Properties

Label 845.2.m.j.361.14
Level $845$
Weight $2$
Character 845.361
Analytic conductor $6.747$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(316,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.316");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.14
Character \(\chi\) \(=\) 845.361
Dual form 845.2.m.j.316.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.91007 - 1.10278i) q^{2} +(0.00652833 + 0.0113074i) q^{3} +(1.43225 - 2.48072i) q^{4} +1.00000i q^{5} +(0.0249391 + 0.0143986i) q^{6} +(3.99148 + 2.30448i) q^{7} -1.90669i q^{8} +(1.49991 - 2.59793i) q^{9} +(1.10278 + 1.91007i) q^{10} +(-2.53946 + 1.46616i) q^{11} +0.0374007 q^{12} +10.1654 q^{14} +(-0.0113074 + 0.00652833i) q^{15} +(0.761834 + 1.31954i) q^{16} +(-1.67603 + 2.90297i) q^{17} -6.61630i q^{18} +(2.13060 + 1.23010i) q^{19} +(2.48072 + 1.43225i) q^{20} +0.0601778i q^{21} +(-3.23370 + 5.60094i) q^{22} +(-0.791645 - 1.37117i) q^{23} +(0.0215597 - 0.0124475i) q^{24} -1.00000 q^{25} +0.0783378 q^{27} +(11.4336 - 6.60118i) q^{28} +(-4.13161 - 7.15616i) q^{29} +(-0.0143986 + 0.0249391i) q^{30} -9.77959i q^{31} +(6.21280 + 3.58696i) q^{32} +(-0.0331569 - 0.0191432i) q^{33} +7.39317i q^{34} +(-2.30448 + 3.99148i) q^{35} +(-4.29649 - 7.44175i) q^{36} +(-3.57597 + 2.06458i) q^{37} +5.42613 q^{38} +1.90669 q^{40} +(6.29175 - 3.63254i) q^{41} +(0.0663628 + 0.114944i) q^{42} +(-0.352665 + 0.610833i) q^{43} +8.39961i q^{44} +(2.59793 + 1.49991i) q^{45} +(-3.02419 - 1.74602i) q^{46} -8.57322i q^{47} +(-0.00994701 + 0.0172287i) q^{48} +(7.12130 + 12.3344i) q^{49} +(-1.91007 + 1.10278i) q^{50} -0.0437667 q^{51} -12.4639 q^{53} +(0.149631 - 0.0863893i) q^{54} +(-1.46616 - 2.53946i) q^{55} +(4.39394 - 7.61052i) q^{56} +0.0321221i q^{57} +(-15.7833 - 9.11251i) q^{58} +(-4.61977 - 2.66723i) q^{59} +0.0374007i q^{60} +(-0.960460 + 1.66357i) q^{61} +(-10.7847 - 18.6797i) q^{62} +(11.9738 - 6.91306i) q^{63} +12.7752 q^{64} -0.0844427 q^{66} +(-6.32019 + 3.64896i) q^{67} +(4.80097 + 8.31553i) q^{68} +(0.0103362 - 0.0179029i) q^{69} +10.1654i q^{70} +(5.78577 + 3.34041i) q^{71} +(-4.95344 - 2.85987i) q^{72} +12.4541i q^{73} +(-4.55356 + 7.88700i) q^{74} +(-0.00652833 - 0.0113074i) q^{75} +(6.10309 - 3.52362i) q^{76} -13.5150 q^{77} +0.984840 q^{79} +(-1.31954 + 0.761834i) q^{80} +(-4.49923 - 7.79290i) q^{81} +(8.01179 - 13.8768i) q^{82} -7.84405i q^{83} +(0.149284 + 0.0861894i) q^{84} +(-2.90297 - 1.67603i) q^{85} +1.55565i q^{86} +(0.0539450 - 0.0934356i) q^{87} +(2.79551 + 4.84197i) q^{88} +(0.357525 - 0.206417i) q^{89} +6.61630 q^{90} -4.53532 q^{92} +(0.110582 - 0.0638444i) q^{93} +(-9.45437 - 16.3755i) q^{94} +(-1.23010 + 2.13060i) q^{95} +0.0936675i q^{96} +(2.93077 + 1.69208i) q^{97} +(27.2044 + 15.7064i) q^{98} +8.79646i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 14 q^{3} + 34 q^{4} - 32 q^{9} + 6 q^{10} - 48 q^{12} - 8 q^{14} - 74 q^{16} - 2 q^{17} - 24 q^{22} + 28 q^{23} - 36 q^{25} + 88 q^{27} - 24 q^{29} - 4 q^{30} - 14 q^{35} + 6 q^{36} + 188 q^{38}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91007 1.10278i 1.35062 0.779783i 0.362287 0.932067i \(-0.381996\pi\)
0.988337 + 0.152284i \(0.0486627\pi\)
\(3\) 0.00652833 + 0.0113074i 0.00376913 + 0.00652833i 0.867904 0.496732i \(-0.165467\pi\)
−0.864135 + 0.503261i \(0.832134\pi\)
\(4\) 1.43225 2.48072i 0.716123 1.24036i
\(5\) 1.00000i 0.447214i
\(6\) 0.0249391 + 0.0143986i 0.0101814 + 0.00587821i
\(7\) 3.99148 + 2.30448i 1.50864 + 0.871013i 0.999949 + 0.0100635i \(0.00320335\pi\)
0.508690 + 0.860950i \(0.330130\pi\)
\(8\) 1.90669i 0.674116i
\(9\) 1.49991 2.59793i 0.499972 0.865976i
\(10\) 1.10278 + 1.91007i 0.348730 + 0.604017i
\(11\) −2.53946 + 1.46616i −0.765677 + 0.442064i −0.831330 0.555779i \(-0.812420\pi\)
0.0656533 + 0.997842i \(0.479087\pi\)
\(12\) 0.0374007 0.0107967
\(13\) 0 0
\(14\) 10.1654 2.71681
\(15\) −0.0113074 + 0.00652833i −0.00291956 + 0.00168561i
\(16\) 0.761834 + 1.31954i 0.190459 + 0.329884i
\(17\) −1.67603 + 2.90297i −0.406497 + 0.704073i −0.994494 0.104789i \(-0.966583\pi\)
0.587997 + 0.808863i \(0.299916\pi\)
\(18\) 6.61630i 1.55948i
\(19\) 2.13060 + 1.23010i 0.488793 + 0.282205i 0.724074 0.689723i \(-0.242267\pi\)
−0.235280 + 0.971928i \(0.575601\pi\)
\(20\) 2.48072 + 1.43225i 0.554707 + 0.320260i
\(21\) 0.0601778i 0.0131319i
\(22\) −3.23370 + 5.60094i −0.689428 + 1.19412i
\(23\) −0.791645 1.37117i −0.165069 0.285908i 0.771611 0.636095i \(-0.219451\pi\)
−0.936680 + 0.350187i \(0.886118\pi\)
\(24\) 0.0215597 0.0124475i 0.00440085 0.00254083i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0.0783378 0.0150761
\(28\) 11.4336 6.60118i 2.16074 1.24751i
\(29\) −4.13161 7.15616i −0.767221 1.32887i −0.939064 0.343741i \(-0.888306\pi\)
0.171844 0.985124i \(-0.445028\pi\)
\(30\) −0.0143986 + 0.0249391i −0.00262882 + 0.00455324i
\(31\) 9.77959i 1.75647i −0.478233 0.878233i \(-0.658723\pi\)
0.478233 0.878233i \(-0.341277\pi\)
\(32\) 6.21280 + 3.58696i 1.09828 + 0.634091i
\(33\) −0.0331569 0.0191432i −0.00577188 0.00333240i
\(34\) 7.39317i 1.26792i
\(35\) −2.30448 + 3.99148i −0.389529 + 0.674684i
\(36\) −4.29649 7.44175i −0.716082 1.24029i
\(37\) −3.57597 + 2.06458i −0.587885 + 0.339416i −0.764261 0.644907i \(-0.776896\pi\)
0.176376 + 0.984323i \(0.443563\pi\)
\(38\) 5.42613 0.880235
\(39\) 0 0
\(40\) 1.90669 0.301474
\(41\) 6.29175 3.63254i 0.982606 0.567308i 0.0795500 0.996831i \(-0.474652\pi\)
0.903056 + 0.429523i \(0.141318\pi\)
\(42\) 0.0663628 + 0.114944i 0.0102400 + 0.0177362i
\(43\) −0.352665 + 0.610833i −0.0537809 + 0.0931512i −0.891662 0.452701i \(-0.850461\pi\)
0.837882 + 0.545852i \(0.183794\pi\)
\(44\) 8.39961i 1.26629i
\(45\) 2.59793 + 1.49991i 0.387276 + 0.223594i
\(46\) −3.02419 1.74602i −0.445893 0.257437i
\(47\) 8.57322i 1.25053i −0.780411 0.625266i \(-0.784990\pi\)
0.780411 0.625266i \(-0.215010\pi\)
\(48\) −0.00994701 + 0.0172287i −0.00143573 + 0.00248675i
\(49\) 7.12130 + 12.3344i 1.01733 + 1.76206i
\(50\) −1.91007 + 1.10278i −0.270125 + 0.155957i
\(51\) −0.0437667 −0.00612857
\(52\) 0 0
\(53\) −12.4639 −1.71204 −0.856022 0.516940i \(-0.827071\pi\)
−0.856022 + 0.516940i \(0.827071\pi\)
\(54\) 0.149631 0.0863893i 0.0203621 0.0117561i
\(55\) −1.46616 2.53946i −0.197697 0.342421i
\(56\) 4.39394 7.61052i 0.587164 1.01700i
\(57\) 0.0321221i 0.00425467i
\(58\) −15.7833 9.11251i −2.07245 1.19653i
\(59\) −4.61977 2.66723i −0.601443 0.347243i 0.168166 0.985759i \(-0.446216\pi\)
−0.769609 + 0.638515i \(0.779549\pi\)
\(60\) 0.0374007i 0.00482841i
\(61\) −0.960460 + 1.66357i −0.122974 + 0.212998i −0.920939 0.389706i \(-0.872577\pi\)
0.797965 + 0.602704i \(0.205910\pi\)
\(62\) −10.7847 18.6797i −1.36966 2.37232i
\(63\) 11.9738 6.91306i 1.50855 0.870964i
\(64\) 12.7752 1.59690
\(65\) 0 0
\(66\) −0.0844427 −0.0103942
\(67\) −6.32019 + 3.64896i −0.772134 + 0.445792i −0.833635 0.552315i \(-0.813745\pi\)
0.0615011 + 0.998107i \(0.480411\pi\)
\(68\) 4.80097 + 8.31553i 0.582204 + 1.00841i
\(69\) 0.0103362 0.0179029i 0.00124434 0.00215525i
\(70\) 10.1654i 1.21499i
\(71\) 5.78577 + 3.34041i 0.686644 + 0.396434i 0.802354 0.596849i \(-0.203581\pi\)
−0.115710 + 0.993283i \(0.536914\pi\)
\(72\) −4.95344 2.85987i −0.583769 0.337039i
\(73\) 12.4541i 1.45765i 0.684702 + 0.728824i \(0.259933\pi\)
−0.684702 + 0.728824i \(0.740067\pi\)
\(74\) −4.55356 + 7.88700i −0.529341 + 0.916846i
\(75\) −0.00652833 0.0113074i −0.000753827 0.00130567i
\(76\) 6.10309 3.52362i 0.700073 0.404187i
\(77\) −13.5150 −1.54017
\(78\) 0 0
\(79\) 0.984840 0.110803 0.0554016 0.998464i \(-0.482356\pi\)
0.0554016 + 0.998464i \(0.482356\pi\)
\(80\) −1.31954 + 0.761834i −0.147529 + 0.0851757i
\(81\) −4.49923 7.79290i −0.499915 0.865878i
\(82\) 8.01179 13.8768i 0.884754 1.53244i
\(83\) 7.84405i 0.860997i −0.902591 0.430498i \(-0.858338\pi\)
0.902591 0.430498i \(-0.141662\pi\)
\(84\) 0.149284 + 0.0861894i 0.0162883 + 0.00940403i
\(85\) −2.90297 1.67603i −0.314871 0.181791i
\(86\) 1.55565i 0.167750i
\(87\) 0.0539450 0.0934356i 0.00578352 0.0100173i
\(88\) 2.79551 + 4.84197i 0.298002 + 0.516155i
\(89\) 0.357525 0.206417i 0.0378976 0.0218802i −0.480932 0.876758i \(-0.659701\pi\)
0.518829 + 0.854878i \(0.326368\pi\)
\(90\) 6.61630 0.697419
\(91\) 0 0
\(92\) −4.53532 −0.472840
\(93\) 0.110582 0.0638444i 0.0114668 0.00662035i
\(94\) −9.45437 16.3755i −0.975144 1.68900i
\(95\) −1.23010 + 2.13060i −0.126206 + 0.218595i
\(96\) 0.0936675i 0.00955989i
\(97\) 2.93077 + 1.69208i 0.297574 + 0.171805i 0.641353 0.767246i \(-0.278374\pi\)
−0.343778 + 0.939051i \(0.611707\pi\)
\(98\) 27.2044 + 15.7064i 2.74806 + 1.58659i
\(99\) 8.79646i 0.884077i
\(100\) −1.43225 + 2.48072i −0.143225 + 0.248072i
\(101\) −5.27162 9.13071i −0.524545 0.908539i −0.999592 0.0285783i \(-0.990902\pi\)
0.475046 0.879961i \(-0.342431\pi\)
\(102\) −0.0835975 + 0.0482650i −0.00827739 + 0.00477895i
\(103\) −14.1152 −1.39081 −0.695404 0.718619i \(-0.744774\pi\)
−0.695404 + 0.718619i \(0.744774\pi\)
\(104\) 0 0
\(105\) −0.0601778 −0.00587275
\(106\) −23.8069 + 13.7449i −2.31233 + 1.33502i
\(107\) 1.98582 + 3.43955i 0.191977 + 0.332514i 0.945905 0.324443i \(-0.105177\pi\)
−0.753928 + 0.656957i \(0.771844\pi\)
\(108\) 0.112199 0.194334i 0.0107963 0.0186998i
\(109\) 10.1737i 0.974460i 0.873274 + 0.487230i \(0.161993\pi\)
−0.873274 + 0.487230i \(0.838007\pi\)
\(110\) −5.60094 3.23370i −0.534028 0.308321i
\(111\) −0.0466902 0.0269566i −0.00443164 0.00255861i
\(112\) 7.02254i 0.663568i
\(113\) 1.29992 2.25152i 0.122286 0.211806i −0.798383 0.602150i \(-0.794311\pi\)
0.920669 + 0.390345i \(0.127644\pi\)
\(114\) 0.0354236 + 0.0613555i 0.00331772 + 0.00574646i
\(115\) 1.37117 0.791645i 0.127862 0.0738212i
\(116\) −23.6699 −2.19770
\(117\) 0 0
\(118\) −11.7655 −1.08310
\(119\) −13.3797 + 7.72477i −1.22651 + 0.708128i
\(120\) 0.0124475 + 0.0215597i 0.00113630 + 0.00196812i
\(121\) −1.20075 + 2.07976i −0.109159 + 0.189069i
\(122\) 4.23670i 0.383573i
\(123\) 0.0821492 + 0.0474289i 0.00740715 + 0.00427652i
\(124\) −24.2604 14.0068i −2.17865 1.25785i
\(125\) 1.00000i 0.0894427i
\(126\) 15.2472 26.4089i 1.35833 2.35269i
\(127\) 9.98595 + 17.2962i 0.886109 + 1.53479i 0.844437 + 0.535655i \(0.179935\pi\)
0.0416726 + 0.999131i \(0.486731\pi\)
\(128\) 11.9759 6.91428i 1.05853 0.611142i
\(129\) −0.00920925 −0.000810829
\(130\) 0 0
\(131\) −11.4400 −0.999514 −0.499757 0.866166i \(-0.666577\pi\)
−0.499757 + 0.866166i \(0.666577\pi\)
\(132\) −0.0949777 + 0.0548354i −0.00826675 + 0.00477281i
\(133\) 5.66951 + 9.81988i 0.491609 + 0.851491i
\(134\) −8.04801 + 13.9396i −0.695242 + 1.20419i
\(135\) 0.0783378i 0.00674224i
\(136\) 5.53506 + 3.19567i 0.474627 + 0.274026i
\(137\) 2.70650 + 1.56260i 0.231232 + 0.133502i 0.611140 0.791522i \(-0.290711\pi\)
−0.379908 + 0.925024i \(0.624044\pi\)
\(138\) 0.0455944i 0.00388125i
\(139\) −3.04763 + 5.27865i −0.258497 + 0.447729i −0.965839 0.259142i \(-0.916560\pi\)
0.707343 + 0.706871i \(0.249894\pi\)
\(140\) 6.60118 + 11.4336i 0.557901 + 0.966314i
\(141\) 0.0969409 0.0559688i 0.00816389 0.00471343i
\(142\) 14.7350 1.23653
\(143\) 0 0
\(144\) 4.57075 0.380896
\(145\) 7.15616 4.13161i 0.594287 0.343112i
\(146\) 13.7342 + 23.7883i 1.13665 + 1.96873i
\(147\) −0.0929804 + 0.161047i −0.00766889 + 0.0132829i
\(148\) 11.8280i 0.972253i
\(149\) 12.6610 + 7.30982i 1.03723 + 0.598844i 0.919047 0.394148i \(-0.128960\pi\)
0.118181 + 0.992992i \(0.462294\pi\)
\(150\) −0.0249391 0.0143986i −0.00203627 0.00117564i
\(151\) 12.2510i 0.996973i −0.866897 0.498487i \(-0.833889\pi\)
0.866897 0.498487i \(-0.166111\pi\)
\(152\) 2.34542 4.06239i 0.190239 0.329504i
\(153\) 5.02780 + 8.70841i 0.406474 + 0.704033i
\(154\) −25.8145 + 14.9040i −2.08020 + 1.20100i
\(155\) 9.77959 0.785515
\(156\) 0 0
\(157\) 7.13991 0.569827 0.284914 0.958553i \(-0.408035\pi\)
0.284914 + 0.958553i \(0.408035\pi\)
\(158\) 1.88111 1.08606i 0.149653 0.0864024i
\(159\) −0.0813682 0.140934i −0.00645292 0.0111768i
\(160\) −3.58696 + 6.21280i −0.283574 + 0.491165i
\(161\) 7.29733i 0.575110i
\(162\) −17.1877 9.92333i −1.35039 0.779650i
\(163\) 2.06982 + 1.19501i 0.162121 + 0.0936004i 0.578865 0.815423i \(-0.303496\pi\)
−0.416745 + 0.909024i \(0.636829\pi\)
\(164\) 20.8108i 1.62505i
\(165\) 0.0191432 0.0331569i 0.00149029 0.00258126i
\(166\) −8.65026 14.9827i −0.671391 1.16288i
\(167\) 6.44185 3.71920i 0.498485 0.287801i −0.229603 0.973284i \(-0.573743\pi\)
0.728088 + 0.685484i \(0.240409\pi\)
\(168\) 0.114740 0.00885240
\(169\) 0 0
\(170\) −7.39317 −0.567030
\(171\) 6.39144 3.69010i 0.488766 0.282189i
\(172\) 1.01021 + 1.74973i 0.0770274 + 0.133415i
\(173\) 1.27059 2.20073i 0.0966015 0.167319i −0.813674 0.581321i \(-0.802536\pi\)
0.910276 + 0.414002i \(0.135869\pi\)
\(174\) 0.237958i 0.0180396i
\(175\) −3.99148 2.30448i −0.301728 0.174203i
\(176\) −3.86930 2.23394i −0.291660 0.168390i
\(177\) 0.0696502i 0.00523523i
\(178\) 0.455265 0.788543i 0.0341236 0.0591038i
\(179\) −5.34565 9.25894i −0.399553 0.692045i 0.594118 0.804378i \(-0.297501\pi\)
−0.993671 + 0.112332i \(0.964168\pi\)
\(180\) 7.44175 4.29649i 0.554675 0.320242i
\(181\) 11.7908 0.876402 0.438201 0.898877i \(-0.355616\pi\)
0.438201 + 0.898877i \(0.355616\pi\)
\(182\) 0 0
\(183\) −0.0250808 −0.00185403
\(184\) −2.61439 + 1.50942i −0.192736 + 0.111276i
\(185\) −2.06458 3.57597i −0.151791 0.262910i
\(186\) 0.140813 0.243895i 0.0103249 0.0178832i
\(187\) 9.82931i 0.718790i
\(188\) −21.2678 12.2790i −1.55111 0.895535i
\(189\) 0.312684 + 0.180528i 0.0227444 + 0.0131315i
\(190\) 5.42613i 0.393653i
\(191\) −6.73731 + 11.6694i −0.487495 + 0.844366i −0.999897 0.0143798i \(-0.995423\pi\)
0.512402 + 0.858746i \(0.328756\pi\)
\(192\) 0.0834005 + 0.144454i 0.00601892 + 0.0104251i
\(193\) −6.05124 + 3.49368i −0.435578 + 0.251481i −0.701720 0.712453i \(-0.747584\pi\)
0.266142 + 0.963934i \(0.414251\pi\)
\(194\) 7.46397 0.535882
\(195\) 0 0
\(196\) 40.7978 2.91413
\(197\) 1.24530 0.718974i 0.0887240 0.0512248i −0.454982 0.890501i \(-0.650354\pi\)
0.543706 + 0.839276i \(0.317021\pi\)
\(198\) 9.70056 + 16.8019i 0.689389 + 1.19406i
\(199\) −1.21426 + 2.10316i −0.0860765 + 0.149089i −0.905849 0.423600i \(-0.860766\pi\)
0.819773 + 0.572689i \(0.194100\pi\)
\(200\) 1.90669i 0.134823i
\(201\) −0.0825206 0.0476433i −0.00582056 0.00336050i
\(202\) −20.1383 11.6269i −1.41693 0.818063i
\(203\) 38.0849i 2.67304i
\(204\) −0.0626847 + 0.108573i −0.00438881 + 0.00760164i
\(205\) 3.63254 + 6.29175i 0.253708 + 0.439435i
\(206\) −26.9609 + 15.5659i −1.87846 + 1.08453i
\(207\) −4.74960 −0.330120
\(208\) 0 0
\(209\) −7.21411 −0.499011
\(210\) −0.114944 + 0.0663628i −0.00793187 + 0.00457947i
\(211\) −9.13202 15.8171i −0.628674 1.08890i −0.987818 0.155613i \(-0.950265\pi\)
0.359144 0.933282i \(-0.383069\pi\)
\(212\) −17.8513 + 30.9194i −1.22603 + 2.12355i
\(213\) 0.0872293i 0.00597685i
\(214\) 7.58612 + 4.37985i 0.518577 + 0.299400i
\(215\) −0.610833 0.352665i −0.0416585 0.0240515i
\(216\) 0.149366i 0.0101631i
\(217\) 22.5369 39.0351i 1.52990 2.64987i
\(218\) 11.2193 + 19.4324i 0.759867 + 1.31613i
\(219\) −0.140824 + 0.0813048i −0.00951600 + 0.00549407i
\(220\) −8.39961 −0.566301
\(221\) 0 0
\(222\) −0.118909 −0.00798063
\(223\) 13.4962 7.79204i 0.903773 0.521793i 0.0253505 0.999679i \(-0.491930\pi\)
0.878422 + 0.477885i \(0.158596\pi\)
\(224\) 16.5322 + 28.6346i 1.10460 + 1.91323i
\(225\) −1.49991 + 2.59793i −0.0999943 + 0.173195i
\(226\) 5.73409i 0.381426i
\(227\) 3.49338 + 2.01690i 0.231863 + 0.133866i 0.611431 0.791297i \(-0.290594\pi\)
−0.379568 + 0.925164i \(0.623927\pi\)
\(228\) 0.0796860 + 0.0460067i 0.00527733 + 0.00304687i
\(229\) 22.5147i 1.48781i −0.668284 0.743906i \(-0.732971\pi\)
0.668284 0.743906i \(-0.267029\pi\)
\(230\) 1.74602 3.02419i 0.115129 0.199409i
\(231\) −0.0882302 0.152819i −0.00580512 0.0100548i
\(232\) −13.6446 + 7.87770i −0.895810 + 0.517196i
\(233\) 7.69759 0.504286 0.252143 0.967690i \(-0.418865\pi\)
0.252143 + 0.967690i \(0.418865\pi\)
\(234\) 0 0
\(235\) 8.57322 0.559255
\(236\) −13.2333 + 7.64025i −0.861414 + 0.497338i
\(237\) 0.00642936 + 0.0111360i 0.000417632 + 0.000723360i
\(238\) −17.0374 + 29.5097i −1.10437 + 1.91283i
\(239\) 18.7203i 1.21092i 0.795877 + 0.605459i \(0.207010\pi\)
−0.795877 + 0.605459i \(0.792990\pi\)
\(240\) −0.0172287 0.00994701i −0.00111211 0.000642077i
\(241\) −19.5880 11.3091i −1.26177 0.728486i −0.288357 0.957523i \(-0.593109\pi\)
−0.973418 + 0.229037i \(0.926442\pi\)
\(242\) 5.29665i 0.340482i
\(243\) 0.176252 0.305277i 0.0113065 0.0195835i
\(244\) 2.75123 + 4.76527i 0.176130 + 0.305065i
\(245\) −12.3344 + 7.12130i −0.788019 + 0.454963i
\(246\) 0.209214 0.0133390
\(247\) 0 0
\(248\) −18.6466 −1.18406
\(249\) 0.0886959 0.0512086i 0.00562087 0.00324521i
\(250\) −1.10278 1.91007i −0.0697459 0.120803i
\(251\) 0.892059 1.54509i 0.0563062 0.0975253i −0.836498 0.547969i \(-0.815401\pi\)
0.892805 + 0.450444i \(0.148734\pi\)
\(252\) 39.6048i 2.49487i
\(253\) 4.02071 + 2.32136i 0.252780 + 0.145942i
\(254\) 38.1477 + 22.0246i 2.39360 + 1.38195i
\(255\) 0.0437667i 0.00274078i
\(256\) 2.47468 4.28627i 0.154667 0.267892i
\(257\) −2.29924 3.98240i −0.143422 0.248415i 0.785361 0.619038i \(-0.212477\pi\)
−0.928783 + 0.370623i \(0.879144\pi\)
\(258\) −0.0175903 + 0.0101558i −0.00109513 + 0.000632271i
\(259\) −19.0312 −1.18254
\(260\) 0 0
\(261\) −24.7883 −1.53435
\(262\) −21.8511 + 12.6158i −1.34997 + 0.779404i
\(263\) −9.40637 16.2923i −0.580022 1.00463i −0.995476 0.0950132i \(-0.969711\pi\)
0.415454 0.909614i \(-0.363623\pi\)
\(264\) −0.0365000 + 0.0632199i −0.00224642 + 0.00389092i
\(265\) 12.4639i 0.765649i
\(266\) 21.6583 + 12.5044i 1.32796 + 0.766696i
\(267\) 0.00466808 + 0.00269512i 0.000285682 + 0.000164939i
\(268\) 20.9049i 1.27697i
\(269\) −0.927060 + 1.60571i −0.0565238 + 0.0979022i −0.892903 0.450250i \(-0.851335\pi\)
0.836379 + 0.548152i \(0.184668\pi\)
\(270\) 0.0863893 + 0.149631i 0.00525748 + 0.00910623i
\(271\) −0.129642 + 0.0748491i −0.00787522 + 0.00454676i −0.503932 0.863743i \(-0.668114\pi\)
0.496057 + 0.868290i \(0.334781\pi\)
\(272\) −5.10743 −0.309683
\(273\) 0 0
\(274\) 6.89281 0.416410
\(275\) 2.53946 1.46616i 0.153135 0.0884128i
\(276\) −0.0296081 0.0512827i −0.00178220 0.00308686i
\(277\) 11.0092 19.0685i 0.661478 1.14571i −0.318749 0.947839i \(-0.603263\pi\)
0.980227 0.197874i \(-0.0634038\pi\)
\(278\) 13.4435i 0.806285i
\(279\) −25.4067 14.6685i −1.52106 0.878183i
\(280\) 7.61052 + 4.39394i 0.454815 + 0.262588i
\(281\) 0.438029i 0.0261306i 0.999915 + 0.0130653i \(0.00415894\pi\)
−0.999915 + 0.0130653i \(0.995841\pi\)
\(282\) 0.123443 0.213809i 0.00735090 0.0127321i
\(283\) 6.91451 + 11.9763i 0.411025 + 0.711916i 0.995002 0.0998543i \(-0.0318377\pi\)
−0.583977 + 0.811770i \(0.698504\pi\)
\(284\) 16.5733 9.56859i 0.983443 0.567791i
\(285\) −0.0321221 −0.00190275
\(286\) 0 0
\(287\) 33.4845 1.97653
\(288\) 18.6373 10.7603i 1.09822 0.634055i
\(289\) 2.88185 + 4.99151i 0.169520 + 0.293618i
\(290\) 9.11251 15.7833i 0.535105 0.926829i
\(291\) 0.0441858i 0.00259022i
\(292\) 30.8953 + 17.8374i 1.80801 + 1.04385i
\(293\) 12.6141 + 7.28278i 0.736926 + 0.425464i 0.820951 0.570999i \(-0.193444\pi\)
−0.0840245 + 0.996464i \(0.526777\pi\)
\(294\) 0.410148i 0.0239203i
\(295\) 2.66723 4.61977i 0.155292 0.268974i
\(296\) 3.93652 + 6.81825i 0.228806 + 0.396303i
\(297\) −0.198936 + 0.114856i −0.0115434 + 0.00666460i
\(298\) 32.2445 1.86787
\(299\) 0 0
\(300\) −0.0374007 −0.00215933
\(301\) −2.81531 + 1.62542i −0.162272 + 0.0936877i
\(302\) −13.5102 23.4003i −0.777423 1.34654i
\(303\) 0.0688297 0.119217i 0.00395416 0.00684881i
\(304\) 3.74854i 0.214994i
\(305\) −1.66357 0.960460i −0.0952555 0.0549958i
\(306\) 19.2069 + 11.0891i 1.09799 + 0.633923i
\(307\) 9.05062i 0.516546i 0.966072 + 0.258273i \(0.0831535\pi\)
−0.966072 + 0.258273i \(0.916847\pi\)
\(308\) −19.3568 + 33.5269i −1.10295 + 1.91037i
\(309\) −0.0921484 0.159606i −0.00524214 0.00907965i
\(310\) 18.6797 10.7847i 1.06094 0.612531i
\(311\) −7.28812 −0.413272 −0.206636 0.978418i \(-0.566252\pi\)
−0.206636 + 0.978418i \(0.566252\pi\)
\(312\) 0 0
\(313\) 12.9725 0.733250 0.366625 0.930369i \(-0.380513\pi\)
0.366625 + 0.930369i \(0.380513\pi\)
\(314\) 13.6377 7.87375i 0.769622 0.444342i
\(315\) 6.91306 + 11.9738i 0.389507 + 0.674646i
\(316\) 1.41053 2.44312i 0.0793487 0.137436i
\(317\) 15.5048i 0.870838i 0.900228 + 0.435419i \(0.143400\pi\)
−0.900228 + 0.435419i \(0.856600\pi\)
\(318\) −0.310838 0.179462i −0.0174309 0.0100638i
\(319\) 20.9841 + 12.1152i 1.17489 + 0.678321i
\(320\) 12.7752i 0.714154i
\(321\) −0.0259282 + 0.0449090i −0.00144717 + 0.00250658i
\(322\) −8.04735 13.9384i −0.448461 0.776758i
\(323\) −7.14190 + 4.12338i −0.397386 + 0.229431i
\(324\) −25.7760 −1.43200
\(325\) 0 0
\(326\) 5.27133 0.291952
\(327\) −0.115038 + 0.0664170i −0.00636160 + 0.00367287i
\(328\) −6.92613 11.9964i −0.382431 0.662391i
\(329\) 19.7569 34.2199i 1.08923 1.88660i
\(330\) 0.0844427i 0.00464842i
\(331\) −22.5906 13.0427i −1.24169 0.716890i −0.272252 0.962226i \(-0.587768\pi\)
−0.969438 + 0.245336i \(0.921102\pi\)
\(332\) −19.4589 11.2346i −1.06795 0.616580i
\(333\) 12.3868i 0.678793i
\(334\) 8.20292 14.2079i 0.448844 0.777420i
\(335\) −3.64896 6.32019i −0.199364 0.345309i
\(336\) −0.0794067 + 0.0458455i −0.00433199 + 0.00250108i
\(337\) 14.4785 0.788697 0.394348 0.918961i \(-0.370970\pi\)
0.394348 + 0.918961i \(0.370970\pi\)
\(338\) 0 0
\(339\) 0.0339452 0.00184365
\(340\) −8.31553 + 4.80097i −0.450973 + 0.260369i
\(341\) 14.3384 + 24.8349i 0.776470 + 1.34489i
\(342\) 8.13874 14.0967i 0.440092 0.762262i
\(343\) 33.3809i 1.80240i
\(344\) 1.16467 + 0.672422i 0.0627947 + 0.0362546i
\(345\) 0.0179029 + 0.0103362i 0.000963859 + 0.000556484i
\(346\) 5.60474i 0.301313i
\(347\) −3.40706 + 5.90120i −0.182901 + 0.316793i −0.942867 0.333169i \(-0.891882\pi\)
0.759967 + 0.649962i \(0.225215\pi\)
\(348\) −0.154525 0.267645i −0.00828342 0.0143473i
\(349\) 29.2160 16.8679i 1.56390 0.902915i 0.567039 0.823691i \(-0.308089\pi\)
0.996857 0.0792242i \(-0.0252443\pi\)
\(350\) −10.1654 −0.543361
\(351\) 0 0
\(352\) −21.0362 −1.12123
\(353\) −16.2133 + 9.36077i −0.862948 + 0.498223i −0.864998 0.501775i \(-0.832681\pi\)
0.00205026 + 0.999998i \(0.499347\pi\)
\(354\) −0.0768088 0.133037i −0.00408234 0.00707082i
\(355\) −3.34041 + 5.78577i −0.177291 + 0.307077i
\(356\) 1.18256i 0.0626756i
\(357\) −0.174694 0.100860i −0.00924579 0.00533806i
\(358\) −20.4211 11.7901i −1.07929 0.623129i
\(359\) 27.9262i 1.47389i 0.675952 + 0.736945i \(0.263732\pi\)
−0.675952 + 0.736945i \(0.736268\pi\)
\(360\) 2.85987 4.95344i 0.150728 0.261069i
\(361\) −6.47369 11.2128i −0.340721 0.590145i
\(362\) 22.5212 13.0026i 1.18369 0.683404i
\(363\) −0.0313556 −0.00164574
\(364\) 0 0
\(365\) −12.4541 −0.651880
\(366\) −0.0479061 + 0.0276586i −0.00250409 + 0.00144574i
\(367\) −1.25494 2.17362i −0.0655074 0.113462i 0.831412 0.555657i \(-0.187533\pi\)
−0.896919 + 0.442195i \(0.854200\pi\)
\(368\) 1.20620 2.08921i 0.0628777 0.108907i
\(369\) 21.7940i 1.13455i
\(370\) −7.88700 4.55356i −0.410026 0.236729i
\(371\) −49.7493 28.7228i −2.58286 1.49121i
\(372\) 0.365763i 0.0189640i
\(373\) −11.0890 + 19.2067i −0.574165 + 0.994483i 0.421967 + 0.906611i \(0.361340\pi\)
−0.996132 + 0.0878719i \(0.971993\pi\)
\(374\) −10.8396 18.7747i −0.560501 0.970815i
\(375\) 0.0113074 0.00652833i 0.000583912 0.000337122i
\(376\) −16.3465 −0.843005
\(377\) 0 0
\(378\) 0.796331 0.0409589
\(379\) −1.23076 + 0.710581i −0.0632200 + 0.0365001i −0.531277 0.847198i \(-0.678288\pi\)
0.468057 + 0.883698i \(0.344954\pi\)
\(380\) 3.52362 + 6.10309i 0.180758 + 0.313082i
\(381\) −0.130383 + 0.225830i −0.00667973 + 0.0115696i
\(382\) 29.7191i 1.52056i
\(383\) −18.2500 10.5366i −0.932531 0.538397i −0.0449197 0.998991i \(-0.514303\pi\)
−0.887611 + 0.460594i \(0.847637\pi\)
\(384\) 0.156365 + 0.0902774i 0.00797947 + 0.00460695i
\(385\) 13.5150i 0.688787i
\(386\) −7.70553 + 13.3464i −0.392201 + 0.679312i
\(387\) 1.05793 + 1.83240i 0.0537778 + 0.0931459i
\(388\) 8.39516 4.84695i 0.426200 0.246067i
\(389\) −13.4713 −0.683021 −0.341511 0.939878i \(-0.610939\pi\)
−0.341511 + 0.939878i \(0.610939\pi\)
\(390\) 0 0
\(391\) 5.30728 0.268401
\(392\) 23.5180 13.5781i 1.18784 0.685798i
\(393\) −0.0746839 0.129356i −0.00376730 0.00652516i
\(394\) 1.58574 2.74658i 0.0798885 0.138371i
\(395\) 0.984840i 0.0495527i
\(396\) 21.8216 + 12.5987i 1.09658 + 0.633108i
\(397\) 23.5437 + 13.5929i 1.18162 + 0.682210i 0.956390 0.292094i \(-0.0943521\pi\)
0.225234 + 0.974305i \(0.427685\pi\)
\(398\) 5.35624i 0.268484i
\(399\) −0.0740249 + 0.128215i −0.00370588 + 0.00641877i
\(400\) −0.761834 1.31954i −0.0380917 0.0659768i
\(401\) 2.83641 1.63760i 0.141643 0.0817779i −0.427504 0.904014i \(-0.640607\pi\)
0.569147 + 0.822236i \(0.307274\pi\)
\(402\) −0.210160 −0.0104818
\(403\) 0 0
\(404\) −30.2010 −1.50256
\(405\) 7.79290 4.49923i 0.387232 0.223569i
\(406\) −41.9993 72.7449i −2.08439 3.61027i
\(407\) 6.05402 10.4859i 0.300087 0.519765i
\(408\) 0.0834495i 0.00413137i
\(409\) 16.5997 + 9.58386i 0.820804 + 0.473891i 0.850694 0.525662i \(-0.176182\pi\)
−0.0298899 + 0.999553i \(0.509516\pi\)
\(410\) 13.8768 + 8.01179i 0.685327 + 0.395674i
\(411\) 0.0408047i 0.00201275i
\(412\) −20.2164 + 35.0158i −0.995989 + 1.72510i
\(413\) −12.2932 21.2924i −0.604907 1.04773i
\(414\) −9.07207 + 5.23776i −0.445868 + 0.257422i
\(415\) 7.84405 0.385049
\(416\) 0 0
\(417\) −0.0795837 −0.00389723
\(418\) −13.7795 + 7.95558i −0.673976 + 0.389120i
\(419\) −0.196231 0.339883i −0.00958653 0.0166044i 0.861192 0.508279i \(-0.169718\pi\)
−0.870779 + 0.491675i \(0.836385\pi\)
\(420\) −0.0861894 + 0.149284i −0.00420561 + 0.00728433i
\(421\) 35.1816i 1.71465i 0.514779 + 0.857323i \(0.327874\pi\)
−0.514779 + 0.857323i \(0.672126\pi\)
\(422\) −34.8856 20.1412i −1.69820 0.980458i
\(423\) −22.2726 12.8591i −1.08293 0.625231i
\(424\) 23.7647i 1.15412i
\(425\) 1.67603 2.90297i 0.0812994 0.140815i
\(426\) 0.0961947 + 0.166614i 0.00466065 + 0.00807248i
\(427\) −7.66732 + 4.42673i −0.371048 + 0.214225i
\(428\) 11.3768 0.549916
\(429\) 0 0
\(430\) −1.55565 −0.0750199
\(431\) 1.96981 1.13727i 0.0948823 0.0547803i −0.451808 0.892115i \(-0.649221\pi\)
0.546690 + 0.837335i \(0.315887\pi\)
\(432\) 0.0596804 + 0.103369i 0.00287137 + 0.00497337i
\(433\) 5.94137 10.2908i 0.285524 0.494542i −0.687212 0.726457i \(-0.741166\pi\)
0.972736 + 0.231915i \(0.0744990\pi\)
\(434\) 99.4130i 4.77197i
\(435\) 0.0934356 + 0.0539450i 0.00447989 + 0.00258647i
\(436\) 25.2380 + 14.5712i 1.20868 + 0.697833i
\(437\) 3.89522i 0.186334i
\(438\) −0.179322 + 0.310596i −0.00856836 + 0.0148408i
\(439\) −17.8636 30.9407i −0.852585 1.47672i −0.878867 0.477067i \(-0.841700\pi\)
0.0262818 0.999655i \(-0.491633\pi\)
\(440\) −4.84197 + 2.79551i −0.230832 + 0.133271i
\(441\) 42.7254 2.03454
\(442\) 0 0
\(443\) 4.98904 0.237036 0.118518 0.992952i \(-0.462186\pi\)
0.118518 + 0.992952i \(0.462186\pi\)
\(444\) −0.133744 + 0.0772169i −0.00634719 + 0.00366455i
\(445\) 0.206417 + 0.357525i 0.00978511 + 0.0169483i
\(446\) 17.1858 29.7667i 0.813771 1.40949i
\(447\) 0.190884i 0.00902849i
\(448\) 50.9919 + 29.4402i 2.40914 + 1.39092i
\(449\) −20.3417 11.7443i −0.959985 0.554248i −0.0638165 0.997962i \(-0.520327\pi\)
−0.896168 + 0.443714i \(0.853661\pi\)
\(450\) 6.61630i 0.311895i
\(451\) −10.6518 + 18.4494i −0.501572 + 0.868749i
\(452\) −3.72361 6.44947i −0.175144 0.303358i
\(453\) 0.138527 0.0799787i 0.00650857 0.00375773i
\(454\) 8.89679 0.417547
\(455\) 0 0
\(456\) 0.0612468 0.00286815
\(457\) 34.8584 20.1255i 1.63061 0.941430i 0.646699 0.762746i \(-0.276149\pi\)
0.983906 0.178685i \(-0.0571842\pi\)
\(458\) −24.8287 43.0046i −1.16017 2.00947i
\(459\) −0.131296 + 0.227412i −0.00612839 + 0.0106147i
\(460\) 4.53532i 0.211460i
\(461\) 27.0321 + 15.6070i 1.25901 + 0.726890i 0.972882 0.231302i \(-0.0742985\pi\)
0.286128 + 0.958191i \(0.407632\pi\)
\(462\) −0.337052 0.194597i −0.0156811 0.00905347i
\(463\) 17.7491i 0.824872i 0.910987 + 0.412436i \(0.135322\pi\)
−0.910987 + 0.412436i \(0.864678\pi\)
\(464\) 6.29521 10.9036i 0.292248 0.506188i
\(465\) 0.0638444 + 0.110582i 0.00296071 + 0.00512810i
\(466\) 14.7029 8.48875i 0.681101 0.393234i
\(467\) −26.6645 −1.23389 −0.616944 0.787007i \(-0.711630\pi\)
−0.616944 + 0.787007i \(0.711630\pi\)
\(468\) 0 0
\(469\) −33.6359 −1.55316
\(470\) 16.3755 9.45437i 0.755344 0.436098i
\(471\) 0.0466117 + 0.0807339i 0.00214775 + 0.00372002i
\(472\) −5.08557 + 8.80847i −0.234082 + 0.405443i
\(473\) 2.06825i 0.0950983i
\(474\) 0.0245611 + 0.0141803i 0.00112813 + 0.000651325i
\(475\) −2.13060 1.23010i −0.0977587 0.0564410i
\(476\) 44.2551i 2.02843i
\(477\) −18.6947 + 32.3802i −0.855973 + 1.48259i
\(478\) 20.6444 + 35.7572i 0.944253 + 1.63549i
\(479\) 17.7215 10.2315i 0.809716 0.467490i −0.0371410 0.999310i \(-0.511825\pi\)
0.846857 + 0.531820i \(0.178492\pi\)
\(480\) −0.0936675 −0.00427531
\(481\) 0 0
\(482\) −49.8860 −2.27224
\(483\) 0.0825139 0.0476394i 0.00375451 0.00216767i
\(484\) 3.43954 + 5.95746i 0.156343 + 0.270794i
\(485\) −1.69208 + 2.93077i −0.0768334 + 0.133079i
\(486\) 0.777467i 0.0352666i
\(487\) 7.03030 + 4.05895i 0.318573 + 0.183928i 0.650757 0.759286i \(-0.274452\pi\)
−0.332183 + 0.943215i \(0.607785\pi\)
\(488\) 3.17190 + 1.83130i 0.143585 + 0.0828990i
\(489\) 0.0312057i 0.00141117i
\(490\) −15.7064 + 27.2044i −0.709545 + 1.22897i
\(491\) 1.63498 + 2.83187i 0.0737857 + 0.127801i 0.900558 0.434737i \(-0.143159\pi\)
−0.826772 + 0.562537i \(0.809825\pi\)
\(492\) 0.235316 0.135860i 0.0106089 0.00612503i
\(493\) 27.6988 1.24749
\(494\) 0 0
\(495\) −8.79646 −0.395371
\(496\) 12.9045 7.45042i 0.579430 0.334534i
\(497\) 15.3959 + 26.6664i 0.690599 + 1.19615i
\(498\) 0.112944 0.195624i 0.00506112 0.00876612i
\(499\) 8.89340i 0.398123i −0.979987 0.199062i \(-0.936211\pi\)
0.979987 0.199062i \(-0.0637894\pi\)
\(500\) −2.48072 1.43225i −0.110941 0.0640520i
\(501\) 0.0841090 + 0.0485604i 0.00375771 + 0.00216952i
\(502\) 3.93498i 0.175627i
\(503\) 11.8987 20.6092i 0.530537 0.918917i −0.468828 0.883289i \(-0.655324\pi\)
0.999365 0.0356275i \(-0.0113430\pi\)
\(504\) −13.1811 22.8303i −0.587131 1.01694i
\(505\) 9.13071 5.27162i 0.406311 0.234584i
\(506\) 10.2398 0.455213
\(507\) 0 0
\(508\) 57.2093 2.53825
\(509\) 1.09786 0.633850i 0.0486618 0.0280949i −0.475472 0.879731i \(-0.657723\pi\)
0.524134 + 0.851636i \(0.324389\pi\)
\(510\) −0.0482650 0.0835975i −0.00213721 0.00370176i
\(511\) −28.7004 + 49.7105i −1.26963 + 2.19906i
\(512\) 16.7410i 0.739855i
\(513\) 0.166907 + 0.0963635i 0.00736910 + 0.00425455i
\(514\) −8.78341 5.07110i −0.387420 0.223677i
\(515\) 14.1152i 0.621988i
\(516\) −0.0131899 + 0.0228456i −0.000580653 + 0.00100572i
\(517\) 12.5697 + 21.7714i 0.552815 + 0.957504i
\(518\) −36.3510 + 20.9872i −1.59717 + 0.922126i
\(519\) 0.0331794 0.00145642
\(520\) 0 0
\(521\) 14.3916 0.630506 0.315253 0.949008i \(-0.397911\pi\)
0.315253 + 0.949008i \(0.397911\pi\)
\(522\) −47.3473 + 27.3360i −2.07234 + 1.19646i
\(523\) −9.50927 16.4705i −0.415811 0.720206i 0.579702 0.814829i \(-0.303169\pi\)
−0.995513 + 0.0946225i \(0.969836\pi\)
\(524\) −16.3848 + 28.3794i −0.715775 + 1.23976i
\(525\) 0.0601778i 0.00262637i
\(526\) −35.9337 20.7463i −1.56678 0.904582i
\(527\) 28.3898 + 16.3909i 1.23668 + 0.713998i
\(528\) 0.0583357i 0.00253873i
\(529\) 10.2466 17.7476i 0.445504 0.771636i
\(530\) −13.7449 23.8069i −0.597040 1.03410i
\(531\) −13.8585 + 8.00122i −0.601409 + 0.347224i
\(532\) 32.4805 1.40821
\(533\) 0 0
\(534\) 0.0118885 0.000514465
\(535\) −3.43955 + 1.98582i −0.148705 + 0.0858546i
\(536\) 6.95744 + 12.0506i 0.300516 + 0.520508i
\(537\) 0.0697963 0.120891i 0.00301193 0.00521682i
\(538\) 4.08937i 0.176305i
\(539\) −36.1685 20.8819i −1.55789 0.899448i
\(540\) 0.194334 + 0.112199i 0.00836282 + 0.00482827i
\(541\) 13.8969i 0.597475i −0.954335 0.298738i \(-0.903434\pi\)
0.954335 0.298738i \(-0.0965656\pi\)
\(542\) −0.165084 + 0.285934i −0.00709097 + 0.0122819i
\(543\) 0.0769742 + 0.133323i 0.00330328 + 0.00572145i
\(544\) −20.8257 + 12.0237i −0.892893 + 0.515512i
\(545\) −10.1737 −0.435792
\(546\) 0 0
\(547\) 37.0840 1.58560 0.792798 0.609484i \(-0.208623\pi\)
0.792798 + 0.609484i \(0.208623\pi\)
\(548\) 7.75275 4.47605i 0.331181 0.191208i
\(549\) 2.88122 + 4.99041i 0.122967 + 0.212986i
\(550\) 3.23370 5.60094i 0.137886 0.238825i
\(551\) 20.3292i 0.866054i
\(552\) −0.0341352 0.0197080i −0.00145289 0.000838828i
\(553\) 3.93097 + 2.26955i 0.167162 + 0.0965110i
\(554\) 48.5628i 2.06324i
\(555\) 0.0269566 0.0466902i 0.00114424 0.00198189i
\(556\) 8.72991 + 15.1206i 0.370231 + 0.641258i
\(557\) −27.5452 + 15.9033i −1.16713 + 0.673842i −0.953002 0.302963i \(-0.902024\pi\)
−0.214127 + 0.976806i \(0.568691\pi\)
\(558\) −64.7047 −2.73917
\(559\) 0 0
\(560\) −7.02254 −0.296757
\(561\) 0.111144 0.0641690i 0.00469250 0.00270922i
\(562\) 0.483050 + 0.836667i 0.0203762 + 0.0352927i
\(563\) 13.1798 22.8280i 0.555461 0.962086i −0.442407 0.896814i \(-0.645875\pi\)
0.997868 0.0652715i \(-0.0207913\pi\)
\(564\) 0.320645i 0.0135016i
\(565\) 2.25152 + 1.29992i 0.0947223 + 0.0546880i
\(566\) 26.4144 + 15.2504i 1.11028 + 0.641020i
\(567\) 41.4736i 1.74173i
\(568\) 6.36913 11.0317i 0.267243 0.462878i
\(569\) 8.89230 + 15.4019i 0.372785 + 0.645682i 0.989993 0.141118i \(-0.0450697\pi\)
−0.617208 + 0.786800i \(0.711736\pi\)
\(570\) −0.0613555 + 0.0354236i −0.00256990 + 0.00148373i
\(571\) −19.6399 −0.821903 −0.410952 0.911657i \(-0.634804\pi\)
−0.410952 + 0.911657i \(0.634804\pi\)
\(572\) 0 0
\(573\) −0.175934 −0.00734974
\(574\) 63.9578 36.9261i 2.66955 1.54126i
\(575\) 0.791645 + 1.37117i 0.0330139 + 0.0571817i
\(576\) 19.1617 33.1890i 0.798403 1.38287i
\(577\) 18.1454i 0.755403i 0.925927 + 0.377701i \(0.123285\pi\)
−0.925927 + 0.377701i \(0.876715\pi\)
\(578\) 11.0091 + 6.35609i 0.457917 + 0.264378i
\(579\) −0.0790090 0.0456159i −0.00328350 0.00189573i
\(580\) 23.6699i 0.982840i
\(581\) 18.0765 31.3094i 0.749940 1.29893i
\(582\) 0.0487273 + 0.0843981i 0.00201981 + 0.00349841i
\(583\) 31.6515 18.2740i 1.31087 0.756832i
\(584\) 23.7462 0.982624
\(585\) 0 0
\(586\) 32.1252 1.32708
\(587\) −0.367059 + 0.211922i −0.0151501 + 0.00874694i −0.507556 0.861619i \(-0.669451\pi\)
0.492406 + 0.870366i \(0.336118\pi\)
\(588\) 0.266342 + 0.461317i 0.0109837 + 0.0190244i
\(589\) 12.0299 20.8364i 0.495683 0.858549i
\(590\) 11.7655i 0.484376i
\(591\) 0.0162595 + 0.00938741i 0.000668825 + 0.000386146i
\(592\) −5.44859 3.14574i −0.223936 0.129289i
\(593\) 47.5064i 1.95085i 0.220327 + 0.975426i \(0.429288\pi\)
−0.220327 + 0.975426i \(0.570712\pi\)
\(594\) −0.253321 + 0.438765i −0.0103939 + 0.0180027i
\(595\) −7.72477 13.3797i −0.316685 0.548514i
\(596\) 36.2673 20.9389i 1.48557 0.857692i
\(597\) −0.0317083 −0.00129774
\(598\) 0 0
\(599\) 25.7871 1.05363 0.526816 0.849979i \(-0.323386\pi\)
0.526816 + 0.849979i \(0.323386\pi\)
\(600\) −0.0215597 + 0.0124475i −0.000880171 + 0.000508167i
\(601\) 6.33880 + 10.9791i 0.258565 + 0.447848i 0.965858 0.259073i \(-0.0834171\pi\)
−0.707293 + 0.706921i \(0.750084\pi\)
\(602\) −3.58496 + 6.20934i −0.146112 + 0.253074i
\(603\) 21.8925i 0.891533i
\(604\) −30.3914 17.5465i −1.23661 0.713955i
\(605\) −2.07976 1.20075i −0.0845543 0.0488175i
\(606\) 0.303616i 0.0123336i
\(607\) 2.20224 3.81439i 0.0893862 0.154821i −0.817866 0.575409i \(-0.804843\pi\)
0.907252 + 0.420588i \(0.138176\pi\)
\(608\) 8.82466 + 15.2848i 0.357887 + 0.619879i
\(609\) 0.430642 0.248631i 0.0174505 0.0100750i
\(610\) −4.23670 −0.171539
\(611\) 0 0
\(612\) 28.8042 1.16434
\(613\) −28.8905 + 16.6799i −1.16688 + 0.673696i −0.952942 0.303152i \(-0.901961\pi\)
−0.213934 + 0.976848i \(0.568628\pi\)
\(614\) 9.98084 + 17.2873i 0.402794 + 0.697660i
\(615\) −0.0474289 + 0.0821492i −0.00191252 + 0.00331258i
\(616\) 25.7688i 1.03826i
\(617\) 28.1921 + 16.2767i 1.13497 + 0.655277i 0.945181 0.326547i \(-0.105885\pi\)
0.189792 + 0.981824i \(0.439219\pi\)
\(618\) −0.352020 0.203239i −0.0141603 0.00817546i
\(619\) 35.5813i 1.43013i 0.699056 + 0.715067i \(0.253604\pi\)
−0.699056 + 0.715067i \(0.746396\pi\)
\(620\) 14.0068 24.2604i 0.562526 0.974323i
\(621\) −0.0620157 0.107414i −0.00248860 0.00431039i
\(622\) −13.9208 + 8.03719i −0.558174 + 0.322262i
\(623\) 1.90274 0.0762317
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 24.7784 14.3058i 0.990344 0.571776i
\(627\) −0.0470961 0.0815729i −0.00188084 0.00325771i
\(628\) 10.2261 17.7121i 0.408066 0.706792i
\(629\) 13.8412i 0.551886i
\(630\) 26.4089 + 15.2472i 1.05215 + 0.607462i
\(631\) 22.0072 + 12.7058i 0.876091 + 0.505812i 0.869368 0.494166i \(-0.164526\pi\)
0.00672365 + 0.999977i \(0.497860\pi\)
\(632\) 1.87778i 0.0746942i
\(633\) 0.119234 0.206519i 0.00473911 0.00820838i
\(634\) 17.0984 + 29.6153i 0.679064 + 1.17617i
\(635\) −17.2962 + 9.98595i −0.686377 + 0.396280i
\(636\) −0.466157 −0.0184843
\(637\) 0 0
\(638\) 53.4416 2.11577
\(639\) 17.3563 10.0207i 0.686605 0.396412i
\(640\) 6.91428 + 11.9759i 0.273311 + 0.473388i
\(641\) −5.07393 + 8.78831i −0.200408 + 0.347117i −0.948660 0.316298i \(-0.897560\pi\)
0.748252 + 0.663415i \(0.230894\pi\)
\(642\) 0.114372i 0.00451392i
\(643\) −1.60595 0.927193i −0.0633323 0.0365649i 0.467999 0.883729i \(-0.344975\pi\)
−0.531332 + 0.847164i \(0.678308\pi\)
\(644\) −18.1027 10.4516i −0.713345 0.411850i
\(645\) 0.00920925i 0.000362614i
\(646\) −9.09436 + 15.7519i −0.357813 + 0.619750i
\(647\) −14.8017 25.6373i −0.581914 1.00790i −0.995252 0.0973272i \(-0.968971\pi\)
0.413338 0.910577i \(-0.364363\pi\)
\(648\) −14.8586 + 8.57864i −0.583702 + 0.337001i
\(649\) 15.6423 0.614015
\(650\) 0 0
\(651\) 0.588514 0.0230657
\(652\) 5.92898 3.42310i 0.232197 0.134059i
\(653\) −3.39441 5.87929i −0.132834 0.230075i 0.791934 0.610606i \(-0.209074\pi\)
−0.924768 + 0.380532i \(0.875741\pi\)
\(654\) −0.146487 + 0.253722i −0.00572808 + 0.00992133i
\(655\) 11.4400i 0.446996i
\(656\) 9.58654 + 5.53479i 0.374291 + 0.216097i
\(657\) 32.3550 + 18.6802i 1.26229 + 0.728782i
\(658\) 87.1498i 3.39745i
\(659\) −3.97479 + 6.88455i −0.154836 + 0.268184i −0.932999 0.359878i \(-0.882818\pi\)
0.778163 + 0.628062i \(0.216152\pi\)
\(660\) −0.0548354 0.0949777i −0.00213447 0.00369700i
\(661\) −34.9728 + 20.1916i −1.36029 + 0.785361i −0.989662 0.143422i \(-0.954189\pi\)
−0.370624 + 0.928783i \(0.620856\pi\)
\(662\) −57.5328 −2.23607
\(663\) 0 0
\(664\) −14.9562 −0.580412
\(665\) −9.81988 + 5.66951i −0.380798 + 0.219854i
\(666\) 13.6599 + 23.6597i 0.529311 + 0.916794i
\(667\) −6.54154 + 11.3303i −0.253289 + 0.438710i
\(668\) 21.3073i 0.824402i
\(669\) 0.176215 + 0.101738i 0.00681288 + 0.00393342i
\(670\) −13.9396 8.04801i −0.538532 0.310922i
\(671\) 5.63275i 0.217450i
\(672\) −0.215855 + 0.373872i −0.00832680 + 0.0144224i
\(673\) 4.81960 + 8.34779i 0.185782 + 0.321784i 0.943840 0.330404i \(-0.107185\pi\)
−0.758058 + 0.652187i \(0.773852\pi\)
\(674\) 27.6550 15.9666i 1.06523 0.615012i
\(675\) −0.0783378 −0.00301522
\(676\) 0 0
\(677\) 51.1565 1.96610 0.983051 0.183330i \(-0.0586878\pi\)
0.983051 + 0.183330i \(0.0586878\pi\)
\(678\) 0.0648377 0.0374341i 0.00249008 0.00143765i
\(679\) 7.79875 + 13.5078i 0.299288 + 0.518383i
\(680\) −3.19567 + 5.53506i −0.122548 + 0.212260i
\(681\) 0.0526680i 0.00201824i
\(682\) 54.7748 + 31.6243i 2.09744 + 1.21096i
\(683\) −7.22700 4.17251i −0.276533 0.159657i 0.355320 0.934745i \(-0.384372\pi\)
−0.631853 + 0.775088i \(0.717705\pi\)
\(684\) 21.1405i 0.808328i
\(685\) −1.56260 + 2.70650i −0.0597039 + 0.103410i
\(686\) 36.8118 + 63.7599i 1.40548 + 2.43436i
\(687\) 0.254583 0.146983i 0.00971293 0.00560776i
\(688\) −1.07469 −0.0409721
\(689\) 0 0
\(690\) 0.0455944 0.00173575
\(691\) −31.2846 + 18.0622i −1.19012 + 0.687117i −0.958334 0.285649i \(-0.907791\pi\)
−0.231788 + 0.972766i \(0.574457\pi\)
\(692\) −3.63961 6.30398i −0.138357 0.239641i
\(693\) −20.2713 + 35.1109i −0.770043 + 1.33375i
\(694\) 15.0289i 0.570491i
\(695\) −5.27865 3.04763i −0.200231 0.115603i
\(696\) −0.178153 0.102856i −0.00675286 0.00389876i
\(697\) 24.3530i 0.922435i
\(698\) 37.2030 64.4376i 1.40816 2.43900i
\(699\) 0.0502524 + 0.0870398i 0.00190072 + 0.00329215i
\(700\) −11.4336 + 6.60118i −0.432149 + 0.249501i
\(701\) 45.9823 1.73673 0.868364 0.495928i \(-0.165172\pi\)
0.868364 + 0.495928i \(0.165172\pi\)
\(702\) 0 0
\(703\) −10.1586 −0.383139
\(704\) −32.4421 + 18.7304i −1.22271 + 0.705930i
\(705\) 0.0559688 + 0.0969409i 0.00210791 + 0.00365100i
\(706\) −20.6457 + 35.7595i −0.777012 + 1.34582i
\(707\) 48.5934i 1.82754i
\(708\) −0.172783 0.0997562i −0.00649357 0.00374907i
\(709\) 32.9912 + 19.0475i 1.23901 + 0.715343i 0.968892 0.247484i \(-0.0796039\pi\)
0.270118 + 0.962827i \(0.412937\pi\)
\(710\) 14.7350i 0.552993i
\(711\) 1.47718 2.55854i 0.0553984 0.0959529i
\(712\) −0.393573 0.681689i −0.0147498 0.0255474i
\(713\) −13.4095 + 7.74196i −0.502188 + 0.289939i
\(714\) −0.444904 −0.0166501
\(715\) 0 0
\(716\) −30.6251 −1.14452
\(717\) −0.211678 + 0.122213i −0.00790527 + 0.00456411i
\(718\) 30.7965 + 53.3411i 1.14931 + 1.99067i
\(719\) −13.9336 + 24.1337i −0.519635 + 0.900035i 0.480104 + 0.877212i \(0.340599\pi\)
−0.999740 + 0.0228234i \(0.992734\pi\)
\(720\) 4.57075i 0.170342i
\(721\) −56.3404 32.5281i −2.09823 1.21141i
\(722\) −24.7304 14.2781i −0.920371 0.531376i
\(723\) 0.295319i 0.0109830i
\(724\) 16.8873 29.2497i 0.627612 1.08706i
\(725\) 4.13161 + 7.15616i 0.153444 + 0.265773i
\(726\) −0.0598914 + 0.0345783i −0.00222278 + 0.00128332i
\(727\) 13.7750 0.510885 0.255443 0.966824i \(-0.417779\pi\)
0.255443 + 0.966824i \(0.417779\pi\)
\(728\) 0 0
\(729\) −26.9908 −0.999659
\(730\) −23.7883 + 13.7342i −0.880444 + 0.508325i
\(731\) −1.18215 2.04755i −0.0437235 0.0757313i
\(732\) −0.0359219 + 0.0622185i −0.00132771 + 0.00229966i
\(733\) 6.58392i 0.243183i −0.992580 0.121591i \(-0.961200\pi\)
0.992580 0.121591i \(-0.0387997\pi\)
\(734\) −4.79406 2.76785i −0.176952 0.102163i
\(735\) −0.161047 0.0929804i −0.00594030 0.00342963i
\(736\) 11.3584i 0.418676i
\(737\) 10.6999 18.5328i 0.394137 0.682665i
\(738\) −24.0340 41.6281i −0.884704 1.53235i
\(739\) −4.74150 + 2.73750i −0.174419 + 0.100701i −0.584668 0.811273i \(-0.698775\pi\)
0.410249 + 0.911974i \(0.365442\pi\)
\(740\) −11.8280 −0.434805
\(741\) 0 0
\(742\) −126.700 −4.65129
\(743\) −23.0981 + 13.3357i −0.847387 + 0.489239i −0.859769 0.510684i \(-0.829392\pi\)
0.0123810 + 0.999923i \(0.496059\pi\)
\(744\) −0.121731 0.210845i −0.00446289 0.00772995i
\(745\) −7.30982 + 12.6610i −0.267811 + 0.463862i
\(746\) 48.9148i 1.79090i
\(747\) −20.3783 11.7654i −0.745603 0.430474i
\(748\) −24.3838 14.0780i −0.891560 0.514742i
\(749\) 18.3052i 0.668857i
\(750\) 0.0143986 0.0249391i 0.000525763 0.000910649i
\(751\) 10.9034 + 18.8852i 0.397870 + 0.689131i 0.993463 0.114156i \(-0.0364162\pi\)
−0.595593 + 0.803286i \(0.703083\pi\)
\(752\) 11.3127 6.53137i 0.412531 0.238175i
\(753\) 0.0232946 0.000848903
\(754\) 0 0
\(755\) 12.2510 0.445860
\(756\) 0.895681 0.517121i 0.0325756 0.0188075i
\(757\) 4.16711 + 7.21764i 0.151456 + 0.262330i 0.931763 0.363067i \(-0.118270\pi\)
−0.780307 + 0.625397i \(0.784937\pi\)
\(758\) −1.56723 + 2.71452i −0.0569243 + 0.0985957i
\(759\) 0.0606183i 0.00220031i
\(760\) 4.06239 + 2.34542i 0.147359 + 0.0850775i
\(761\) −6.34880 3.66548i −0.230144 0.132874i 0.380495 0.924783i \(-0.375754\pi\)
−0.610638 + 0.791910i \(0.709087\pi\)
\(762\) 0.575135i 0.0208350i
\(763\) −23.4450 + 40.6080i −0.848767 + 1.47011i
\(764\) 19.2990 + 33.4268i 0.698213 + 1.20934i
\(765\) −8.70841 + 5.02780i −0.314853 + 0.181781i
\(766\) −46.4783 −1.67933
\(767\) 0 0
\(768\) 0.0646221 0.00233185
\(769\) −19.3423 + 11.1673i −0.697503 + 0.402703i −0.806417 0.591348i \(-0.798596\pi\)
0.108914 + 0.994051i \(0.465263\pi\)
\(770\) −14.9040 25.8145i −0.537104 0.930292i
\(771\) 0.0300204 0.0519968i 0.00108116 0.00187262i
\(772\) 20.0153i 0.720365i
\(773\) 23.5204 + 13.5795i 0.845971 + 0.488422i 0.859290 0.511490i \(-0.170906\pi\)
−0.0133182 + 0.999911i \(0.504239\pi\)
\(774\) 4.04146 + 2.33334i 0.145267 + 0.0838700i
\(775\) 9.77959i 0.351293i
\(776\) 3.22627 5.58806i 0.115816 0.200600i
\(777\) −0.124242 0.215194i −0.00445716 0.00772003i
\(778\) −25.7311 + 14.8559i −0.922505 + 0.532608i
\(779\) 17.8736 0.640388
\(780\) 0 0
\(781\) −19.5903 −0.700997
\(782\) 10.1373 5.85276i 0.362508 0.209294i
\(783\) −0.323661 0.560597i −0.0115667 0.0200341i
\(784\) −10.8505 + 18.7936i −0.387518 + 0.671201i
\(785\) 7.13991i 0.254834i
\(786\) −0.285303 0.164720i −0.0101764 0.00587536i
\(787\) 10.0291 + 5.79032i 0.357500 + 0.206403i 0.667983 0.744176i \(-0.267158\pi\)
−0.310484 + 0.950579i \(0.600491\pi\)
\(788\) 4.11899i 0.146733i
\(789\) 0.122816 0.212723i 0.00437236 0.00757315i
\(790\) 1.08606 + 1.88111i 0.0386403 + 0.0669270i
\(791\) 10.3772 5.99128i 0.368971 0.213025i
\(792\) 16.7721 0.595971
\(793\) 0 0
\(794\) 59.9601 2.12790
\(795\) 0.140934 0.0813682i 0.00499841 0.00288583i
\(796\) 3.47824 + 6.02448i 0.123283 + 0.213532i
\(797\) −23.8502 + 41.3097i −0.844817 + 1.46327i 0.0409626 + 0.999161i \(0.486958\pi\)
−0.885780 + 0.464106i \(0.846376\pi\)
\(798\) 0.326532i 0.0115591i
\(799\) 24.8878 + 14.3690i 0.880467 + 0.508338i
\(800\) −6.21280 3.58696i −0.219656 0.126818i
\(801\) 1.23843i 0.0437579i
\(802\) 3.61183 6.25587i 0.127538 0.220902i
\(803\) −18.2598 31.6268i −0.644373 1.11609i
\(804\) −0.236380 + 0.136474i −0.00833647 + 0.00481306i
\(805\) 7.29733 0.257197
\(806\) 0 0
\(807\) −0.0242086 −0.000852184
\(808\) −17.4094 + 10.0513i −0.612461 + 0.353605i
\(809\) −18.1955 31.5155i −0.639720 1.10803i −0.985494 0.169709i \(-0.945717\pi\)
0.345774 0.938318i \(-0.387616\pi\)
\(810\) 9.92333 17.1877i 0.348670 0.603914i
\(811\) 36.8088i 1.29253i −0.763112 0.646266i \(-0.776330\pi\)
0.763112 0.646266i \(-0.223670\pi\)
\(812\) −94.4782 54.5470i −3.31553 1.91422i
\(813\) −0.00169270 0.000977280i −5.93655e−5 3.42747e-5i
\(814\) 26.7050i 0.936010i
\(815\) −1.19501 + 2.06982i −0.0418594 + 0.0725026i
\(816\) −0.0333430 0.0577517i −0.00116724 0.00202172i
\(817\) −1.50278 + 0.867628i −0.0525755 + 0.0303545i
\(818\) 42.2755 1.47813
\(819\) 0 0
\(820\) 20.8108 0.726744
\(821\) 29.1563 16.8334i 1.01756 0.587491i 0.104166 0.994560i \(-0.466783\pi\)
0.913397 + 0.407069i \(0.133449\pi\)
\(822\) 0.0449986 + 0.0779398i 0.00156951 + 0.00271846i
\(823\) 15.9404 27.6096i 0.555649 0.962412i −0.442204 0.896914i \(-0.645803\pi\)
0.997853 0.0654973i \(-0.0208634\pi\)
\(824\) 26.9132i 0.937566i
\(825\) 0.0331569 + 0.0191432i 0.00115438 + 0.000666479i
\(826\) −46.9616 27.1133i −1.63400 0.943392i
\(827\) 18.4625i 0.642003i 0.947079 + 0.321002i \(0.104019\pi\)
−0.947079 + 0.321002i \(0.895981\pi\)
\(828\) −6.80259 + 11.7824i −0.236406 + 0.409468i
\(829\) −17.4831 30.2817i −0.607214 1.05173i −0.991697 0.128594i \(-0.958954\pi\)
0.384483 0.923132i \(-0.374380\pi\)
\(830\) 14.9827 8.65026i 0.520057 0.300255i
\(831\) 0.287487 0.00997280
\(832\) 0 0
\(833\) −47.7420 −1.65416
\(834\) −0.152011 + 0.0877633i −0.00526369 + 0.00303900i
\(835\) 3.71920 + 6.44185i 0.128708 + 0.222929i
\(836\) −10.3324 + 17.8962i −0.357353 + 0.618954i
\(837\) 0.766111i 0.0264807i
\(838\) −0.749632 0.432800i −0.0258956 0.0149508i
\(839\) −24.8752 14.3617i −0.858786 0.495820i 0.00481947 0.999988i \(-0.498466\pi\)
−0.863606 + 0.504168i \(0.831799\pi\)
\(840\) 0.114740i 0.00395892i
\(841\) −19.6404 + 34.0182i −0.677256 + 1.17304i
\(842\) 38.7975 + 67.1993i 1.33705 + 2.31584i
\(843\) −0.00495297 + 0.00285960i −0.000170589 + 9.84899e-5i
\(844\) −52.3172 −1.80083
\(845\) 0 0
\(846\) −56.7230 −1.95018
\(847\) −9.58555 + 5.53422i −0.329364 + 0.190158i
\(848\) −9.49540 16.4465i −0.326073 0.564776i
\(849\) −0.0902804 + 0.156370i −0.00309841 + 0.00536661i
\(850\) 7.39317i 0.253584i
\(851\) 5.66179 + 3.26884i 0.194084 + 0.112054i
\(852\) 0.216392 + 0.124934i 0.00741346 + 0.00428016i
\(853\) 13.7453i 0.470629i 0.971919 + 0.235315i \(0.0756121\pi\)
−0.971919 + 0.235315i \(0.924388\pi\)
\(854\) −9.76342 + 16.9107i −0.334097 + 0.578674i
\(855\) 3.69010 + 6.39144i 0.126199 + 0.218583i
\(856\) 6.55815 3.78635i 0.224153 0.129415i
\(857\) 12.6495 0.432099 0.216049 0.976382i \(-0.430683\pi\)
0.216049 + 0.976382i \(0.430683\pi\)
\(858\) 0 0
\(859\) −11.0929 −0.378485 −0.189243 0.981930i \(-0.560603\pi\)
−0.189243 + 0.981930i \(0.560603\pi\)
\(860\) −1.74973 + 1.01021i −0.0596652 + 0.0344477i
\(861\) 0.218598 + 0.378623i 0.00744981 + 0.0129034i
\(862\) 2.50832 4.34453i 0.0854336 0.147975i
\(863\) 33.0295i 1.12434i −0.827022 0.562169i \(-0.809967\pi\)
0.827022 0.562169i \(-0.190033\pi\)
\(864\) 0.486697 + 0.280994i 0.0165578 + 0.00955962i
\(865\) 2.20073 + 1.27059i 0.0748272 + 0.0432015i
\(866\) 26.2081i 0.890587i
\(867\) −0.0376273 + 0.0651724i −0.00127789 + 0.00221337i
\(868\) −64.5568 111.816i −2.19120 3.79527i
\(869\) −2.50096 + 1.44393i −0.0848394 + 0.0489821i
\(870\) 0.237958 0.00806753
\(871\) 0 0
\(872\) 19.3980 0.656899
\(873\) 8.79181 5.07595i 0.297558 0.171795i
\(874\) −4.29557 7.44014i −0.145300 0.251667i
\(875\) 2.30448 3.99148i 0.0779058 0.134937i
\(876\) 0.465794i 0.0157377i
\(877\) −13.3712 7.71986i −0.451513 0.260681i 0.256956 0.966423i \(-0.417280\pi\)
−0.708469 + 0.705742i \(0.750614\pi\)
\(878\) −68.2417 39.3993i −2.30304 1.32966i
\(879\) 0.190178i 0.00641453i
\(880\) 2.23394 3.86930i 0.0753062 0.130434i
\(881\) −8.31299 14.3985i −0.280072 0.485098i 0.691331 0.722539i \(-0.257025\pi\)
−0.971402 + 0.237440i \(0.923692\pi\)
\(882\) 81.6084 47.1167i 2.74790 1.58650i
\(883\) −57.2845 −1.92778 −0.963888 0.266309i \(-0.914196\pi\)
−0.963888 + 0.266309i \(0.914196\pi\)
\(884\) 0 0
\(885\) 0.0696502 0.00234126
\(886\) 9.52942 5.50181i 0.320147 0.184837i
\(887\) −9.23286 15.9918i −0.310009 0.536952i 0.668355 0.743843i \(-0.266999\pi\)
−0.978364 + 0.206891i \(0.933665\pi\)
\(888\) −0.0513978 + 0.0890236i −0.00172480 + 0.00298744i
\(889\) 92.0498i 3.08725i
\(890\) 0.788543 + 0.455265i 0.0264320 + 0.0152605i
\(891\) 22.8513 + 13.1932i 0.765546 + 0.441988i
\(892\) 44.6405i 1.49467i
\(893\) 10.5459 18.2661i 0.352907 0.611252i
\(894\) 0.210503 + 0.364601i 0.00704026 + 0.0121941i
\(895\) 9.25894 5.34565i 0.309492 0.178685i
\(896\) 63.7354 2.12925
\(897\) 0 0
\(898\) −51.8055 −1.72877
\(899\) −69.9843 + 40.4054i −2.33411 + 1.34760i
\(900\) 4.29649 + 7.44175i 0.143216 + 0.248058i
\(901\) 20.8898 36.1822i 0.695940 1.20540i
\(902\) 46.9862i 1.56447i
\(903\) −0.0367586 0.0212226i −0.00122325 0.000706243i
\(904\) −4.29296 2.47854i −0.142782 0.0824350i
\(905\) 11.7908i 0.391939i
\(906\) 0.176398 0.305530i 0.00586042 0.0101505i
\(907\) 22.4744 + 38.9269i 0.746251 + 1.29255i 0.949608 + 0.313440i \(0.101482\pi\)
−0.203357 + 0.979105i \(0.565185\pi\)
\(908\) 10.0067 5.77740i 0.332086 0.191730i
\(909\) −31.6279 −1.04903
\(910\) 0 0
\(911\) −44.3728 −1.47014 −0.735069 0.677992i \(-0.762850\pi\)
−0.735069 + 0.677992i \(0.762850\pi\)
\(912\) −0.0423862 + 0.0244717i −0.00140355 + 0.000810339i
\(913\) 11.5006 + 19.9197i 0.380616 + 0.659245i
\(914\) 44.3879 76.8822i 1.46822 2.54304i
\(915\) 0.0250808i 0.000829146i
\(916\) −55.8527 32.2466i −1.84542 1.06546i
\(917\) −45.6624 26.3632i −1.50791 0.870590i
\(918\) 0.579164i 0.0191153i
\(919\) −12.5840 + 21.7961i −0.415108 + 0.718989i −0.995440 0.0953917i \(-0.969590\pi\)
0.580332 + 0.814380i \(0.302923\pi\)
\(920\) −1.50942 2.61439i −0.0497641 0.0861940i
\(921\) −0.102339 + 0.0590855i −0.00337219 + 0.00194693i
\(922\) 68.8443 2.26726
\(923\) 0 0
\(924\) −0.505469 −0.0166287
\(925\) 3.57597 2.06458i 0.117577 0.0678831i
\(926\) 19.5734 + 33.9021i 0.643221 + 1.11409i
\(927\) −21.1715 + 36.6702i −0.695364 + 1.20441i
\(928\) 59.2797i 1.94595i
\(929\) 32.5280 + 18.7800i 1.06721 + 0.616153i 0.927417 0.374028i \(-0.122024\pi\)
0.139791 + 0.990181i \(0.455357\pi\)
\(930\) 0.243895 + 0.140813i 0.00799762 + 0.00461743i
\(931\) 35.0397i 1.14838i
\(932\) 11.0248 19.0956i 0.361131 0.625497i
\(933\) −0.0475793 0.0824097i −0.00155768 0.00269797i
\(934\) −50.9312 + 29.4051i −1.66652 + 0.962165i
\(935\) 9.82931 0.321453
\(936\) 0 0
\(937\) −17.1212 −0.559326 −0.279663 0.960098i \(-0.590223\pi\)
−0.279663 + 0.960098i \(0.590223\pi\)
\(938\) −64.2470 + 37.0930i −2.09774 + 1.21113i
\(939\) 0.0846889 + 0.146685i 0.00276372 + 0.00478690i
\(940\) 12.2790 21.2678i 0.400496 0.693679i
\(941\) 0.208568i 0.00679913i 0.999994 + 0.00339956i \(0.00108212\pi\)
−0.999994 + 0.00339956i \(0.998918\pi\)
\(942\) 0.178063 + 0.102805i 0.00580162 + 0.00334957i
\(943\) −9.96166 5.75137i −0.324396 0.187290i
\(944\) 8.12794i 0.264542i
\(945\) −0.180528 + 0.312684i −0.00587258 + 0.0101716i
\(946\) −2.28083 3.95051i −0.0741560 0.128442i
\(947\) 0.358585 0.207029i 0.0116525 0.00672755i −0.494162 0.869370i \(-0.664525\pi\)
0.505815 + 0.862642i \(0.331192\pi\)
\(948\) 0.0368337 0.00119630
\(949\) 0 0
\(950\) −5.42613 −0.176047
\(951\) −0.175319 + 0.101221i −0.00568512 + 0.00328230i
\(952\) 14.7287 + 25.5109i 0.477361 + 0.826813i
\(953\) −16.9296 + 29.3230i −0.548404 + 0.949864i 0.449980 + 0.893039i \(0.351431\pi\)
−0.998384 + 0.0568255i \(0.981902\pi\)
\(954\) 82.4647i 2.66989i
\(955\) −11.6694 6.73731i −0.377612 0.218014i
\(956\) 46.4400 + 26.8121i 1.50198 + 0.867166i
\(957\) 0.316368i 0.0102267i
\(958\) 22.5662 39.0858i 0.729081 1.26281i
\(959\) 7.20197 + 12.4742i 0.232564 + 0.402812i
\(960\) −0.144454 + 0.0834005i −0.00466223 + 0.00269174i
\(961\) −64.6403 −2.08517
\(962\) 0 0
\(963\) 11.9143 0.383932
\(964\) −56.1097 + 32.3949i −1.80717 + 1.04337i
\(965\) −3.49368 6.05124i −0.112466 0.194796i
\(966\) 0.105072 0.181989i 0.00338062 0.00585541i
\(967\) 13.2125i 0.424885i −0.977174 0.212442i \(-0.931858\pi\)
0.977174 0.212442i \(-0.0681417\pi\)
\(968\) 3.96546 + 2.28946i 0.127455 + 0.0735860i
\(969\) −0.0932494 0.0538376i −0.00299560 0.00172951i
\(970\) 7.46397i 0.239654i
\(971\) 8.80095 15.2437i 0.282436 0.489193i −0.689548 0.724240i \(-0.742191\pi\)
0.971984 + 0.235046i \(0.0755242\pi\)
\(972\) −0.504871 0.874463i −0.0161938 0.0280484i
\(973\) −24.3291 + 14.0464i −0.779956 + 0.450308i
\(974\) 17.9045 0.573697
\(975\) 0 0
\(976\) −2.92685 −0.0936861
\(977\) 10.2028 5.89059i 0.326416 0.188457i −0.327833 0.944736i \(-0.606318\pi\)
0.654249 + 0.756279i \(0.272985\pi\)
\(978\) 0.0344130 + 0.0596051i 0.00110041 + 0.00190596i
\(979\) −0.605281 + 1.04838i −0.0193449 + 0.0335063i
\(980\) 40.7978i 1.30324i
\(981\) 26.4304 + 15.2596i 0.843859 + 0.487202i
\(982\) 6.24586 + 3.60605i 0.199314 + 0.115074i
\(983\) 45.4985i 1.45118i −0.688128 0.725589i \(-0.741567\pi\)
0.688128 0.725589i \(-0.258433\pi\)
\(984\) 0.0904321 0.156633i 0.00288287 0.00499328i
\(985\) 0.718974 + 1.24530i 0.0229084 + 0.0396786i
\(986\) 52.9067 30.5457i 1.68489 0.972773i
\(987\) 0.515917 0.0164218
\(988\) 0 0
\(989\) 1.11674 0.0355103
\(990\) −16.8019 + 9.70056i −0.533998 + 0.308304i
\(991\) −16.6343 28.8114i −0.528405 0.915224i −0.999452 0.0331155i \(-0.989457\pi\)
0.471047 0.882108i \(-0.343876\pi\)
\(992\) 35.0790 60.7586i 1.11376 1.92909i
\(993\) 0.340588i 0.0108082i
\(994\) 58.8144 + 33.9565i 1.86548 + 1.07703i
\(995\) −2.10316 1.21426i −0.0666746 0.0384946i
\(996\) 0.293373i 0.00929589i
\(997\) 19.8935 34.4566i 0.630033 1.09125i −0.357511 0.933909i \(-0.616375\pi\)
0.987544 0.157341i \(-0.0502922\pi\)
\(998\) −9.80746 16.9870i −0.310450 0.537715i
\(999\) −0.280133 + 0.161735i −0.00886302 + 0.00511707i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.m.j.361.14 36
13.2 odd 12 845.2.a.o.1.7 yes 9
13.3 even 3 845.2.c.h.506.14 18
13.4 even 6 inner 845.2.m.j.316.14 36
13.5 odd 4 845.2.e.o.146.3 18
13.6 odd 12 845.2.e.o.191.3 18
13.7 odd 12 845.2.e.p.191.7 18
13.8 odd 4 845.2.e.p.146.7 18
13.9 even 3 inner 845.2.m.j.316.5 36
13.10 even 6 845.2.c.h.506.5 18
13.11 odd 12 845.2.a.n.1.3 9
13.12 even 2 inner 845.2.m.j.361.5 36
39.2 even 12 7605.2.a.cp.1.3 9
39.11 even 12 7605.2.a.cs.1.7 9
65.24 odd 12 4225.2.a.bt.1.7 9
65.54 odd 12 4225.2.a.bs.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.n.1.3 9 13.11 odd 12
845.2.a.o.1.7 yes 9 13.2 odd 12
845.2.c.h.506.5 18 13.10 even 6
845.2.c.h.506.14 18 13.3 even 3
845.2.e.o.146.3 18 13.5 odd 4
845.2.e.o.191.3 18 13.6 odd 12
845.2.e.p.146.7 18 13.8 odd 4
845.2.e.p.191.7 18 13.7 odd 12
845.2.m.j.316.5 36 13.9 even 3 inner
845.2.m.j.316.14 36 13.4 even 6 inner
845.2.m.j.361.5 36 13.12 even 2 inner
845.2.m.j.361.14 36 1.1 even 1 trivial
4225.2.a.bs.1.3 9 65.54 odd 12
4225.2.a.bt.1.7 9 65.24 odd 12
7605.2.a.cp.1.3 9 39.2 even 12
7605.2.a.cs.1.7 9 39.11 even 12