Properties

Label 845.2.e.o.146.3
Level $845$
Weight $2$
Character 845.146
Analytic conductor $6.747$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(146,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.146");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 17 x^{16} - 18 x^{15} + 230 x^{14} - 185 x^{13} + 996 x^{12} - 534 x^{11} + 3020 x^{10} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 146.3
Root \(-0.880259 + 1.52465i\) of defining polynomial
Character \(\chi\) \(=\) 845.146
Dual form 845.2.e.o.191.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10278 - 1.91007i) q^{2} +(0.00652833 + 0.0113074i) q^{3} +(-1.43225 + 2.48072i) q^{4} +1.00000 q^{5} +(0.0143986 - 0.0249391i) q^{6} +(-2.30448 + 3.99148i) q^{7} +1.90669 q^{8} +(1.49991 - 2.59793i) q^{9} +(-1.10278 - 1.91007i) q^{10} +(-1.46616 - 2.53946i) q^{11} -0.0374007 q^{12} +10.1654 q^{14} +(0.00652833 + 0.0113074i) q^{15} +(0.761834 + 1.31954i) q^{16} +(1.67603 - 2.90297i) q^{17} -6.61630 q^{18} +(1.23010 - 2.13060i) q^{19} +(-1.43225 + 2.48072i) q^{20} -0.0601778 q^{21} +(-3.23370 + 5.60094i) q^{22} +(0.791645 + 1.37117i) q^{23} +(0.0124475 + 0.0215597i) q^{24} +1.00000 q^{25} +0.0783378 q^{27} +(-6.60118 - 11.4336i) q^{28} +(-4.13161 - 7.15616i) q^{29} +(0.0143986 - 0.0249391i) q^{30} -9.77959 q^{31} +(3.58696 - 6.21280i) q^{32} +(0.0191432 - 0.0331569i) q^{33} -7.39317 q^{34} +(-2.30448 + 3.99148i) q^{35} +(4.29649 + 7.44175i) q^{36} +(-2.06458 - 3.57597i) q^{37} -5.42613 q^{38} +1.90669 q^{40} +(-3.63254 - 6.29175i) q^{41} +(0.0663628 + 0.114944i) q^{42} +(0.352665 - 0.610833i) q^{43} +8.39961 q^{44} +(1.49991 - 2.59793i) q^{45} +(1.74602 - 3.02419i) q^{46} +8.57322 q^{47} +(-0.00994701 + 0.0172287i) q^{48} +(-7.12130 - 12.3344i) q^{49} +(-1.10278 - 1.91007i) q^{50} +0.0437667 q^{51} -12.4639 q^{53} +(-0.0863893 - 0.149631i) q^{54} +(-1.46616 - 2.53946i) q^{55} +(-4.39394 + 7.61052i) q^{56} +0.0321221 q^{57} +(-9.11251 + 15.7833i) q^{58} +(2.66723 - 4.61977i) q^{59} -0.0374007 q^{60} +(-0.960460 + 1.66357i) q^{61} +(10.7847 + 18.6797i) q^{62} +(6.91306 + 11.9738i) q^{63} -12.7752 q^{64} -0.0844427 q^{66} +(3.64896 + 6.32019i) q^{67} +(4.80097 + 8.31553i) q^{68} +(-0.0103362 + 0.0179029i) q^{69} +10.1654 q^{70} +(3.34041 - 5.78577i) q^{71} +(2.85987 - 4.95344i) q^{72} -12.4541 q^{73} +(-4.55356 + 7.88700i) q^{74} +(0.00652833 + 0.0113074i) q^{75} +(3.52362 + 6.10309i) q^{76} +13.5150 q^{77} +0.984840 q^{79} +(0.761834 + 1.31954i) q^{80} +(-4.49923 - 7.79290i) q^{81} +(-8.01179 + 13.8768i) q^{82} -7.84405 q^{83} +(0.0861894 - 0.149284i) q^{84} +(1.67603 - 2.90297i) q^{85} -1.55565 q^{86} +(0.0539450 - 0.0934356i) q^{87} +(-2.79551 - 4.84197i) q^{88} +(0.206417 + 0.357525i) q^{89} -6.61630 q^{90} -4.53532 q^{92} +(-0.0638444 - 0.110582i) q^{93} +(-9.45437 - 16.3755i) q^{94} +(1.23010 - 2.13060i) q^{95} +0.0936675 q^{96} +(1.69208 - 2.93077i) q^{97} +(-15.7064 + 27.2044i) q^{98} -8.79646 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 3 q^{2} - 7 q^{3} - 17 q^{4} + 18 q^{5} + 2 q^{6} - 7 q^{7} + 24 q^{8} - 16 q^{9} - 3 q^{10} + 9 q^{11} + 24 q^{12} - 4 q^{14} - 7 q^{15} - 37 q^{16} + q^{17} - 20 q^{18} + 4 q^{19} - 17 q^{20}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10278 1.91007i −0.779783 1.35062i −0.932067 0.362287i \(-0.881996\pi\)
0.152284 0.988337i \(-0.451337\pi\)
\(3\) 0.00652833 + 0.0113074i 0.00376913 + 0.00652833i 0.867904 0.496732i \(-0.165467\pi\)
−0.864135 + 0.503261i \(0.832134\pi\)
\(4\) −1.43225 + 2.48072i −0.716123 + 1.24036i
\(5\) 1.00000 0.447214
\(6\) 0.0143986 0.0249391i 0.00587821 0.0101814i
\(7\) −2.30448 + 3.99148i −0.871013 + 1.50864i −0.0100635 + 0.999949i \(0.503203\pi\)
−0.860950 + 0.508690i \(0.830130\pi\)
\(8\) 1.90669 0.674116
\(9\) 1.49991 2.59793i 0.499972 0.865976i
\(10\) −1.10278 1.91007i −0.348730 0.604017i
\(11\) −1.46616 2.53946i −0.442064 0.765677i 0.555779 0.831330i \(-0.312420\pi\)
−0.997842 + 0.0656533i \(0.979087\pi\)
\(12\) −0.0374007 −0.0107967
\(13\) 0 0
\(14\) 10.1654 2.71681
\(15\) 0.00652833 + 0.0113074i 0.00168561 + 0.00291956i
\(16\) 0.761834 + 1.31954i 0.190459 + 0.329884i
\(17\) 1.67603 2.90297i 0.406497 0.704073i −0.587997 0.808863i \(-0.700084\pi\)
0.994494 + 0.104789i \(0.0334169\pi\)
\(18\) −6.61630 −1.55948
\(19\) 1.23010 2.13060i 0.282205 0.488793i −0.689723 0.724074i \(-0.742267\pi\)
0.971928 + 0.235280i \(0.0756008\pi\)
\(20\) −1.43225 + 2.48072i −0.320260 + 0.554707i
\(21\) −0.0601778 −0.0131319
\(22\) −3.23370 + 5.60094i −0.689428 + 1.19412i
\(23\) 0.791645 + 1.37117i 0.165069 + 0.285908i 0.936680 0.350187i \(-0.113882\pi\)
−0.771611 + 0.636095i \(0.780549\pi\)
\(24\) 0.0124475 + 0.0215597i 0.00254083 + 0.00440085i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0.0783378 0.0150761
\(28\) −6.60118 11.4336i −1.24751 2.16074i
\(29\) −4.13161 7.15616i −0.767221 1.32887i −0.939064 0.343741i \(-0.888306\pi\)
0.171844 0.985124i \(-0.445028\pi\)
\(30\) 0.0143986 0.0249391i 0.00262882 0.00455324i
\(31\) −9.77959 −1.75647 −0.878233 0.478233i \(-0.841277\pi\)
−0.878233 + 0.478233i \(0.841277\pi\)
\(32\) 3.58696 6.21280i 0.634091 1.09828i
\(33\) 0.0191432 0.0331569i 0.00333240 0.00577188i
\(34\) −7.39317 −1.26792
\(35\) −2.30448 + 3.99148i −0.389529 + 0.674684i
\(36\) 4.29649 + 7.44175i 0.716082 + 1.24029i
\(37\) −2.06458 3.57597i −0.339416 0.587885i 0.644907 0.764261i \(-0.276896\pi\)
−0.984323 + 0.176376i \(0.943563\pi\)
\(38\) −5.42613 −0.880235
\(39\) 0 0
\(40\) 1.90669 0.301474
\(41\) −3.63254 6.29175i −0.567308 0.982606i −0.996831 0.0795500i \(-0.974652\pi\)
0.429523 0.903056i \(-0.358682\pi\)
\(42\) 0.0663628 + 0.114944i 0.0102400 + 0.0177362i
\(43\) 0.352665 0.610833i 0.0537809 0.0931512i −0.837882 0.545852i \(-0.816206\pi\)
0.891662 + 0.452701i \(0.149539\pi\)
\(44\) 8.39961 1.26629
\(45\) 1.49991 2.59793i 0.223594 0.387276i
\(46\) 1.74602 3.02419i 0.257437 0.445893i
\(47\) 8.57322 1.25053 0.625266 0.780411i \(-0.284990\pi\)
0.625266 + 0.780411i \(0.284990\pi\)
\(48\) −0.00994701 + 0.0172287i −0.00143573 + 0.00248675i
\(49\) −7.12130 12.3344i −1.01733 1.76206i
\(50\) −1.10278 1.91007i −0.155957 0.270125i
\(51\) 0.0437667 0.00612857
\(52\) 0 0
\(53\) −12.4639 −1.71204 −0.856022 0.516940i \(-0.827071\pi\)
−0.856022 + 0.516940i \(0.827071\pi\)
\(54\) −0.0863893 0.149631i −0.0117561 0.0203621i
\(55\) −1.46616 2.53946i −0.197697 0.342421i
\(56\) −4.39394 + 7.61052i −0.587164 + 1.01700i
\(57\) 0.0321221 0.00425467
\(58\) −9.11251 + 15.7833i −1.19653 + 2.07245i
\(59\) 2.66723 4.61977i 0.347243 0.601443i −0.638515 0.769609i \(-0.720451\pi\)
0.985759 + 0.168166i \(0.0537845\pi\)
\(60\) −0.0374007 −0.00482841
\(61\) −0.960460 + 1.66357i −0.122974 + 0.212998i −0.920939 0.389706i \(-0.872577\pi\)
0.797965 + 0.602704i \(0.205910\pi\)
\(62\) 10.7847 + 18.6797i 1.36966 + 2.37232i
\(63\) 6.91306 + 11.9738i 0.870964 + 1.50855i
\(64\) −12.7752 −1.59690
\(65\) 0 0
\(66\) −0.0844427 −0.0103942
\(67\) 3.64896 + 6.32019i 0.445792 + 0.772134i 0.998107 0.0615011i \(-0.0195888\pi\)
−0.552315 + 0.833635i \(0.686255\pi\)
\(68\) 4.80097 + 8.31553i 0.582204 + 1.00841i
\(69\) −0.0103362 + 0.0179029i −0.00124434 + 0.00215525i
\(70\) 10.1654 1.21499
\(71\) 3.34041 5.78577i 0.396434 0.686644i −0.596849 0.802354i \(-0.703581\pi\)
0.993283 + 0.115710i \(0.0369142\pi\)
\(72\) 2.85987 4.95344i 0.337039 0.583769i
\(73\) −12.4541 −1.45765 −0.728824 0.684702i \(-0.759933\pi\)
−0.728824 + 0.684702i \(0.759933\pi\)
\(74\) −4.55356 + 7.88700i −0.529341 + 0.916846i
\(75\) 0.00652833 + 0.0113074i 0.000753827 + 0.00130567i
\(76\) 3.52362 + 6.10309i 0.404187 + 0.700073i
\(77\) 13.5150 1.54017
\(78\) 0 0
\(79\) 0.984840 0.110803 0.0554016 0.998464i \(-0.482356\pi\)
0.0554016 + 0.998464i \(0.482356\pi\)
\(80\) 0.761834 + 1.31954i 0.0851757 + 0.147529i
\(81\) −4.49923 7.79290i −0.499915 0.865878i
\(82\) −8.01179 + 13.8768i −0.884754 + 1.53244i
\(83\) −7.84405 −0.860997 −0.430498 0.902591i \(-0.641662\pi\)
−0.430498 + 0.902591i \(0.641662\pi\)
\(84\) 0.0861894 0.149284i 0.00940403 0.0162883i
\(85\) 1.67603 2.90297i 0.181791 0.314871i
\(86\) −1.55565 −0.167750
\(87\) 0.0539450 0.0934356i 0.00578352 0.0100173i
\(88\) −2.79551 4.84197i −0.298002 0.516155i
\(89\) 0.206417 + 0.357525i 0.0218802 + 0.0378976i 0.876758 0.480932i \(-0.159701\pi\)
−0.854878 + 0.518829i \(0.826368\pi\)
\(90\) −6.61630 −0.697419
\(91\) 0 0
\(92\) −4.53532 −0.472840
\(93\) −0.0638444 0.110582i −0.00662035 0.0114668i
\(94\) −9.45437 16.3755i −0.975144 1.68900i
\(95\) 1.23010 2.13060i 0.126206 0.218595i
\(96\) 0.0936675 0.00955989
\(97\) 1.69208 2.93077i 0.171805 0.297574i −0.767246 0.641353i \(-0.778374\pi\)
0.939051 + 0.343778i \(0.111707\pi\)
\(98\) −15.7064 + 27.2044i −1.58659 + 2.74806i
\(99\) −8.79646 −0.884077
\(100\) −1.43225 + 2.48072i −0.143225 + 0.248072i
\(101\) 5.27162 + 9.13071i 0.524545 + 0.908539i 0.999592 + 0.0285783i \(0.00909800\pi\)
−0.475046 + 0.879961i \(0.657569\pi\)
\(102\) −0.0482650 0.0835975i −0.00477895 0.00827739i
\(103\) 14.1152 1.39081 0.695404 0.718619i \(-0.255226\pi\)
0.695404 + 0.718619i \(0.255226\pi\)
\(104\) 0 0
\(105\) −0.0601778 −0.00587275
\(106\) 13.7449 + 23.8069i 1.33502 + 2.31233i
\(107\) 1.98582 + 3.43955i 0.191977 + 0.332514i 0.945905 0.324443i \(-0.105177\pi\)
−0.753928 + 0.656957i \(0.771844\pi\)
\(108\) −0.112199 + 0.194334i −0.0107963 + 0.0186998i
\(109\) 10.1737 0.974460 0.487230 0.873274i \(-0.338007\pi\)
0.487230 + 0.873274i \(0.338007\pi\)
\(110\) −3.23370 + 5.60094i −0.308321 + 0.534028i
\(111\) 0.0269566 0.0466902i 0.00255861 0.00443164i
\(112\) −7.02254 −0.663568
\(113\) 1.29992 2.25152i 0.122286 0.211806i −0.798383 0.602150i \(-0.794311\pi\)
0.920669 + 0.390345i \(0.127644\pi\)
\(114\) −0.0354236 0.0613555i −0.00331772 0.00574646i
\(115\) 0.791645 + 1.37117i 0.0738212 + 0.127862i
\(116\) 23.6699 2.19770
\(117\) 0 0
\(118\) −11.7655 −1.08310
\(119\) 7.72477 + 13.3797i 0.708128 + 1.22651i
\(120\) 0.0124475 + 0.0215597i 0.00113630 + 0.00196812i
\(121\) 1.20075 2.07976i 0.109159 0.189069i
\(122\) 4.23670 0.383573
\(123\) 0.0474289 0.0821492i 0.00427652 0.00740715i
\(124\) 14.0068 24.2604i 1.25785 2.17865i
\(125\) 1.00000 0.0894427
\(126\) 15.2472 26.4089i 1.35833 2.35269i
\(127\) −9.98595 17.2962i −0.886109 1.53479i −0.844437 0.535655i \(-0.820065\pi\)
−0.0416726 0.999131i \(-0.513269\pi\)
\(128\) 6.91428 + 11.9759i 0.611142 + 1.05853i
\(129\) 0.00920925 0.000810829
\(130\) 0 0
\(131\) −11.4400 −0.999514 −0.499757 0.866166i \(-0.666577\pi\)
−0.499757 + 0.866166i \(0.666577\pi\)
\(132\) 0.0548354 + 0.0949777i 0.00477281 + 0.00826675i
\(133\) 5.66951 + 9.81988i 0.491609 + 0.851491i
\(134\) 8.04801 13.9396i 0.695242 1.20419i
\(135\) 0.0783378 0.00674224
\(136\) 3.19567 5.53506i 0.274026 0.474627i
\(137\) −1.56260 + 2.70650i −0.133502 + 0.231232i −0.925024 0.379908i \(-0.875956\pi\)
0.791522 + 0.611140i \(0.209289\pi\)
\(138\) 0.0455944 0.00388125
\(139\) −3.04763 + 5.27865i −0.258497 + 0.447729i −0.965839 0.259142i \(-0.916560\pi\)
0.707343 + 0.706871i \(0.249894\pi\)
\(140\) −6.60118 11.4336i −0.557901 0.966314i
\(141\) 0.0559688 + 0.0969409i 0.00471343 + 0.00816389i
\(142\) −14.7350 −1.23653
\(143\) 0 0
\(144\) 4.57075 0.380896
\(145\) −4.13161 7.15616i −0.343112 0.594287i
\(146\) 13.7342 + 23.7883i 1.13665 + 1.96873i
\(147\) 0.0929804 0.161047i 0.00766889 0.0132829i
\(148\) 11.8280 0.972253
\(149\) 7.30982 12.6610i 0.598844 1.03723i −0.394148 0.919047i \(-0.628960\pi\)
0.992992 0.118181i \(-0.0377063\pi\)
\(150\) 0.0143986 0.0249391i 0.00117564 0.00203627i
\(151\) 12.2510 0.996973 0.498487 0.866897i \(-0.333889\pi\)
0.498487 + 0.866897i \(0.333889\pi\)
\(152\) 2.34542 4.06239i 0.190239 0.329504i
\(153\) −5.02780 8.70841i −0.406474 0.704033i
\(154\) −14.9040 25.8145i −1.20100 2.08020i
\(155\) −9.77959 −0.785515
\(156\) 0 0
\(157\) 7.13991 0.569827 0.284914 0.958553i \(-0.408035\pi\)
0.284914 + 0.958553i \(0.408035\pi\)
\(158\) −1.08606 1.88111i −0.0864024 0.149653i
\(159\) −0.0813682 0.140934i −0.00645292 0.0111768i
\(160\) 3.58696 6.21280i 0.283574 0.491165i
\(161\) −7.29733 −0.575110
\(162\) −9.92333 + 17.1877i −0.779650 + 1.35039i
\(163\) −1.19501 + 2.06982i −0.0936004 + 0.162121i −0.909024 0.416745i \(-0.863171\pi\)
0.815423 + 0.578865i \(0.196504\pi\)
\(164\) 20.8108 1.62505
\(165\) 0.0191432 0.0331569i 0.00149029 0.00258126i
\(166\) 8.65026 + 14.9827i 0.671391 + 1.16288i
\(167\) 3.71920 + 6.44185i 0.287801 + 0.498485i 0.973284 0.229603i \(-0.0737426\pi\)
−0.685484 + 0.728088i \(0.740409\pi\)
\(168\) −0.114740 −0.00885240
\(169\) 0 0
\(170\) −7.39317 −0.567030
\(171\) −3.69010 6.39144i −0.282189 0.488766i
\(172\) 1.01021 + 1.74973i 0.0770274 + 0.133415i
\(173\) −1.27059 + 2.20073i −0.0966015 + 0.167319i −0.910276 0.414002i \(-0.864131\pi\)
0.813674 + 0.581321i \(0.197464\pi\)
\(174\) −0.237958 −0.0180396
\(175\) −2.30448 + 3.99148i −0.174203 + 0.301728i
\(176\) 2.23394 3.86930i 0.168390 0.291660i
\(177\) 0.0696502 0.00523523
\(178\) 0.455265 0.788543i 0.0341236 0.0591038i
\(179\) 5.34565 + 9.25894i 0.399553 + 0.692045i 0.993671 0.112332i \(-0.0358322\pi\)
−0.594118 + 0.804378i \(0.702499\pi\)
\(180\) 4.29649 + 7.44175i 0.320242 + 0.554675i
\(181\) −11.7908 −0.876402 −0.438201 0.898877i \(-0.644384\pi\)
−0.438201 + 0.898877i \(0.644384\pi\)
\(182\) 0 0
\(183\) −0.0250808 −0.00185403
\(184\) 1.50942 + 2.61439i 0.111276 + 0.192736i
\(185\) −2.06458 3.57597i −0.151791 0.262910i
\(186\) −0.140813 + 0.243895i −0.0103249 + 0.0178832i
\(187\) −9.82931 −0.718790
\(188\) −12.2790 + 21.2678i −0.895535 + 1.55111i
\(189\) −0.180528 + 0.312684i −0.0131315 + 0.0227444i
\(190\) −5.42613 −0.393653
\(191\) −6.73731 + 11.6694i −0.487495 + 0.844366i −0.999897 0.0143798i \(-0.995423\pi\)
0.512402 + 0.858746i \(0.328756\pi\)
\(192\) −0.0834005 0.144454i −0.00601892 0.0104251i
\(193\) −3.49368 6.05124i −0.251481 0.435578i 0.712453 0.701720i \(-0.247584\pi\)
−0.963934 + 0.266142i \(0.914251\pi\)
\(194\) −7.46397 −0.535882
\(195\) 0 0
\(196\) 40.7978 2.91413
\(197\) −0.718974 1.24530i −0.0512248 0.0887240i 0.839276 0.543706i \(-0.182979\pi\)
−0.890501 + 0.454982i \(0.849646\pi\)
\(198\) 9.70056 + 16.8019i 0.689389 + 1.19406i
\(199\) 1.21426 2.10316i 0.0860765 0.149089i −0.819773 0.572689i \(-0.805900\pi\)
0.905849 + 0.423600i \(0.139234\pi\)
\(200\) 1.90669 0.134823
\(201\) −0.0476433 + 0.0825206i −0.00336050 + 0.00582056i
\(202\) 11.6269 20.1383i 0.818063 1.41693i
\(203\) 38.0849 2.67304
\(204\) −0.0626847 + 0.108573i −0.00438881 + 0.00760164i
\(205\) −3.63254 6.29175i −0.253708 0.439435i
\(206\) −15.5659 26.9609i −1.08453 1.87846i
\(207\) 4.74960 0.330120
\(208\) 0 0
\(209\) −7.21411 −0.499011
\(210\) 0.0663628 + 0.114944i 0.00457947 + 0.00793187i
\(211\) −9.13202 15.8171i −0.628674 1.08890i −0.987818 0.155613i \(-0.950265\pi\)
0.359144 0.933282i \(-0.383069\pi\)
\(212\) 17.8513 30.9194i 1.22603 2.12355i
\(213\) 0.0872293 0.00597685
\(214\) 4.37985 7.58612i 0.299400 0.518577i
\(215\) 0.352665 0.610833i 0.0240515 0.0416585i
\(216\) 0.149366 0.0101631
\(217\) 22.5369 39.0351i 1.52990 2.64987i
\(218\) −11.2193 19.4324i −0.759867 1.31613i
\(219\) −0.0813048 0.140824i −0.00549407 0.00951600i
\(220\) 8.39961 0.566301
\(221\) 0 0
\(222\) −0.118909 −0.00798063
\(223\) −7.79204 13.4962i −0.521793 0.903773i −0.999679 0.0253505i \(-0.991930\pi\)
0.477885 0.878422i \(-0.341404\pi\)
\(224\) 16.5322 + 28.6346i 1.10460 + 1.91323i
\(225\) 1.49991 2.59793i 0.0999943 0.173195i
\(226\) −5.73409 −0.381426
\(227\) 2.01690 3.49338i 0.133866 0.231863i −0.791297 0.611431i \(-0.790594\pi\)
0.925164 + 0.379568i \(0.123927\pi\)
\(228\) −0.0460067 + 0.0796860i −0.00304687 + 0.00527733i
\(229\) 22.5147 1.48781 0.743906 0.668284i \(-0.232971\pi\)
0.743906 + 0.668284i \(0.232971\pi\)
\(230\) 1.74602 3.02419i 0.115129 0.199409i
\(231\) 0.0882302 + 0.152819i 0.00580512 + 0.0100548i
\(232\) −7.87770 13.6446i −0.517196 0.895810i
\(233\) −7.69759 −0.504286 −0.252143 0.967690i \(-0.581135\pi\)
−0.252143 + 0.967690i \(0.581135\pi\)
\(234\) 0 0
\(235\) 8.57322 0.559255
\(236\) 7.64025 + 13.2333i 0.497338 + 0.861414i
\(237\) 0.00642936 + 0.0111360i 0.000417632 + 0.000723360i
\(238\) 17.0374 29.5097i 1.10437 1.91283i
\(239\) 18.7203 1.21092 0.605459 0.795877i \(-0.292990\pi\)
0.605459 + 0.795877i \(0.292990\pi\)
\(240\) −0.00994701 + 0.0172287i −0.000642077 + 0.00111211i
\(241\) 11.3091 19.5880i 0.728486 1.26177i −0.229037 0.973418i \(-0.573558\pi\)
0.957523 0.288357i \(-0.0931088\pi\)
\(242\) −5.29665 −0.340482
\(243\) 0.176252 0.305277i 0.0113065 0.0195835i
\(244\) −2.75123 4.76527i −0.176130 0.305065i
\(245\) −7.12130 12.3344i −0.454963 0.788019i
\(246\) −0.209214 −0.0133390
\(247\) 0 0
\(248\) −18.6466 −1.18406
\(249\) −0.0512086 0.0886959i −0.00324521 0.00562087i
\(250\) −1.10278 1.91007i −0.0697459 0.120803i
\(251\) −0.892059 + 1.54509i −0.0563062 + 0.0975253i −0.892805 0.450444i \(-0.851266\pi\)
0.836498 + 0.547969i \(0.184599\pi\)
\(252\) −39.6048 −2.49487
\(253\) 2.32136 4.02071i 0.145942 0.252780i
\(254\) −22.0246 + 38.1477i −1.38195 + 2.39360i
\(255\) 0.0437667 0.00274078
\(256\) 2.47468 4.28627i 0.154667 0.267892i
\(257\) 2.29924 + 3.98240i 0.143422 + 0.248415i 0.928783 0.370623i \(-0.120856\pi\)
−0.785361 + 0.619038i \(0.787523\pi\)
\(258\) −0.0101558 0.0175903i −0.000632271 0.00109513i
\(259\) 19.0312 1.18254
\(260\) 0 0
\(261\) −24.7883 −1.53435
\(262\) 12.6158 + 21.8511i 0.779404 + 1.34997i
\(263\) −9.40637 16.2923i −0.580022 1.00463i −0.995476 0.0950132i \(-0.969711\pi\)
0.415454 0.909614i \(-0.363623\pi\)
\(264\) 0.0365000 0.0632199i 0.00224642 0.00389092i
\(265\) −12.4639 −0.765649
\(266\) 12.5044 21.6583i 0.766696 1.32796i
\(267\) −0.00269512 + 0.00466808i −0.000164939 + 0.000285682i
\(268\) −20.9049 −1.27697
\(269\) −0.927060 + 1.60571i −0.0565238 + 0.0979022i −0.892903 0.450250i \(-0.851335\pi\)
0.836379 + 0.548152i \(0.184668\pi\)
\(270\) −0.0863893 0.149631i −0.00525748 0.00910623i
\(271\) −0.0748491 0.129642i −0.00454676 0.00787522i 0.863743 0.503932i \(-0.168114\pi\)
−0.868290 + 0.496057i \(0.834781\pi\)
\(272\) 5.10743 0.309683
\(273\) 0 0
\(274\) 6.89281 0.416410
\(275\) −1.46616 2.53946i −0.0884128 0.153135i
\(276\) −0.0296081 0.0512827i −0.00178220 0.00308686i
\(277\) −11.0092 + 19.0685i −0.661478 + 1.14571i 0.318749 + 0.947839i \(0.396737\pi\)
−0.980227 + 0.197874i \(0.936596\pi\)
\(278\) 13.4435 0.806285
\(279\) −14.6685 + 25.4067i −0.878183 + 1.52106i
\(280\) −4.39394 + 7.61052i −0.262588 + 0.454815i
\(281\) −0.438029 −0.0261306 −0.0130653 0.999915i \(-0.504159\pi\)
−0.0130653 + 0.999915i \(0.504159\pi\)
\(282\) 0.123443 0.213809i 0.00735090 0.0127321i
\(283\) −6.91451 11.9763i −0.411025 0.711916i 0.583977 0.811770i \(-0.301496\pi\)
−0.995002 + 0.0998543i \(0.968162\pi\)
\(284\) 9.56859 + 16.5733i 0.567791 + 0.983443i
\(285\) 0.0321221 0.00190275
\(286\) 0 0
\(287\) 33.4845 1.97653
\(288\) −10.7603 18.6373i −0.634055 1.09822i
\(289\) 2.88185 + 4.99151i 0.169520 + 0.293618i
\(290\) −9.11251 + 15.7833i −0.535105 + 0.926829i
\(291\) 0.0441858 0.00259022
\(292\) 17.8374 30.8953i 1.04385 1.80801i
\(293\) −7.28278 + 12.6141i −0.425464 + 0.736926i −0.996464 0.0840245i \(-0.973223\pi\)
0.570999 + 0.820951i \(0.306556\pi\)
\(294\) −0.410148 −0.0239203
\(295\) 2.66723 4.61977i 0.155292 0.268974i
\(296\) −3.93652 6.81825i −0.228806 0.396303i
\(297\) −0.114856 0.198936i −0.00666460 0.0115434i
\(298\) −32.2445 −1.86787
\(299\) 0 0
\(300\) −0.0374007 −0.00215933
\(301\) 1.62542 + 2.81531i 0.0936877 + 0.162272i
\(302\) −13.5102 23.4003i −0.777423 1.34654i
\(303\) −0.0688297 + 0.119217i −0.00395416 + 0.00684881i
\(304\) 3.74854 0.214994
\(305\) −0.960460 + 1.66357i −0.0549958 + 0.0952555i
\(306\) −11.0891 + 19.2069i −0.633923 + 1.09799i
\(307\) −9.05062 −0.516546 −0.258273 0.966072i \(-0.583153\pi\)
−0.258273 + 0.966072i \(0.583153\pi\)
\(308\) −19.3568 + 33.5269i −1.10295 + 1.91037i
\(309\) 0.0921484 + 0.159606i 0.00524214 + 0.00907965i
\(310\) 10.7847 + 18.6797i 0.612531 + 1.06094i
\(311\) 7.28812 0.413272 0.206636 0.978418i \(-0.433748\pi\)
0.206636 + 0.978418i \(0.433748\pi\)
\(312\) 0 0
\(313\) 12.9725 0.733250 0.366625 0.930369i \(-0.380513\pi\)
0.366625 + 0.930369i \(0.380513\pi\)
\(314\) −7.87375 13.6377i −0.444342 0.769622i
\(315\) 6.91306 + 11.9738i 0.389507 + 0.674646i
\(316\) −1.41053 + 2.44312i −0.0793487 + 0.137436i
\(317\) 15.5048 0.870838 0.435419 0.900228i \(-0.356600\pi\)
0.435419 + 0.900228i \(0.356600\pi\)
\(318\) −0.179462 + 0.310838i −0.0100638 + 0.0174309i
\(319\) −12.1152 + 20.9841i −0.678321 + 1.17489i
\(320\) −12.7752 −0.714154
\(321\) −0.0259282 + 0.0449090i −0.00144717 + 0.00250658i
\(322\) 8.04735 + 13.9384i 0.448461 + 0.776758i
\(323\) −4.12338 7.14190i −0.229431 0.397386i
\(324\) 25.7760 1.43200
\(325\) 0 0
\(326\) 5.27133 0.291952
\(327\) 0.0664170 + 0.115038i 0.00367287 + 0.00636160i
\(328\) −6.92613 11.9964i −0.382431 0.662391i
\(329\) −19.7569 + 34.2199i −1.08923 + 1.88660i
\(330\) −0.0844427 −0.00464842
\(331\) −13.0427 + 22.5906i −0.716890 + 1.24169i 0.245336 + 0.969438i \(0.421102\pi\)
−0.962226 + 0.272252i \(0.912232\pi\)
\(332\) 11.2346 19.4589i 0.616580 1.06795i
\(333\) −12.3868 −0.678793
\(334\) 8.20292 14.2079i 0.448844 0.777420i
\(335\) 3.64896 + 6.32019i 0.199364 + 0.345309i
\(336\) −0.0458455 0.0794067i −0.00250108 0.00433199i
\(337\) −14.4785 −0.788697 −0.394348 0.918961i \(-0.629030\pi\)
−0.394348 + 0.918961i \(0.629030\pi\)
\(338\) 0 0
\(339\) 0.0339452 0.00184365
\(340\) 4.80097 + 8.31553i 0.260369 + 0.450973i
\(341\) 14.3384 + 24.8349i 0.776470 + 1.34489i
\(342\) −8.13874 + 14.0967i −0.440092 + 0.762262i
\(343\) 33.3809 1.80240
\(344\) 0.672422 1.16467i 0.0362546 0.0627947i
\(345\) −0.0103362 + 0.0179029i −0.000556484 + 0.000963859i
\(346\) 5.60474 0.301313
\(347\) −3.40706 + 5.90120i −0.182901 + 0.316793i −0.942867 0.333169i \(-0.891882\pi\)
0.759967 + 0.649962i \(0.225215\pi\)
\(348\) 0.154525 + 0.267645i 0.00828342 + 0.0143473i
\(349\) 16.8679 + 29.2160i 0.902915 + 1.56390i 0.823691 + 0.567039i \(0.191911\pi\)
0.0792242 + 0.996857i \(0.474756\pi\)
\(350\) 10.1654 0.543361
\(351\) 0 0
\(352\) −21.0362 −1.12123
\(353\) 9.36077 + 16.2133i 0.498223 + 0.862948i 0.999998 0.00205026i \(-0.000652619\pi\)
−0.501775 + 0.864998i \(0.667319\pi\)
\(354\) −0.0768088 0.133037i −0.00408234 0.00707082i
\(355\) 3.34041 5.78577i 0.177291 0.307077i
\(356\) −1.18256 −0.0626756
\(357\) −0.100860 + 0.174694i −0.00533806 + 0.00924579i
\(358\) 11.7901 20.4211i 0.623129 1.07929i
\(359\) −27.9262 −1.47389 −0.736945 0.675952i \(-0.763732\pi\)
−0.736945 + 0.675952i \(0.763732\pi\)
\(360\) 2.85987 4.95344i 0.150728 0.261069i
\(361\) 6.47369 + 11.2128i 0.340721 + 0.590145i
\(362\) 13.0026 + 22.5212i 0.683404 + 1.18369i
\(363\) 0.0313556 0.00164574
\(364\) 0 0
\(365\) −12.4541 −0.651880
\(366\) 0.0276586 + 0.0479061i 0.00144574 + 0.00250409i
\(367\) −1.25494 2.17362i −0.0655074 0.113462i 0.831412 0.555657i \(-0.187533\pi\)
−0.896919 + 0.442195i \(0.854200\pi\)
\(368\) −1.20620 + 2.08921i −0.0628777 + 0.108907i
\(369\) −21.7940 −1.13455
\(370\) −4.55356 + 7.88700i −0.236729 + 0.410026i
\(371\) 28.7228 49.7493i 1.49121 2.58286i
\(372\) 0.365763 0.0189640
\(373\) −11.0890 + 19.2067i −0.574165 + 0.994483i 0.421967 + 0.906611i \(0.361340\pi\)
−0.996132 + 0.0878719i \(0.971993\pi\)
\(374\) 10.8396 + 18.7747i 0.560501 + 0.970815i
\(375\) 0.00652833 + 0.0113074i 0.000337122 + 0.000583912i
\(376\) 16.3465 0.843005
\(377\) 0 0
\(378\) 0.796331 0.0409589
\(379\) 0.710581 + 1.23076i 0.0365001 + 0.0632200i 0.883698 0.468057i \(-0.155046\pi\)
−0.847198 + 0.531277i \(0.821712\pi\)
\(380\) 3.52362 + 6.10309i 0.180758 + 0.313082i
\(381\) 0.130383 0.225830i 0.00667973 0.0115696i
\(382\) 29.7191 1.52056
\(383\) −10.5366 + 18.2500i −0.538397 + 0.932531i 0.460594 + 0.887611i \(0.347637\pi\)
−0.998991 + 0.0449197i \(0.985697\pi\)
\(384\) −0.0902774 + 0.156365i −0.00460695 + 0.00797947i
\(385\) 13.5150 0.688787
\(386\) −7.70553 + 13.3464i −0.392201 + 0.679312i
\(387\) −1.05793 1.83240i −0.0537778 0.0931459i
\(388\) 4.84695 + 8.39516i 0.246067 + 0.426200i
\(389\) 13.4713 0.683021 0.341511 0.939878i \(-0.389061\pi\)
0.341511 + 0.939878i \(0.389061\pi\)
\(390\) 0 0
\(391\) 5.30728 0.268401
\(392\) −13.5781 23.5180i −0.685798 1.18784i
\(393\) −0.0746839 0.129356i −0.00376730 0.00652516i
\(394\) −1.58574 + 2.74658i −0.0798885 + 0.138371i
\(395\) 0.984840 0.0495527
\(396\) 12.5987 21.8216i 0.633108 1.09658i
\(397\) −13.5929 + 23.5437i −0.682210 + 1.18162i 0.292094 + 0.956390i \(0.405648\pi\)
−0.974305 + 0.225234i \(0.927685\pi\)
\(398\) −5.35624 −0.268484
\(399\) −0.0740249 + 0.128215i −0.00370588 + 0.00641877i
\(400\) 0.761834 + 1.31954i 0.0380917 + 0.0659768i
\(401\) 1.63760 + 2.83641i 0.0817779 + 0.141643i 0.904014 0.427504i \(-0.140607\pi\)
−0.822236 + 0.569147i \(0.807274\pi\)
\(402\) 0.210160 0.0104818
\(403\) 0 0
\(404\) −30.2010 −1.50256
\(405\) −4.49923 7.79290i −0.223569 0.387232i
\(406\) −41.9993 72.7449i −2.08439 3.61027i
\(407\) −6.05402 + 10.4859i −0.300087 + 0.519765i
\(408\) 0.0834495 0.00413137
\(409\) 9.58386 16.5997i 0.473891 0.820804i −0.525662 0.850694i \(-0.676182\pi\)
0.999553 + 0.0298899i \(0.00951565\pi\)
\(410\) −8.01179 + 13.8768i −0.395674 + 0.685327i
\(411\) −0.0408047 −0.00201275
\(412\) −20.2164 + 35.0158i −0.995989 + 1.72510i
\(413\) 12.2932 + 21.2924i 0.604907 + 1.04773i
\(414\) −5.23776 9.07207i −0.257422 0.445868i
\(415\) −7.84405 −0.385049
\(416\) 0 0
\(417\) −0.0795837 −0.00389723
\(418\) 7.95558 + 13.7795i 0.389120 + 0.673976i
\(419\) −0.196231 0.339883i −0.00958653 0.0166044i 0.861192 0.508279i \(-0.169718\pi\)
−0.870779 + 0.491675i \(0.836385\pi\)
\(420\) 0.0861894 0.149284i 0.00420561 0.00728433i
\(421\) 35.1816 1.71465 0.857323 0.514779i \(-0.172126\pi\)
0.857323 + 0.514779i \(0.172126\pi\)
\(422\) −20.1412 + 34.8856i −0.980458 + 1.69820i
\(423\) 12.8591 22.2726i 0.625231 1.08293i
\(424\) −23.7647 −1.15412
\(425\) 1.67603 2.90297i 0.0812994 0.140815i
\(426\) −0.0961947 0.166614i −0.00466065 0.00807248i
\(427\) −4.42673 7.66732i −0.214225 0.371048i
\(428\) −11.3768 −0.549916
\(429\) 0 0
\(430\) −1.55565 −0.0750199
\(431\) −1.13727 1.96981i −0.0547803 0.0948823i 0.837335 0.546690i \(-0.184113\pi\)
−0.892115 + 0.451808i \(0.850779\pi\)
\(432\) 0.0596804 + 0.103369i 0.00287137 + 0.00497337i
\(433\) −5.94137 + 10.2908i −0.285524 + 0.494542i −0.972736 0.231915i \(-0.925501\pi\)
0.687212 + 0.726457i \(0.258834\pi\)
\(434\) −99.4130 −4.77197
\(435\) 0.0539450 0.0934356i 0.00258647 0.00447989i
\(436\) −14.5712 + 25.2380i −0.697833 + 1.20868i
\(437\) 3.89522 0.186334
\(438\) −0.179322 + 0.310596i −0.00856836 + 0.0148408i
\(439\) 17.8636 + 30.9407i 0.852585 + 1.47672i 0.878867 + 0.477067i \(0.158300\pi\)
−0.0262818 + 0.999655i \(0.508367\pi\)
\(440\) −2.79551 4.84197i −0.133271 0.230832i
\(441\) −42.7254 −2.03454
\(442\) 0 0
\(443\) 4.98904 0.237036 0.118518 0.992952i \(-0.462186\pi\)
0.118518 + 0.992952i \(0.462186\pi\)
\(444\) 0.0772169 + 0.133744i 0.00366455 + 0.00634719i
\(445\) 0.206417 + 0.357525i 0.00978511 + 0.0169483i
\(446\) −17.1858 + 29.7667i −0.813771 + 1.40949i
\(447\) 0.190884 0.00902849
\(448\) 29.4402 50.9919i 1.39092 2.40914i
\(449\) 11.7443 20.3417i 0.554248 0.959985i −0.443714 0.896168i \(-0.646339\pi\)
0.997962 0.0638165i \(-0.0203272\pi\)
\(450\) −6.61630 −0.311895
\(451\) −10.6518 + 18.4494i −0.501572 + 0.868749i
\(452\) 3.72361 + 6.44947i 0.175144 + 0.303358i
\(453\) 0.0799787 + 0.138527i 0.00375773 + 0.00650857i
\(454\) −8.89679 −0.417547
\(455\) 0 0
\(456\) 0.0612468 0.00286815
\(457\) −20.1255 34.8584i −0.941430 1.63061i −0.762746 0.646699i \(-0.776149\pi\)
−0.178685 0.983906i \(-0.557184\pi\)
\(458\) −24.8287 43.0046i −1.16017 2.00947i
\(459\) 0.131296 0.227412i 0.00612839 0.0106147i
\(460\) −4.53532 −0.211460
\(461\) 15.6070 27.0321i 0.726890 1.25901i −0.231302 0.972882i \(-0.574298\pi\)
0.958191 0.286128i \(-0.0923682\pi\)
\(462\) 0.194597 0.337052i 0.00905347 0.0156811i
\(463\) −17.7491 −0.824872 −0.412436 0.910987i \(-0.635322\pi\)
−0.412436 + 0.910987i \(0.635322\pi\)
\(464\) 6.29521 10.9036i 0.292248 0.506188i
\(465\) −0.0638444 0.110582i −0.00296071 0.00512810i
\(466\) 8.48875 + 14.7029i 0.393234 + 0.681101i
\(467\) 26.6645 1.23389 0.616944 0.787007i \(-0.288370\pi\)
0.616944 + 0.787007i \(0.288370\pi\)
\(468\) 0 0
\(469\) −33.6359 −1.55316
\(470\) −9.45437 16.3755i −0.436098 0.755344i
\(471\) 0.0466117 + 0.0807339i 0.00214775 + 0.00372002i
\(472\) 5.08557 8.80847i 0.234082 0.405443i
\(473\) −2.06825 −0.0950983
\(474\) 0.0141803 0.0245611i 0.000651325 0.00112813i
\(475\) 1.23010 2.13060i 0.0564410 0.0977587i
\(476\) −44.2551 −2.02843
\(477\) −18.6947 + 32.3802i −0.855973 + 1.48259i
\(478\) −20.6444 35.7572i −0.944253 1.63549i
\(479\) 10.2315 + 17.7215i 0.467490 + 0.809716i 0.999310 0.0371410i \(-0.0118251\pi\)
−0.531820 + 0.846857i \(0.678492\pi\)
\(480\) 0.0936675 0.00427531
\(481\) 0 0
\(482\) −49.8860 −2.27224
\(483\) −0.0476394 0.0825139i −0.00216767 0.00375451i
\(484\) 3.43954 + 5.95746i 0.156343 + 0.270794i
\(485\) 1.69208 2.93077i 0.0768334 0.133079i
\(486\) −0.777467 −0.0352666
\(487\) 4.05895 7.03030i 0.183928 0.318573i −0.759286 0.650757i \(-0.774452\pi\)
0.943215 + 0.332183i \(0.107785\pi\)
\(488\) −1.83130 + 3.17190i −0.0828990 + 0.143585i
\(489\) −0.0312057 −0.00141117
\(490\) −15.7064 + 27.2044i −0.709545 + 1.22897i
\(491\) −1.63498 2.83187i −0.0737857 0.127801i 0.826772 0.562537i \(-0.190175\pi\)
−0.900558 + 0.434737i \(0.856841\pi\)
\(492\) 0.135860 + 0.235316i 0.00612503 + 0.0106089i
\(493\) −27.6988 −1.24749
\(494\) 0 0
\(495\) −8.79646 −0.395371
\(496\) −7.45042 12.9045i −0.334534 0.579430i
\(497\) 15.3959 + 26.6664i 0.690599 + 1.19615i
\(498\) −0.112944 + 0.195624i −0.00506112 + 0.00876612i
\(499\) −8.89340 −0.398123 −0.199062 0.979987i \(-0.563789\pi\)
−0.199062 + 0.979987i \(0.563789\pi\)
\(500\) −1.43225 + 2.48072i −0.0640520 + 0.110941i
\(501\) −0.0485604 + 0.0841090i −0.00216952 + 0.00375771i
\(502\) 3.93498 0.175627
\(503\) 11.8987 20.6092i 0.530537 0.918917i −0.468828 0.883289i \(-0.655324\pi\)
0.999365 0.0356275i \(-0.0113430\pi\)
\(504\) 13.1811 + 22.8303i 0.587131 + 1.01694i
\(505\) 5.27162 + 9.13071i 0.234584 + 0.406311i
\(506\) −10.2398 −0.455213
\(507\) 0 0
\(508\) 57.2093 2.53825
\(509\) −0.633850 1.09786i −0.0280949 0.0486618i 0.851636 0.524134i \(-0.175611\pi\)
−0.879731 + 0.475472i \(0.842277\pi\)
\(510\) −0.0482650 0.0835975i −0.00213721 0.00370176i
\(511\) 28.7004 49.7105i 1.26963 2.19906i
\(512\) 16.7410 0.739855
\(513\) 0.0963635 0.166907i 0.00425455 0.00736910i
\(514\) 5.07110 8.78341i 0.223677 0.387420i
\(515\) 14.1152 0.621988
\(516\) −0.0131899 + 0.0228456i −0.000580653 + 0.00100572i
\(517\) −12.5697 21.7714i −0.552815 0.957504i
\(518\) −20.9872 36.3510i −0.922126 1.59717i
\(519\) −0.0331794 −0.00145642
\(520\) 0 0
\(521\) 14.3916 0.630506 0.315253 0.949008i \(-0.397911\pi\)
0.315253 + 0.949008i \(0.397911\pi\)
\(522\) 27.3360 + 47.3473i 1.19646 + 2.07234i
\(523\) −9.50927 16.4705i −0.415811 0.720206i 0.579702 0.814829i \(-0.303169\pi\)
−0.995513 + 0.0946225i \(0.969836\pi\)
\(524\) 16.3848 28.3794i 0.715775 1.23976i
\(525\) −0.0601778 −0.00262637
\(526\) −20.7463 + 35.9337i −0.904582 + 1.56678i
\(527\) −16.3909 + 28.3898i −0.713998 + 1.23668i
\(528\) 0.0583357 0.00253873
\(529\) 10.2466 17.7476i 0.445504 0.771636i
\(530\) 13.7449 + 23.8069i 0.597040 + 1.03410i
\(531\) −8.00122 13.8585i −0.347224 0.601409i
\(532\) −32.4805 −1.40821
\(533\) 0 0
\(534\) 0.0118885 0.000514465
\(535\) 1.98582 + 3.43955i 0.0858546 + 0.148705i
\(536\) 6.95744 + 12.0506i 0.300516 + 0.520508i
\(537\) −0.0697963 + 0.120891i −0.00301193 + 0.00521682i
\(538\) 4.08937 0.176305
\(539\) −20.8819 + 36.1685i −0.899448 + 1.55789i
\(540\) −0.112199 + 0.194334i −0.00482827 + 0.00836282i
\(541\) 13.8969 0.597475 0.298738 0.954335i \(-0.403434\pi\)
0.298738 + 0.954335i \(0.403434\pi\)
\(542\) −0.165084 + 0.285934i −0.00709097 + 0.0122819i
\(543\) −0.0769742 0.133323i −0.00330328 0.00572145i
\(544\) −12.0237 20.8257i −0.515512 0.892893i
\(545\) 10.1737 0.435792
\(546\) 0 0
\(547\) 37.0840 1.58560 0.792798 0.609484i \(-0.208623\pi\)
0.792798 + 0.609484i \(0.208623\pi\)
\(548\) −4.47605 7.75275i −0.191208 0.331181i
\(549\) 2.88122 + 4.99041i 0.122967 + 0.212986i
\(550\) −3.23370 + 5.60094i −0.137886 + 0.238825i
\(551\) −20.3292 −0.866054
\(552\) −0.0197080 + 0.0341352i −0.000838828 + 0.00145289i
\(553\) −2.26955 + 3.93097i −0.0965110 + 0.167162i
\(554\) 48.5628 2.06324
\(555\) 0.0269566 0.0466902i 0.00114424 0.00198189i
\(556\) −8.72991 15.1206i −0.370231 0.641258i
\(557\) −15.9033 27.5452i −0.673842 1.16713i −0.976806 0.214127i \(-0.931309\pi\)
0.302963 0.953002i \(-0.402024\pi\)
\(558\) 64.7047 2.73917
\(559\) 0 0
\(560\) −7.02254 −0.296757
\(561\) −0.0641690 0.111144i −0.00270922 0.00469250i
\(562\) 0.483050 + 0.836667i 0.0203762 + 0.0352927i
\(563\) −13.1798 + 22.8280i −0.555461 + 0.962086i 0.442407 + 0.896814i \(0.354125\pi\)
−0.997868 + 0.0652715i \(0.979209\pi\)
\(564\) −0.320645 −0.0135016
\(565\) 1.29992 2.25152i 0.0546880 0.0947223i
\(566\) −15.2504 + 26.4144i −0.641020 + 1.11028i
\(567\) 41.4736 1.74173
\(568\) 6.36913 11.0317i 0.267243 0.462878i
\(569\) −8.89230 15.4019i −0.372785 0.645682i 0.617208 0.786800i \(-0.288264\pi\)
−0.989993 + 0.141118i \(0.954930\pi\)
\(570\) −0.0354236 0.0613555i −0.00148373 0.00256990i
\(571\) 19.6399 0.821903 0.410952 0.911657i \(-0.365196\pi\)
0.410952 + 0.911657i \(0.365196\pi\)
\(572\) 0 0
\(573\) −0.175934 −0.00734974
\(574\) −36.9261 63.9578i −1.54126 2.66955i
\(575\) 0.791645 + 1.37117i 0.0330139 + 0.0571817i
\(576\) −19.1617 + 33.1890i −0.798403 + 1.38287i
\(577\) 18.1454 0.755403 0.377701 0.925927i \(-0.376715\pi\)
0.377701 + 0.925927i \(0.376715\pi\)
\(578\) 6.35609 11.0091i 0.264378 0.457917i
\(579\) 0.0456159 0.0790090i 0.00189573 0.00328350i
\(580\) 23.6699 0.982840
\(581\) 18.0765 31.3094i 0.749940 1.29893i
\(582\) −0.0487273 0.0843981i −0.00201981 0.00349841i
\(583\) 18.2740 + 31.6515i 0.756832 + 1.31087i
\(584\) −23.7462 −0.982624
\(585\) 0 0
\(586\) 32.1252 1.32708
\(587\) 0.211922 + 0.367059i 0.00874694 + 0.0151501i 0.870366 0.492406i \(-0.163882\pi\)
−0.861619 + 0.507556i \(0.830549\pi\)
\(588\) 0.266342 + 0.461317i 0.0109837 + 0.0190244i
\(589\) −12.0299 + 20.8364i −0.495683 + 0.858549i
\(590\) −11.7655 −0.484376
\(591\) 0.00938741 0.0162595i 0.000386146 0.000668825i
\(592\) 3.14574 5.44859i 0.129289 0.223936i
\(593\) −47.5064 −1.95085 −0.975426 0.220327i \(-0.929288\pi\)
−0.975426 + 0.220327i \(0.929288\pi\)
\(594\) −0.253321 + 0.438765i −0.0103939 + 0.0180027i
\(595\) 7.72477 + 13.3797i 0.316685 + 0.548514i
\(596\) 20.9389 + 36.2673i 0.857692 + 1.48557i
\(597\) 0.0317083 0.00129774
\(598\) 0 0
\(599\) 25.7871 1.05363 0.526816 0.849979i \(-0.323386\pi\)
0.526816 + 0.849979i \(0.323386\pi\)
\(600\) 0.0124475 + 0.0215597i 0.000508167 + 0.000880171i
\(601\) 6.33880 + 10.9791i 0.258565 + 0.447848i 0.965858 0.259073i \(-0.0834171\pi\)
−0.707293 + 0.706921i \(0.750084\pi\)
\(602\) 3.58496 6.20934i 0.146112 0.253074i
\(603\) 21.8925 0.891533
\(604\) −17.5465 + 30.3914i −0.713955 + 1.23661i
\(605\) 1.20075 2.07976i 0.0488175 0.0845543i
\(606\) 0.303616 0.0123336
\(607\) 2.20224 3.81439i 0.0893862 0.154821i −0.817866 0.575409i \(-0.804843\pi\)
0.907252 + 0.420588i \(0.138176\pi\)
\(608\) −8.82466 15.2848i −0.357887 0.619879i
\(609\) 0.248631 + 0.430642i 0.0100750 + 0.0174505i
\(610\) 4.23670 0.171539
\(611\) 0 0
\(612\) 28.8042 1.16434
\(613\) 16.6799 + 28.8905i 0.673696 + 1.16688i 0.976848 + 0.213934i \(0.0686277\pi\)
−0.303152 + 0.952942i \(0.598039\pi\)
\(614\) 9.98084 + 17.2873i 0.402794 + 0.697660i
\(615\) 0.0474289 0.0821492i 0.00191252 0.00331258i
\(616\) 25.7688 1.03826
\(617\) 16.2767 28.1921i 0.655277 1.13497i −0.326547 0.945181i \(-0.605885\pi\)
0.981824 0.189792i \(-0.0607814\pi\)
\(618\) 0.203239 0.352020i 0.00817546 0.0141603i
\(619\) −35.5813 −1.43013 −0.715067 0.699056i \(-0.753604\pi\)
−0.715067 + 0.699056i \(0.753604\pi\)
\(620\) 14.0068 24.2604i 0.562526 0.974323i
\(621\) 0.0620157 + 0.107414i 0.00248860 + 0.00431039i
\(622\) −8.03719 13.9208i −0.322262 0.558174i
\(623\) −1.90274 −0.0762317
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −14.3058 24.7784i −0.571776 0.990344i
\(627\) −0.0470961 0.0815729i −0.00188084 0.00325771i
\(628\) −10.2261 + 17.7121i −0.408066 + 0.706792i
\(629\) −13.8412 −0.551886
\(630\) 15.2472 26.4089i 0.607462 1.05215i
\(631\) −12.7058 + 22.0072i −0.505812 + 0.876091i 0.494166 + 0.869368i \(0.335474\pi\)
−0.999977 + 0.00672365i \(0.997860\pi\)
\(632\) 1.87778 0.0746942
\(633\) 0.119234 0.206519i 0.00473911 0.00820838i
\(634\) −17.0984 29.6153i −0.679064 1.17617i
\(635\) −9.98595 17.2962i −0.396280 0.686377i
\(636\) 0.466157 0.0184843
\(637\) 0 0
\(638\) 53.4416 2.11577
\(639\) −10.0207 17.3563i −0.396412 0.686605i
\(640\) 6.91428 + 11.9759i 0.273311 + 0.473388i
\(641\) 5.07393 8.78831i 0.200408 0.347117i −0.748252 0.663415i \(-0.769106\pi\)
0.948660 + 0.316298i \(0.102440\pi\)
\(642\) 0.114372 0.00451392
\(643\) −0.927193 + 1.60595i −0.0365649 + 0.0633323i −0.883729 0.467999i \(-0.844975\pi\)
0.847164 + 0.531332i \(0.178308\pi\)
\(644\) 10.4516 18.1027i 0.411850 0.713345i
\(645\) 0.00920925 0.000362614
\(646\) −9.09436 + 15.7519i −0.357813 + 0.619750i
\(647\) 14.8017 + 25.6373i 0.581914 + 1.00790i 0.995252 + 0.0973272i \(0.0310293\pi\)
−0.413338 + 0.910577i \(0.635637\pi\)
\(648\) −8.57864 14.8586i −0.337001 0.583702i
\(649\) −15.6423 −0.614015
\(650\) 0 0
\(651\) 0.588514 0.0230657
\(652\) −3.42310 5.92898i −0.134059 0.232197i
\(653\) −3.39441 5.87929i −0.132834 0.230075i 0.791934 0.610606i \(-0.209074\pi\)
−0.924768 + 0.380532i \(0.875741\pi\)
\(654\) 0.146487 0.253722i 0.00572808 0.00992133i
\(655\) −11.4400 −0.446996
\(656\) 5.53479 9.58654i 0.216097 0.374291i
\(657\) −18.6802 + 32.3550i −0.728782 + 1.26229i
\(658\) 87.1498 3.39745
\(659\) −3.97479 + 6.88455i −0.154836 + 0.268184i −0.932999 0.359878i \(-0.882818\pi\)
0.778163 + 0.628062i \(0.216152\pi\)
\(660\) 0.0548354 + 0.0949777i 0.00213447 + 0.00369700i
\(661\) −20.1916 34.9728i −0.785361 1.36029i −0.928783 0.370624i \(-0.879144\pi\)
0.143422 0.989662i \(-0.454189\pi\)
\(662\) 57.5328 2.23607
\(663\) 0 0
\(664\) −14.9562 −0.580412
\(665\) 5.66951 + 9.81988i 0.219854 + 0.380798i
\(666\) 13.6599 + 23.6597i 0.529311 + 0.916794i
\(667\) 6.54154 11.3303i 0.253289 0.438710i
\(668\) −21.3073 −0.824402
\(669\) 0.101738 0.176215i 0.00393342 0.00681288i
\(670\) 8.04801 13.9396i 0.310922 0.538532i
\(671\) 5.63275 0.217450
\(672\) −0.215855 + 0.373872i −0.00832680 + 0.0144224i
\(673\) −4.81960 8.34779i −0.185782 0.321784i 0.758058 0.652187i \(-0.226148\pi\)
−0.943840 + 0.330404i \(0.892815\pi\)
\(674\) 15.9666 + 27.6550i 0.615012 + 1.06523i
\(675\) 0.0783378 0.00301522
\(676\) 0 0
\(677\) 51.1565 1.96610 0.983051 0.183330i \(-0.0586878\pi\)
0.983051 + 0.183330i \(0.0586878\pi\)
\(678\) −0.0374341 0.0648377i −0.00143765 0.00249008i
\(679\) 7.79875 + 13.5078i 0.299288 + 0.518383i
\(680\) 3.19567 5.53506i 0.122548 0.212260i
\(681\) 0.0526680 0.00201824
\(682\) 31.6243 54.7748i 1.21096 2.09744i
\(683\) 4.17251 7.22700i 0.159657 0.276533i −0.775088 0.631853i \(-0.782295\pi\)
0.934745 + 0.355320i \(0.115628\pi\)
\(684\) 21.1405 0.808328
\(685\) −1.56260 + 2.70650i −0.0597039 + 0.103410i
\(686\) −36.8118 63.7599i −1.40548 2.43436i
\(687\) 0.146983 + 0.254583i 0.00560776 + 0.00971293i
\(688\) 1.07469 0.0409721
\(689\) 0 0
\(690\) 0.0455944 0.00173575
\(691\) 18.0622 + 31.2846i 0.687117 + 1.19012i 0.972766 + 0.231788i \(0.0744574\pi\)
−0.285649 + 0.958334i \(0.592209\pi\)
\(692\) −3.63961 6.30398i −0.138357 0.239641i
\(693\) 20.2713 35.1109i 0.770043 1.33375i
\(694\) 15.0289 0.570491
\(695\) −3.04763 + 5.27865i −0.115603 + 0.200231i
\(696\) 0.102856 0.178153i 0.00389876 0.00675286i
\(697\) −24.3530 −0.922435
\(698\) 37.2030 64.4376i 1.40816 2.43900i
\(699\) −0.0502524 0.0870398i −0.00190072 0.00329215i
\(700\) −6.60118 11.4336i −0.249501 0.432149i
\(701\) −45.9823 −1.73673 −0.868364 0.495928i \(-0.834828\pi\)
−0.868364 + 0.495928i \(0.834828\pi\)
\(702\) 0 0
\(703\) −10.1586 −0.383139
\(704\) 18.7304 + 32.4421i 0.705930 + 1.22271i
\(705\) 0.0559688 + 0.0969409i 0.00210791 + 0.00365100i
\(706\) 20.6457 35.7595i 0.777012 1.34582i
\(707\) −48.5934 −1.82754
\(708\) −0.0997562 + 0.172783i −0.00374907 + 0.00649357i
\(709\) −19.0475 + 32.9912i −0.715343 + 1.23901i 0.247484 + 0.968892i \(0.420396\pi\)
−0.962827 + 0.270118i \(0.912937\pi\)
\(710\) −14.7350 −0.552993
\(711\) 1.47718 2.55854i 0.0553984 0.0959529i
\(712\) 0.393573 + 0.681689i 0.0147498 + 0.0255474i
\(713\) −7.74196 13.4095i −0.289939 0.502188i
\(714\) 0.444904 0.0166501
\(715\) 0 0
\(716\) −30.6251 −1.14452
\(717\) 0.122213 + 0.211678i 0.00456411 + 0.00790527i
\(718\) 30.7965 + 53.3411i 1.14931 + 1.99067i
\(719\) 13.9336 24.1337i 0.519635 0.900035i −0.480104 0.877212i \(-0.659401\pi\)
0.999740 0.0228234i \(-0.00726554\pi\)
\(720\) 4.57075 0.170342
\(721\) −32.5281 + 56.3404i −1.21141 + 2.09823i
\(722\) 14.2781 24.7304i 0.531376 0.920371i
\(723\) 0.295319 0.0109830
\(724\) 16.8873 29.2497i 0.627612 1.08706i
\(725\) −4.13161 7.15616i −0.153444 0.265773i
\(726\) −0.0345783 0.0598914i −0.00128332 0.00222278i
\(727\) −13.7750 −0.510885 −0.255443 0.966824i \(-0.582221\pi\)
−0.255443 + 0.966824i \(0.582221\pi\)
\(728\) 0 0
\(729\) −26.9908 −0.999659
\(730\) 13.7342 + 23.7883i 0.508325 + 0.880444i
\(731\) −1.18215 2.04755i −0.0437235 0.0757313i
\(732\) 0.0359219 0.0622185i 0.00132771 0.00229966i
\(733\) −6.58392 −0.243183 −0.121591 0.992580i \(-0.538800\pi\)
−0.121591 + 0.992580i \(0.538800\pi\)
\(734\) −2.76785 + 4.79406i −0.102163 + 0.176952i
\(735\) 0.0929804 0.161047i 0.00342963 0.00594030i
\(736\) 11.3584 0.418676
\(737\) 10.6999 18.5328i 0.394137 0.682665i
\(738\) 24.0340 + 41.6281i 0.884704 + 1.53235i
\(739\) −2.73750 4.74150i −0.100701 0.174419i 0.811273 0.584668i \(-0.198775\pi\)
−0.911974 + 0.410249i \(0.865442\pi\)
\(740\) 11.8280 0.434805
\(741\) 0 0
\(742\) −126.700 −4.65129
\(743\) 13.3357 + 23.0981i 0.489239 + 0.847387i 0.999923 0.0123810i \(-0.00394111\pi\)
−0.510684 + 0.859769i \(0.670608\pi\)
\(744\) −0.121731 0.210845i −0.00446289 0.00772995i
\(745\) 7.30982 12.6610i 0.267811 0.463862i
\(746\) 48.9148 1.79090
\(747\) −11.7654 + 20.3783i −0.430474 + 0.745603i
\(748\) 14.0780 24.3838i 0.514742 0.891560i
\(749\) −18.3052 −0.668857
\(750\) 0.0143986 0.0249391i 0.000525763 0.000910649i
\(751\) −10.9034 18.8852i −0.397870 0.689131i 0.595593 0.803286i \(-0.296917\pi\)
−0.993463 + 0.114156i \(0.963584\pi\)
\(752\) 6.53137 + 11.3127i 0.238175 + 0.412531i
\(753\) −0.0232946 −0.000848903
\(754\) 0 0
\(755\) 12.2510 0.445860
\(756\) −0.517121 0.895681i −0.0188075 0.0325756i
\(757\) 4.16711 + 7.21764i 0.151456 + 0.262330i 0.931763 0.363067i \(-0.118270\pi\)
−0.780307 + 0.625397i \(0.784937\pi\)
\(758\) 1.56723 2.71452i 0.0569243 0.0985957i
\(759\) 0.0606183 0.00220031
\(760\) 2.34542 4.06239i 0.0850775 0.147359i
\(761\) 3.66548 6.34880i 0.132874 0.230144i −0.791910 0.610638i \(-0.790913\pi\)
0.924783 + 0.380495i \(0.124246\pi\)
\(762\) −0.575135 −0.0208350
\(763\) −23.4450 + 40.6080i −0.848767 + 1.47011i
\(764\) −19.2990 33.4268i −0.698213 1.20934i
\(765\) −5.02780 8.70841i −0.181781 0.314853i
\(766\) 46.4783 1.67933
\(767\) 0 0
\(768\) 0.0646221 0.00233185
\(769\) 11.1673 + 19.3423i 0.402703 + 0.697503i 0.994051 0.108914i \(-0.0347373\pi\)
−0.591348 + 0.806417i \(0.701404\pi\)
\(770\) −14.9040 25.8145i −0.537104 0.930292i
\(771\) −0.0300204 + 0.0519968i −0.00108116 + 0.00187262i
\(772\) 20.0153 0.720365
\(773\) 13.5795 23.5204i 0.488422 0.845971i −0.511490 0.859290i \(-0.670906\pi\)
0.999911 + 0.0133182i \(0.00423943\pi\)
\(774\) −2.33334 + 4.04146i −0.0838700 + 0.145267i
\(775\) −9.77959 −0.351293
\(776\) 3.22627 5.58806i 0.115816 0.200600i
\(777\) 0.124242 + 0.215194i 0.00445716 + 0.00772003i
\(778\) −14.8559 25.7311i −0.532608 0.922505i
\(779\) −17.8736 −0.640388
\(780\) 0 0
\(781\) −19.5903 −0.700997
\(782\) −5.85276 10.1373i −0.209294 0.362508i
\(783\) −0.323661 0.560597i −0.0115667 0.0200341i
\(784\) 10.8505 18.7936i 0.387518 0.671201i
\(785\) 7.13991 0.254834
\(786\) −0.164720 + 0.285303i −0.00587536 + 0.0101764i
\(787\) −5.79032 + 10.0291i −0.206403 + 0.357500i −0.950579 0.310484i \(-0.899509\pi\)
0.744176 + 0.667983i \(0.232842\pi\)
\(788\) 4.11899 0.146733
\(789\) 0.122816 0.212723i 0.00437236 0.00757315i
\(790\) −1.08606 1.88111i −0.0386403 0.0669270i
\(791\) 5.99128 + 10.3772i 0.213025 + 0.368971i
\(792\) −16.7721 −0.595971
\(793\) 0 0
\(794\) 59.9601 2.12790
\(795\) −0.0813682 0.140934i −0.00288583 0.00499841i
\(796\) 3.47824 + 6.02448i 0.123283 + 0.213532i
\(797\) 23.8502 41.3097i 0.844817 1.46327i −0.0409626 0.999161i \(-0.513042\pi\)
0.885780 0.464106i \(-0.153624\pi\)
\(798\) 0.326532 0.0115591
\(799\) 14.3690 24.8878i 0.508338 0.880467i
\(800\) 3.58696 6.21280i 0.126818 0.219656i
\(801\) 1.23843 0.0437579
\(802\) 3.61183 6.25587i 0.127538 0.220902i
\(803\) 18.2598 + 31.6268i 0.644373 + 1.11609i
\(804\) −0.136474 0.236380i −0.00481306 0.00833647i
\(805\) −7.29733 −0.257197
\(806\) 0 0
\(807\) −0.0242086 −0.000852184
\(808\) 10.0513 + 17.4094i 0.353605 + 0.612461i
\(809\) −18.1955 31.5155i −0.639720 1.10803i −0.985494 0.169709i \(-0.945717\pi\)
0.345774 0.938318i \(-0.387616\pi\)
\(810\) −9.92333 + 17.1877i −0.348670 + 0.603914i
\(811\) −36.8088 −1.29253 −0.646266 0.763112i \(-0.723670\pi\)
−0.646266 + 0.763112i \(0.723670\pi\)
\(812\) −54.5470 + 94.4782i −1.91422 + 3.31553i
\(813\) 0.000977280 0.00169270i 3.42747e−5 5.93655e-5i
\(814\) 26.7050 0.936010
\(815\) −1.19501 + 2.06982i −0.0418594 + 0.0725026i
\(816\) 0.0333430 + 0.0577517i 0.00116724 + 0.00202172i
\(817\) −0.867628 1.50278i −0.0303545 0.0525755i
\(818\) −42.2755 −1.47813
\(819\) 0 0
\(820\) 20.8108 0.726744
\(821\) −16.8334 29.1563i −0.587491 1.01756i −0.994560 0.104166i \(-0.966783\pi\)
0.407069 0.913397i \(-0.366551\pi\)
\(822\) 0.0449986 + 0.0779398i 0.00156951 + 0.00271846i
\(823\) −15.9404 + 27.6096i −0.555649 + 0.962412i 0.442204 + 0.896914i \(0.354197\pi\)
−0.997853 + 0.0654973i \(0.979137\pi\)
\(824\) 26.9132 0.937566
\(825\) 0.0191432 0.0331569i 0.000666479 0.00115438i
\(826\) 27.1133 46.9616i 0.943392 1.63400i
\(827\) −18.4625 −0.642003 −0.321002 0.947079i \(-0.604019\pi\)
−0.321002 + 0.947079i \(0.604019\pi\)
\(828\) −6.80259 + 11.7824i −0.236406 + 0.409468i
\(829\) 17.4831 + 30.2817i 0.607214 + 1.05173i 0.991697 + 0.128594i \(0.0410464\pi\)
−0.384483 + 0.923132i \(0.625620\pi\)
\(830\) 8.65026 + 14.9827i 0.300255 + 0.520057i
\(831\) −0.287487 −0.00997280
\(832\) 0 0
\(833\) −47.7420 −1.65416
\(834\) 0.0877633 + 0.152011i 0.00303900 + 0.00526369i
\(835\) 3.71920 + 6.44185i 0.128708 + 0.222929i
\(836\) 10.3324 17.8962i 0.357353 0.618954i
\(837\) −0.766111 −0.0264807
\(838\) −0.432800 + 0.749632i −0.0149508 + 0.0258956i
\(839\) 14.3617 24.8752i 0.495820 0.858786i −0.504168 0.863606i \(-0.668201\pi\)
0.999988 + 0.00481947i \(0.00153409\pi\)
\(840\) −0.114740 −0.00395892
\(841\) −19.6404 + 34.0182i −0.677256 + 1.17304i
\(842\) −38.7975 67.1993i −1.33705 2.31584i
\(843\) −0.00285960 0.00495297i −9.84899e−5 0.000170589i
\(844\) 52.3172 1.80083
\(845\) 0 0
\(846\) −56.7230 −1.95018
\(847\) 5.53422 + 9.58555i 0.190158 + 0.329364i
\(848\) −9.49540 16.4465i −0.326073 0.564776i
\(849\) 0.0902804 0.156370i 0.00309841 0.00536661i
\(850\) −7.39317 −0.253584
\(851\) 3.26884 5.66179i 0.112054 0.194084i
\(852\) −0.124934 + 0.216392i −0.00428016 + 0.00741346i
\(853\) −13.7453 −0.470629 −0.235315 0.971919i \(-0.575612\pi\)
−0.235315 + 0.971919i \(0.575612\pi\)
\(854\) −9.76342 + 16.9107i −0.334097 + 0.578674i
\(855\) −3.69010 6.39144i −0.126199 0.218583i
\(856\) 3.78635 + 6.55815i 0.129415 + 0.224153i
\(857\) −12.6495 −0.432099 −0.216049 0.976382i \(-0.569317\pi\)
−0.216049 + 0.976382i \(0.569317\pi\)
\(858\) 0 0
\(859\) −11.0929 −0.378485 −0.189243 0.981930i \(-0.560603\pi\)
−0.189243 + 0.981930i \(0.560603\pi\)
\(860\) 1.01021 + 1.74973i 0.0344477 + 0.0596652i
\(861\) 0.218598 + 0.378623i 0.00744981 + 0.0129034i
\(862\) −2.50832 + 4.34453i −0.0854336 + 0.147975i
\(863\) −33.0295 −1.12434 −0.562169 0.827022i \(-0.690033\pi\)
−0.562169 + 0.827022i \(0.690033\pi\)
\(864\) 0.280994 0.486697i 0.00955962 0.0165578i
\(865\) −1.27059 + 2.20073i −0.0432015 + 0.0748272i
\(866\) 26.2081 0.890587
\(867\) −0.0376273 + 0.0651724i −0.00127789 + 0.00221337i
\(868\) 64.5568 + 111.816i 2.19120 + 3.79527i
\(869\) −1.44393 2.50096i −0.0489821 0.0848394i
\(870\) −0.237958 −0.00806753
\(871\) 0 0
\(872\) 19.3980 0.656899
\(873\) −5.07595 8.79181i −0.171795 0.297558i
\(874\) −4.29557 7.44014i −0.145300 0.251667i
\(875\) −2.30448 + 3.99148i −0.0779058 + 0.134937i
\(876\) 0.465794 0.0157377
\(877\) −7.71986 + 13.3712i −0.260681 + 0.451513i −0.966423 0.256956i \(-0.917280\pi\)
0.705742 + 0.708469i \(0.250614\pi\)
\(878\) 39.3993 68.2417i 1.32966 2.30304i
\(879\) −0.190178 −0.00641453
\(880\) 2.23394 3.86930i 0.0753062 0.130434i
\(881\) 8.31299 + 14.3985i 0.280072 + 0.485098i 0.971402 0.237440i \(-0.0763085\pi\)
−0.691331 + 0.722539i \(0.742975\pi\)
\(882\) 47.1167 + 81.6084i 1.58650 + 2.74790i
\(883\) 57.2845 1.92778 0.963888 0.266309i \(-0.0858041\pi\)
0.963888 + 0.266309i \(0.0858041\pi\)
\(884\) 0 0
\(885\) 0.0696502 0.00234126
\(886\) −5.50181 9.52942i −0.184837 0.320147i
\(887\) −9.23286 15.9918i −0.310009 0.536952i 0.668355 0.743843i \(-0.266999\pi\)
−0.978364 + 0.206891i \(0.933665\pi\)
\(888\) 0.0513978 0.0890236i 0.00172480 0.00298744i
\(889\) 92.0498 3.08725
\(890\) 0.455265 0.788543i 0.0152605 0.0264320i
\(891\) −13.1932 + 22.8513i −0.441988 + 0.765546i
\(892\) 44.6405 1.49467
\(893\) 10.5459 18.2661i 0.352907 0.611252i
\(894\) −0.210503 0.364601i −0.00704026 0.0121941i
\(895\) 5.34565 + 9.25894i 0.178685 + 0.309492i
\(896\) −63.7354 −2.12925
\(897\) 0 0
\(898\) −51.8055 −1.72877
\(899\) 40.4054 + 69.9843i 1.34760 + 2.33411i
\(900\) 4.29649 + 7.44175i 0.143216 + 0.248058i
\(901\) −20.8898 + 36.1822i −0.695940 + 1.20540i
\(902\) 46.9862 1.56447
\(903\) −0.0212226 + 0.0367586i −0.000706243 + 0.00122325i
\(904\) 2.47854 4.29296i 0.0824350 0.142782i
\(905\) −11.7908 −0.391939
\(906\) 0.176398 0.305530i 0.00586042 0.0101505i
\(907\) −22.4744 38.9269i −0.746251 1.29255i −0.949608 0.313440i \(-0.898518\pi\)
0.203357 0.979105i \(-0.434815\pi\)
\(908\) 5.77740 + 10.0067i 0.191730 + 0.332086i
\(909\) 31.6279 1.04903
\(910\) 0 0
\(911\) −44.3728 −1.47014 −0.735069 0.677992i \(-0.762850\pi\)
−0.735069 + 0.677992i \(0.762850\pi\)
\(912\) 0.0244717 + 0.0423862i 0.000810339 + 0.00140355i
\(913\) 11.5006 + 19.9197i 0.380616 + 0.659245i
\(914\) −44.3879 + 76.8822i −1.46822 + 2.54304i
\(915\) −0.0250808 −0.000829146
\(916\) −32.2466 + 55.8527i −1.06546 + 1.84542i
\(917\) 26.3632 45.6624i 0.870590 1.50791i
\(918\) −0.579164 −0.0191153
\(919\) −12.5840 + 21.7961i −0.415108 + 0.718989i −0.995440 0.0953917i \(-0.969590\pi\)
0.580332 + 0.814380i \(0.302923\pi\)
\(920\) 1.50942 + 2.61439i 0.0497641 + 0.0861940i
\(921\) −0.0590855 0.102339i −0.00194693 0.00337219i
\(922\) −68.8443 −2.26726
\(923\) 0 0
\(924\) −0.505469 −0.0166287
\(925\) −2.06458 3.57597i −0.0678831 0.117577i
\(926\) 19.5734 + 33.9021i 0.643221 + 1.11409i
\(927\) 21.1715 36.6702i 0.695364 1.20441i
\(928\) −59.2797 −1.94595
\(929\) 18.7800 32.5280i 0.616153 1.06721i −0.374028 0.927417i \(-0.622024\pi\)
0.990181 0.139791i \(-0.0446431\pi\)
\(930\) −0.140813 + 0.243895i −0.00461743 + 0.00799762i
\(931\) −35.0397 −1.14838
\(932\) 11.0248 19.0956i 0.361131 0.625497i
\(933\) 0.0475793 + 0.0824097i 0.00155768 + 0.00269797i
\(934\) −29.4051 50.9312i −0.962165 1.66652i
\(935\) −9.82931 −0.321453
\(936\) 0 0
\(937\) −17.1212 −0.559326 −0.279663 0.960098i \(-0.590223\pi\)
−0.279663 + 0.960098i \(0.590223\pi\)
\(938\) 37.0930 + 64.2470i 1.21113 + 2.09774i
\(939\) 0.0846889 + 0.146685i 0.00276372 + 0.00478690i
\(940\) −12.2790 + 21.2678i −0.400496 + 0.693679i
\(941\) 0.208568 0.00679913 0.00339956 0.999994i \(-0.498918\pi\)
0.00339956 + 0.999994i \(0.498918\pi\)
\(942\) 0.102805 0.178063i 0.00334957 0.00580162i
\(943\) 5.75137 9.96166i 0.187290 0.324396i
\(944\) 8.12794 0.264542
\(945\) −0.180528 + 0.312684i −0.00587258 + 0.0101716i
\(946\) 2.28083 + 3.95051i 0.0741560 + 0.128442i
\(947\) 0.207029 + 0.358585i 0.00672755 + 0.0116525i 0.869370 0.494162i \(-0.164525\pi\)
−0.862642 + 0.505815i \(0.831192\pi\)
\(948\) −0.0368337 −0.00119630
\(949\) 0 0
\(950\) −5.42613 −0.176047
\(951\) 0.101221 + 0.175319i 0.00328230 + 0.00568512i
\(952\) 14.7287 + 25.5109i 0.477361 + 0.826813i
\(953\) 16.9296 29.3230i 0.548404 0.949864i −0.449980 0.893039i \(-0.648569\pi\)
0.998384 0.0568255i \(-0.0180979\pi\)
\(954\) 82.4647 2.66989
\(955\) −6.73731 + 11.6694i −0.218014 + 0.377612i
\(956\) −26.8121 + 46.4400i −0.867166 + 1.50198i
\(957\) −0.316368 −0.0102267
\(958\) 22.5662 39.0858i 0.729081 1.26281i
\(959\) −7.20197 12.4742i −0.232564 0.402812i
\(960\) −0.0834005 0.144454i −0.00269174 0.00466223i
\(961\) 64.6403 2.08517
\(962\) 0 0
\(963\) 11.9143 0.383932
\(964\) 32.3949 + 56.1097i 1.04337 + 1.80717i
\(965\) −3.49368 6.05124i −0.112466 0.194796i
\(966\) −0.105072 + 0.181989i −0.00338062 + 0.00585541i
\(967\) −13.2125 −0.424885 −0.212442 0.977174i \(-0.568142\pi\)
−0.212442 + 0.977174i \(0.568142\pi\)
\(968\) 2.28946 3.96546i 0.0735860 0.127455i
\(969\) 0.0538376 0.0932494i 0.00172951 0.00299560i
\(970\) −7.46397 −0.239654
\(971\) 8.80095 15.2437i 0.282436 0.489193i −0.689548 0.724240i \(-0.742191\pi\)
0.971984 + 0.235046i \(0.0755242\pi\)
\(972\) 0.504871 + 0.874463i 0.0161938 + 0.0280484i
\(973\) −14.0464 24.3291i −0.450308 0.779956i
\(974\) −17.9045 −0.573697
\(975\) 0 0
\(976\) −2.92685 −0.0936861
\(977\) −5.89059 10.2028i −0.188457 0.326416i 0.756279 0.654249i \(-0.227015\pi\)
−0.944736 + 0.327833i \(0.893682\pi\)
\(978\) 0.0344130 + 0.0596051i 0.00110041 + 0.00190596i
\(979\) 0.605281 1.04838i 0.0193449 0.0335063i
\(980\) 40.7978 1.30324
\(981\) 15.2596 26.4304i 0.487202 0.843859i
\(982\) −3.60605 + 6.24586i −0.115074 + 0.199314i
\(983\) 45.4985 1.45118 0.725589 0.688128i \(-0.241567\pi\)
0.725589 + 0.688128i \(0.241567\pi\)
\(984\) 0.0904321 0.156633i 0.00288287 0.00499328i
\(985\) −0.718974 1.24530i −0.0229084 0.0396786i
\(986\) 30.5457 + 52.9067i 0.972773 + 1.68489i
\(987\) −0.515917 −0.0164218
\(988\) 0 0
\(989\) 1.11674 0.0355103
\(990\) 9.70056 + 16.8019i 0.308304 + 0.533998i
\(991\) −16.6343 28.8114i −0.528405 0.915224i −0.999452 0.0331155i \(-0.989457\pi\)
0.471047 0.882108i \(-0.343876\pi\)
\(992\) −35.0790 + 60.7586i −1.11376 + 1.92909i
\(993\) −0.340588 −0.0108082
\(994\) 33.9565 58.8144i 1.07703 1.86548i
\(995\) 1.21426 2.10316i 0.0384946 0.0666746i
\(996\) 0.293373 0.00929589
\(997\) 19.8935 34.4566i 0.630033 1.09125i −0.357511 0.933909i \(-0.616375\pi\)
0.987544 0.157341i \(-0.0502922\pi\)
\(998\) 9.80746 + 16.9870i 0.310450 + 0.537715i
\(999\) −0.161735 0.280133i −0.00511707 0.00886302i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.e.o.146.3 18
13.2 odd 12 845.2.c.h.506.5 18
13.3 even 3 845.2.a.o.1.7 yes 9
13.4 even 6 845.2.e.p.191.7 18
13.5 odd 4 845.2.m.j.361.5 36
13.6 odd 12 845.2.m.j.316.14 36
13.7 odd 12 845.2.m.j.316.5 36
13.8 odd 4 845.2.m.j.361.14 36
13.9 even 3 inner 845.2.e.o.191.3 18
13.10 even 6 845.2.a.n.1.3 9
13.11 odd 12 845.2.c.h.506.14 18
13.12 even 2 845.2.e.p.146.7 18
39.23 odd 6 7605.2.a.cs.1.7 9
39.29 odd 6 7605.2.a.cp.1.3 9
65.29 even 6 4225.2.a.bs.1.3 9
65.49 even 6 4225.2.a.bt.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.n.1.3 9 13.10 even 6
845.2.a.o.1.7 yes 9 13.3 even 3
845.2.c.h.506.5 18 13.2 odd 12
845.2.c.h.506.14 18 13.11 odd 12
845.2.e.o.146.3 18 1.1 even 1 trivial
845.2.e.o.191.3 18 13.9 even 3 inner
845.2.e.p.146.7 18 13.12 even 2
845.2.e.p.191.7 18 13.4 even 6
845.2.m.j.316.5 36 13.7 odd 12
845.2.m.j.316.14 36 13.6 odd 12
845.2.m.j.361.5 36 13.5 odd 4
845.2.m.j.361.14 36 13.8 odd 4
4225.2.a.bs.1.3 9 65.29 even 6
4225.2.a.bt.1.7 9 65.49 even 6
7605.2.a.cp.1.3 9 39.29 odd 6
7605.2.a.cs.1.7 9 39.23 odd 6