 0.770230i \(0.279859\pi\)
\(854\) −10.5886 18.3401i −0.362336 0.627584i
\(855\) 6.11866 + 5.89911i 0.209254 + 0.201745i
\(856\) −21.1993 12.2394i −0.724578 0.418336i
\(857\) 10.8371i 0.370188i −0.982721 0.185094i \(-0.940741\pi\)
0.982721 0.185094i \(-0.0592590\pi\)
\(858\) 0 0
\(859\) −14.6081 −0.498422 −0.249211 0.968449i \(-0.580171\pi\)
−0.249211 + 0.968449i \(0.580171\pi\)
\(860\) 3.82160 + 3.68447i 0.130315 + 0.125639i
\(861\) 3.41855 5.92110i 0.116504 0.201791i
\(862\) 10.7038 6.17982i 0.364572 0.210486i
\(863\) −10.3440 −0.352116 −0.176058 0.984380i \(-0.556335\pi\)
−0.176058 + 0.984380i \(0.556335\pi\)
\(864\) 22.9324 13.2401i 0.780178 0.450436i
\(865\) −1.85618 + 0.533885i −0.0631120 + 0.0181526i
\(866\) 20.0821i 0.682417i
\(867\) 44.3395 25.5994i 1.50585 0.869402i
\(868\) −0.480460 0.277394i −0.0163079 0.00941535i
\(869\) 1.09275 + 0.630898i 0.0370689 + 0.0214017i
\(870\) −13.4908 + 54.2967i −0.457380 + 1.84083i
\(871\) 0 0
\(872\) 42.3324i 1.43356i
\(873\) 20.8504 36.1140i 0.705680 1.22227i
\(874\) −1.17429 + 2.03393i −0.0397210 + 0.0687988i
\(875\) 3.92763 18.7023i 0.132778 0.632254i
\(876\) 2.28231i 0.0771122i
\(877\) 19.0338 + 32.9676i 0.642727 + 1.11324i 0.984821 + 0.173571i \(0.0555306\pi\)
−0.342094 + 0.939666i \(0.611136\pi\)
\(878\) 5.92654 + 10.2651i 0.200011 + 0.346429i
\(879\) 30.0144i 1.01236i
\(880\) −25.1110 + 7.22257i −0.846491 + 0.243473i
\(881\) 6.02472 10.4351i 0.202978 0.351568i −0.746509 0.665376i \(-0.768271\pi\)
0.949487 + 0.313807i \(0.101605\pi\)
\(882\) −22.1261 + 38.3235i −0.745024 + 1.29042i
\(883\) 0.320699i 0.0107924i −0.999985 0.00539619i \(-0.998282\pi\)
0.999985 0.00539619i \(-0.00171767\pi\)
\(884\) 0 0
\(885\) 32.4885 + 8.07223i 1.09209 + 0.271345i
\(886\) −8.51885 4.91836i −0.286196 0.165235i
\(887\) −3.13626 1.81072i −0.105305 0.0607981i 0.446422 0.894822i \(-0.352698\pi\)
−0.551728 + 0.834024i \(0.686031\pi\)
\(888\) −41.6904 + 24.0700i −1.39904 + 0.807735i
\(889\) 30.7792i 1.03230i
\(890\) 42.4604 12.2127i 1.42328 0.409371i
\(891\) 42.9825 24.8160i 1.43997 0.831366i
\(892\) −3.23370 −0.108272
\(893\) −2.66595 + 1.53919i −0.0892127 + 0.0515070i
\(894\) 22.1483 38.3621i 0.740751 1.28302i
\(895\) −30.9087 + 32.0591i −1.03316 + 1.07162i
\(896\) 22.9132 0.765477
\(897\) 0 0
\(898\) 48.6635i 1.62392i
\(899\) −3.90509 2.25461i −0.130242 0.0751954i
\(900\) 11.0217 6.91210i 0.367391 0.230403i
\(901\) 3.91548 + 6.78181i 0.130444 + 0.225935i
\(902\) −4.93146 −0.164200
\(903\) −17.4257 30.1823i −0.579892 1.00440i
\(904\) 25.5629 14.7587i 0.850208 0.490868i
\(905\) −31.2267 7.75872i −1.03801 0.257909i
\(906\) −7.99579 13.8491i −0.265642 0.460106i
\(907\) 9.46855 + 5.46667i 0.314398 + 0.181518i 0.648893 0.760880i \(-0.275232\pi\)
−0.334495 + 0.942398i \(0.608566\pi\)
\(908\) 3.17921 5.50656i 0.105506 0.182742i
\(909\) −115.886 −3.84371
\(910\) 0 0
\(911\) −37.5897 −1.24540 −0.622701 0.782460i \(-0.713965\pi\)
−0.622701 + 0.782460i \(0.713965\pi\)
\(912\) −3.93302 + 6.81218i −0.130235 + 0.225574i
\(913\) 18.9794 + 10.9577i 0.628125 + 0.362648i
\(914\) −27.4307 47.5113i −0.907326 1.57153i
\(915\) −13.7587 + 55.3751i −0.454849 + 1.83064i
\(916\) 0.984010 0.568118i 0.0325126 0.0187712i
\(917\) −12.1834 21.1023i −0.402332 0.696859i
\(918\) 18.2101 0.601022
\(919\) 16.8371 + 29.1627i 0.555405 + 0.961989i 0.997872 + 0.0652045i \(0.0207700\pi\)
−0.442467 + 0.896785i \(0.645897\pi\)
\(920\) −11.4354 11.0251i −0.377014 0.363486i
\(921\) −0.724951 0.418551i −0.0238880 0.0137917i
\(922\) 23.0563i 0.759317i
\(923\) 0 0
\(924\) −5.07838 −0.167066
\(925\) −25.6250 + 16.0703i −0.842545 + 0.528388i
\(926\) −7.00072 + 12.1256i −0.230058 + 0.398472i
\(927\) −62.2137 + 35.9191i −2.04336 + 1.17974i
\(928\) −10.5776 −0.347226
\(929\) 37.4157 21.6020i 1.22757 0.708738i 0.261049 0.965326i \(-0.415932\pi\)
0.966521 + 0.256588i \(0.0825984\pi\)
\(930\) 2.65206 + 9.22053i 0.0869646 + 0.302353i
\(931\) 2.19902i 0.0720698i
\(932\) −6.05293 + 3.49466i −0.198270 + 0.114471i
\(933\) 35.8194 + 20.6803i 1.17267 + 0.677044i
\(934\) 2.50212 + 1.44460i 0.0818720 + 0.0472688i
\(935\) −5.07838 1.26180i −0.166081 0.0412651i
\(936\) 0 0
\(937\) 27.5630i 0.900445i −0.892916 0.450222i \(-0.851345\pi\)
0.892916 0.450222i \(-0.148655\pi\)
\(938\) −10.3474 + 17.9222i −0.337853 + 0.585179i
\(939\) −53.4173 + 92.5215i −1.74321 + 3.01933i
\(940\) 1.30251 + 4.52849i 0.0424832 + 0.147703i
\(941\) 58.1666i 1.89618i 0.318007 + 0.948088i \(0.396987\pi\)
−0.318007 + 0.948088i \(0.603013\pi\)
\(942\) −31.3184 54.2451i −1.02041 1.76740i
\(943\) −1.78539 3.09238i −0.0581402 0.100702i
\(944\) 21.7333i 0.707358i
\(945\) −47.1524 + 13.5623i −1.53387 + 0.441180i
\(946\) −12.5688 + 21.7699i −0.408648 + 0.707799i
\(947\) 24.2576 42.0154i 0.788266 1.36532i −0.138763 0.990326i \(-0.544313\pi\)
0.927029 0.374991i \(-0.122354\pi\)
\(948\) 0.581449i 0.0188846i
\(949\) 0 0
\(950\) −1.94214 + 3.66701i −0.0630114 + 0.118974i
\(951\) 38.2995 + 22.1122i 1.24195 + 0.717038i
\(952\) 3.42463 + 1.97721i 0.110993 + 0.0640819i
\(953\) 19.9488 11.5174i 0.646205 0.373087i −0.140796 0.990039i \(-0.544966\pi\)
0.787001 + 0.616952i \(0.211633\pi\)
\(954\) 92.1953i 2.98493i
\(955\) −0.912557 3.17272i −0.0295296 0.102667i
\(956\) −2.12188 + 1.22507i −0.0686264 + 0.0396215i
\(957\) −41.2762 −1.33427
\(958\) −20.9852 + 12.1158i −0.678002 + 0.391444i
\(959\) 11.7815 20.4062i 0.380445 0.658950i
\(960\) −30.7660 29.6621i −0.992969 0.957339i
\(961\) 30.2267 0.975056
\(962\) 0 0
\(963\) 68.7429i 2.21521i
\(964\) −3.02915 1.74888i −0.0975625 0.0563277i
\(965\) 27.5201 28.5443i 0.885902 0.918873i
\(966\) −11.8010 20.4399i −0.379690 0.657643i
\(967\) 54.9998 1.76868 0.884338 0.466848i \(-0.154611\pi\)
0.884338 + 0.466848i \(0.154611\pi\)
\(968\) 5.71400 + 9.89694i 0.183655 + 0.318100i
\(969\) −1.36426 + 0.787653i −0.0438262 + 0.0253031i
\(970\) 19.7587 + 4.90934i 0.634414 + 0.157629i
\(971\) −4.85270 8.40512i −0.155731 0.269733i 0.777594 0.628766i \(-0.216440\pi\)
−0.933325 + 0.359033i \(0.883106\pi\)
\(972\) −7.49661 4.32817i −0.240454 0.138826i
\(973\) −5.68649 + 9.84929i −0.182300 + 0.315754i
\(974\) −7.61038 −0.243852
\(975\) 0 0
\(976\) −37.0433 −1.18573
\(977\) −16.1031 + 27.8914i −0.515184 + 0.892325i 0.484661 + 0.874702i \(0.338943\pi\)
−0.999845 + 0.0176225i \(0.994390\pi\)
\(978\) −50.9168 29.3968i −1.62814 0.940006i
\(979\) 16.2979 + 28.2288i 0.520884 + 0.902197i
\(980\) −3.26672 0.811662i −0.104351 0.0259276i
\(981\) −102.953 + 59.4401i −3.28705 + 1.89778i
\(982\) 30.3884 + 52.6343i 0.969733 + 1.67963i
\(983\) 44.0782 1.40588 0.702938 0.711251i \(-0.251871\pi\)
0.702938 + 0.711251i \(0.251871\pi\)
\(984\) −5.02052 8.69579i −0.160048 0.277212i
\(985\) −3.10399 + 3.21951i −0.0989013 + 0.102582i
\(986\) −6.29954 3.63704i −0.200618 0.115827i
\(987\) 30.9360i 0.984704i
\(988\) 0 0
\(989\) −18.2017 −0.578779
\(990\) 44.3509 + 42.7595i 1.40956 + 1.35898i
\(991\) −6.03385 + 10.4509i −0.191672 + 0.331985i −0.945804 0.324737i \(-0.894724\pi\)
0.754133 + 0.656722i \(0.228058\pi\)
\(992\) −1.57091 + 0.906965i −0.0498764 + 0.0287962i
\(993\) 58.5029 1.85653
\(994\) −32.9946 + 19.0494i −1.04653 + 0.604212i
\(995\) 3.33268 + 11.5869i 0.105653 + 0.367328i
\(996\) 10.0989i 0.319996i
\(997\) −39.6282 + 22.8794i −1.25504 + 0.724597i −0.972106 0.234543i \(-0.924641\pi\)
−0.282933 + 0.959140i \(0.591307\pi\)
\(998\) 2.22726 + 1.28591i 0.0705026 + 0.0407047i
\(999\) 67.2533 + 38.8287i 2.12780 + 1.22849i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.l.d.654.3 12
5.4 even 2 845.2.l.e.654.4 12
13.2 odd 12 845.2.n.f.484.2 12
13.3 even 3 inner 845.2.l.d.699.4 12
13.4 even 6 845.2.d.a.844.4 6
13.5 odd 4 845.2.n.f.529.5 12
13.6 odd 12 65.2.b.a.14.2 6
13.7 odd 12 845.2.b.c.339.5 6
13.8 odd 4 845.2.n.g.529.2 12
13.9 even 3 845.2.d.b.844.4 6
13.10 even 6 845.2.l.e.699.4 12
13.11 odd 12 845.2.n.g.484.5 12
13.12 even 2 845.2.l.e.654.3 12
39.32 even 12 585.2.c.b.469.5 6
52.19 even 12 1040.2.d.c.209.1 6
65.4 even 6 845.2.d.b.844.3 6
65.7 even 12 4225.2.a.ba.1.2 3
65.9 even 6 845.2.d.a.844.3 6
65.19 odd 12 65.2.b.a.14.5 yes 6
65.24 odd 12 845.2.n.g.484.2 12
65.29 even 6 845.2.l.e.699.3 12
65.32 even 12 325.2.a.k.1.2 3
65.33 even 12 4225.2.a.bh.1.2 3
65.34 odd 4 845.2.n.g.529.5 12
65.44 odd 4 845.2.n.f.529.2 12
65.49 even 6 inner 845.2.l.d.699.3 12
65.54 odd 12 845.2.n.f.484.5 12
65.58 even 12 325.2.a.j.1.2 3
65.59 odd 12 845.2.b.c.339.2 6
65.64 even 2 inner 845.2.l.d.654.4 12
195.32 odd 12 2925.2.a.bf.1.2 3
195.149 even 12 585.2.c.b.469.2 6
195.188 odd 12 2925.2.a.bj.1.2 3
260.19 even 12 1040.2.d.c.209.6 6
260.123 odd 12 5200.2.a.cj.1.3 3
260.227 odd 12 5200.2.a.cb.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.2 6 13.6 odd 12
65.2.b.a.14.5 yes 6 65.19 odd 12
325.2.a.j.1.2 3 65.58 even 12
325.2.a.k.1.2 3 65.32 even 12
585.2.c.b.469.2 6 195.149 even 12
585.2.c.b.469.5 6 39.32 even 12
845.2.b.c.339.2 6 65.59 odd 12
845.2.b.c.339.5 6 13.7 odd 12
845.2.d.a.844.3 6 65.9 even 6
845.2.d.a.844.4 6 13.4 even 6
845.2.d.b.844.3 6 65.4 even 6
845.2.d.b.844.4 6 13.9 even 3
845.2.l.d.654.3 12 1.1 even 1 trivial
845.2.l.d.654.4 12 65.64 even 2 inner
845.2.l.d.699.3 12 65.49 even 6 inner
845.2.l.d.699.4 12 13.3 even 3 inner
845.2.l.e.654.3 12 13.12 even 2
845.2.l.e.654.4 12 5.4 even 2
845.2.l.e.699.3 12 65.29 even 6
845.2.l.e.699.4 12 13.10 even 6
845.2.n.f.484.2 12 13.2 odd 12
845.2.n.f.484.5 12 65.54 odd 12
845.2.n.f.529.2 12 65.44 odd 4
845.2.n.f.529.5 12 13.5 odd 4
845.2.n.g.484.2 12 65.24 odd 12
845.2.n.g.484.5 12 13.11 odd 12
845.2.n.g.529.2 12 13.8 odd 4
845.2.n.g.529.5 12 65.34 odd 4
1040.2.d.c.209.1 6 52.19 even 12
1040.2.d.c.209.6 6 260.19 even 12
2925.2.a.bf.1.2 3 195.32 odd 12
2925.2.a.bj.1.2 3 195.188 odd 12
4225.2.a.ba.1.2 3 65.7 even 12
4225.2.a.bh.1.2 3 65.33 even 12
5200.2.a.cb.1.1 3 260.227 odd 12
5200.2.a.cj.1.3 3 260.123 odd 12