Properties

Label 845.2.a.n.1.3
Level $845$
Weight $2$
Character 845.1
Self dual yes
Analytic conductor $6.747$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(1,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 17x^{7} - 9x^{6} + 59x^{5} + 32x^{4} - 44x^{3} - 23x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.76052\) of defining polynomial
Character \(\chi\) \(=\) 845.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.20556 q^{2} -0.0130567 q^{3} +2.86449 q^{4} -1.00000 q^{5} +0.0287972 q^{6} -4.60897 q^{7} -1.90669 q^{8} -2.99983 q^{9} +2.20556 q^{10} -2.93232 q^{11} -0.0374007 q^{12} +10.1654 q^{14} +0.0130567 q^{15} -1.52367 q^{16} -3.35206 q^{17} +6.61630 q^{18} +2.46021 q^{19} -2.86449 q^{20} +0.0601778 q^{21} +6.46741 q^{22} -1.58329 q^{23} +0.0248950 q^{24} +1.00000 q^{25} +0.0783378 q^{27} -13.2024 q^{28} +8.26322 q^{29} -0.0287972 q^{30} +9.77959 q^{31} +7.17392 q^{32} +0.0382863 q^{33} +7.39317 q^{34} +4.60897 q^{35} -8.59299 q^{36} -4.12917 q^{37} -5.42613 q^{38} +1.90669 q^{40} -7.26508 q^{41} -0.132726 q^{42} -0.705329 q^{43} -8.39961 q^{44} +2.99983 q^{45} +3.49204 q^{46} -8.57322 q^{47} +0.0198940 q^{48} +14.2426 q^{49} -2.20556 q^{50} +0.0437667 q^{51} -12.4639 q^{53} -0.172779 q^{54} +2.93232 q^{55} +8.78787 q^{56} -0.0321221 q^{57} -18.2250 q^{58} +5.33445 q^{59} +0.0374007 q^{60} +1.92092 q^{61} -21.5695 q^{62} +13.8261 q^{63} -12.7752 q^{64} -0.0844427 q^{66} +7.29793 q^{67} -9.60195 q^{68} +0.0206725 q^{69} -10.1654 q^{70} +6.68083 q^{71} +5.71974 q^{72} +12.4541 q^{73} +9.10713 q^{74} -0.0130567 q^{75} +7.04724 q^{76} +13.5150 q^{77} +0.984840 q^{79} +1.52367 q^{80} +8.99847 q^{81} +16.0236 q^{82} +7.84405 q^{83} +0.172379 q^{84} +3.35206 q^{85} +1.55565 q^{86} -0.107890 q^{87} +5.59102 q^{88} +0.412834 q^{89} -6.61630 q^{90} -4.53532 q^{92} -0.127689 q^{93} +18.9087 q^{94} -2.46021 q^{95} -0.0936675 q^{96} +3.38416 q^{97} -31.4129 q^{98} +8.79646 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 3 q^{2} + 7 q^{3} + 17 q^{4} - 9 q^{5} + 2 q^{6} - 7 q^{7} - 12 q^{8} + 16 q^{9} + 3 q^{10} + 9 q^{11} + 12 q^{12} - 2 q^{14} - 7 q^{15} + 37 q^{16} - q^{17} + 10 q^{18} + 4 q^{19} - 17 q^{20} + q^{21}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.20556 −1.55957 −0.779783 0.626050i \(-0.784671\pi\)
−0.779783 + 0.626050i \(0.784671\pi\)
\(3\) −0.0130567 −0.00753827 −0.00376913 0.999993i \(-0.501200\pi\)
−0.00376913 + 0.999993i \(0.501200\pi\)
\(4\) 2.86449 1.43225
\(5\) −1.00000 −0.447214
\(6\) 0.0287972 0.0117564
\(7\) −4.60897 −1.74203 −0.871013 0.491259i \(-0.836537\pi\)
−0.871013 + 0.491259i \(0.836537\pi\)
\(8\) −1.90669 −0.674116
\(9\) −2.99983 −0.999943
\(10\) 2.20556 0.697459
\(11\) −2.93232 −0.884128 −0.442064 0.896984i \(-0.645754\pi\)
−0.442064 + 0.896984i \(0.645754\pi\)
\(12\) −0.0374007 −0.0107967
\(13\) 0 0
\(14\) 10.1654 2.71681
\(15\) 0.0130567 0.00337122
\(16\) −1.52367 −0.380917
\(17\) −3.35206 −0.812994 −0.406497 0.913652i \(-0.633250\pi\)
−0.406497 + 0.913652i \(0.633250\pi\)
\(18\) 6.61630 1.55948
\(19\) 2.46021 0.564410 0.282205 0.959354i \(-0.408934\pi\)
0.282205 + 0.959354i \(0.408934\pi\)
\(20\) −2.86449 −0.640520
\(21\) 0.0601778 0.0131319
\(22\) 6.46741 1.37886
\(23\) −1.58329 −0.330139 −0.165069 0.986282i \(-0.552785\pi\)
−0.165069 + 0.986282i \(0.552785\pi\)
\(24\) 0.0248950 0.00508167
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0.0783378 0.0150761
\(28\) −13.2024 −2.49501
\(29\) 8.26322 1.53444 0.767221 0.641383i \(-0.221639\pi\)
0.767221 + 0.641383i \(0.221639\pi\)
\(30\) −0.0287972 −0.00525763
\(31\) 9.77959 1.75647 0.878233 0.478233i \(-0.158723\pi\)
0.878233 + 0.478233i \(0.158723\pi\)
\(32\) 7.17392 1.26818
\(33\) 0.0382863 0.00666479
\(34\) 7.39317 1.26792
\(35\) 4.60897 0.779058
\(36\) −8.59299 −1.43216
\(37\) −4.12917 −0.678831 −0.339416 0.940637i \(-0.610229\pi\)
−0.339416 + 0.940637i \(0.610229\pi\)
\(38\) −5.42613 −0.880235
\(39\) 0 0
\(40\) 1.90669 0.301474
\(41\) −7.26508 −1.13462 −0.567308 0.823506i \(-0.692015\pi\)
−0.567308 + 0.823506i \(0.692015\pi\)
\(42\) −0.132726 −0.0204800
\(43\) −0.705329 −0.107562 −0.0537809 0.998553i \(-0.517127\pi\)
−0.0537809 + 0.998553i \(0.517127\pi\)
\(44\) −8.39961 −1.26629
\(45\) 2.99983 0.447188
\(46\) 3.49204 0.514873
\(47\) −8.57322 −1.25053 −0.625266 0.780411i \(-0.715010\pi\)
−0.625266 + 0.780411i \(0.715010\pi\)
\(48\) 0.0198940 0.00287146
\(49\) 14.2426 2.03466
\(50\) −2.20556 −0.311913
\(51\) 0.0437667 0.00612857
\(52\) 0 0
\(53\) −12.4639 −1.71204 −0.856022 0.516940i \(-0.827071\pi\)
−0.856022 + 0.516940i \(0.827071\pi\)
\(54\) −0.172779 −0.0235122
\(55\) 2.93232 0.395394
\(56\) 8.78787 1.17433
\(57\) −0.0321221 −0.00425467
\(58\) −18.2250 −2.39306
\(59\) 5.33445 0.694487 0.347243 0.937775i \(-0.387118\pi\)
0.347243 + 0.937775i \(0.387118\pi\)
\(60\) 0.0374007 0.00482841
\(61\) 1.92092 0.245949 0.122974 0.992410i \(-0.460757\pi\)
0.122974 + 0.992410i \(0.460757\pi\)
\(62\) −21.5695 −2.73932
\(63\) 13.8261 1.74193
\(64\) −12.7752 −1.59690
\(65\) 0 0
\(66\) −0.0844427 −0.0103942
\(67\) 7.29793 0.891584 0.445792 0.895137i \(-0.352922\pi\)
0.445792 + 0.895137i \(0.352922\pi\)
\(68\) −9.60195 −1.16441
\(69\) 0.0206725 0.00248867
\(70\) −10.1654 −1.21499
\(71\) 6.68083 0.792868 0.396434 0.918063i \(-0.370248\pi\)
0.396434 + 0.918063i \(0.370248\pi\)
\(72\) 5.71974 0.674078
\(73\) 12.4541 1.45765 0.728824 0.684702i \(-0.240067\pi\)
0.728824 + 0.684702i \(0.240067\pi\)
\(74\) 9.10713 1.05868
\(75\) −0.0130567 −0.00150765
\(76\) 7.04724 0.808374
\(77\) 13.5150 1.54017
\(78\) 0 0
\(79\) 0.984840 0.110803 0.0554016 0.998464i \(-0.482356\pi\)
0.0554016 + 0.998464i \(0.482356\pi\)
\(80\) 1.52367 0.170351
\(81\) 8.99847 0.999830
\(82\) 16.0236 1.76951
\(83\) 7.84405 0.860997 0.430498 0.902591i \(-0.358338\pi\)
0.430498 + 0.902591i \(0.358338\pi\)
\(84\) 0.172379 0.0188081
\(85\) 3.35206 0.363582
\(86\) 1.55565 0.167750
\(87\) −0.107890 −0.0115670
\(88\) 5.59102 0.596005
\(89\) 0.412834 0.0437604 0.0218802 0.999761i \(-0.493035\pi\)
0.0218802 + 0.999761i \(0.493035\pi\)
\(90\) −6.61630 −0.697419
\(91\) 0 0
\(92\) −4.53532 −0.472840
\(93\) −0.127689 −0.0132407
\(94\) 18.9087 1.95029
\(95\) −2.46021 −0.252412
\(96\) −0.0936675 −0.00955989
\(97\) 3.38416 0.343609 0.171805 0.985131i \(-0.445040\pi\)
0.171805 + 0.985131i \(0.445040\pi\)
\(98\) −31.4129 −3.17318
\(99\) 8.79646 0.884077
\(100\) 2.86449 0.286449
\(101\) −10.5432 −1.04909 −0.524545 0.851383i \(-0.675765\pi\)
−0.524545 + 0.851383i \(0.675765\pi\)
\(102\) −0.0965301 −0.00955790
\(103\) 14.1152 1.39081 0.695404 0.718619i \(-0.255226\pi\)
0.695404 + 0.718619i \(0.255226\pi\)
\(104\) 0 0
\(105\) −0.0601778 −0.00587275
\(106\) 27.4898 2.67004
\(107\) −3.97165 −0.383954 −0.191977 0.981399i \(-0.561490\pi\)
−0.191977 + 0.981399i \(0.561490\pi\)
\(108\) 0.224398 0.0215927
\(109\) −10.1737 −0.974460 −0.487230 0.873274i \(-0.661993\pi\)
−0.487230 + 0.873274i \(0.661993\pi\)
\(110\) −6.46741 −0.616643
\(111\) 0.0539132 0.00511721
\(112\) 7.02254 0.663568
\(113\) −2.59984 −0.244572 −0.122286 0.992495i \(-0.539023\pi\)
−0.122286 + 0.992495i \(0.539023\pi\)
\(114\) 0.0708472 0.00663545
\(115\) 1.58329 0.147642
\(116\) 23.6699 2.19770
\(117\) 0 0
\(118\) −11.7655 −1.08310
\(119\) 15.4495 1.41626
\(120\) −0.0248950 −0.00227259
\(121\) −2.40150 −0.218318
\(122\) −4.23670 −0.383573
\(123\) 0.0948578 0.00855304
\(124\) 28.0135 2.51569
\(125\) −1.00000 −0.0894427
\(126\) −30.4943 −2.71665
\(127\) 19.9719 1.77222 0.886109 0.463476i \(-0.153398\pi\)
0.886109 + 0.463476i \(0.153398\pi\)
\(128\) 13.8286 1.22228
\(129\) 0.00920925 0.000810829 0
\(130\) 0 0
\(131\) −11.4400 −0.999514 −0.499757 0.866166i \(-0.666577\pi\)
−0.499757 + 0.866166i \(0.666577\pi\)
\(132\) 0.109671 0.00954562
\(133\) −11.3390 −0.983217
\(134\) −16.0960 −1.39048
\(135\) −0.0783378 −0.00674224
\(136\) 6.39133 0.548052
\(137\) −3.12520 −0.267004 −0.133502 0.991049i \(-0.542622\pi\)
−0.133502 + 0.991049i \(0.542622\pi\)
\(138\) −0.0455944 −0.00388125
\(139\) 6.09526 0.516993 0.258497 0.966012i \(-0.416773\pi\)
0.258497 + 0.966012i \(0.416773\pi\)
\(140\) 13.2024 1.11580
\(141\) 0.111938 0.00942685
\(142\) −14.7350 −1.23653
\(143\) 0 0
\(144\) 4.57075 0.380896
\(145\) −8.26322 −0.686223
\(146\) −27.4684 −2.27330
\(147\) −0.185961 −0.0153378
\(148\) −11.8280 −0.972253
\(149\) 14.6196 1.19769 0.598844 0.800866i \(-0.295627\pi\)
0.598844 + 0.800866i \(0.295627\pi\)
\(150\) 0.0287972 0.00235129
\(151\) −12.2510 −0.996973 −0.498487 0.866897i \(-0.666111\pi\)
−0.498487 + 0.866897i \(0.666111\pi\)
\(152\) −4.69085 −0.380478
\(153\) 10.0556 0.812948
\(154\) −29.8081 −2.40200
\(155\) −9.77959 −0.785515
\(156\) 0 0
\(157\) 7.13991 0.569827 0.284914 0.958553i \(-0.408035\pi\)
0.284914 + 0.958553i \(0.408035\pi\)
\(158\) −2.17212 −0.172805
\(159\) 0.162736 0.0129058
\(160\) −7.17392 −0.567148
\(161\) 7.29733 0.575110
\(162\) −19.8467 −1.55930
\(163\) −2.39002 −0.187201 −0.0936004 0.995610i \(-0.529838\pi\)
−0.0936004 + 0.995610i \(0.529838\pi\)
\(164\) −20.8108 −1.62505
\(165\) −0.0382863 −0.00298059
\(166\) −17.3005 −1.34278
\(167\) 7.43841 0.575601 0.287801 0.957690i \(-0.407076\pi\)
0.287801 + 0.957690i \(0.407076\pi\)
\(168\) −0.114740 −0.00885240
\(169\) 0 0
\(170\) −7.39317 −0.567030
\(171\) −7.38020 −0.564378
\(172\) −2.02041 −0.154055
\(173\) 2.54119 0.193203 0.0966015 0.995323i \(-0.469203\pi\)
0.0966015 + 0.995323i \(0.469203\pi\)
\(174\) 0.237958 0.0180396
\(175\) −4.60897 −0.348405
\(176\) 4.46788 0.336779
\(177\) −0.0696502 −0.00523523
\(178\) −0.910531 −0.0682472
\(179\) −10.6913 −0.799105 −0.399553 0.916710i \(-0.630835\pi\)
−0.399553 + 0.916710i \(0.630835\pi\)
\(180\) 8.59299 0.640484
\(181\) −11.7908 −0.876402 −0.438201 0.898877i \(-0.644384\pi\)
−0.438201 + 0.898877i \(0.644384\pi\)
\(182\) 0 0
\(183\) −0.0250808 −0.00185403
\(184\) 3.01884 0.222552
\(185\) 4.12917 0.303583
\(186\) 0.281625 0.0206498
\(187\) 9.82931 0.718790
\(188\) −24.5579 −1.79107
\(189\) −0.361056 −0.0262630
\(190\) 5.42613 0.393653
\(191\) 13.4746 0.974990 0.487495 0.873126i \(-0.337911\pi\)
0.487495 + 0.873126i \(0.337911\pi\)
\(192\) 0.166801 0.0120378
\(193\) −6.98737 −0.502962 −0.251481 0.967862i \(-0.580918\pi\)
−0.251481 + 0.967862i \(0.580918\pi\)
\(194\) −7.46397 −0.535882
\(195\) 0 0
\(196\) 40.7978 2.91413
\(197\) −1.43795 −0.102450 −0.0512248 0.998687i \(-0.516313\pi\)
−0.0512248 + 0.998687i \(0.516313\pi\)
\(198\) −19.4011 −1.37878
\(199\) −2.42852 −0.172153 −0.0860765 0.996289i \(-0.527433\pi\)
−0.0860765 + 0.996289i \(0.527433\pi\)
\(200\) −1.90669 −0.134823
\(201\) −0.0952866 −0.00672100
\(202\) 23.2537 1.63613
\(203\) −38.0849 −2.67304
\(204\) 0.125369 0.00877761
\(205\) 7.26508 0.507415
\(206\) −31.1318 −2.16906
\(207\) 4.74960 0.330120
\(208\) 0 0
\(209\) −7.21411 −0.499011
\(210\) 0.132726 0.00915894
\(211\) 18.2640 1.25735 0.628674 0.777669i \(-0.283598\pi\)
0.628674 + 0.777669i \(0.283598\pi\)
\(212\) −35.7026 −2.45207
\(213\) −0.0872293 −0.00597685
\(214\) 8.75970 0.598801
\(215\) 0.705329 0.0481031
\(216\) −0.149366 −0.0101631
\(217\) −45.0738 −3.05981
\(218\) 22.4386 1.51973
\(219\) −0.162610 −0.0109881
\(220\) 8.39961 0.566301
\(221\) 0 0
\(222\) −0.118909 −0.00798063
\(223\) −15.5841 −1.04359 −0.521793 0.853072i \(-0.674737\pi\)
−0.521793 + 0.853072i \(0.674737\pi\)
\(224\) −33.0644 −2.20921
\(225\) −2.99983 −0.199989
\(226\) 5.73409 0.381426
\(227\) 4.03380 0.267733 0.133866 0.990999i \(-0.457261\pi\)
0.133866 + 0.990999i \(0.457261\pi\)
\(228\) −0.0920135 −0.00609374
\(229\) −22.5147 −1.48781 −0.743906 0.668284i \(-0.767029\pi\)
−0.743906 + 0.668284i \(0.767029\pi\)
\(230\) −3.49204 −0.230258
\(231\) −0.176460 −0.0116102
\(232\) −15.7554 −1.03439
\(233\) −7.69759 −0.504286 −0.252143 0.967690i \(-0.581135\pi\)
−0.252143 + 0.967690i \(0.581135\pi\)
\(234\) 0 0
\(235\) 8.57322 0.559255
\(236\) 15.2805 0.994676
\(237\) −0.0128587 −0.000835264 0
\(238\) −34.0749 −2.20875
\(239\) −18.7203 −1.21092 −0.605459 0.795877i \(-0.707010\pi\)
−0.605459 + 0.795877i \(0.707010\pi\)
\(240\) −0.0198940 −0.00128415
\(241\) 22.6183 1.45697 0.728486 0.685061i \(-0.240225\pi\)
0.728486 + 0.685061i \(0.240225\pi\)
\(242\) 5.29665 0.340482
\(243\) −0.352503 −0.0226131
\(244\) 5.50246 0.352259
\(245\) −14.2426 −0.909926
\(246\) −0.209214 −0.0133390
\(247\) 0 0
\(248\) −18.6466 −1.18406
\(249\) −0.102417 −0.00649042
\(250\) 2.20556 0.139492
\(251\) 1.78412 0.112612 0.0563062 0.998414i \(-0.482068\pi\)
0.0563062 + 0.998414i \(0.482068\pi\)
\(252\) 39.6048 2.49487
\(253\) 4.64271 0.291885
\(254\) −44.0492 −2.76389
\(255\) −0.0437667 −0.00274078
\(256\) −4.94936 −0.309335
\(257\) −4.59847 −0.286845 −0.143422 0.989662i \(-0.545811\pi\)
−0.143422 + 0.989662i \(0.545811\pi\)
\(258\) −0.0203115 −0.00126454
\(259\) 19.0312 1.18254
\(260\) 0 0
\(261\) −24.7883 −1.53435
\(262\) 25.2315 1.55881
\(263\) 18.8127 1.16004 0.580022 0.814601i \(-0.303044\pi\)
0.580022 + 0.814601i \(0.303044\pi\)
\(264\) −0.0730001 −0.00449284
\(265\) 12.4639 0.765649
\(266\) 25.0089 1.53339
\(267\) −0.00539024 −0.000329877 0
\(268\) 20.9049 1.27697
\(269\) 1.85412 0.113048 0.0565238 0.998401i \(-0.481998\pi\)
0.0565238 + 0.998401i \(0.481998\pi\)
\(270\) 0.172779 0.0105150
\(271\) −0.149698 −0.00909352 −0.00454676 0.999990i \(-0.501447\pi\)
−0.00454676 + 0.999990i \(0.501447\pi\)
\(272\) 5.10743 0.309683
\(273\) 0 0
\(274\) 6.89281 0.416410
\(275\) −2.93232 −0.176826
\(276\) 0.0592161 0.00356439
\(277\) 22.0184 1.32296 0.661478 0.749965i \(-0.269929\pi\)
0.661478 + 0.749965i \(0.269929\pi\)
\(278\) −13.4435 −0.806285
\(279\) −29.3371 −1.75637
\(280\) −8.78787 −0.525176
\(281\) 0.438029 0.0261306 0.0130653 0.999915i \(-0.495841\pi\)
0.0130653 + 0.999915i \(0.495841\pi\)
\(282\) −0.246885 −0.0147018
\(283\) 13.8290 0.822049 0.411025 0.911624i \(-0.365171\pi\)
0.411025 + 0.911624i \(0.365171\pi\)
\(284\) 19.1372 1.13558
\(285\) 0.0321221 0.00190275
\(286\) 0 0
\(287\) 33.4845 1.97653
\(288\) −21.5205 −1.26811
\(289\) −5.76370 −0.339041
\(290\) 18.2250 1.07021
\(291\) −0.0441858 −0.00259022
\(292\) 35.6748 2.08771
\(293\) −14.5656 −0.850929 −0.425464 0.904975i \(-0.639889\pi\)
−0.425464 + 0.904975i \(0.639889\pi\)
\(294\) 0.410148 0.0239203
\(295\) −5.33445 −0.310584
\(296\) 7.87304 0.457611
\(297\) −0.229711 −0.0133292
\(298\) −32.2445 −1.86787
\(299\) 0 0
\(300\) −0.0374007 −0.00215933
\(301\) 3.25084 0.187375
\(302\) 27.0203 1.55485
\(303\) 0.137659 0.00790833
\(304\) −3.74854 −0.214994
\(305\) −1.92092 −0.109992
\(306\) −22.1782 −1.26785
\(307\) 9.05062 0.516546 0.258273 0.966072i \(-0.416847\pi\)
0.258273 + 0.966072i \(0.416847\pi\)
\(308\) 38.7135 2.20591
\(309\) −0.184297 −0.0104843
\(310\) 21.5695 1.22506
\(311\) 7.28812 0.413272 0.206636 0.978418i \(-0.433748\pi\)
0.206636 + 0.978418i \(0.433748\pi\)
\(312\) 0 0
\(313\) 12.9725 0.733250 0.366625 0.930369i \(-0.380513\pi\)
0.366625 + 0.930369i \(0.380513\pi\)
\(314\) −15.7475 −0.888683
\(315\) −13.8261 −0.779014
\(316\) 2.82107 0.158697
\(317\) −15.5048 −0.870838 −0.435419 0.900228i \(-0.643400\pi\)
−0.435419 + 0.900228i \(0.643400\pi\)
\(318\) −0.358925 −0.0201275
\(319\) −24.2304 −1.35664
\(320\) 12.7752 0.714154
\(321\) 0.0518565 0.00289434
\(322\) −16.0947 −0.896922
\(323\) −8.24676 −0.458862
\(324\) 25.7760 1.43200
\(325\) 0 0
\(326\) 5.27133 0.291952
\(327\) 0.132834 0.00734574
\(328\) 13.8523 0.764863
\(329\) 39.5137 2.17846
\(330\) 0.0844427 0.00464842
\(331\) −26.0853 −1.43378 −0.716890 0.697186i \(-0.754435\pi\)
−0.716890 + 0.697186i \(0.754435\pi\)
\(332\) 22.4692 1.23316
\(333\) 12.3868 0.678793
\(334\) −16.4058 −0.897688
\(335\) −7.29793 −0.398728
\(336\) −0.0916910 −0.00500215
\(337\) −14.4785 −0.788697 −0.394348 0.918961i \(-0.629030\pi\)
−0.394348 + 0.918961i \(0.629030\pi\)
\(338\) 0 0
\(339\) 0.0339452 0.00184365
\(340\) 9.60195 0.520739
\(341\) −28.6769 −1.55294
\(342\) 16.2775 0.880185
\(343\) −33.3809 −1.80240
\(344\) 1.34484 0.0725091
\(345\) −0.0206725 −0.00111297
\(346\) −5.60474 −0.301313
\(347\) 6.81412 0.365801 0.182901 0.983131i \(-0.441451\pi\)
0.182901 + 0.983131i \(0.441451\pi\)
\(348\) −0.309050 −0.0165668
\(349\) 33.7357 1.80583 0.902915 0.429818i \(-0.141422\pi\)
0.902915 + 0.429818i \(0.141422\pi\)
\(350\) 10.1654 0.543361
\(351\) 0 0
\(352\) −21.0362 −1.12123
\(353\) 18.7215 0.996447 0.498223 0.867049i \(-0.333986\pi\)
0.498223 + 0.867049i \(0.333986\pi\)
\(354\) 0.153618 0.00816468
\(355\) −6.68083 −0.354581
\(356\) 1.18256 0.0626756
\(357\) −0.201719 −0.0106761
\(358\) 23.5803 1.24626
\(359\) 27.9262 1.47389 0.736945 0.675952i \(-0.236268\pi\)
0.736945 + 0.675952i \(0.236268\pi\)
\(360\) −5.71974 −0.301457
\(361\) −12.9474 −0.681441
\(362\) 26.0053 1.36681
\(363\) 0.0313556 0.00164574
\(364\) 0 0
\(365\) −12.4541 −0.651880
\(366\) 0.0553172 0.00289148
\(367\) 2.50988 0.131015 0.0655074 0.997852i \(-0.479133\pi\)
0.0655074 + 0.997852i \(0.479133\pi\)
\(368\) 2.41241 0.125755
\(369\) 21.7940 1.13455
\(370\) −9.10713 −0.473457
\(371\) 57.4456 2.98243
\(372\) −0.365763 −0.0189640
\(373\) 22.1779 1.14833 0.574165 0.818739i \(-0.305327\pi\)
0.574165 + 0.818739i \(0.305327\pi\)
\(374\) −21.6791 −1.12100
\(375\) 0.0130567 0.000674243 0
\(376\) 16.3465 0.843005
\(377\) 0 0
\(378\) 0.796331 0.0409589
\(379\) 1.42116 0.0730001 0.0365001 0.999334i \(-0.488379\pi\)
0.0365001 + 0.999334i \(0.488379\pi\)
\(380\) −7.04724 −0.361516
\(381\) −0.260766 −0.0133595
\(382\) −29.7191 −1.52056
\(383\) −21.0733 −1.07679 −0.538397 0.842691i \(-0.680970\pi\)
−0.538397 + 0.842691i \(0.680970\pi\)
\(384\) −0.180555 −0.00921390
\(385\) −13.5150 −0.688787
\(386\) 15.4111 0.784402
\(387\) 2.11587 0.107556
\(388\) 9.69390 0.492133
\(389\) 13.4713 0.683021 0.341511 0.939878i \(-0.389061\pi\)
0.341511 + 0.939878i \(0.389061\pi\)
\(390\) 0 0
\(391\) 5.30728 0.268401
\(392\) −27.1562 −1.37160
\(393\) 0.149368 0.00753461
\(394\) 3.17148 0.159777
\(395\) −0.984840 −0.0495527
\(396\) 25.1974 1.26622
\(397\) −27.1859 −1.36442 −0.682210 0.731156i \(-0.738981\pi\)
−0.682210 + 0.731156i \(0.738981\pi\)
\(398\) 5.35624 0.268484
\(399\) 0.148050 0.00741176
\(400\) −1.52367 −0.0761834
\(401\) 3.27520 0.163556 0.0817779 0.996651i \(-0.473940\pi\)
0.0817779 + 0.996651i \(0.473940\pi\)
\(402\) 0.210160 0.0104818
\(403\) 0 0
\(404\) −30.2010 −1.50256
\(405\) −8.99847 −0.447137
\(406\) 83.9986 4.16878
\(407\) 12.1080 0.600173
\(408\) −0.0834495 −0.00413137
\(409\) 19.1677 0.947782 0.473891 0.880583i \(-0.342849\pi\)
0.473891 + 0.880583i \(0.342849\pi\)
\(410\) −16.0236 −0.791348
\(411\) 0.0408047 0.00201275
\(412\) 40.4327 1.99198
\(413\) −24.5863 −1.20981
\(414\) −10.4755 −0.514844
\(415\) −7.84405 −0.385049
\(416\) 0 0
\(417\) −0.0795837 −0.00389723
\(418\) 15.9112 0.778240
\(419\) 0.392463 0.0191731 0.00958653 0.999954i \(-0.496948\pi\)
0.00958653 + 0.999954i \(0.496948\pi\)
\(420\) −0.172379 −0.00841122
\(421\) −35.1816 −1.71465 −0.857323 0.514779i \(-0.827874\pi\)
−0.857323 + 0.514779i \(0.827874\pi\)
\(422\) −40.2824 −1.96092
\(423\) 25.7182 1.25046
\(424\) 23.7647 1.15412
\(425\) −3.35206 −0.162599
\(426\) 0.192389 0.00932130
\(427\) −8.85346 −0.428449
\(428\) −11.3768 −0.549916
\(429\) 0 0
\(430\) −1.55565 −0.0750199
\(431\) −2.27454 −0.109561 −0.0547803 0.998498i \(-0.517446\pi\)
−0.0547803 + 0.998498i \(0.517446\pi\)
\(432\) −0.119361 −0.00574275
\(433\) 11.8827 0.571048 0.285524 0.958372i \(-0.407832\pi\)
0.285524 + 0.958372i \(0.407832\pi\)
\(434\) 99.4130 4.77197
\(435\) 0.107890 0.00517293
\(436\) −29.1424 −1.39567
\(437\) −3.89522 −0.186334
\(438\) 0.358645 0.0171367
\(439\) −35.7273 −1.70517 −0.852585 0.522588i \(-0.824967\pi\)
−0.852585 + 0.522588i \(0.824967\pi\)
\(440\) −5.59102 −0.266541
\(441\) −42.7254 −2.03454
\(442\) 0 0
\(443\) 4.98904 0.237036 0.118518 0.992952i \(-0.462186\pi\)
0.118518 + 0.992952i \(0.462186\pi\)
\(444\) 0.154434 0.00732911
\(445\) −0.412834 −0.0195702
\(446\) 34.3716 1.62754
\(447\) −0.190884 −0.00902849
\(448\) 58.8804 2.78184
\(449\) 23.4886 1.10850 0.554248 0.832352i \(-0.313006\pi\)
0.554248 + 0.832352i \(0.313006\pi\)
\(450\) 6.61630 0.311895
\(451\) 21.3035 1.00314
\(452\) −7.44721 −0.350287
\(453\) 0.159957 0.00751545
\(454\) −8.89679 −0.417547
\(455\) 0 0
\(456\) 0.0612468 0.00286815
\(457\) −40.2510 −1.88286 −0.941430 0.337208i \(-0.890518\pi\)
−0.941430 + 0.337208i \(0.890518\pi\)
\(458\) 49.6575 2.32034
\(459\) −0.262593 −0.0122568
\(460\) 4.53532 0.211460
\(461\) 31.2140 1.45378 0.726890 0.686754i \(-0.240965\pi\)
0.726890 + 0.686754i \(0.240965\pi\)
\(462\) 0.389194 0.0181069
\(463\) 17.7491 0.824872 0.412436 0.910987i \(-0.364678\pi\)
0.412436 + 0.910987i \(0.364678\pi\)
\(464\) −12.5904 −0.584495
\(465\) 0.127689 0.00592142
\(466\) 16.9775 0.786467
\(467\) 26.6645 1.23389 0.616944 0.787007i \(-0.288370\pi\)
0.616944 + 0.787007i \(0.288370\pi\)
\(468\) 0 0
\(469\) −33.6359 −1.55316
\(470\) −18.9087 −0.872196
\(471\) −0.0932234 −0.00429551
\(472\) −10.1711 −0.468165
\(473\) 2.06825 0.0950983
\(474\) 0.0283607 0.00130265
\(475\) 2.46021 0.112882
\(476\) 44.2551 2.02843
\(477\) 37.3895 1.71195
\(478\) 41.2888 1.88851
\(479\) 20.4630 0.934980 0.467490 0.883998i \(-0.345158\pi\)
0.467490 + 0.883998i \(0.345158\pi\)
\(480\) 0.0936675 0.00427531
\(481\) 0 0
\(482\) −49.8860 −2.27224
\(483\) −0.0952788 −0.00433534
\(484\) −6.87908 −0.312686
\(485\) −3.38416 −0.153667
\(486\) 0.777467 0.0352666
\(487\) 8.11789 0.367857 0.183928 0.982940i \(-0.441119\pi\)
0.183928 + 0.982940i \(0.441119\pi\)
\(488\) −3.66260 −0.165798
\(489\) 0.0312057 0.00141117
\(490\) 31.4129 1.41909
\(491\) 3.26996 0.147571 0.0737857 0.997274i \(-0.476492\pi\)
0.0737857 + 0.997274i \(0.476492\pi\)
\(492\) 0.271719 0.0122501
\(493\) −27.6988 −1.24749
\(494\) 0 0
\(495\) −8.79646 −0.395371
\(496\) −14.9008 −0.669068
\(497\) −30.7917 −1.38120
\(498\) 0.225887 0.0101222
\(499\) 8.89340 0.398123 0.199062 0.979987i \(-0.436211\pi\)
0.199062 + 0.979987i \(0.436211\pi\)
\(500\) −2.86449 −0.128104
\(501\) −0.0971208 −0.00433904
\(502\) −3.93498 −0.175627
\(503\) −23.7974 −1.06107 −0.530537 0.847662i \(-0.678010\pi\)
−0.530537 + 0.847662i \(0.678010\pi\)
\(504\) −26.3621 −1.17426
\(505\) 10.5432 0.469168
\(506\) −10.2398 −0.455213
\(507\) 0 0
\(508\) 57.2093 2.53825
\(509\) −1.26770 −0.0561898 −0.0280949 0.999605i \(-0.508944\pi\)
−0.0280949 + 0.999605i \(0.508944\pi\)
\(510\) 0.0965301 0.00427442
\(511\) −57.4008 −2.53926
\(512\) −16.7410 −0.739855
\(513\) 0.192727 0.00850911
\(514\) 10.1422 0.447354
\(515\) −14.1152 −0.621988
\(516\) 0.0263798 0.00116131
\(517\) 25.1394 1.10563
\(518\) −41.9745 −1.84425
\(519\) −0.0331794 −0.00145642
\(520\) 0 0
\(521\) 14.3916 0.630506 0.315253 0.949008i \(-0.397911\pi\)
0.315253 + 0.949008i \(0.397911\pi\)
\(522\) 54.6720 2.39293
\(523\) 19.0185 0.831622 0.415811 0.909451i \(-0.363498\pi\)
0.415811 + 0.909451i \(0.363498\pi\)
\(524\) −32.7697 −1.43155
\(525\) 0.0601778 0.00262637
\(526\) −41.4926 −1.80916
\(527\) −32.7818 −1.42800
\(528\) −0.0583357 −0.00253873
\(529\) −20.4932 −0.891008
\(530\) −27.4898 −1.19408
\(531\) −16.0024 −0.694447
\(532\) −32.4805 −1.40821
\(533\) 0 0
\(534\) 0.0118885 0.000514465 0
\(535\) 3.97165 0.171709
\(536\) −13.9149 −0.601031
\(537\) 0.139593 0.00602387
\(538\) −4.08937 −0.176305
\(539\) −41.7638 −1.79890
\(540\) −0.224398 −0.00965655
\(541\) −13.8969 −0.597475 −0.298738 0.954335i \(-0.596566\pi\)
−0.298738 + 0.954335i \(0.596566\pi\)
\(542\) 0.330168 0.0141819
\(543\) 0.153948 0.00660656
\(544\) −24.0474 −1.03102
\(545\) 10.1737 0.435792
\(546\) 0 0
\(547\) 37.0840 1.58560 0.792798 0.609484i \(-0.208623\pi\)
0.792798 + 0.609484i \(0.208623\pi\)
\(548\) −8.95211 −0.382415
\(549\) −5.76243 −0.245935
\(550\) 6.46741 0.275771
\(551\) 20.3292 0.866054
\(552\) −0.0394160 −0.00167766
\(553\) −4.53910 −0.193022
\(554\) −48.5628 −2.06324
\(555\) −0.0539132 −0.00228849
\(556\) 17.4598 0.740461
\(557\) −31.8065 −1.34768 −0.673842 0.738875i \(-0.735357\pi\)
−0.673842 + 0.738875i \(0.735357\pi\)
\(558\) 64.7047 2.73917
\(559\) 0 0
\(560\) −7.02254 −0.296757
\(561\) −0.128338 −0.00541843
\(562\) −0.966100 −0.0407525
\(563\) 26.3595 1.11092 0.555461 0.831543i \(-0.312542\pi\)
0.555461 + 0.831543i \(0.312542\pi\)
\(564\) 0.320645 0.0135016
\(565\) 2.59984 0.109376
\(566\) −30.5007 −1.28204
\(567\) −41.4736 −1.74173
\(568\) −12.7383 −0.534485
\(569\) 17.7846 0.745569 0.372785 0.927918i \(-0.378403\pi\)
0.372785 + 0.927918i \(0.378403\pi\)
\(570\) −0.0708472 −0.00296746
\(571\) 19.6399 0.821903 0.410952 0.911657i \(-0.365196\pi\)
0.410952 + 0.911657i \(0.365196\pi\)
\(572\) 0 0
\(573\) −0.175934 −0.00734974
\(574\) −73.8522 −3.08253
\(575\) −1.58329 −0.0660277
\(576\) 38.3233 1.59681
\(577\) −18.1454 −0.755403 −0.377701 0.925927i \(-0.623285\pi\)
−0.377701 + 0.925927i \(0.623285\pi\)
\(578\) 12.7122 0.528757
\(579\) 0.0912317 0.00379146
\(580\) −23.6699 −0.982840
\(581\) −36.1530 −1.49988
\(582\) 0.0974545 0.00403962
\(583\) 36.5480 1.51366
\(584\) −23.7462 −0.982624
\(585\) 0 0
\(586\) 32.1252 1.32708
\(587\) 0.423843 0.0174939 0.00874694 0.999962i \(-0.497216\pi\)
0.00874694 + 0.999962i \(0.497216\pi\)
\(588\) −0.532683 −0.0219675
\(589\) 24.0598 0.991367
\(590\) 11.7655 0.484376
\(591\) 0.0187748 0.000772293 0
\(592\) 6.29149 0.258578
\(593\) 47.5064 1.95085 0.975426 0.220327i \(-0.0707125\pi\)
0.975426 + 0.220327i \(0.0707125\pi\)
\(594\) 0.506642 0.0207878
\(595\) −15.4495 −0.633369
\(596\) 41.8778 1.71538
\(597\) 0.0317083 0.00129774
\(598\) 0 0
\(599\) 25.7871 1.05363 0.526816 0.849979i \(-0.323386\pi\)
0.526816 + 0.849979i \(0.323386\pi\)
\(600\) 0.0248950 0.00101633
\(601\) −12.6776 −0.517130 −0.258565 0.965994i \(-0.583250\pi\)
−0.258565 + 0.965994i \(0.583250\pi\)
\(602\) −7.16992 −0.292224
\(603\) −21.8925 −0.891533
\(604\) −35.0929 −1.42791
\(605\) 2.40150 0.0976349
\(606\) −0.303616 −0.0123336
\(607\) −4.40448 −0.178772 −0.0893862 0.995997i \(-0.528491\pi\)
−0.0893862 + 0.995997i \(0.528491\pi\)
\(608\) 17.6493 0.715775
\(609\) 0.497262 0.0201501
\(610\) 4.23670 0.171539
\(611\) 0 0
\(612\) 28.8042 1.16434
\(613\) 33.3599 1.34739 0.673696 0.739008i \(-0.264706\pi\)
0.673696 + 0.739008i \(0.264706\pi\)
\(614\) −19.9617 −0.805588
\(615\) −0.0948578 −0.00382503
\(616\) −25.7688 −1.03826
\(617\) 32.5535 1.31055 0.655277 0.755389i \(-0.272552\pi\)
0.655277 + 0.755389i \(0.272552\pi\)
\(618\) 0.406477 0.0163509
\(619\) 35.5813 1.43013 0.715067 0.699056i \(-0.246396\pi\)
0.715067 + 0.699056i \(0.246396\pi\)
\(620\) −28.0135 −1.12505
\(621\) −0.124031 −0.00497721
\(622\) −16.0744 −0.644524
\(623\) −1.90274 −0.0762317
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −28.6116 −1.14355
\(627\) 0.0941922 0.00376168
\(628\) 20.4522 0.816133
\(629\) 13.8412 0.551886
\(630\) 30.4943 1.21492
\(631\) −25.4117 −1.01162 −0.505812 0.862644i \(-0.668807\pi\)
−0.505812 + 0.862644i \(0.668807\pi\)
\(632\) −1.87778 −0.0746942
\(633\) −0.238467 −0.00947822
\(634\) 34.1968 1.35813
\(635\) −19.9719 −0.792560
\(636\) 0.466157 0.0184843
\(637\) 0 0
\(638\) 53.4416 2.11577
\(639\) −20.0413 −0.792823
\(640\) −13.8286 −0.546622
\(641\) −10.1479 −0.400817 −0.200408 0.979712i \(-0.564227\pi\)
−0.200408 + 0.979712i \(0.564227\pi\)
\(642\) −0.114372 −0.00451392
\(643\) −1.85439 −0.0731298 −0.0365649 0.999331i \(-0.511642\pi\)
−0.0365649 + 0.999331i \(0.511642\pi\)
\(644\) 20.9032 0.823700
\(645\) −0.00920925 −0.000362614 0
\(646\) 18.1887 0.715626
\(647\) −29.6034 −1.16383 −0.581914 0.813250i \(-0.697696\pi\)
−0.581914 + 0.813250i \(0.697696\pi\)
\(648\) −17.1573 −0.674001
\(649\) −15.6423 −0.614015
\(650\) 0 0
\(651\) 0.588514 0.0230657
\(652\) −6.84619 −0.268118
\(653\) 6.78882 0.265667 0.132834 0.991138i \(-0.457592\pi\)
0.132834 + 0.991138i \(0.457592\pi\)
\(654\) −0.292973 −0.0114562
\(655\) 11.4400 0.446996
\(656\) 11.0696 0.432195
\(657\) −37.3603 −1.45756
\(658\) −87.1498 −3.39745
\(659\) 7.94959 0.309672 0.154836 0.987940i \(-0.450515\pi\)
0.154836 + 0.987940i \(0.450515\pi\)
\(660\) −0.109671 −0.00426893
\(661\) −40.3832 −1.57072 −0.785361 0.619038i \(-0.787523\pi\)
−0.785361 + 0.619038i \(0.787523\pi\)
\(662\) 57.5328 2.23607
\(663\) 0 0
\(664\) −14.9562 −0.580412
\(665\) 11.3390 0.439708
\(666\) −27.3198 −1.05862
\(667\) −13.0831 −0.506579
\(668\) 21.3073 0.824402
\(669\) 0.203476 0.00786684
\(670\) 16.0960 0.621843
\(671\) −5.63275 −0.217450
\(672\) 0.431710 0.0166536
\(673\) 9.63920 0.371564 0.185782 0.982591i \(-0.440518\pi\)
0.185782 + 0.982591i \(0.440518\pi\)
\(674\) 31.9333 1.23002
\(675\) 0.0783378 0.00301522
\(676\) 0 0
\(677\) 51.1565 1.96610 0.983051 0.183330i \(-0.0586878\pi\)
0.983051 + 0.183330i \(0.0586878\pi\)
\(678\) −0.0748681 −0.00287529
\(679\) −15.5975 −0.598577
\(680\) −6.39133 −0.245097
\(681\) −0.0526680 −0.00201824
\(682\) 63.2485 2.42191
\(683\) 8.34502 0.319313 0.159657 0.987173i \(-0.448961\pi\)
0.159657 + 0.987173i \(0.448961\pi\)
\(684\) −21.1405 −0.808328
\(685\) 3.12520 0.119408
\(686\) 73.6236 2.81096
\(687\) 0.293967 0.0112155
\(688\) 1.07469 0.0409721
\(689\) 0 0
\(690\) 0.0455944 0.00173575
\(691\) 36.1243 1.37423 0.687117 0.726547i \(-0.258876\pi\)
0.687117 + 0.726547i \(0.258876\pi\)
\(692\) 7.27921 0.276714
\(693\) −40.5426 −1.54009
\(694\) −15.0289 −0.570491
\(695\) −6.09526 −0.231206
\(696\) 0.205713 0.00779753
\(697\) 24.3530 0.922435
\(698\) −74.4061 −2.81631
\(699\) 0.100505 0.00380144
\(700\) −13.2024 −0.499002
\(701\) −45.9823 −1.73673 −0.868364 0.495928i \(-0.834828\pi\)
−0.868364 + 0.495928i \(0.834828\pi\)
\(702\) 0 0
\(703\) −10.1586 −0.383139
\(704\) 37.4609 1.41186
\(705\) −0.111938 −0.00421582
\(706\) −41.2915 −1.55402
\(707\) 48.5934 1.82754
\(708\) −0.199512 −0.00749813
\(709\) −38.0949 −1.43069 −0.715343 0.698774i \(-0.753729\pi\)
−0.715343 + 0.698774i \(0.753729\pi\)
\(710\) 14.7350 0.552993
\(711\) −2.95435 −0.110797
\(712\) −0.787147 −0.0294996
\(713\) −15.4839 −0.579877
\(714\) 0.444904 0.0166501
\(715\) 0 0
\(716\) −30.6251 −1.14452
\(717\) 0.244425 0.00912822
\(718\) −61.5930 −2.29863
\(719\) −27.8672 −1.03927 −0.519635 0.854388i \(-0.673932\pi\)
−0.519635 + 0.854388i \(0.673932\pi\)
\(720\) −4.57075 −0.170342
\(721\) −65.0563 −2.42282
\(722\) 28.5562 1.06275
\(723\) −0.295319 −0.0109830
\(724\) −33.7746 −1.25522
\(725\) 8.26322 0.306888
\(726\) −0.0691566 −0.00256664
\(727\) −13.7750 −0.510885 −0.255443 0.966824i \(-0.582221\pi\)
−0.255443 + 0.966824i \(0.582221\pi\)
\(728\) 0 0
\(729\) −26.9908 −0.999659
\(730\) 27.4684 1.01665
\(731\) 2.36431 0.0874470
\(732\) −0.0718438 −0.00265542
\(733\) 6.58392 0.243183 0.121591 0.992580i \(-0.461200\pi\)
0.121591 + 0.992580i \(0.461200\pi\)
\(734\) −5.53570 −0.204326
\(735\) 0.185961 0.00685927
\(736\) −11.3584 −0.418676
\(737\) −21.3999 −0.788274
\(738\) −48.0680 −1.76941
\(739\) −5.47501 −0.201401 −0.100701 0.994917i \(-0.532108\pi\)
−0.100701 + 0.994917i \(0.532108\pi\)
\(740\) 11.8280 0.434805
\(741\) 0 0
\(742\) −126.700 −4.65129
\(743\) 26.6714 0.978479 0.489239 0.872150i \(-0.337274\pi\)
0.489239 + 0.872150i \(0.337274\pi\)
\(744\) 0.243463 0.00892578
\(745\) −14.6196 −0.535622
\(746\) −48.9148 −1.79090
\(747\) −23.5308 −0.860948
\(748\) 28.1560 1.02948
\(749\) 18.3052 0.668857
\(750\) −0.0287972 −0.00105153
\(751\) 21.8067 0.795740 0.397870 0.917442i \(-0.369750\pi\)
0.397870 + 0.917442i \(0.369750\pi\)
\(752\) 13.0627 0.476349
\(753\) −0.0232946 −0.000848903 0
\(754\) 0 0
\(755\) 12.2510 0.445860
\(756\) −1.03424 −0.0376151
\(757\) −8.33422 −0.302912 −0.151456 0.988464i \(-0.548396\pi\)
−0.151456 + 0.988464i \(0.548396\pi\)
\(758\) −3.13446 −0.113849
\(759\) −0.0606183 −0.00220031
\(760\) 4.69085 0.170155
\(761\) 7.33096 0.265747 0.132874 0.991133i \(-0.457580\pi\)
0.132874 + 0.991133i \(0.457580\pi\)
\(762\) 0.575135 0.0208350
\(763\) 46.8901 1.69753
\(764\) 38.5980 1.39643
\(765\) −10.0556 −0.363561
\(766\) 46.4783 1.67933
\(767\) 0 0
\(768\) 0.0646221 0.00233185
\(769\) 22.3346 0.805407 0.402703 0.915331i \(-0.368071\pi\)
0.402703 + 0.915331i \(0.368071\pi\)
\(770\) 29.8081 1.07421
\(771\) 0.0600407 0.00216231
\(772\) −20.0153 −0.720365
\(773\) 27.1591 0.976844 0.488422 0.872608i \(-0.337573\pi\)
0.488422 + 0.872608i \(0.337573\pi\)
\(774\) −4.66667 −0.167740
\(775\) 9.77959 0.351293
\(776\) −6.45254 −0.231633
\(777\) −0.248484 −0.00891432
\(778\) −29.7117 −1.06522
\(779\) −17.8736 −0.640388
\(780\) 0 0
\(781\) −19.5903 −0.700997
\(782\) −11.7055 −0.418589
\(783\) 0.647322 0.0231334
\(784\) −21.7010 −0.775036
\(785\) −7.13991 −0.254834
\(786\) −0.329440 −0.0117507
\(787\) −11.5806 −0.412805 −0.206403 0.978467i \(-0.566176\pi\)
−0.206403 + 0.978467i \(0.566176\pi\)
\(788\) −4.11899 −0.146733
\(789\) −0.245632 −0.00874472
\(790\) 2.17212 0.0772807
\(791\) 11.9826 0.426051
\(792\) −16.7721 −0.595971
\(793\) 0 0
\(794\) 59.9601 2.12790
\(795\) −0.162736 −0.00577167
\(796\) −6.95647 −0.246566
\(797\) −47.7004 −1.68963 −0.844817 0.535055i \(-0.820291\pi\)
−0.844817 + 0.535055i \(0.820291\pi\)
\(798\) −0.326532 −0.0115591
\(799\) 28.7379 1.01668
\(800\) 7.17392 0.253636
\(801\) −1.23843 −0.0437579
\(802\) −7.22365 −0.255076
\(803\) −36.5195 −1.28875
\(804\) −0.272948 −0.00962612
\(805\) −7.29733 −0.257197
\(806\) 0 0
\(807\) −0.0242086 −0.000852184 0
\(808\) 20.1027 0.707209
\(809\) 36.3910 1.27944 0.639720 0.768608i \(-0.279050\pi\)
0.639720 + 0.768608i \(0.279050\pi\)
\(810\) 19.8467 0.697340
\(811\) 36.8088 1.29253 0.646266 0.763112i \(-0.276330\pi\)
0.646266 + 0.763112i \(0.276330\pi\)
\(812\) −109.094 −3.82845
\(813\) 0.00195456 6.85494e−5 0
\(814\) −26.7050 −0.936010
\(815\) 2.39002 0.0837188
\(816\) −0.0666860 −0.00233448
\(817\) −1.73526 −0.0607089
\(818\) −42.2755 −1.47813
\(819\) 0 0
\(820\) 20.8108 0.726744
\(821\) −33.6668 −1.17498 −0.587491 0.809231i \(-0.699884\pi\)
−0.587491 + 0.809231i \(0.699884\pi\)
\(822\) −0.0899971 −0.00313901
\(823\) 31.8809 1.11130 0.555649 0.831417i \(-0.312470\pi\)
0.555649 + 0.831417i \(0.312470\pi\)
\(824\) −26.9132 −0.937566
\(825\) 0.0382863 0.00133296
\(826\) 54.2266 1.88678
\(827\) 18.4625 0.642003 0.321002 0.947079i \(-0.395981\pi\)
0.321002 + 0.947079i \(0.395981\pi\)
\(828\) 13.6052 0.472813
\(829\) −34.9663 −1.21443 −0.607214 0.794538i \(-0.707713\pi\)
−0.607214 + 0.794538i \(0.707713\pi\)
\(830\) 17.3005 0.600510
\(831\) −0.287487 −0.00997280
\(832\) 0 0
\(833\) −47.7420 −1.65416
\(834\) 0.175527 0.00607799
\(835\) −7.43841 −0.257417
\(836\) −20.6648 −0.714706
\(837\) 0.766111 0.0264807
\(838\) −0.865600 −0.0299017
\(839\) 28.7234 0.991641 0.495820 0.868425i \(-0.334867\pi\)
0.495820 + 0.868425i \(0.334867\pi\)
\(840\) 0.114740 0.00395892
\(841\) 39.2808 1.35451
\(842\) 77.5951 2.67410
\(843\) −0.00571920 −0.000196980 0
\(844\) 52.3172 1.80083
\(845\) 0 0
\(846\) −56.7230 −1.95018
\(847\) 11.0684 0.380316
\(848\) 18.9908 0.652147
\(849\) −0.180561 −0.00619683
\(850\) 7.39317 0.253584
\(851\) 6.53767 0.224108
\(852\) −0.249868 −0.00856032
\(853\) 13.7453 0.470629 0.235315 0.971919i \(-0.424388\pi\)
0.235315 + 0.971919i \(0.424388\pi\)
\(854\) 19.5268 0.668195
\(855\) 7.38020 0.252398
\(856\) 7.57269 0.258829
\(857\) −12.6495 −0.432099 −0.216049 0.976382i \(-0.569317\pi\)
−0.216049 + 0.976382i \(0.569317\pi\)
\(858\) 0 0
\(859\) −11.0929 −0.378485 −0.189243 0.981930i \(-0.560603\pi\)
−0.189243 + 0.981930i \(0.560603\pi\)
\(860\) 2.02041 0.0688954
\(861\) −0.437196 −0.0148996
\(862\) 5.01663 0.170867
\(863\) 33.0295 1.12434 0.562169 0.827022i \(-0.309967\pi\)
0.562169 + 0.827022i \(0.309967\pi\)
\(864\) 0.561989 0.0191192
\(865\) −2.54119 −0.0864030
\(866\) −26.2081 −0.890587
\(867\) 0.0752546 0.00255578
\(868\) −129.114 −4.38240
\(869\) −2.88787 −0.0979641
\(870\) −0.237958 −0.00806753
\(871\) 0 0
\(872\) 19.3980 0.656899
\(873\) −10.1519 −0.343590
\(874\) 8.59114 0.290600
\(875\) 4.60897 0.155812
\(876\) −0.465794 −0.0157377
\(877\) −15.4397 −0.521362 −0.260681 0.965425i \(-0.583947\pi\)
−0.260681 + 0.965425i \(0.583947\pi\)
\(878\) 78.7987 2.65933
\(879\) 0.190178 0.00641453
\(880\) −4.46788 −0.150612
\(881\) −16.6260 −0.560143 −0.280072 0.959979i \(-0.590358\pi\)
−0.280072 + 0.959979i \(0.590358\pi\)
\(882\) 94.2333 3.17300
\(883\) 57.2845 1.92778 0.963888 0.266309i \(-0.0858041\pi\)
0.963888 + 0.266309i \(0.0858041\pi\)
\(884\) 0 0
\(885\) 0.0696502 0.00234126
\(886\) −11.0036 −0.369674
\(887\) 18.4657 0.620018 0.310009 0.950734i \(-0.399668\pi\)
0.310009 + 0.950734i \(0.399668\pi\)
\(888\) −0.102796 −0.00344960
\(889\) −92.0498 −3.08725
\(890\) 0.910531 0.0305211
\(891\) −26.3864 −0.883977
\(892\) −44.6405 −1.49467
\(893\) −21.0919 −0.705813
\(894\) 0.421005 0.0140805
\(895\) 10.6913 0.357371
\(896\) −63.7354 −2.12925
\(897\) 0 0
\(898\) −51.8055 −1.72877
\(899\) 80.8109 2.69519
\(900\) −8.59299 −0.286433
\(901\) 41.7796 1.39188
\(902\) −46.9862 −1.56447
\(903\) −0.0424451 −0.00141249
\(904\) 4.95708 0.164870
\(905\) 11.7908 0.391939
\(906\) −0.352795 −0.0117208
\(907\) 44.9489 1.49250 0.746251 0.665664i \(-0.231852\pi\)
0.746251 + 0.665664i \(0.231852\pi\)
\(908\) 11.5548 0.383459
\(909\) 31.6279 1.04903
\(910\) 0 0
\(911\) −44.3728 −1.47014 −0.735069 0.677992i \(-0.762850\pi\)
−0.735069 + 0.677992i \(0.762850\pi\)
\(912\) 0.0489434 0.00162068
\(913\) −23.0013 −0.761231
\(914\) 88.7759 2.93645
\(915\) 0.0250808 0.000829146 0
\(916\) −64.4931 −2.13091
\(917\) 52.7264 1.74118
\(918\) 0.579164 0.0191153
\(919\) 25.1680 0.830217 0.415108 0.909772i \(-0.363744\pi\)
0.415108 + 0.909772i \(0.363744\pi\)
\(920\) −3.01884 −0.0995282
\(921\) −0.118171 −0.00389386
\(922\) −68.8443 −2.26726
\(923\) 0 0
\(924\) −0.505469 −0.0166287
\(925\) −4.12917 −0.135766
\(926\) −39.1468 −1.28644
\(927\) −42.3430 −1.39073
\(928\) 59.2797 1.94595
\(929\) 37.5601 1.23231 0.616153 0.787626i \(-0.288690\pi\)
0.616153 + 0.787626i \(0.288690\pi\)
\(930\) −0.281625 −0.00923485
\(931\) 35.0397 1.14838
\(932\) −22.0497 −0.722262
\(933\) −0.0951586 −0.00311535
\(934\) −58.8102 −1.92433
\(935\) −9.82931 −0.321453
\(936\) 0 0
\(937\) −17.1212 −0.559326 −0.279663 0.960098i \(-0.590223\pi\)
−0.279663 + 0.960098i \(0.590223\pi\)
\(938\) 74.1860 2.42226
\(939\) −0.169378 −0.00552743
\(940\) 24.5579 0.800991
\(941\) −0.208568 −0.00679913 −0.00339956 0.999994i \(-0.501082\pi\)
−0.00339956 + 0.999994i \(0.501082\pi\)
\(942\) 0.205610 0.00669913
\(943\) 11.5027 0.374580
\(944\) −8.12794 −0.264542
\(945\) 0.361056 0.0117452
\(946\) −4.56165 −0.148312
\(947\) 0.414059 0.0134551 0.00672755 0.999977i \(-0.497859\pi\)
0.00672755 + 0.999977i \(0.497859\pi\)
\(948\) −0.0368337 −0.00119630
\(949\) 0 0
\(950\) −5.42613 −0.176047
\(951\) 0.202441 0.00656461
\(952\) −29.4575 −0.954722
\(953\) −33.8593 −1.09681 −0.548404 0.836213i \(-0.684765\pi\)
−0.548404 + 0.836213i \(0.684765\pi\)
\(954\) −82.4647 −2.66989
\(955\) −13.4746 −0.436029
\(956\) −53.6243 −1.73433
\(957\) 0.316368 0.0102267
\(958\) −45.1324 −1.45816
\(959\) 14.4039 0.465128
\(960\) −0.166801 −0.00538348
\(961\) 64.6403 2.08517
\(962\) 0 0
\(963\) 11.9143 0.383932
\(964\) 64.7899 2.08674
\(965\) 6.98737 0.224931
\(966\) 0.210143 0.00676124
\(967\) 13.2125 0.424885 0.212442 0.977174i \(-0.431858\pi\)
0.212442 + 0.977174i \(0.431858\pi\)
\(968\) 4.57892 0.147172
\(969\) 0.107675 0.00345902
\(970\) 7.46397 0.239654
\(971\) −17.6019 −0.564872 −0.282436 0.959286i \(-0.591142\pi\)
−0.282436 + 0.959286i \(0.591142\pi\)
\(972\) −1.00974 −0.0323875
\(973\) −28.0929 −0.900616
\(974\) −17.9045 −0.573697
\(975\) 0 0
\(976\) −2.92685 −0.0936861
\(977\) −11.7812 −0.376913 −0.188457 0.982082i \(-0.560348\pi\)
−0.188457 + 0.982082i \(0.560348\pi\)
\(978\) −0.0688260 −0.00220081
\(979\) −1.21056 −0.0386897
\(980\) −40.7978 −1.30324
\(981\) 30.5192 0.974404
\(982\) −7.21210 −0.230147
\(983\) −45.4985 −1.45118 −0.725589 0.688128i \(-0.758433\pi\)
−0.725589 + 0.688128i \(0.758433\pi\)
\(984\) −0.180864 −0.00576574
\(985\) 1.43795 0.0458169
\(986\) 61.0914 1.94555
\(987\) −0.515917 −0.0164218
\(988\) 0 0
\(989\) 1.11674 0.0355103
\(990\) 19.4011 0.616608
\(991\) 33.2685 1.05681 0.528405 0.848993i \(-0.322790\pi\)
0.528405 + 0.848993i \(0.322790\pi\)
\(992\) 70.1580 2.22752
\(993\) 0.340588 0.0108082
\(994\) 67.9130 2.15407
\(995\) 2.42852 0.0769892
\(996\) −0.293373 −0.00929589
\(997\) −39.7870 −1.26007 −0.630033 0.776568i \(-0.716959\pi\)
−0.630033 + 0.776568i \(0.716959\pi\)
\(998\) −19.6149 −0.620899
\(999\) −0.323470 −0.0102341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.a.n.1.3 9
3.2 odd 2 7605.2.a.cs.1.7 9
5.4 even 2 4225.2.a.bt.1.7 9
13.2 odd 12 845.2.m.j.316.5 36
13.3 even 3 845.2.e.p.191.7 18
13.4 even 6 845.2.e.o.146.3 18
13.5 odd 4 845.2.c.h.506.14 18
13.6 odd 12 845.2.m.j.361.14 36
13.7 odd 12 845.2.m.j.361.5 36
13.8 odd 4 845.2.c.h.506.5 18
13.9 even 3 845.2.e.p.146.7 18
13.10 even 6 845.2.e.o.191.3 18
13.11 odd 12 845.2.m.j.316.14 36
13.12 even 2 845.2.a.o.1.7 yes 9
39.38 odd 2 7605.2.a.cp.1.3 9
65.64 even 2 4225.2.a.bs.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.n.1.3 9 1.1 even 1 trivial
845.2.a.o.1.7 yes 9 13.12 even 2
845.2.c.h.506.5 18 13.8 odd 4
845.2.c.h.506.14 18 13.5 odd 4
845.2.e.o.146.3 18 13.4 even 6
845.2.e.o.191.3 18 13.10 even 6
845.2.e.p.146.7 18 13.9 even 3
845.2.e.p.191.7 18 13.3 even 3
845.2.m.j.316.5 36 13.2 odd 12
845.2.m.j.316.14 36 13.11 odd 12
845.2.m.j.361.5 36 13.7 odd 12
845.2.m.j.361.14 36 13.6 odd 12
4225.2.a.bs.1.3 9 65.64 even 2
4225.2.a.bt.1.7 9 5.4 even 2
7605.2.a.cp.1.3 9 39.38 odd 2
7605.2.a.cs.1.7 9 3.2 odd 2