Properties

Label 845.2.f.d.437.4
Level $845$
Weight $2$
Character 845.437
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(408,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.408");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 437.4
Root \(-1.58474i\) of defining polynomial
Character \(\chi\) \(=\) 845.437
Dual form 845.2.f.d.408.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.58474i q^{2} +(-0.139520 + 0.139520i) q^{3} -0.511395 q^{4} +(2.23506 - 0.0672627i) q^{5} +(0.221103 + 0.221103i) q^{6} +0.548328 q^{7} -2.35905i q^{8} +2.96107i q^{9} +(-0.106594 - 3.54198i) q^{10} +(0.108291 - 0.108291i) q^{11} +(0.0713497 - 0.0713497i) q^{12} -0.868956i q^{14} +(-0.302450 + 0.321219i) q^{15} -4.76126 q^{16} +(2.22252 - 2.22252i) q^{17} +4.69252 q^{18} +(3.22599 - 3.22599i) q^{19} +(-1.14300 + 0.0343978i) q^{20} +(-0.0765027 + 0.0765027i) q^{21} +(-0.171613 - 0.171613i) q^{22} +(-2.50259 - 2.50259i) q^{23} +(0.329134 + 0.329134i) q^{24} +(4.99095 - 0.300672i) q^{25} +(-0.831688 - 0.831688i) q^{27} -0.280412 q^{28} +2.34263i q^{29} +(0.509048 + 0.479305i) q^{30} +(6.61000 + 6.61000i) q^{31} +2.82726i q^{32} +0.0302175i q^{33} +(-3.52211 - 3.52211i) q^{34} +(1.22554 - 0.0368820i) q^{35} -1.51427i q^{36} +6.80635 q^{37} +(-5.11234 - 5.11234i) q^{38} +(-0.158676 - 5.27261i) q^{40} +(-2.53005 - 2.53005i) q^{41} +(0.121237 + 0.121237i) q^{42} +(-5.02761 - 5.02761i) q^{43} +(-0.0553794 + 0.0553794i) q^{44} +(0.199169 + 6.61815i) q^{45} +(-3.96595 + 3.96595i) q^{46} +9.13956 q^{47} +(0.664291 - 0.664291i) q^{48} -6.69934 q^{49} +(-0.476486 - 7.90935i) q^{50} +0.620172i q^{51} +(-3.70952 + 3.70952i) q^{53} +(-1.31801 + 1.31801i) q^{54} +(0.234752 - 0.249320i) q^{55} -1.29353i q^{56} +0.900179i q^{57} +3.71246 q^{58} +(-2.69196 - 2.69196i) q^{59} +(0.154672 - 0.164270i) q^{60} +7.84971 q^{61} +(10.4751 - 10.4751i) q^{62} +1.62364i q^{63} -5.04207 q^{64} +0.0478868 q^{66} -4.89032i q^{67} +(-1.13659 + 1.13659i) q^{68} +0.698322 q^{69} +(-0.0584483 - 1.94217i) q^{70} +(-11.0573 - 11.0573i) q^{71} +6.98531 q^{72} +3.91807i q^{73} -10.7863i q^{74} +(-0.654387 + 0.738287i) q^{75} +(-1.64975 + 1.64975i) q^{76} +(0.0593789 - 0.0593789i) q^{77} +11.1394i q^{79} +(-10.6417 + 0.320255i) q^{80} -8.65113 q^{81} +(-4.00947 + 4.00947i) q^{82} -13.4251 q^{83} +(0.0391231 - 0.0391231i) q^{84} +(4.81797 - 5.11695i) q^{85} +(-7.96744 + 7.96744i) q^{86} +(-0.326844 - 0.326844i) q^{87} +(-0.255464 - 0.255464i) q^{88} +(-6.43047 - 6.43047i) q^{89} +(10.4880 - 0.315631i) q^{90} +(1.27981 + 1.27981i) q^{92} -1.84445 q^{93} -14.4838i q^{94} +(6.99327 - 7.42725i) q^{95} +(-0.394459 - 0.394459i) q^{96} +7.57101i q^{97} +10.6167i q^{98} +(0.320657 + 0.320657i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{3} - 12 q^{4} - 4 q^{6} - 4 q^{7} - 8 q^{10} - 8 q^{11} - 24 q^{12} - 28 q^{15} + 4 q^{16} - 14 q^{17} - 4 q^{19} + 12 q^{20} - 4 q^{21} - 32 q^{22} + 8 q^{23} + 4 q^{24} + 18 q^{25} + 4 q^{27}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.58474i 1.12058i −0.828297 0.560290i \(-0.810690\pi\)
0.828297 0.560290i \(-0.189310\pi\)
\(3\) −0.139520 + 0.139520i −0.0805519 + 0.0805519i −0.746235 0.665683i \(-0.768140\pi\)
0.665683 + 0.746235i \(0.268140\pi\)
\(4\) −0.511395 −0.255697
\(5\) 2.23506 0.0672627i 0.999547 0.0300808i
\(6\) 0.221103 + 0.221103i 0.0902647 + 0.0902647i
\(7\) 0.548328 0.207248 0.103624 0.994617i \(-0.466956\pi\)
0.103624 + 0.994617i \(0.466956\pi\)
\(8\) 2.35905i 0.834050i
\(9\) 2.96107i 0.987023i
\(10\) −0.106594 3.54198i −0.0337079 1.12007i
\(11\) 0.108291 0.108291i 0.0326509 0.0326509i −0.690593 0.723244i \(-0.742650\pi\)
0.723244 + 0.690593i \(0.242650\pi\)
\(12\) 0.0713497 0.0713497i 0.0205969 0.0205969i
\(13\) 0 0
\(14\) 0.868956i 0.232238i
\(15\) −0.302450 + 0.321219i −0.0780923 + 0.0829385i
\(16\) −4.76126 −1.19032
\(17\) 2.22252 2.22252i 0.539041 0.539041i −0.384207 0.923247i \(-0.625525\pi\)
0.923247 + 0.384207i \(0.125525\pi\)
\(18\) 4.69252 1.10604
\(19\) 3.22599 3.22599i 0.740092 0.740092i −0.232503 0.972596i \(-0.574692\pi\)
0.972596 + 0.232503i \(0.0746917\pi\)
\(20\) −1.14300 + 0.0343978i −0.255582 + 0.00769158i
\(21\) −0.0765027 + 0.0765027i −0.0166942 + 0.0166942i
\(22\) −0.171613 0.171613i −0.0365880 0.0365880i
\(23\) −2.50259 2.50259i −0.521826 0.521826i 0.396297 0.918123i \(-0.370295\pi\)
−0.918123 + 0.396297i \(0.870295\pi\)
\(24\) 0.329134 + 0.329134i 0.0671843 + 0.0671843i
\(25\) 4.99095 0.300672i 0.998190 0.0601343i
\(26\) 0 0
\(27\) −0.831688 0.831688i −0.160058 0.160058i
\(28\) −0.280412 −0.0529929
\(29\) 2.34263i 0.435016i 0.976059 + 0.217508i \(0.0697927\pi\)
−0.976059 + 0.217508i \(0.930207\pi\)
\(30\) 0.509048 + 0.479305i 0.0929391 + 0.0875086i
\(31\) 6.61000 + 6.61000i 1.18719 + 1.18719i 0.977841 + 0.209350i \(0.0671347\pi\)
0.209350 + 0.977841i \(0.432865\pi\)
\(32\) 2.82726i 0.499793i
\(33\) 0.0302175i 0.00526019i
\(34\) −3.52211 3.52211i −0.604038 0.604038i
\(35\) 1.22554 0.0368820i 0.207155 0.00623420i
\(36\) 1.51427i 0.252379i
\(37\) 6.80635 1.11896 0.559478 0.828845i \(-0.311002\pi\)
0.559478 + 0.828845i \(0.311002\pi\)
\(38\) −5.11234 5.11234i −0.829332 0.829332i
\(39\) 0 0
\(40\) −0.158676 5.27261i −0.0250889 0.833672i
\(41\) −2.53005 2.53005i −0.395128 0.395128i 0.481382 0.876511i \(-0.340135\pi\)
−0.876511 + 0.481382i \(0.840135\pi\)
\(42\) 0.121237 + 0.121237i 0.0187072 + 0.0187072i
\(43\) −5.02761 5.02761i −0.766703 0.766703i 0.210822 0.977524i \(-0.432386\pi\)
−0.977524 + 0.210822i \(0.932386\pi\)
\(44\) −0.0553794 + 0.0553794i −0.00834876 + 0.00834876i
\(45\) 0.199169 + 6.61815i 0.0296904 + 0.986576i
\(46\) −3.96595 + 3.96595i −0.584747 + 0.584747i
\(47\) 9.13956 1.33314 0.666571 0.745442i \(-0.267761\pi\)
0.666571 + 0.745442i \(0.267761\pi\)
\(48\) 0.664291 0.664291i 0.0958822 0.0958822i
\(49\) −6.69934 −0.957048
\(50\) −0.476486 7.90935i −0.0673853 1.11855i
\(51\) 0.620172i 0.0868415i
\(52\) 0 0
\(53\) −3.70952 + 3.70952i −0.509541 + 0.509541i −0.914386 0.404844i \(-0.867326\pi\)
0.404844 + 0.914386i \(0.367326\pi\)
\(54\) −1.31801 + 1.31801i −0.179358 + 0.179358i
\(55\) 0.234752 0.249320i 0.0316540 0.0336183i
\(56\) 1.29353i 0.172856i
\(57\) 0.900179i 0.119232i
\(58\) 3.71246 0.487469
\(59\) −2.69196 2.69196i −0.350463 0.350463i 0.509819 0.860282i \(-0.329712\pi\)
−0.860282 + 0.509819i \(0.829712\pi\)
\(60\) 0.154672 0.164270i 0.0199680 0.0212071i
\(61\) 7.84971 1.00505 0.502526 0.864562i \(-0.332404\pi\)
0.502526 + 0.864562i \(0.332404\pi\)
\(62\) 10.4751 10.4751i 1.33034 1.33034i
\(63\) 1.62364i 0.204559i
\(64\) −5.04207 −0.630258
\(65\) 0 0
\(66\) 0.0478868 0.00589446
\(67\) 4.89032i 0.597448i −0.954340 0.298724i \(-0.903439\pi\)
0.954340 0.298724i \(-0.0965610\pi\)
\(68\) −1.13659 + 1.13659i −0.137831 + 0.137831i
\(69\) 0.698322 0.0840681
\(70\) −0.0584483 1.94217i −0.00698591 0.232133i
\(71\) −11.0573 11.0573i −1.31226 1.31226i −0.919747 0.392513i \(-0.871606\pi\)
−0.392513 0.919747i \(-0.628394\pi\)
\(72\) 6.98531 0.823226
\(73\) 3.91807i 0.458575i 0.973359 + 0.229288i \(0.0736396\pi\)
−0.973359 + 0.229288i \(0.926360\pi\)
\(74\) 10.7863i 1.25388i
\(75\) −0.654387 + 0.738287i −0.0755622 + 0.0852500i
\(76\) −1.64975 + 1.64975i −0.189240 + 0.189240i
\(77\) 0.0593789 0.0593789i 0.00676686 0.00676686i
\(78\) 0 0
\(79\) 11.1394i 1.25328i 0.779309 + 0.626640i \(0.215570\pi\)
−0.779309 + 0.626640i \(0.784430\pi\)
\(80\) −10.6417 + 0.320255i −1.18978 + 0.0358056i
\(81\) −8.65113 −0.961237
\(82\) −4.00947 + 4.00947i −0.442772 + 0.442772i
\(83\) −13.4251 −1.47360 −0.736798 0.676113i \(-0.763663\pi\)
−0.736798 + 0.676113i \(0.763663\pi\)
\(84\) 0.0391231 0.0391231i 0.00426868 0.00426868i
\(85\) 4.81797 5.11695i 0.522582 0.555011i
\(86\) −7.96744 + 7.96744i −0.859151 + 0.859151i
\(87\) −0.326844 0.326844i −0.0350413 0.0350413i
\(88\) −0.255464 0.255464i −0.0272325 0.0272325i
\(89\) −6.43047 6.43047i −0.681629 0.681629i 0.278738 0.960367i \(-0.410084\pi\)
−0.960367 + 0.278738i \(0.910084\pi\)
\(90\) 10.4880 0.315631i 1.10554 0.0332705i
\(91\) 0 0
\(92\) 1.27981 + 1.27981i 0.133430 + 0.133430i
\(93\) −1.84445 −0.191261
\(94\) 14.4838i 1.49389i
\(95\) 6.99327 7.42725i 0.717495 0.762020i
\(96\) −0.394459 0.394459i −0.0402593 0.0402593i
\(97\) 7.57101i 0.768719i 0.923183 + 0.384360i \(0.125578\pi\)
−0.923183 + 0.384360i \(0.874422\pi\)
\(98\) 10.6167i 1.07245i
\(99\) 0.320657 + 0.320657i 0.0322272 + 0.0322272i
\(100\) −2.55235 + 0.153762i −0.255235 + 0.0153762i
\(101\) 13.5352i 1.34680i 0.739279 + 0.673400i \(0.235167\pi\)
−0.739279 + 0.673400i \(0.764833\pi\)
\(102\) 0.982810 0.0973127
\(103\) −10.3566 10.3566i −1.02046 1.02046i −0.999786 0.0206759i \(-0.993418\pi\)
−0.0206759 0.999786i \(-0.506582\pi\)
\(104\) 0 0
\(105\) −0.165842 + 0.176134i −0.0161845 + 0.0171889i
\(106\) 5.87861 + 5.87861i 0.570981 + 0.570981i
\(107\) 11.3675 + 11.3675i 1.09893 + 1.09893i 0.994535 + 0.104399i \(0.0332920\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(108\) 0.425321 + 0.425321i 0.0409265 + 0.0409265i
\(109\) −8.20821 + 8.20821i −0.786203 + 0.786203i −0.980870 0.194666i \(-0.937638\pi\)
0.194666 + 0.980870i \(0.437638\pi\)
\(110\) −0.395107 0.372021i −0.0376720 0.0354708i
\(111\) −0.949621 + 0.949621i −0.0901340 + 0.0901340i
\(112\) −2.61073 −0.246691
\(113\) 3.22285 3.22285i 0.303180 0.303180i −0.539077 0.842257i \(-0.681227\pi\)
0.842257 + 0.539077i \(0.181227\pi\)
\(114\) 1.42655 0.133608
\(115\) −5.76176 5.42510i −0.537287 0.505893i
\(116\) 1.19801i 0.111232i
\(117\) 0 0
\(118\) −4.26605 + 4.26605i −0.392722 + 0.392722i
\(119\) 1.21867 1.21867i 0.111715 0.111715i
\(120\) 0.757772 + 0.713495i 0.0691748 + 0.0651329i
\(121\) 10.9765i 0.997868i
\(122\) 12.4397i 1.12624i
\(123\) 0.705986 0.0636566
\(124\) −3.38032 3.38032i −0.303561 0.303561i
\(125\) 11.1348 1.00772i 0.995930 0.0901335i
\(126\) 2.57304 0.229224
\(127\) −1.71992 + 1.71992i −0.152618 + 0.152618i −0.779286 0.626668i \(-0.784418\pi\)
0.626668 + 0.779286i \(0.284418\pi\)
\(128\) 13.6449i 1.20605i
\(129\) 1.40290 0.123519
\(130\) 0 0
\(131\) 6.60705 0.577260 0.288630 0.957441i \(-0.406800\pi\)
0.288630 + 0.957441i \(0.406800\pi\)
\(132\) 0.0154531i 0.00134502i
\(133\) 1.76890 1.76890i 0.153383 0.153383i
\(134\) −7.74988 −0.669487
\(135\) −1.91481 1.80293i −0.164801 0.155171i
\(136\) −5.24304 5.24304i −0.449587 0.449587i
\(137\) −4.05549 −0.346484 −0.173242 0.984879i \(-0.555424\pi\)
−0.173242 + 0.984879i \(0.555424\pi\)
\(138\) 1.10666i 0.0942050i
\(139\) 12.8232i 1.08765i 0.839199 + 0.543825i \(0.183024\pi\)
−0.839199 + 0.543825i \(0.816976\pi\)
\(140\) −0.626737 + 0.0188613i −0.0529689 + 0.00159407i
\(141\) −1.27515 + 1.27515i −0.107387 + 0.107387i
\(142\) −17.5229 + 17.5229i −1.47049 + 1.47049i
\(143\) 0 0
\(144\) 14.0984i 1.17487i
\(145\) 0.157572 + 5.23591i 0.0130856 + 0.434819i
\(146\) 6.20911 0.513870
\(147\) 0.934691 0.934691i 0.0770920 0.0770920i
\(148\) −3.48073 −0.286114
\(149\) 3.00860 3.00860i 0.246474 0.246474i −0.573048 0.819522i \(-0.694239\pi\)
0.819522 + 0.573048i \(0.194239\pi\)
\(150\) 1.16999 + 1.03703i 0.0955294 + 0.0846734i
\(151\) −4.89430 + 4.89430i −0.398293 + 0.398293i −0.877630 0.479338i \(-0.840877\pi\)
0.479338 + 0.877630i \(0.340877\pi\)
\(152\) −7.61026 7.61026i −0.617274 0.617274i
\(153\) 6.58104 + 6.58104i 0.532045 + 0.532045i
\(154\) −0.0941001 0.0941001i −0.00758280 0.00758280i
\(155\) 15.2183 + 14.3291i 1.22236 + 1.15094i
\(156\) 0 0
\(157\) 2.29887 + 2.29887i 0.183470 + 0.183470i 0.792866 0.609396i \(-0.208588\pi\)
−0.609396 + 0.792866i \(0.708588\pi\)
\(158\) 17.6530 1.40440
\(159\) 1.03510i 0.0820890i
\(160\) 0.190169 + 6.31908i 0.0150342 + 0.499567i
\(161\) −1.37224 1.37224i −0.108148 0.108148i
\(162\) 13.7098i 1.07714i
\(163\) 10.8685i 0.851283i −0.904892 0.425642i \(-0.860048\pi\)
0.904892 0.425642i \(-0.139952\pi\)
\(164\) 1.29386 + 1.29386i 0.101033 + 0.101033i
\(165\) 0.00203251 + 0.0675378i 0.000158231 + 0.00525781i
\(166\) 21.2753i 1.65128i
\(167\) 16.3588 1.26588 0.632942 0.774199i \(-0.281847\pi\)
0.632942 + 0.774199i \(0.281847\pi\)
\(168\) 0.180474 + 0.180474i 0.0139238 + 0.0139238i
\(169\) 0 0
\(170\) −8.10903 7.63522i −0.621934 0.585594i
\(171\) 9.55237 + 9.55237i 0.730488 + 0.730488i
\(172\) 2.57109 + 2.57109i 0.196044 + 0.196044i
\(173\) 4.83220 + 4.83220i 0.367385 + 0.367385i 0.866523 0.499137i \(-0.166350\pi\)
−0.499137 + 0.866523i \(0.666350\pi\)
\(174\) −0.517961 + 0.517961i −0.0392666 + 0.0392666i
\(175\) 2.73668 0.164867i 0.206873 0.0124628i
\(176\) −0.515602 + 0.515602i −0.0388649 + 0.0388649i
\(177\) 0.751164 0.0564609
\(178\) −10.1906 + 10.1906i −0.763819 + 0.763819i
\(179\) −5.67392 −0.424089 −0.212044 0.977260i \(-0.568012\pi\)
−0.212044 + 0.977260i \(0.568012\pi\)
\(180\) −0.101854 3.38449i −0.00759176 0.252265i
\(181\) 3.59115i 0.266928i 0.991054 + 0.133464i \(0.0426101\pi\)
−0.991054 + 0.133464i \(0.957390\pi\)
\(182\) 0 0
\(183\) −1.09519 + 1.09519i −0.0809588 + 0.0809588i
\(184\) −5.90373 + 5.90373i −0.435229 + 0.435229i
\(185\) 15.2126 0.457813i 1.11845 0.0336591i
\(186\) 2.92297i 0.214323i
\(187\) 0.481358i 0.0352004i
\(188\) −4.67392 −0.340881
\(189\) −0.456038 0.456038i −0.0331719 0.0331719i
\(190\) −11.7702 11.0825i −0.853903 0.804009i
\(191\) −23.4821 −1.69911 −0.849553 0.527504i \(-0.823128\pi\)
−0.849553 + 0.527504i \(0.823128\pi\)
\(192\) 0.703469 0.703469i 0.0507685 0.0507685i
\(193\) 15.8378i 1.14003i 0.821634 + 0.570016i \(0.193063\pi\)
−0.821634 + 0.570016i \(0.806937\pi\)
\(194\) 11.9981 0.861411
\(195\) 0 0
\(196\) 3.42601 0.244715
\(197\) 5.71277i 0.407018i −0.979073 0.203509i \(-0.934765\pi\)
0.979073 0.203509i \(-0.0652346\pi\)
\(198\) 0.508157 0.508157i 0.0361132 0.0361132i
\(199\) 9.30312 0.659481 0.329740 0.944072i \(-0.393039\pi\)
0.329740 + 0.944072i \(0.393039\pi\)
\(200\) −0.709299 11.7739i −0.0501550 0.832541i
\(201\) 0.682297 + 0.682297i 0.0481255 + 0.0481255i
\(202\) 21.4497 1.50919
\(203\) 1.28453i 0.0901563i
\(204\) 0.317153i 0.0222051i
\(205\) −5.82499 5.48464i −0.406835 0.383064i
\(206\) −16.4124 + 16.4124i −1.14351 + 1.14351i
\(207\) 7.41034 7.41034i 0.515054 0.515054i
\(208\) 0 0
\(209\) 0.698690i 0.0483294i
\(210\) 0.279125 + 0.262816i 0.0192615 + 0.0181360i
\(211\) −5.47558 −0.376955 −0.188477 0.982078i \(-0.560355\pi\)
−0.188477 + 0.982078i \(0.560355\pi\)
\(212\) 1.89703 1.89703i 0.130288 0.130288i
\(213\) 3.08543 0.211410
\(214\) 18.0145 18.0145i 1.23144 1.23144i
\(215\) −11.5752 10.8988i −0.789419 0.743293i
\(216\) −1.96199 + 1.96199i −0.133497 + 0.133497i
\(217\) 3.62445 + 3.62445i 0.246043 + 0.246043i
\(218\) 13.0079 + 13.0079i 0.881003 + 0.881003i
\(219\) −0.546648 0.546648i −0.0369391 0.0369391i
\(220\) −0.120051 + 0.127501i −0.00809385 + 0.00859612i
\(221\) 0 0
\(222\) 1.50490 + 1.50490i 0.101002 + 0.101002i
\(223\) 18.5682 1.24342 0.621708 0.783249i \(-0.286439\pi\)
0.621708 + 0.783249i \(0.286439\pi\)
\(224\) 1.55026i 0.103581i
\(225\) 0.890310 + 14.7785i 0.0593540 + 0.985237i
\(226\) −5.10737 5.10737i −0.339737 0.339737i
\(227\) 6.38666i 0.423898i −0.977281 0.211949i \(-0.932019\pi\)
0.977281 0.211949i \(-0.0679810\pi\)
\(228\) 0.460347i 0.0304872i
\(229\) −11.1149 11.1149i −0.734491 0.734491i 0.237015 0.971506i \(-0.423831\pi\)
−0.971506 + 0.237015i \(0.923831\pi\)
\(230\) −8.59736 + 9.13088i −0.566893 + 0.602072i
\(231\) 0.0165691i 0.00109017i
\(232\) 5.52638 0.362825
\(233\) 5.85956 + 5.85956i 0.383873 + 0.383873i 0.872495 0.488623i \(-0.162500\pi\)
−0.488623 + 0.872495i \(0.662500\pi\)
\(234\) 0 0
\(235\) 20.4274 0.614751i 1.33254 0.0401019i
\(236\) 1.37665 + 1.37665i 0.0896125 + 0.0896125i
\(237\) −1.55417 1.55417i −0.100954 0.100954i
\(238\) −1.93127 1.93127i −0.125186 0.125186i
\(239\) 13.8081 13.8081i 0.893170 0.893170i −0.101650 0.994820i \(-0.532412\pi\)
0.994820 + 0.101650i \(0.0324123\pi\)
\(240\) 1.44005 1.52941i 0.0929546 0.0987230i
\(241\) −12.1149 + 12.1149i −0.780391 + 0.780391i −0.979897 0.199505i \(-0.936066\pi\)
0.199505 + 0.979897i \(0.436066\pi\)
\(242\) 17.3950 1.11819
\(243\) 3.70207 3.70207i 0.237488 0.237488i
\(244\) −4.01430 −0.256989
\(245\) −14.9734 + 0.450615i −0.956615 + 0.0287888i
\(246\) 1.11880i 0.0713323i
\(247\) 0 0
\(248\) 15.5933 15.5933i 0.990176 0.990176i
\(249\) 1.87307 1.87307i 0.118701 0.118701i
\(250\) −1.59698 17.6458i −0.101002 1.11602i
\(251\) 9.95304i 0.628230i −0.949385 0.314115i \(-0.898292\pi\)
0.949385 0.314115i \(-0.101708\pi\)
\(252\) 0.830319i 0.0523052i
\(253\) −0.542016 −0.0340762
\(254\) 2.72562 + 2.72562i 0.171020 + 0.171020i
\(255\) 0.0417144 + 1.38612i 0.00261226 + 0.0868022i
\(256\) 11.5394 0.721213
\(257\) 1.94551 1.94551i 0.121357 0.121357i −0.643820 0.765177i \(-0.722651\pi\)
0.765177 + 0.643820i \(0.222651\pi\)
\(258\) 2.22323i 0.138412i
\(259\) 3.73211 0.231902
\(260\) 0 0
\(261\) −6.93669 −0.429370
\(262\) 10.4704i 0.646866i
\(263\) −4.36804 + 4.36804i −0.269345 + 0.269345i −0.828836 0.559491i \(-0.810997\pi\)
0.559491 + 0.828836i \(0.310997\pi\)
\(264\) 0.0712845 0.00438726
\(265\) −8.04147 + 8.54049i −0.493983 + 0.524638i
\(266\) −2.80324 2.80324i −0.171878 0.171878i
\(267\) 1.79436 0.109813
\(268\) 2.50088i 0.152766i
\(269\) 21.2230i 1.29399i 0.762495 + 0.646994i \(0.223974\pi\)
−0.762495 + 0.646994i \(0.776026\pi\)
\(270\) −2.85717 + 3.03447i −0.173882 + 0.184672i
\(271\) −9.11094 + 9.11094i −0.553450 + 0.553450i −0.927435 0.373985i \(-0.877991\pi\)
0.373985 + 0.927435i \(0.377991\pi\)
\(272\) −10.5820 + 10.5820i −0.641629 + 0.641629i
\(273\) 0 0
\(274\) 6.42690i 0.388263i
\(275\) 0.507915 0.573035i 0.0306284 0.0345553i
\(276\) −0.357118 −0.0214960
\(277\) −15.0447 + 15.0447i −0.903948 + 0.903948i −0.995775 0.0918270i \(-0.970729\pi\)
0.0918270 + 0.995775i \(0.470729\pi\)
\(278\) 20.3214 1.21880
\(279\) −19.5727 + 19.5727i −1.17178 + 1.17178i
\(280\) −0.0870065 2.89112i −0.00519963 0.172777i
\(281\) 4.22655 4.22655i 0.252135 0.252135i −0.569711 0.821845i \(-0.692945\pi\)
0.821845 + 0.569711i \(0.192945\pi\)
\(282\) 2.02078 + 2.02078i 0.120336 + 0.120336i
\(283\) −1.08748 1.08748i −0.0646437 0.0646437i 0.674046 0.738690i \(-0.264555\pi\)
−0.738690 + 0.674046i \(0.764555\pi\)
\(284\) 5.65464 + 5.65464i 0.335541 + 0.335541i
\(285\) 0.0605484 + 2.01195i 0.00358658 + 0.119178i
\(286\) 0 0
\(287\) −1.38730 1.38730i −0.0818897 0.0818897i
\(288\) −8.37171 −0.493308
\(289\) 7.12080i 0.418870i
\(290\) 8.29755 0.249710i 0.487249 0.0146635i
\(291\) −1.05631 1.05631i −0.0619218 0.0619218i
\(292\) 2.00368i 0.117256i
\(293\) 2.79186i 0.163102i 0.996669 + 0.0815512i \(0.0259874\pi\)
−0.996669 + 0.0815512i \(0.974013\pi\)
\(294\) −1.48124 1.48124i −0.0863877 0.0863877i
\(295\) −6.19775 5.83561i −0.360847 0.339762i
\(296\) 16.0565i 0.933265i
\(297\) −0.180128 −0.0104521
\(298\) −4.76785 4.76785i −0.276194 0.276194i
\(299\) 0 0
\(300\) 0.334650 0.377556i 0.0193210 0.0217982i
\(301\) −2.75678 2.75678i −0.158898 0.158898i
\(302\) 7.75619 + 7.75619i 0.446318 + 0.446318i
\(303\) −1.88843 1.88843i −0.108487 0.108487i
\(304\) −15.3598 + 15.3598i −0.880944 + 0.880944i
\(305\) 17.5445 0.527993i 1.00460 0.0302328i
\(306\) 10.4292 10.4292i 0.596199 0.596199i
\(307\) −2.12112 −0.121058 −0.0605292 0.998166i \(-0.519279\pi\)
−0.0605292 + 0.998166i \(0.519279\pi\)
\(308\) −0.0303661 + 0.0303661i −0.00173027 + 0.00173027i
\(309\) 2.88989 0.164400
\(310\) 22.7079 24.1171i 1.28972 1.36976i
\(311\) 21.2656i 1.20586i −0.797794 0.602931i \(-0.794000\pi\)
0.797794 0.602931i \(-0.206000\pi\)
\(312\) 0 0
\(313\) −14.3666 + 14.3666i −0.812050 + 0.812050i −0.984941 0.172891i \(-0.944689\pi\)
0.172891 + 0.984941i \(0.444689\pi\)
\(314\) 3.64310 3.64310i 0.205592 0.205592i
\(315\) 0.109210 + 3.62892i 0.00615329 + 0.204466i
\(316\) 5.69663i 0.320460i
\(317\) 8.78989i 0.493689i −0.969055 0.246845i \(-0.920606\pi\)
0.969055 0.246845i \(-0.0793937\pi\)
\(318\) −1.64037 −0.0919872
\(319\) 0.253686 + 0.253686i 0.0142037 + 0.0142037i
\(320\) −11.2693 + 0.339143i −0.629973 + 0.0189587i
\(321\) −3.17198 −0.177042
\(322\) −2.17464 + 2.17464i −0.121188 + 0.121188i
\(323\) 14.3396i 0.797879i
\(324\) 4.42414 0.245786
\(325\) 0 0
\(326\) −17.2237 −0.953930
\(327\) 2.29042i 0.126660i
\(328\) −5.96852 + 5.96852i −0.329557 + 0.329557i
\(329\) 5.01147 0.276291
\(330\) 0.107030 0.00322099i 0.00589179 0.000177310i
\(331\) 12.8491 + 12.8491i 0.706250 + 0.706250i 0.965745 0.259494i \(-0.0835558\pi\)
−0.259494 + 0.965745i \(0.583556\pi\)
\(332\) 6.86552 0.376794
\(333\) 20.1541i 1.10444i
\(334\) 25.9245i 1.41852i
\(335\) −0.328936 10.9301i −0.0179717 0.597177i
\(336\) 0.364249 0.364249i 0.0198714 0.0198714i
\(337\) −17.2522 + 17.2522i −0.939788 + 0.939788i −0.998287 0.0584999i \(-0.981368\pi\)
0.0584999 + 0.998287i \(0.481368\pi\)
\(338\) 0 0
\(339\) 0.899302i 0.0488434i
\(340\) −2.46388 + 2.61678i −0.133623 + 0.141915i
\(341\) 1.43161 0.0775258
\(342\) 15.1380 15.1380i 0.818569 0.818569i
\(343\) −7.51173 −0.405595
\(344\) −11.8604 + 11.8604i −0.639468 + 0.639468i
\(345\) 1.56079 0.0469710i 0.0840301 0.00252884i
\(346\) 7.65777 7.65777i 0.411684 0.411684i
\(347\) −5.49531 5.49531i −0.295004 0.295004i 0.544049 0.839053i \(-0.316890\pi\)
−0.839053 + 0.544049i \(0.816890\pi\)
\(348\) 0.167146 + 0.167146i 0.00895997 + 0.00895997i
\(349\) −3.58556 3.58556i −0.191931 0.191931i 0.604599 0.796530i \(-0.293333\pi\)
−0.796530 + 0.604599i \(0.793333\pi\)
\(350\) −0.261271 4.33692i −0.0139655 0.231818i
\(351\) 0 0
\(352\) 0.306166 + 0.306166i 0.0163187 + 0.0163187i
\(353\) −25.6178 −1.36350 −0.681749 0.731586i \(-0.738780\pi\)
−0.681749 + 0.731586i \(0.738780\pi\)
\(354\) 1.19040i 0.0632689i
\(355\) −25.4574 23.9699i −1.35114 1.27219i
\(356\) 3.28851 + 3.28851i 0.174291 + 0.174291i
\(357\) 0.340058i 0.0179978i
\(358\) 8.99168i 0.475225i
\(359\) 10.0443 + 10.0443i 0.530117 + 0.530117i 0.920607 0.390490i \(-0.127694\pi\)
−0.390490 + 0.920607i \(0.627694\pi\)
\(360\) 15.6126 0.469850i 0.822854 0.0247633i
\(361\) 1.81398i 0.0954726i
\(362\) 5.69103 0.299114
\(363\) −1.53145 1.53145i −0.0803801 0.0803801i
\(364\) 0 0
\(365\) 0.263540 + 8.75710i 0.0137943 + 0.458368i
\(366\) 1.73559 + 1.73559i 0.0907208 + 0.0907208i
\(367\) −14.2286 14.2286i −0.742726 0.742726i 0.230376 0.973102i \(-0.426005\pi\)
−0.973102 + 0.230376i \(0.926005\pi\)
\(368\) 11.9155 + 11.9155i 0.621138 + 0.621138i
\(369\) 7.49167 7.49167i 0.390001 0.390001i
\(370\) −0.725514 24.1079i −0.0377177 1.25331i
\(371\) −2.03403 + 2.03403i −0.105602 + 0.105602i
\(372\) 0.943243 0.0489049
\(373\) 18.5300 18.5300i 0.959447 0.959447i −0.0397619 0.999209i \(-0.512660\pi\)
0.999209 + 0.0397619i \(0.0126600\pi\)
\(374\) −0.762826 −0.0394448
\(375\) −1.41293 + 1.69413i −0.0729636 + 0.0874844i
\(376\) 21.5607i 1.11191i
\(377\) 0 0
\(378\) −0.722700 + 0.722700i −0.0371717 + 0.0371717i
\(379\) −15.9314 + 15.9314i −0.818341 + 0.818341i −0.985868 0.167526i \(-0.946422\pi\)
0.167526 + 0.985868i \(0.446422\pi\)
\(380\) −3.57632 + 3.79826i −0.183461 + 0.194846i
\(381\) 0.479925i 0.0245873i
\(382\) 37.2130i 1.90398i
\(383\) −24.1261 −1.23278 −0.616392 0.787440i \(-0.711406\pi\)
−0.616392 + 0.787440i \(0.711406\pi\)
\(384\) −1.90373 1.90373i −0.0971494 0.0971494i
\(385\) 0.128721 0.136709i 0.00656024 0.00696735i
\(386\) 25.0988 1.27750
\(387\) 14.8871 14.8871i 0.756753 0.756753i
\(388\) 3.87177i 0.196559i
\(389\) 14.3262 0.726365 0.363183 0.931718i \(-0.381690\pi\)
0.363183 + 0.931718i \(0.381690\pi\)
\(390\) 0 0
\(391\) −11.1241 −0.562571
\(392\) 15.8041i 0.798226i
\(393\) −0.921815 + 0.921815i −0.0464994 + 0.0464994i
\(394\) −9.05325 −0.456096
\(395\) 0.749265 + 24.8972i 0.0376996 + 1.25271i
\(396\) −0.163982 0.163982i −0.00824042 0.00824042i
\(397\) −33.4931 −1.68097 −0.840484 0.541836i \(-0.817729\pi\)
−0.840484 + 0.541836i \(0.817729\pi\)
\(398\) 14.7430i 0.739000i
\(399\) 0.493593i 0.0247106i
\(400\) −23.7632 + 1.43158i −1.18816 + 0.0715789i
\(401\) 13.1161 13.1161i 0.654989 0.654989i −0.299201 0.954190i \(-0.596720\pi\)
0.954190 + 0.299201i \(0.0967202\pi\)
\(402\) 1.08126 1.08126i 0.0539285 0.0539285i
\(403\) 0 0
\(404\) 6.92181i 0.344373i
\(405\) −19.3358 + 0.581898i −0.960802 + 0.0289148i
\(406\) 2.03564 0.101027
\(407\) 0.737066 0.737066i 0.0365350 0.0365350i
\(408\) 1.46302 0.0724301
\(409\) 3.65748 3.65748i 0.180851 0.180851i −0.610876 0.791727i \(-0.709182\pi\)
0.791727 + 0.610876i \(0.209182\pi\)
\(410\) −8.69171 + 9.23109i −0.429253 + 0.455891i
\(411\) 0.565822 0.565822i 0.0279099 0.0279099i
\(412\) 5.29629 + 5.29629i 0.260929 + 0.260929i
\(413\) −1.47608 1.47608i −0.0726329 0.0726329i
\(414\) −11.7434 11.7434i −0.577159 0.577159i
\(415\) −30.0058 + 0.903008i −1.47293 + 0.0443269i
\(416\) 0 0
\(417\) −1.78909 1.78909i −0.0876122 0.0876122i
\(418\) −1.10724 −0.0541569
\(419\) 1.00695i 0.0491929i −0.999697 0.0245965i \(-0.992170\pi\)
0.999697 0.0245965i \(-0.00783009\pi\)
\(420\) 0.0848107 0.0900737i 0.00413834 0.00439515i
\(421\) −0.294746 0.294746i −0.0143650 0.0143650i 0.699888 0.714253i \(-0.253233\pi\)
−0.714253 + 0.699888i \(0.753233\pi\)
\(422\) 8.67736i 0.422407i
\(423\) 27.0628i 1.31584i
\(424\) 8.75094 + 8.75094i 0.424983 + 0.424983i
\(425\) 10.4242 11.7607i 0.505650 0.570480i
\(426\) 4.88959i 0.236901i
\(427\) 4.30421 0.208296
\(428\) −5.81326 5.81326i −0.280995 0.280995i
\(429\) 0 0
\(430\) −17.2718 + 18.3436i −0.832918 + 0.884606i
\(431\) 2.93555 + 2.93555i 0.141401 + 0.141401i 0.774264 0.632863i \(-0.218120\pi\)
−0.632863 + 0.774264i \(0.718120\pi\)
\(432\) 3.95989 + 3.95989i 0.190520 + 0.190520i
\(433\) −10.6032 10.6032i −0.509556 0.509556i 0.404834 0.914390i \(-0.367329\pi\)
−0.914390 + 0.404834i \(0.867329\pi\)
\(434\) 5.74380 5.74380i 0.275711 0.275711i
\(435\) −0.752498 0.708529i −0.0360795 0.0339714i
\(436\) 4.19763 4.19763i 0.201030 0.201030i
\(437\) −16.1466 −0.772399
\(438\) −0.866294 + 0.866294i −0.0413932 + 0.0413932i
\(439\) 13.8820 0.662550 0.331275 0.943534i \(-0.392521\pi\)
0.331275 + 0.943534i \(0.392521\pi\)
\(440\) −0.588159 0.553792i −0.0280394 0.0264010i
\(441\) 19.8372i 0.944628i
\(442\) 0 0
\(443\) 10.0594 10.0594i 0.477938 0.477938i −0.426533 0.904472i \(-0.640265\pi\)
0.904472 + 0.426533i \(0.140265\pi\)
\(444\) 0.485631 0.485631i 0.0230470 0.0230470i
\(445\) −14.8050 13.9399i −0.701824 0.660816i
\(446\) 29.4257i 1.39335i
\(447\) 0.839520i 0.0397079i
\(448\) −2.76470 −0.130620
\(449\) 4.70669 + 4.70669i 0.222122 + 0.222122i 0.809392 0.587269i \(-0.199797\pi\)
−0.587269 + 0.809392i \(0.699797\pi\)
\(450\) 23.4201 1.41091i 1.10404 0.0665108i
\(451\) −0.547964 −0.0258026
\(452\) −1.64815 + 1.64815i −0.0775223 + 0.0775223i
\(453\) 1.36571i 0.0641664i
\(454\) −10.1212 −0.475011
\(455\) 0 0
\(456\) 2.12357 0.0994451
\(457\) 36.9587i 1.72885i −0.502759 0.864426i \(-0.667682\pi\)
0.502759 0.864426i \(-0.332318\pi\)
\(458\) −17.6141 + 17.6141i −0.823055 + 0.823055i
\(459\) −3.69689 −0.172556
\(460\) 2.94653 + 2.77437i 0.137383 + 0.129355i
\(461\) 18.1916 + 18.1916i 0.847269 + 0.847269i 0.989792 0.142523i \(-0.0455214\pi\)
−0.142523 + 0.989792i \(0.545521\pi\)
\(462\) 0.0262577 0.00122162
\(463\) 15.9580i 0.741632i 0.928706 + 0.370816i \(0.120922\pi\)
−0.928706 + 0.370816i \(0.879078\pi\)
\(464\) 11.1539i 0.517806i
\(465\) −4.12245 + 0.124063i −0.191174 + 0.00575328i
\(466\) 9.28587 9.28587i 0.430160 0.430160i
\(467\) 18.6259 18.6259i 0.861902 0.861902i −0.129657 0.991559i \(-0.541388\pi\)
0.991559 + 0.129657i \(0.0413877\pi\)
\(468\) 0 0
\(469\) 2.68150i 0.123820i
\(470\) −0.974219 32.3721i −0.0449374 1.49321i
\(471\) −0.641475 −0.0295576
\(472\) −6.35046 + 6.35046i −0.292304 + 0.292304i
\(473\) −1.08889 −0.0500671
\(474\) −2.46295 + 2.46295i −0.113127 + 0.113127i
\(475\) 15.1308 17.0707i 0.694248 0.783258i
\(476\) −0.623222 + 0.623222i −0.0285653 + 0.0285653i
\(477\) −10.9841 10.9841i −0.502929 0.502929i
\(478\) −21.8822 21.8822i −1.00087 1.00087i
\(479\) −11.7379 11.7379i −0.536320 0.536320i 0.386126 0.922446i \(-0.373813\pi\)
−0.922446 + 0.386126i \(0.873813\pi\)
\(480\) −0.908170 0.855105i −0.0414521 0.0390300i
\(481\) 0 0
\(482\) 19.1990 + 19.1990i 0.874490 + 0.874490i
\(483\) 0.382910 0.0174230
\(484\) 5.61335i 0.255152i
\(485\) 0.509246 + 16.9216i 0.0231237 + 0.768371i
\(486\) −5.86681 5.86681i −0.266124 0.266124i
\(487\) 26.2798i 1.19085i −0.803411 0.595425i \(-0.796984\pi\)
0.803411 0.595425i \(-0.203016\pi\)
\(488\) 18.5179i 0.838264i
\(489\) 1.51637 + 1.51637i 0.0685724 + 0.0685724i
\(490\) 0.714107 + 23.7289i 0.0322601 + 1.07196i
\(491\) 41.6040i 1.87756i −0.344513 0.938781i \(-0.611956\pi\)
0.344513 0.938781i \(-0.388044\pi\)
\(492\) −0.361038 −0.0162768
\(493\) 5.20655 + 5.20655i 0.234491 + 0.234491i
\(494\) 0 0
\(495\) 0.738254 + 0.695118i 0.0331821 + 0.0312432i
\(496\) −31.4719 31.4719i −1.41313 1.41313i
\(497\) −6.06302 6.06302i −0.271964 0.271964i
\(498\) −2.96832 2.96832i −0.133014 0.133014i
\(499\) 8.31651 8.31651i 0.372298 0.372298i −0.496015 0.868314i \(-0.665204\pi\)
0.868314 + 0.496015i \(0.165204\pi\)
\(500\) −5.69429 + 0.515344i −0.254657 + 0.0230469i
\(501\) −2.28238 + 2.28238i −0.101969 + 0.101969i
\(502\) −15.7730 −0.703982
\(503\) 7.54802 7.54802i 0.336550 0.336550i −0.518517 0.855067i \(-0.673516\pi\)
0.855067 + 0.518517i \(0.173516\pi\)
\(504\) 3.83024 0.170612
\(505\) 0.910411 + 30.2519i 0.0405128 + 1.34619i
\(506\) 0.858953i 0.0381851i
\(507\) 0 0
\(508\) 0.879556 0.879556i 0.0390240 0.0390240i
\(509\) 2.13171 2.13171i 0.0944864 0.0944864i −0.658284 0.752770i \(-0.728717\pi\)
0.752770 + 0.658284i \(0.228717\pi\)
\(510\) 2.19664 0.0661064i 0.0972687 0.00292724i
\(511\) 2.14839i 0.0950390i
\(512\) 9.00279i 0.397871i
\(513\) −5.36603 −0.236916
\(514\) −3.08312 3.08312i −0.135991 0.135991i
\(515\) −23.8441 22.4509i −1.05070 0.989304i
\(516\) −0.717437 −0.0315834
\(517\) 0.989731 0.989731i 0.0435283 0.0435283i
\(518\) 5.91442i 0.259864i
\(519\) −1.34838 −0.0591871
\(520\) 0 0
\(521\) −5.84796 −0.256204 −0.128102 0.991761i \(-0.540888\pi\)
−0.128102 + 0.991761i \(0.540888\pi\)
\(522\) 10.9928i 0.481143i
\(523\) 2.09684 2.09684i 0.0916884 0.0916884i −0.659775 0.751463i \(-0.729348\pi\)
0.751463 + 0.659775i \(0.229348\pi\)
\(524\) −3.37881 −0.147604
\(525\) −0.358819 + 0.404823i −0.0156601 + 0.0176679i
\(526\) 6.92220 + 6.92220i 0.301822 + 0.301822i
\(527\) 29.3817 1.27989
\(528\) 0.143873i 0.00626129i
\(529\) 10.4741i 0.455395i
\(530\) 13.5344 + 12.7436i 0.587899 + 0.553548i
\(531\) 7.97107 7.97107i 0.345915 0.345915i
\(532\) −0.904605 + 0.904605i −0.0392196 + 0.0392196i
\(533\) 0 0
\(534\) 2.84359i 0.123054i
\(535\) 26.1715 + 24.6423i 1.13149 + 1.06538i
\(536\) −11.5365 −0.498301
\(537\) 0.791625 0.791625i 0.0341611 0.0341611i
\(538\) 33.6329 1.45002
\(539\) −0.725477 + 0.725477i −0.0312485 + 0.0312485i
\(540\) 0.979224 + 0.922007i 0.0421391 + 0.0396769i
\(541\) 15.4678 15.4678i 0.665013 0.665013i −0.291544 0.956557i \(-0.594169\pi\)
0.956557 + 0.291544i \(0.0941691\pi\)
\(542\) 14.4385 + 14.4385i 0.620185 + 0.620185i
\(543\) −0.501037 0.501037i −0.0215015 0.0215015i
\(544\) 6.28364 + 6.28364i 0.269409 + 0.269409i
\(545\) −17.7937 + 18.8979i −0.762198 + 0.809497i
\(546\) 0 0
\(547\) 1.76989 + 1.76989i 0.0756751 + 0.0756751i 0.743931 0.668256i \(-0.232959\pi\)
−0.668256 + 0.743931i \(0.732959\pi\)
\(548\) 2.07396 0.0885951
\(549\) 23.2435i 0.992010i
\(550\) −0.908110 0.804912i −0.0387219 0.0343216i
\(551\) 7.55729 + 7.55729i 0.321952 + 0.321952i
\(552\) 1.64738i 0.0701170i
\(553\) 6.10804i 0.259740i
\(554\) 23.8419 + 23.8419i 1.01295 + 1.01295i
\(555\) −2.05858 + 2.18633i −0.0873819 + 0.0928045i
\(556\) 6.55772i 0.278109i
\(557\) 9.43469 0.399761 0.199880 0.979820i \(-0.435945\pi\)
0.199880 + 0.979820i \(0.435945\pi\)
\(558\) 31.0175 + 31.0175i 1.31308 + 1.31308i
\(559\) 0 0
\(560\) −5.83514 + 0.175605i −0.246580 + 0.00742067i
\(561\) 0.0671590 + 0.0671590i 0.00283546 + 0.00283546i
\(562\) −6.69798 6.69798i −0.282537 0.282537i
\(563\) 6.92420 + 6.92420i 0.291820 + 0.291820i 0.837799 0.545979i \(-0.183842\pi\)
−0.545979 + 0.837799i \(0.683842\pi\)
\(564\) 0.652105 0.652105i 0.0274586 0.0274586i
\(565\) 6.98646 7.42002i 0.293923 0.312163i
\(566\) −1.72336 + 1.72336i −0.0724384 + 0.0724384i
\(567\) −4.74366 −0.199215
\(568\) −26.0847 + 26.0847i −1.09449 + 1.09449i
\(569\) 6.41861 0.269082 0.134541 0.990908i \(-0.457044\pi\)
0.134541 + 0.990908i \(0.457044\pi\)
\(570\) 3.18841 0.0959534i 0.133548 0.00401905i
\(571\) 1.72174i 0.0720527i −0.999351 0.0360264i \(-0.988530\pi\)
0.999351 0.0360264i \(-0.0114700\pi\)
\(572\) 0 0
\(573\) 3.27622 3.27622i 0.136866 0.136866i
\(574\) −2.19851 + 2.19851i −0.0917639 + 0.0917639i
\(575\) −13.2428 11.7378i −0.552261 0.489502i
\(576\) 14.9299i 0.622079i
\(577\) 24.8642i 1.03511i −0.855650 0.517554i \(-0.826843\pi\)
0.855650 0.517554i \(-0.173157\pi\)
\(578\) 11.2846 0.469377
\(579\) −2.20969 2.20969i −0.0918316 0.0918316i
\(580\) −0.0805813 2.67762i −0.00334596 0.111182i
\(581\) −7.36135 −0.305400
\(582\) −1.67397 + 1.67397i −0.0693882 + 0.0693882i
\(583\) 0.803414i 0.0332740i
\(584\) 9.24291 0.382474
\(585\) 0 0
\(586\) 4.42437 0.182769
\(587\) 26.7672i 1.10480i 0.833579 + 0.552400i \(0.186288\pi\)
−0.833579 + 0.552400i \(0.813712\pi\)
\(588\) −0.477996 + 0.477996i −0.0197122 + 0.0197122i
\(589\) 42.6475 1.75726
\(590\) −9.24791 + 9.82180i −0.380731 + 0.404357i
\(591\) 0.797046 + 0.797046i 0.0327861 + 0.0327861i
\(592\) −32.4068 −1.33191
\(593\) 19.8452i 0.814944i −0.913218 0.407472i \(-0.866410\pi\)
0.913218 0.407472i \(-0.133590\pi\)
\(594\) 0.285456i 0.0117124i
\(595\) 2.64183 2.80577i 0.108304 0.115025i
\(596\) −1.53858 + 1.53858i −0.0630229 + 0.0630229i
\(597\) −1.29797 + 1.29797i −0.0531224 + 0.0531224i
\(598\) 0 0
\(599\) 36.5285i 1.49252i −0.665657 0.746258i \(-0.731849\pi\)
0.665657 0.746258i \(-0.268151\pi\)
\(600\) 1.74166 + 1.54373i 0.0711028 + 0.0630226i
\(601\) 29.8955 1.21946 0.609732 0.792608i \(-0.291277\pi\)
0.609732 + 0.792608i \(0.291277\pi\)
\(602\) −4.36877 + 4.36877i −0.178058 + 0.178058i
\(603\) 14.4806 0.589695
\(604\) 2.50292 2.50292i 0.101842 0.101842i
\(605\) 0.738312 + 24.5332i 0.0300166 + 0.997416i
\(606\) −2.99266 + 2.99266i −0.121568 + 0.121568i
\(607\) 12.6350 + 12.6350i 0.512841 + 0.512841i 0.915396 0.402555i \(-0.131878\pi\)
−0.402555 + 0.915396i \(0.631878\pi\)
\(608\) 9.12070 + 9.12070i 0.369893 + 0.369893i
\(609\) −0.179217 0.179217i −0.00726226 0.00726226i
\(610\) −0.836730 27.8035i −0.0338782 1.12573i
\(611\) 0 0
\(612\) −3.36551 3.36551i −0.136043 0.136043i
\(613\) −15.3746 −0.620973 −0.310487 0.950578i \(-0.600492\pi\)
−0.310487 + 0.950578i \(0.600492\pi\)
\(614\) 3.36141i 0.135656i
\(615\) 1.57792 0.0474865i 0.0636278 0.00191484i
\(616\) −0.140078 0.140078i −0.00564390 0.00564390i
\(617\) 1.24370i 0.0500694i −0.999687 0.0250347i \(-0.992030\pi\)
0.999687 0.0250347i \(-0.00796963\pi\)
\(618\) 4.57972i 0.184223i
\(619\) −28.7865 28.7865i −1.15703 1.15703i −0.985112 0.171915i \(-0.945005\pi\)
−0.171915 0.985112i \(-0.554995\pi\)
\(620\) −7.78257 7.32783i −0.312555 0.294293i
\(621\) 4.16275i 0.167045i
\(622\) −33.7004 −1.35126
\(623\) −3.52601 3.52601i −0.141266 0.141266i
\(624\) 0 0
\(625\) 24.8192 3.00128i 0.992768 0.120051i
\(626\) 22.7674 + 22.7674i 0.909966 + 0.909966i
\(627\) 0.0974812 + 0.0974812i 0.00389302 + 0.00389302i
\(628\) −1.17563 1.17563i −0.0469127 0.0469127i
\(629\) 15.1272 15.1272i 0.603163 0.603163i
\(630\) 5.75089 0.173069i 0.229121 0.00689525i
\(631\) 14.6542 14.6542i 0.583374 0.583374i −0.352455 0.935829i \(-0.614653\pi\)
0.935829 + 0.352455i \(0.114653\pi\)
\(632\) 26.2784 1.04530
\(633\) 0.763953 0.763953i 0.0303644 0.0303644i
\(634\) −13.9297 −0.553218
\(635\) −3.72842 + 3.95979i −0.147958 + 0.157140i
\(636\) 0.529346i 0.0209899i
\(637\) 0 0
\(638\) 0.402025 0.402025i 0.0159163 0.0159163i
\(639\) 32.7414 32.7414i 1.29523 1.29523i
\(640\) 0.917791 + 30.4971i 0.0362789 + 1.20550i
\(641\) 17.6751i 0.698123i 0.937100 + 0.349061i \(0.113500\pi\)
−0.937100 + 0.349061i \(0.886500\pi\)
\(642\) 5.02675i 0.198390i
\(643\) 2.66903 0.105256 0.0526282 0.998614i \(-0.483240\pi\)
0.0526282 + 0.998614i \(0.483240\pi\)
\(644\) 0.701756 + 0.701756i 0.0276531 + 0.0276531i
\(645\) 3.13556 0.0943630i 0.123463 0.00371554i
\(646\) −22.7246 −0.894087
\(647\) −29.8183 + 29.8183i −1.17228 + 1.17228i −0.190615 + 0.981665i \(0.561048\pi\)
−0.981665 + 0.190615i \(0.938952\pi\)
\(648\) 20.4084i 0.801719i
\(649\) −0.583029 −0.0228859
\(650\) 0 0
\(651\) −1.01136 −0.0396385
\(652\) 5.55807i 0.217671i
\(653\) 17.8654 17.8654i 0.699125 0.699125i −0.265096 0.964222i \(-0.585404\pi\)
0.964222 + 0.265096i \(0.0854038\pi\)
\(654\) −3.62971 −0.141933
\(655\) 14.7671 0.444408i 0.576999 0.0173644i
\(656\) 12.0463 + 12.0463i 0.470328 + 0.470328i
\(657\) −11.6017 −0.452624
\(658\) 7.94187i 0.309606i
\(659\) 37.8224i 1.47335i 0.676247 + 0.736675i \(0.263605\pi\)
−0.676247 + 0.736675i \(0.736395\pi\)
\(660\) −0.00103941 0.0345385i −4.04591e−5 0.00134441i
\(661\) −12.1671 + 12.1671i −0.473244 + 0.473244i −0.902963 0.429719i \(-0.858613\pi\)
0.429719 + 0.902963i \(0.358613\pi\)
\(662\) 20.3625 20.3625i 0.791409 0.791409i
\(663\) 0 0
\(664\) 31.6705i 1.22905i
\(665\) 3.83461 4.07257i 0.148700 0.157927i
\(666\) 31.9389 1.23761
\(667\) 5.86264 5.86264i 0.227002 0.227002i
\(668\) −8.36582 −0.323683
\(669\) −2.59063 + 2.59063i −0.100159 + 0.100159i
\(670\) −17.3214 + 0.521278i −0.669184 + 0.0201387i
\(671\) 0.850052 0.850052i 0.0328159 0.0328159i
\(672\) −0.216293 0.216293i −0.00834368 0.00834368i
\(673\) 22.2477 + 22.2477i 0.857585 + 0.857585i 0.991053 0.133468i \(-0.0426113\pi\)
−0.133468 + 0.991053i \(0.542611\pi\)
\(674\) 27.3402 + 27.3402i 1.05311 + 1.05311i
\(675\) −4.40098 3.90085i −0.169394 0.150144i
\(676\) 0 0
\(677\) −28.8731 28.8731i −1.10968 1.10968i −0.993191 0.116494i \(-0.962835\pi\)
−0.116494 0.993191i \(-0.537165\pi\)
\(678\) 1.42516 0.0547329
\(679\) 4.15139i 0.159316i
\(680\) −12.0711 11.3658i −0.462907 0.435859i
\(681\) 0.891066 + 0.891066i 0.0341457 + 0.0341457i
\(682\) 2.26872i 0.0868738i
\(683\) 31.7791i 1.21600i −0.793939 0.607998i \(-0.791973\pi\)
0.793939 0.607998i \(-0.208027\pi\)
\(684\) −4.88503 4.88503i −0.186784 0.186784i
\(685\) −9.06426 + 0.272783i −0.346327 + 0.0104225i
\(686\) 11.9041i 0.454501i
\(687\) 3.10149 0.118329
\(688\) 23.9378 + 23.9378i 0.912619 + 0.912619i
\(689\) 0 0
\(690\) −0.0744368 2.47344i −0.00283376 0.0941623i
\(691\) 18.9805 + 18.9805i 0.722052 + 0.722052i 0.969023 0.246971i \(-0.0794351\pi\)
−0.246971 + 0.969023i \(0.579435\pi\)
\(692\) −2.47116 2.47116i −0.0939395 0.0939395i
\(693\) 0.175825 + 0.175825i 0.00667904 + 0.00667904i
\(694\) −8.70863 + 8.70863i −0.330575 + 0.330575i
\(695\) 0.862523 + 28.6606i 0.0327174 + 1.08716i
\(696\) −0.771040 + 0.771040i −0.0292262 + 0.0292262i
\(697\) −11.2462 −0.425980
\(698\) −5.68217 + 5.68217i −0.215073 + 0.215073i
\(699\) −1.63505 −0.0618433
\(700\) −1.39952 + 0.0843120i −0.0528970 + 0.00318669i
\(701\) 39.3253i 1.48530i 0.669681 + 0.742649i \(0.266431\pi\)
−0.669681 + 0.742649i \(0.733569\pi\)
\(702\) 0 0
\(703\) 21.9572 21.9572i 0.828131 0.828131i
\(704\) −0.546010 + 0.546010i −0.0205785 + 0.0205785i
\(705\) −2.76426 + 2.93580i −0.104108 + 0.110569i
\(706\) 40.5975i 1.52791i
\(707\) 7.42171i 0.279122i
\(708\) −0.384141 −0.0144369
\(709\) 26.5229 + 26.5229i 0.996087 + 0.996087i 0.999992 0.00390546i \(-0.00124315\pi\)
−0.00390546 + 0.999992i \(0.501243\pi\)
\(710\) −37.9861 + 40.3433i −1.42559 + 1.51406i
\(711\) −32.9845 −1.23702
\(712\) −15.1698 + 15.1698i −0.568512 + 0.568512i
\(713\) 33.0842i 1.23901i
\(714\) 0.538902 0.0201679
\(715\) 0 0
\(716\) 2.90161 0.108438
\(717\) 3.85300i 0.143893i
\(718\) 15.9176 15.9176i 0.594038 0.594038i
\(719\) −29.1155 −1.08583 −0.542913 0.839789i \(-0.682679\pi\)
−0.542913 + 0.839789i \(0.682679\pi\)
\(720\) −0.948298 31.5108i −0.0353410 1.17434i
\(721\) −5.67879 5.67879i −0.211489 0.211489i
\(722\) −2.87468 −0.106985
\(723\) 3.38055i 0.125724i
\(724\) 1.83649i 0.0682528i
\(725\) 0.704363 + 11.6920i 0.0261594 + 0.434228i
\(726\) −2.42694 + 2.42694i −0.0900723 + 0.0900723i
\(727\) −15.6053 + 15.6053i −0.578768 + 0.578768i −0.934564 0.355796i \(-0.884210\pi\)
0.355796 + 0.934564i \(0.384210\pi\)
\(728\) 0 0
\(729\) 24.9204i 0.922977i
\(730\) 13.8777 0.417641i 0.513637 0.0154576i
\(731\) −22.3479 −0.826568
\(732\) 0.560075 0.560075i 0.0207010 0.0207010i
\(733\) −34.8651 −1.28777 −0.643886 0.765121i \(-0.722679\pi\)
−0.643886 + 0.765121i \(0.722679\pi\)
\(734\) −22.5486 + 22.5486i −0.832283 + 0.832283i
\(735\) 2.02622 2.15196i 0.0747381 0.0793761i
\(736\) 7.07547 7.07547i 0.260805 0.260805i
\(737\) −0.529577 0.529577i −0.0195072 0.0195072i
\(738\) −11.8723 11.8723i −0.437026 0.437026i
\(739\) 24.1959 + 24.1959i 0.890060 + 0.890060i 0.994528 0.104468i \(-0.0333140\pi\)
−0.104468 + 0.994528i \(0.533314\pi\)
\(740\) −7.77962 + 0.234123i −0.285985 + 0.00860654i
\(741\) 0 0
\(742\) 3.22341 + 3.22341i 0.118335 + 0.118335i
\(743\) 3.12911 0.114796 0.0573980 0.998351i \(-0.481720\pi\)
0.0573980 + 0.998351i \(0.481720\pi\)
\(744\) 4.35115i 0.159521i
\(745\) 6.52203 6.92677i 0.238949 0.253777i
\(746\) −29.3652 29.3652i −1.07514 1.07514i
\(747\) 39.7526i 1.45447i
\(748\) 0.246164i 0.00900064i
\(749\) 6.23310 + 6.23310i 0.227753 + 0.227753i
\(750\) 2.68475 + 2.23913i 0.0980332 + 0.0817614i
\(751\) 7.25382i 0.264696i 0.991203 + 0.132348i \(0.0422516\pi\)
−0.991203 + 0.132348i \(0.957748\pi\)
\(752\) −43.5158 −1.58686
\(753\) 1.38865 + 1.38865i 0.0506051 + 0.0506051i
\(754\) 0 0
\(755\) −10.6098 + 11.2682i −0.386131 + 0.410093i
\(756\) 0.233215 + 0.233215i 0.00848196 + 0.00848196i
\(757\) 11.6968 + 11.6968i 0.425129 + 0.425129i 0.886965 0.461836i \(-0.152809\pi\)
−0.461836 + 0.886965i \(0.652809\pi\)
\(758\) 25.2471 + 25.2471i 0.917016 + 0.917016i
\(759\) 0.0756220 0.0756220i 0.00274490 0.00274490i
\(760\) −17.5212 16.4975i −0.635563 0.598426i
\(761\) 16.3741 16.3741i 0.593559 0.593559i −0.345032 0.938591i \(-0.612132\pi\)
0.938591 + 0.345032i \(0.112132\pi\)
\(762\) −0.760555 −0.0275520
\(763\) −4.50079 + 4.50079i −0.162939 + 0.162939i
\(764\) 12.0086 0.434457
\(765\) 15.1516 + 14.2663i 0.547809 + 0.515800i
\(766\) 38.2335i 1.38143i
\(767\) 0 0
\(768\) −1.60998 + 1.60998i −0.0580951 + 0.0580951i
\(769\) −4.16667 + 4.16667i −0.150254 + 0.150254i −0.778231 0.627978i \(-0.783883\pi\)
0.627978 + 0.778231i \(0.283883\pi\)
\(770\) −0.216648 0.203990i −0.00780746 0.00735127i
\(771\) 0.542874i 0.0195511i
\(772\) 8.09938i 0.291503i
\(773\) 8.08997 0.290976 0.145488 0.989360i \(-0.453525\pi\)
0.145488 + 0.989360i \(0.453525\pi\)
\(774\) −23.5921 23.5921i −0.848001 0.848001i
\(775\) 34.9776 + 31.0027i 1.25643 + 1.11365i
\(776\) 17.8604 0.641150
\(777\) −0.520704 + 0.520704i −0.0186801 + 0.0186801i
\(778\) 22.7032i 0.813950i
\(779\) −16.3238 −0.584863
\(780\) 0 0
\(781\) −2.39481 −0.0856930
\(782\) 17.6288i 0.630405i
\(783\) 1.94834 1.94834i 0.0696279 0.0696279i
\(784\) 31.8973 1.13919
\(785\) 5.29272 + 4.98347i 0.188905 + 0.177868i
\(786\) 1.46083 + 1.46083i 0.0521063 + 0.0521063i
\(787\) 16.2116 0.577882 0.288941 0.957347i \(-0.406697\pi\)
0.288941 + 0.957347i \(0.406697\pi\)
\(788\) 2.92148i 0.104073i
\(789\) 1.21886i 0.0433925i
\(790\) 39.4555 1.18739i 1.40376 0.0422454i
\(791\) 1.76718 1.76718i 0.0628336 0.0628336i
\(792\) 0.756445 0.756445i 0.0268791 0.0268791i
\(793\) 0 0
\(794\) 53.0777i 1.88366i
\(795\) −0.0696238 2.31351i −0.00246930 0.0820519i
\(796\) −4.75757 −0.168627
\(797\) −11.7874 + 11.7874i −0.417531 + 0.417531i −0.884352 0.466821i \(-0.845399\pi\)
0.466821 + 0.884352i \(0.345399\pi\)
\(798\) 0.782216 0.0276901
\(799\) 20.3129 20.3129i 0.718617 0.718617i
\(800\) 0.850077 + 14.1107i 0.0300548 + 0.498889i
\(801\) 19.0411 19.0411i 0.672783 0.672783i
\(802\) −20.7856 20.7856i −0.733967 0.733967i
\(803\) 0.424291 + 0.424291i 0.0149729 + 0.0149729i
\(804\) −0.348923 0.348923i −0.0123056 0.0123056i
\(805\) −3.15933 2.97473i −0.111352 0.104846i
\(806\) 0 0
\(807\) −2.96103 2.96103i −0.104233 0.104233i
\(808\) 31.9301 1.12330
\(809\) 24.1266i 0.848247i −0.905604 0.424123i \(-0.860582\pi\)
0.905604 0.424123i \(-0.139418\pi\)
\(810\) 0.922156 + 30.6421i 0.0324013 + 1.07665i
\(811\) −17.7808 17.7808i −0.624369 0.624369i 0.322276 0.946646i \(-0.395552\pi\)
−0.946646 + 0.322276i \(0.895552\pi\)
\(812\) 0.656902i 0.0230527i
\(813\) 2.54232i 0.0891629i
\(814\) −1.16806 1.16806i −0.0409403 0.0409403i
\(815\) −0.731041 24.2916i −0.0256073 0.850898i
\(816\) 2.95280i 0.103369i
\(817\) −32.4380 −1.13486
\(818\) −5.79615 5.79615i −0.202658 0.202658i
\(819\) 0 0
\(820\) 2.97887 + 2.80481i 0.104027 + 0.0979484i
\(821\) −28.0206 28.0206i −0.977925 0.977925i 0.0218363 0.999762i \(-0.493049\pi\)
−0.999762 + 0.0218363i \(0.993049\pi\)
\(822\) −0.896680 0.896680i −0.0312753 0.0312753i
\(823\) −28.2448 28.2448i −0.984551 0.984551i 0.0153317 0.999882i \(-0.495120\pi\)
−0.999882 + 0.0153317i \(0.995120\pi\)
\(824\) −24.4316 + 24.4316i −0.851116 + 0.851116i
\(825\) 0.00908554 + 0.150814i 0.000316318 + 0.00525067i
\(826\) −2.33919 + 2.33919i −0.0813910 + 0.0813910i
\(827\) −25.6019 −0.890264 −0.445132 0.895465i \(-0.646843\pi\)
−0.445132 + 0.895465i \(0.646843\pi\)
\(828\) −3.78961 + 3.78961i −0.131698 + 0.131698i
\(829\) 18.8337 0.654121 0.327060 0.945003i \(-0.393942\pi\)
0.327060 + 0.945003i \(0.393942\pi\)
\(830\) 1.43103 + 47.5514i 0.0496718 + 1.65053i
\(831\) 4.19807i 0.145629i
\(832\) 0 0
\(833\) −14.8894 + 14.8894i −0.515888 + 0.515888i
\(834\) −2.83524 + 2.83524i −0.0981764 + 0.0981764i
\(835\) 36.5629 1.10034i 1.26531 0.0380788i
\(836\) 0.357306i 0.0123577i
\(837\) 10.9949i 0.380040i
\(838\) −1.59576 −0.0551246
\(839\) 17.6320 + 17.6320i 0.608723 + 0.608723i 0.942612 0.333890i \(-0.108361\pi\)
−0.333890 + 0.942612i \(0.608361\pi\)
\(840\) 0.415508 + 0.391229i 0.0143364 + 0.0134987i
\(841\) 23.5121 0.810761
\(842\) −0.467095 + 0.467095i −0.0160971 + 0.0160971i
\(843\) 1.17938i 0.0406199i
\(844\) 2.80018 0.0963863
\(845\) 0 0
\(846\) 42.8875 1.47450
\(847\) 6.01875i 0.206807i
\(848\) 17.6620 17.6620i 0.606515 0.606515i
\(849\) 0.303449 0.0104143
\(850\) −18.6377 16.5197i −0.639268 0.566621i
\(851\) −17.0335 17.0335i −0.583901 0.583901i
\(852\) −1.57787 −0.0540569
\(853\) 2.14143i 0.0733210i 0.999328 + 0.0366605i \(0.0116720\pi\)
−0.999328 + 0.0366605i \(0.988328\pi\)
\(854\) 6.82105i 0.233412i
\(855\) 21.9926 + 20.7076i 0.752131 + 0.708184i
\(856\) 26.8164 26.8164i 0.916566 0.916566i
\(857\) 36.4384 36.4384i 1.24471 1.24471i 0.286686 0.958025i \(-0.407446\pi\)
0.958025 0.286686i \(-0.0925537\pi\)
\(858\) 0 0
\(859\) 4.40721i 0.150372i 0.997170 + 0.0751861i \(0.0239551\pi\)
−0.997170 + 0.0751861i \(0.976045\pi\)
\(860\) 5.91947 + 5.57359i 0.201852 + 0.190058i
\(861\) 0.387112 0.0131927
\(862\) 4.65208 4.65208i 0.158451 0.158451i
\(863\) −53.8912 −1.83448 −0.917239 0.398338i \(-0.869587\pi\)
−0.917239 + 0.398338i \(0.869587\pi\)
\(864\) 2.35140 2.35140i 0.0799961 0.0799961i
\(865\) 11.1253 + 10.4752i 0.378270 + 0.356168i
\(866\) −16.8033 + 16.8033i −0.570998 + 0.570998i
\(867\) −0.993493 0.993493i −0.0337408 0.0337408i
\(868\) −1.85352 1.85352i −0.0629126 0.0629126i
\(869\) 1.20630 + 1.20630i 0.0409208 + 0.0409208i
\(870\) −1.12283 + 1.19251i −0.0380676 + 0.0404300i
\(871\) 0 0
\(872\) 19.3636 + 19.3636i 0.655733 + 0.655733i
\(873\) −22.4183 −0.758743
\(874\) 25.5882i 0.865534i
\(875\) 6.10554 0.552563i 0.206405 0.0186800i
\(876\) 0.279553 + 0.279553i 0.00944522 + 0.00944522i
\(877\) 13.1339i 0.443501i 0.975103 + 0.221750i \(0.0711770\pi\)
−0.975103 + 0.221750i \(0.928823\pi\)
\(878\) 21.9993i 0.742440i
\(879\) −0.389521 0.389521i −0.0131382 0.0131382i
\(880\) −1.11772 + 1.18708i −0.0376783 + 0.0400165i
\(881\) 36.6097i 1.23341i 0.787193 + 0.616706i \(0.211533\pi\)
−0.787193 + 0.616706i \(0.788467\pi\)
\(882\) −31.4368 −1.05853
\(883\) −7.40474 7.40474i −0.249189 0.249189i 0.571449 0.820638i \(-0.306382\pi\)
−0.820638 + 0.571449i \(0.806382\pi\)
\(884\) 0 0
\(885\) 1.67889 0.0505253i 0.0564354 0.00169839i
\(886\) −15.9416 15.9416i −0.535568 0.535568i
\(887\) −38.6062 38.6062i −1.29627 1.29627i −0.930839 0.365429i \(-0.880922\pi\)
−0.365429 0.930839i \(-0.619078\pi\)
\(888\) 2.24020 + 2.24020i 0.0751763 + 0.0751763i
\(889\) −0.943078 + 0.943078i −0.0316298 + 0.0316298i
\(890\) −22.0911 + 23.4620i −0.740497 + 0.786449i
\(891\) −0.936839 + 0.936839i −0.0313853 + 0.0313853i
\(892\) −9.49566 −0.317938
\(893\) 29.4841 29.4841i 0.986647 0.986647i
\(894\) 1.33042 0.0444959
\(895\) −12.6815 + 0.381643i −0.423897 + 0.0127569i
\(896\) 7.48186i 0.249951i
\(897\) 0 0
\(898\) 7.45887 7.45887i 0.248906 0.248906i
\(899\) −15.4848 + 15.4848i −0.516446 + 0.516446i
\(900\) −0.455300 7.55767i −0.0151767 0.251922i
\(901\) 16.4890i 0.549327i
\(902\) 0.868379i 0.0289139i
\(903\) 0.769250 0.0255990
\(904\) −7.60285 7.60285i −0.252867 0.252867i
\(905\) 0.241550 + 8.02642i 0.00802940 + 0.266807i
\(906\) −2.16429 −0.0719036
\(907\) −28.9752 + 28.9752i −0.962106 + 0.962106i −0.999308 0.0372014i \(-0.988156\pi\)
0.0372014 + 0.999308i \(0.488156\pi\)
\(908\) 3.26610i 0.108389i
\(909\) −40.0785 −1.32932
\(910\) 0 0
\(911\) 24.2232 0.802551 0.401276 0.915957i \(-0.368567\pi\)
0.401276 + 0.915957i \(0.368567\pi\)
\(912\) 4.28599i 0.141923i
\(913\) −1.45382 + 1.45382i −0.0481143 + 0.0481143i
\(914\) −58.5698 −1.93732
\(915\) −2.37415 + 2.52148i −0.0784869 + 0.0833575i
\(916\) 5.68408 + 5.68408i 0.187807 + 0.187807i
\(917\) 3.62283 0.119636
\(918\) 5.85860i 0.193363i
\(919\) 34.8809i 1.15061i −0.817938 0.575307i \(-0.804883\pi\)
0.817938 0.575307i \(-0.195117\pi\)
\(920\) −12.7981 + 13.5923i −0.421940 + 0.448124i
\(921\) 0.295938 0.295938i 0.00975148 0.00975148i
\(922\) 28.8290 28.8290i 0.949432 0.949432i
\(923\) 0 0
\(924\) 0.00847334i 0.000278753i
\(925\) 33.9701 2.04648i 1.11693 0.0672877i
\(926\) 25.2893 0.831058
\(927\) 30.6665 30.6665i 1.00722 1.00722i
\(928\) −6.62322 −0.217418
\(929\) 6.13631 6.13631i 0.201326 0.201326i −0.599242 0.800568i \(-0.704531\pi\)
0.800568 + 0.599242i \(0.204531\pi\)
\(930\) 0.196607 + 6.53301i 0.00644700 + 0.214226i
\(931\) −21.6120 + 21.6120i −0.708304 + 0.708304i
\(932\) −2.99655 2.99655i −0.0981553 0.0981553i
\(933\) 2.96697 + 2.96697i 0.0971343 + 0.0971343i
\(934\) −29.5171 29.5171i −0.965829 0.965829i
\(935\) −0.0323774 1.07586i −0.00105885 0.0351844i
\(936\) 0 0
\(937\) −25.8920 25.8920i −0.845856 0.845856i 0.143757 0.989613i \(-0.454082\pi\)
−0.989613 + 0.143757i \(0.954082\pi\)
\(938\) −4.24947 −0.138750
\(939\) 4.00886i 0.130824i
\(940\) −10.4465 + 0.314380i −0.340726 + 0.0102540i
\(941\) 20.9205 + 20.9205i 0.681989 + 0.681989i 0.960448 0.278459i \(-0.0898236\pi\)
−0.278459 + 0.960448i \(0.589824\pi\)
\(942\) 1.01657i 0.0331216i
\(943\) 12.6634i 0.412376i
\(944\) 12.8171 + 12.8171i 0.417162 + 0.417162i
\(945\) −1.04994 0.988595i −0.0341547 0.0321590i
\(946\) 1.72560i 0.0561042i
\(947\) 27.6047 0.897032 0.448516 0.893775i \(-0.351953\pi\)
0.448516 + 0.893775i \(0.351953\pi\)
\(948\) 0.794793 + 0.794793i 0.0258137 + 0.0258137i
\(949\) 0 0
\(950\) −27.0526 23.9783i −0.877702 0.777960i
\(951\) 1.22636 + 1.22636i 0.0397676 + 0.0397676i
\(952\) −2.87490 2.87490i −0.0931762 0.0931762i
\(953\) 20.4341 + 20.4341i 0.661926 + 0.661926i 0.955834 0.293908i \(-0.0949559\pi\)
−0.293908 + 0.955834i \(0.594956\pi\)
\(954\) −17.4070 + 17.4070i −0.563572 + 0.563572i
\(955\) −52.4838 + 1.57947i −1.69834 + 0.0511104i
\(956\) −7.06137 + 7.06137i −0.228381 + 0.228381i
\(957\) −0.0707884 −0.00228826
\(958\) −18.6015 + 18.6015i −0.600989 + 0.600989i
\(959\) −2.22374 −0.0718083
\(960\) 1.52497 1.61961i 0.0492183 0.0522726i
\(961\) 56.3841i 1.81884i
\(962\) 0 0
\(963\) −33.6599 + 33.6599i −1.08467 + 1.08467i
\(964\) 6.19551 6.19551i 0.199544 0.199544i
\(965\) 1.06529 + 35.3984i 0.0342930 + 1.13952i
\(966\) 0.606811i 0.0195238i
\(967\) 4.31688i 0.138822i −0.997588 0.0694108i \(-0.977888\pi\)
0.997588 0.0694108i \(-0.0221119\pi\)
\(968\) 25.8942 0.832272
\(969\) 2.00067 + 2.00067i 0.0642707 + 0.0642707i
\(970\) 26.8163 0.807022i 0.861021 0.0259119i
\(971\) −13.5586 −0.435116 −0.217558 0.976047i \(-0.569809\pi\)
−0.217558 + 0.976047i \(0.569809\pi\)
\(972\) −1.89322 + 1.89322i −0.0607250 + 0.0607250i
\(973\) 7.03132i 0.225414i
\(974\) −41.6466 −1.33444
\(975\) 0 0
\(976\) −37.3745 −1.19633
\(977\) 47.6508i 1.52448i 0.647292 + 0.762242i \(0.275902\pi\)
−0.647292 + 0.762242i \(0.724098\pi\)
\(978\) 2.40304 2.40304i 0.0768408 0.0768408i
\(979\) −1.39272 −0.0445116
\(980\) 7.65731 0.230442i 0.244604 0.00736121i
\(981\) −24.3051 24.3051i −0.776001 0.776001i
\(982\) −65.9315 −2.10396
\(983\) 7.39039i 0.235717i 0.993030 + 0.117858i \(0.0376029\pi\)
−0.993030 + 0.117858i \(0.962397\pi\)
\(984\) 1.66546i 0.0530928i
\(985\) −0.384256 12.7684i −0.0122434 0.406834i
\(986\) 8.25101 8.25101i 0.262766 0.262766i
\(987\) −0.699200 + 0.699200i −0.0222558 + 0.0222558i
\(988\) 0 0
\(989\) 25.1641i 0.800171i
\(990\) 1.10158 1.16994i 0.0350105 0.0371831i
\(991\) 20.0105 0.635654 0.317827 0.948149i \(-0.397047\pi\)
0.317827 + 0.948149i \(0.397047\pi\)
\(992\) −18.6882 + 18.6882i −0.593350 + 0.593350i
\(993\) −3.58541 −0.113780
\(994\) −9.60830 + 9.60830i −0.304757 + 0.304757i
\(995\) 20.7930 0.625753i 0.659182 0.0198377i
\(996\) −0.957877 + 0.957877i −0.0303515 + 0.0303515i
\(997\) 23.9164 + 23.9164i 0.757441 + 0.757441i 0.975856 0.218415i \(-0.0700886\pi\)
−0.218415 + 0.975856i \(0.570089\pi\)
\(998\) −13.1795 13.1795i −0.417190 0.417190i
\(999\) −5.66075 5.66075i −0.179098 0.179098i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.f.d.437.4 20
5.3 odd 4 845.2.k.d.268.4 20
13.2 odd 12 845.2.o.g.357.4 20
13.3 even 3 845.2.t.e.657.4 20
13.4 even 6 65.2.t.a.37.4 yes 20
13.5 odd 4 845.2.k.d.577.4 20
13.6 odd 12 845.2.o.f.587.4 20
13.7 odd 12 845.2.o.e.587.2 20
13.8 odd 4 845.2.k.e.577.7 20
13.9 even 3 845.2.t.g.427.2 20
13.10 even 6 845.2.t.f.657.2 20
13.11 odd 12 65.2.o.a.32.2 20
13.12 even 2 845.2.f.e.437.7 20
39.11 even 12 585.2.cf.a.487.4 20
39.17 odd 6 585.2.dp.a.37.2 20
65.3 odd 12 845.2.o.f.488.4 20
65.4 even 6 325.2.x.b.232.2 20
65.8 even 4 845.2.f.e.408.4 20
65.17 odd 12 325.2.s.b.193.4 20
65.18 even 4 inner 845.2.f.d.408.7 20
65.23 odd 12 845.2.o.e.488.2 20
65.24 odd 12 325.2.s.b.32.4 20
65.28 even 12 845.2.t.g.188.2 20
65.33 even 12 845.2.t.f.418.2 20
65.37 even 12 325.2.x.b.318.2 20
65.38 odd 4 845.2.k.e.268.7 20
65.43 odd 12 65.2.o.a.63.2 yes 20
65.48 odd 12 845.2.o.g.258.4 20
65.58 even 12 845.2.t.e.418.4 20
65.63 even 12 65.2.t.a.58.4 yes 20
195.128 odd 12 585.2.dp.a.253.2 20
195.173 even 12 585.2.cf.a.388.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.2 20 13.11 odd 12
65.2.o.a.63.2 yes 20 65.43 odd 12
65.2.t.a.37.4 yes 20 13.4 even 6
65.2.t.a.58.4 yes 20 65.63 even 12
325.2.s.b.32.4 20 65.24 odd 12
325.2.s.b.193.4 20 65.17 odd 12
325.2.x.b.232.2 20 65.4 even 6
325.2.x.b.318.2 20 65.37 even 12
585.2.cf.a.388.4 20 195.173 even 12
585.2.cf.a.487.4 20 39.11 even 12
585.2.dp.a.37.2 20 39.17 odd 6
585.2.dp.a.253.2 20 195.128 odd 12
845.2.f.d.408.7 20 65.18 even 4 inner
845.2.f.d.437.4 20 1.1 even 1 trivial
845.2.f.e.408.4 20 65.8 even 4
845.2.f.e.437.7 20 13.12 even 2
845.2.k.d.268.4 20 5.3 odd 4
845.2.k.d.577.4 20 13.5 odd 4
845.2.k.e.268.7 20 65.38 odd 4
845.2.k.e.577.7 20 13.8 odd 4
845.2.o.e.488.2 20 65.23 odd 12
845.2.o.e.587.2 20 13.7 odd 12
845.2.o.f.488.4 20 65.3 odd 12
845.2.o.f.587.4 20 13.6 odd 12
845.2.o.g.258.4 20 65.48 odd 12
845.2.o.g.357.4 20 13.2 odd 12
845.2.t.e.418.4 20 65.58 even 12
845.2.t.e.657.4 20 13.3 even 3
845.2.t.f.418.2 20 65.33 even 12
845.2.t.f.657.2 20 13.10 even 6
845.2.t.g.188.2 20 65.28 even 12
845.2.t.g.427.2 20 13.9 even 3