Properties

Label 845.2.t.g.427.2
Level $845$
Weight $2$
Character 845.427
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 427.2
Root \(1.58474i\) of defining polynomial
Character \(\chi\) \(=\) 845.427
Dual form 845.2.t.g.188.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37242 + 0.792369i) q^{2} +(0.190588 + 0.0510678i) q^{3} +(0.255697 - 0.442881i) q^{4} +(2.23506 - 0.0672627i) q^{5} +(-0.302032 + 0.0809291i) q^{6} +(-0.274164 + 0.474866i) q^{7} -2.35905i q^{8} +(-2.56436 - 1.48053i) q^{9} +(-3.01415 + 1.86330i) q^{10} +(-0.147928 - 0.0396372i) q^{11} +(0.0713497 - 0.0713497i) q^{12} -0.868956i q^{14} +(0.429409 + 0.101320i) q^{15} +(2.38063 + 4.12338i) q^{16} +(0.813499 + 3.03602i) q^{17} +4.69252 q^{18} +(1.18079 + 4.40678i) q^{19} +(0.541709 - 1.00706i) q^{20} +(-0.0765027 + 0.0765027i) q^{21} +(0.234427 - 0.0628146i) q^{22} +(-0.916011 + 3.41860i) q^{23} +(0.120472 - 0.449606i) q^{24} +(4.99095 - 0.300672i) q^{25} +(-0.831688 - 0.831688i) q^{27} +(0.140206 + 0.242844i) q^{28} +(2.02878 - 1.17132i) q^{29} +(-0.669614 + 0.201197i) q^{30} +(6.61000 + 6.61000i) q^{31} +(-2.44848 - 1.41363i) q^{32} +(-0.0261691 - 0.0151087i) q^{33} +(-3.52211 - 3.52211i) q^{34} +(-0.580831 + 1.07979i) q^{35} +(-1.31140 + 0.757137i) q^{36} +(-3.40317 - 5.89447i) q^{37} +(-5.11234 - 5.11234i) q^{38} +(-0.158676 - 5.27261i) q^{40} +(-0.926064 + 3.45612i) q^{41} +(0.0443757 - 0.165612i) q^{42} +(6.86784 - 1.84023i) q^{43} +(-0.0553794 + 0.0553794i) q^{44} +(-5.83107 - 3.13659i) q^{45} +(-1.45164 - 5.41759i) q^{46} +9.13956 q^{47} +(0.243147 + 0.907439i) q^{48} +(3.34967 + 5.80180i) q^{49} +(-6.61146 + 4.36732i) q^{50} +0.620172i q^{51} +(-3.70952 + 3.70952i) q^{53} +(1.80043 + 0.482424i) q^{54} +(-0.333294 - 0.0786414i) q^{55} +(1.12023 + 0.646766i) q^{56} +0.900179i q^{57} +(-1.85623 + 3.21508i) q^{58} +(3.67728 - 0.985325i) q^{59} +(0.154672 - 0.164270i) q^{60} +(-3.92486 + 6.79805i) q^{61} +(-14.3093 - 3.83416i) q^{62} +(1.40611 - 0.811818i) q^{63} -5.04207 q^{64} +0.0478868 q^{66} +(-4.23514 + 2.44516i) q^{67} +(1.55261 + 0.416019i) q^{68} +(-0.349161 + 0.604765i) q^{69} +(-0.0584483 - 1.94217i) q^{70} +(15.1045 - 4.04725i) q^{71} +(-3.49265 + 6.04945i) q^{72} +3.91807i q^{73} +(9.34119 + 5.39314i) q^{74} +(0.966569 + 0.197573i) q^{75} +(2.25360 + 0.603851i) q^{76} +(0.0593789 - 0.0593789i) q^{77} +11.1394i q^{79} +(5.59820 + 9.05585i) q^{80} +(4.32557 + 7.49210i) q^{81} +(-1.46757 - 5.47704i) q^{82} -13.4251 q^{83} +(0.0143200 + 0.0534431i) q^{84} +(2.02243 + 6.73096i) q^{85} +(-7.96744 + 7.96744i) q^{86} +(0.446477 - 0.119633i) q^{87} +(-0.0935062 + 0.348970i) q^{88} +(-2.35372 + 8.78419i) q^{89} +(10.4880 - 0.315631i) q^{90} +(1.27981 + 1.27981i) q^{92} +(0.922226 + 1.59734i) q^{93} +(-12.5433 + 7.24190i) q^{94} +(2.93555 + 9.76998i) q^{95} +(-0.394459 - 0.394459i) q^{96} +(-6.55668 - 3.78550i) q^{97} +(-9.19433 - 5.30835i) q^{98} +(0.320657 + 0.320657i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 8 q^{6} + 2 q^{7} + 12 q^{9} - 2 q^{10} + 16 q^{11} - 24 q^{12} + 20 q^{15} - 2 q^{16} + 4 q^{17} + 20 q^{19} - 4 q^{21} + 16 q^{22} - 10 q^{23} - 32 q^{24} + 18 q^{25}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37242 + 0.792369i −0.970450 + 0.560290i −0.899373 0.437181i \(-0.855977\pi\)
−0.0710765 + 0.997471i \(0.522643\pi\)
\(3\) 0.190588 + 0.0510678i 0.110036 + 0.0294840i 0.313417 0.949616i \(-0.398526\pi\)
−0.203381 + 0.979100i \(0.565193\pi\)
\(4\) 0.255697 0.442881i 0.127849 0.221440i
\(5\) 2.23506 0.0672627i 0.999547 0.0300808i
\(6\) −0.302032 + 0.0809291i −0.123304 + 0.0330392i
\(7\) −0.274164 + 0.474866i −0.103624 + 0.179482i −0.913175 0.407567i \(-0.866377\pi\)
0.809551 + 0.587049i \(0.199711\pi\)
\(8\) 2.35905i 0.834050i
\(9\) −2.56436 1.48053i −0.854787 0.493511i
\(10\) −3.01415 + 1.86330i −0.953157 + 0.589228i
\(11\) −0.147928 0.0396372i −0.0446020 0.0119511i 0.236449 0.971644i \(-0.424016\pi\)
−0.281051 + 0.959693i \(0.590683\pi\)
\(12\) 0.0713497 0.0713497i 0.0205969 0.0205969i
\(13\) 0 0
\(14\) 0.868956i 0.232238i
\(15\) 0.429409 + 0.101320i 0.110873 + 0.0261607i
\(16\) 2.38063 + 4.12338i 0.595158 + 1.03084i
\(17\) 0.813499 + 3.03602i 0.197303 + 0.736343i 0.991659 + 0.128891i \(0.0411417\pi\)
−0.794356 + 0.607452i \(0.792192\pi\)
\(18\) 4.69252 1.10604
\(19\) 1.18079 + 4.40678i 0.270893 + 1.01098i 0.958544 + 0.284944i \(0.0919750\pi\)
−0.687652 + 0.726041i \(0.741358\pi\)
\(20\) 0.541709 1.00706i 0.121130 0.225186i
\(21\) −0.0765027 + 0.0765027i −0.0166942 + 0.0166942i
\(22\) 0.234427 0.0628146i 0.0499801 0.0133921i
\(23\) −0.916011 + 3.41860i −0.191002 + 0.712828i 0.802264 + 0.596969i \(0.203629\pi\)
−0.993266 + 0.115858i \(0.963038\pi\)
\(24\) 0.120472 0.449606i 0.0245912 0.0917754i
\(25\) 4.99095 0.300672i 0.998190 0.0601343i
\(26\) 0 0
\(27\) −0.831688 0.831688i −0.160058 0.160058i
\(28\) 0.140206 + 0.242844i 0.0264964 + 0.0458932i
\(29\) 2.02878 1.17132i 0.376735 0.217508i −0.299662 0.954045i \(-0.596874\pi\)
0.676397 + 0.736538i \(0.263541\pi\)
\(30\) −0.669614 + 0.201197i −0.122254 + 0.0367333i
\(31\) 6.61000 + 6.61000i 1.18719 + 1.18719i 0.977841 + 0.209350i \(0.0671347\pi\)
0.209350 + 0.977841i \(0.432865\pi\)
\(32\) −2.44848 1.41363i −0.432834 0.249897i
\(33\) −0.0261691 0.0151087i −0.00455546 0.00263009i
\(34\) −3.52211 3.52211i −0.604038 0.604038i
\(35\) −0.580831 + 1.07979i −0.0981784 + 0.182518i
\(36\) −1.31140 + 0.757137i −0.218567 + 0.126190i
\(37\) −3.40317 5.89447i −0.559478 0.969045i −0.997540 0.0700997i \(-0.977668\pi\)
0.438062 0.898945i \(-0.355665\pi\)
\(38\) −5.11234 5.11234i −0.829332 0.829332i
\(39\) 0 0
\(40\) −0.158676 5.27261i −0.0250889 0.833672i
\(41\) −0.926064 + 3.45612i −0.144627 + 0.539755i 0.855145 + 0.518389i \(0.173468\pi\)
−0.999772 + 0.0213659i \(0.993199\pi\)
\(42\) 0.0443757 0.165612i 0.00684732 0.0255545i
\(43\) 6.86784 1.84023i 1.04734 0.280633i 0.306185 0.951972i \(-0.400947\pi\)
0.741150 + 0.671339i \(0.234281\pi\)
\(44\) −0.0553794 + 0.0553794i −0.00834876 + 0.00834876i
\(45\) −5.83107 3.13659i −0.869245 0.467575i
\(46\) −1.45164 5.41759i −0.214032 0.798780i
\(47\) 9.13956 1.33314 0.666571 0.745442i \(-0.267761\pi\)
0.666571 + 0.745442i \(0.267761\pi\)
\(48\) 0.243147 + 0.907439i 0.0350953 + 0.130978i
\(49\) 3.34967 + 5.80180i 0.478524 + 0.828828i
\(50\) −6.61146 + 4.36732i −0.935001 + 0.617633i
\(51\) 0.620172i 0.0868415i
\(52\) 0 0
\(53\) −3.70952 + 3.70952i −0.509541 + 0.509541i −0.914386 0.404844i \(-0.867326\pi\)
0.404844 + 0.914386i \(0.367326\pi\)
\(54\) 1.80043 + 0.482424i 0.245008 + 0.0656496i
\(55\) −0.333294 0.0786414i −0.0449413 0.0106040i
\(56\) 1.12023 + 0.646766i 0.149697 + 0.0864278i
\(57\) 0.900179i 0.119232i
\(58\) −1.85623 + 3.21508i −0.243735 + 0.422161i
\(59\) 3.67728 0.985325i 0.478742 0.128278i −0.0113750 0.999935i \(-0.503621\pi\)
0.490117 + 0.871657i \(0.336954\pi\)
\(60\) 0.154672 0.164270i 0.0199680 0.0212071i
\(61\) −3.92486 + 6.79805i −0.502526 + 0.870401i 0.497470 + 0.867481i \(0.334263\pi\)
−0.999996 + 0.00291945i \(0.999071\pi\)
\(62\) −14.3093 3.83416i −1.81728 0.486939i
\(63\) 1.40611 0.811818i 0.177153 0.102279i
\(64\) −5.04207 −0.630258
\(65\) 0 0
\(66\) 0.0478868 0.00589446
\(67\) −4.23514 + 2.44516i −0.517405 + 0.298724i −0.735872 0.677120i \(-0.763228\pi\)
0.218467 + 0.975844i \(0.429894\pi\)
\(68\) 1.55261 + 0.416019i 0.188281 + 0.0504497i
\(69\) −0.349161 + 0.604765i −0.0420341 + 0.0728051i
\(70\) −0.0584483 1.94217i −0.00698591 0.232133i
\(71\) 15.1045 4.04725i 1.79258 0.480320i 0.799799 0.600267i \(-0.204939\pi\)
0.992780 + 0.119947i \(0.0382725\pi\)
\(72\) −3.49265 + 6.04945i −0.411613 + 0.712935i
\(73\) 3.91807i 0.458575i 0.973359 + 0.229288i \(0.0736396\pi\)
−0.973359 + 0.229288i \(0.926360\pi\)
\(74\) 9.34119 + 5.39314i 1.08589 + 0.626939i
\(75\) 0.966569 + 0.197573i 0.111610 + 0.0228137i
\(76\) 2.25360 + 0.603851i 0.258506 + 0.0692665i
\(77\) 0.0593789 0.0593789i 0.00676686 0.00676686i
\(78\) 0 0
\(79\) 11.1394i 1.25328i 0.779309 + 0.626640i \(0.215570\pi\)
−0.779309 + 0.626640i \(0.784430\pi\)
\(80\) 5.59820 + 9.05585i 0.625897 + 1.01247i
\(81\) 4.32557 + 7.49210i 0.480618 + 0.832455i
\(82\) −1.46757 5.47704i −0.162066 0.604838i
\(83\) −13.4251 −1.47360 −0.736798 0.676113i \(-0.763663\pi\)
−0.736798 + 0.676113i \(0.763663\pi\)
\(84\) 0.0143200 + 0.0534431i 0.00156244 + 0.00583112i
\(85\) 2.02243 + 6.73096i 0.219363 + 0.730075i
\(86\) −7.96744 + 7.96744i −0.859151 + 0.859151i
\(87\) 0.446477 0.119633i 0.0478673 0.0128260i
\(88\) −0.0935062 + 0.348970i −0.00996779 + 0.0372003i
\(89\) −2.35372 + 8.78419i −0.249493 + 0.931122i 0.721578 + 0.692333i \(0.243417\pi\)
−0.971071 + 0.238789i \(0.923250\pi\)
\(90\) 10.4880 0.315631i 1.10554 0.0332705i
\(91\) 0 0
\(92\) 1.27981 + 1.27981i 0.133430 + 0.133430i
\(93\) 0.922226 + 1.59734i 0.0956304 + 0.165637i
\(94\) −12.5433 + 7.24190i −1.29375 + 0.746945i
\(95\) 2.93555 + 9.76998i 0.301181 + 1.00238i
\(96\) −0.394459 0.394459i −0.0402593 0.0402593i
\(97\) −6.55668 3.78550i −0.665730 0.384360i 0.128727 0.991680i \(-0.458911\pi\)
−0.794457 + 0.607321i \(0.792244\pi\)
\(98\) −9.19433 5.30835i −0.928767 0.536224i
\(99\) 0.320657 + 0.320657i 0.0322272 + 0.0322272i
\(100\) 1.14301 2.28728i 0.114301 0.228728i
\(101\) 11.7218 6.76758i 1.16636 0.673400i 0.213542 0.976934i \(-0.431500\pi\)
0.952821 + 0.303534i \(0.0981667\pi\)
\(102\) −0.491405 0.851139i −0.0486564 0.0842753i
\(103\) −10.3566 10.3566i −1.02046 1.02046i −0.999786 0.0206759i \(-0.993418\pi\)
−0.0206759 0.999786i \(-0.506582\pi\)
\(104\) 0 0
\(105\) −0.165842 + 0.176134i −0.0161845 + 0.0171889i
\(106\) 2.15172 8.03034i 0.208994 0.779975i
\(107\) 4.16078 15.5283i 0.402238 1.50117i −0.406855 0.913493i \(-0.633375\pi\)
0.809093 0.587680i \(-0.199959\pi\)
\(108\) −0.580999 + 0.155678i −0.0559066 + 0.0149801i
\(109\) −8.20821 + 8.20821i −0.786203 + 0.786203i −0.980870 0.194666i \(-0.937638\pi\)
0.194666 + 0.980870i \(0.437638\pi\)
\(110\) 0.519733 0.156162i 0.0495546 0.0148895i
\(111\) −0.347585 1.29721i −0.0329913 0.123125i
\(112\) −2.61073 −0.246691
\(113\) 1.17964 + 4.40249i 0.110972 + 0.414151i 0.998954 0.0457259i \(-0.0145601\pi\)
−0.887982 + 0.459877i \(0.847893\pi\)
\(114\) −0.713274 1.23543i −0.0668042 0.115708i
\(115\) −1.81739 + 7.70238i −0.169473 + 0.718251i
\(116\) 1.19801i 0.111232i
\(117\) 0 0
\(118\) −4.26605 + 4.26605i −0.392722 + 0.392722i
\(119\) −1.66473 0.446064i −0.152606 0.0408907i
\(120\) 0.239019 1.01300i 0.0218193 0.0924736i
\(121\) −9.50597 5.48827i −0.864179 0.498934i
\(122\) 12.4397i 1.12624i
\(123\) −0.352993 + 0.611402i −0.0318283 + 0.0551283i
\(124\) 4.61760 1.23728i 0.414673 0.111111i
\(125\) 11.1348 1.00772i 0.995930 0.0901335i
\(126\) −1.28652 + 2.22832i −0.114612 + 0.198514i
\(127\) 2.34945 + 0.629533i 0.208480 + 0.0558620i 0.361547 0.932354i \(-0.382249\pi\)
−0.153068 + 0.988216i \(0.548915\pi\)
\(128\) 11.8168 6.82244i 1.04447 0.603024i
\(129\) 1.40290 0.123519
\(130\) 0 0
\(131\) 6.60705 0.577260 0.288630 0.957441i \(-0.406800\pi\)
0.288630 + 0.957441i \(0.406800\pi\)
\(132\) −0.0133827 + 0.00772653i −0.00116482 + 0.000672508i
\(133\) −2.41636 0.647462i −0.209525 0.0561421i
\(134\) 3.87494 6.71159i 0.334744 0.579793i
\(135\) −1.91481 1.80293i −0.164801 0.155171i
\(136\) 7.16212 1.91909i 0.614147 0.164560i
\(137\) 2.02775 3.51216i 0.173242 0.300064i −0.766309 0.642472i \(-0.777909\pi\)
0.939552 + 0.342408i \(0.111242\pi\)
\(138\) 1.10666i 0.0942050i
\(139\) −11.1052 6.41160i −0.941932 0.543825i −0.0513668 0.998680i \(-0.516358\pi\)
−0.890566 + 0.454855i \(0.849691\pi\)
\(140\) 0.329703 + 0.533339i 0.0278650 + 0.0450754i
\(141\) 1.74189 + 0.466737i 0.146693 + 0.0393064i
\(142\) −17.5229 + 17.5229i −1.47049 + 1.47049i
\(143\) 0 0
\(144\) 14.0984i 1.17487i
\(145\) 4.45565 2.75442i 0.370021 0.228742i
\(146\) −3.10455 5.37725i −0.256935 0.445024i
\(147\) 0.342121 + 1.27681i 0.0282176 + 0.105310i
\(148\) −3.48073 −0.286114
\(149\) 1.10123 + 4.10983i 0.0902159 + 0.336690i 0.996251 0.0865128i \(-0.0275723\pi\)
−0.906035 + 0.423203i \(0.860906\pi\)
\(150\) −1.48309 + 0.494726i −0.121094 + 0.0403942i
\(151\) −4.89430 + 4.89430i −0.398293 + 0.398293i −0.877630 0.479338i \(-0.840877\pi\)
0.479338 + 0.877630i \(0.340877\pi\)
\(152\) 10.3958 2.78555i 0.843212 0.225938i
\(153\) 2.40883 8.98987i 0.194742 0.726788i
\(154\) −0.0344430 + 0.128543i −0.00277550 + 0.0103583i
\(155\) 15.2183 + 14.3291i 1.22236 + 1.15094i
\(156\) 0 0
\(157\) 2.29887 + 2.29887i 0.183470 + 0.183470i 0.792866 0.609396i \(-0.208588\pi\)
−0.609396 + 0.792866i \(0.708588\pi\)
\(158\) −8.82651 15.2880i −0.702199 1.21625i
\(159\) −0.896426 + 0.517552i −0.0710912 + 0.0410445i
\(160\) −5.56757 2.99485i −0.440155 0.236764i
\(161\) −1.37224 1.37224i −0.108148 0.108148i
\(162\) −11.8730 6.85489i −0.932832 0.538571i
\(163\) 9.41236 + 5.43423i 0.737233 + 0.425642i 0.821062 0.570839i \(-0.193382\pi\)
−0.0838295 + 0.996480i \(0.526715\pi\)
\(164\) 1.29386 + 1.29386i 0.101033 + 0.101033i
\(165\) −0.0595057 0.0320087i −0.00463251 0.00249187i
\(166\) 18.4249 10.6376i 1.43005 0.825640i
\(167\) −8.17941 14.1672i −0.632942 1.09629i −0.986947 0.161044i \(-0.948514\pi\)
0.354005 0.935243i \(-0.384819\pi\)
\(168\) 0.180474 + 0.180474i 0.0139238 + 0.0139238i
\(169\) 0 0
\(170\) −8.10903 7.63522i −0.621934 0.585594i
\(171\) 3.49641 13.0488i 0.267377 0.997865i
\(172\) 0.941085 3.51218i 0.0717570 0.267801i
\(173\) −6.60091 + 1.76871i −0.501858 + 0.134472i −0.500862 0.865527i \(-0.666984\pi\)
−0.000995657 1.00000i \(0.500317\pi\)
\(174\) −0.517961 + 0.517961i −0.0392666 + 0.0392666i
\(175\) −1.22556 + 2.45247i −0.0926436 + 0.185389i
\(176\) −0.188723 0.704325i −0.0142256 0.0530905i
\(177\) 0.751164 0.0564609
\(178\) −3.73002 13.9206i −0.279577 1.04340i
\(179\) 2.83696 + 4.91376i 0.212044 + 0.367272i 0.952354 0.304994i \(-0.0986545\pi\)
−0.740310 + 0.672266i \(0.765321\pi\)
\(180\) −2.88013 + 1.78045i −0.214672 + 0.132707i
\(181\) 3.59115i 0.266928i 0.991054 + 0.133464i \(0.0426101\pi\)
−0.991054 + 0.133464i \(0.957390\pi\)
\(182\) 0 0
\(183\) −1.09519 + 1.09519i −0.0809588 + 0.0809588i
\(184\) 8.06465 + 2.16092i 0.594534 + 0.159305i
\(185\) −8.00276 12.9456i −0.588375 0.951777i
\(186\) −2.53137 1.46149i −0.185609 0.107161i
\(187\) 0.481358i 0.0352004i
\(188\) 2.33696 4.04773i 0.170440 0.295211i
\(189\) 0.622959 0.166921i 0.0453136 0.0121417i
\(190\) −11.7702 11.0825i −0.853903 0.804009i
\(191\) 11.7411 20.3361i 0.849553 1.47147i −0.0320553 0.999486i \(-0.510205\pi\)
0.881608 0.471982i \(-0.156461\pi\)
\(192\) −0.960956 0.257487i −0.0693510 0.0185825i
\(193\) 13.7160 7.91891i 0.987296 0.570016i 0.0828311 0.996564i \(-0.473604\pi\)
0.904465 + 0.426548i \(0.140270\pi\)
\(194\) 11.9981 0.861411
\(195\) 0 0
\(196\) 3.42601 0.244715
\(197\) −4.94741 + 2.85639i −0.352488 + 0.203509i −0.665781 0.746148i \(-0.731901\pi\)
0.313292 + 0.949657i \(0.398568\pi\)
\(198\) −0.694156 0.185998i −0.0493315 0.0132183i
\(199\) −4.65156 + 8.05674i −0.329740 + 0.571127i −0.982460 0.186472i \(-0.940295\pi\)
0.652720 + 0.757599i \(0.273628\pi\)
\(200\) −0.709299 11.7739i −0.0501550 0.832541i
\(201\) −0.932035 + 0.249738i −0.0657407 + 0.0176152i
\(202\) −10.7248 + 18.5760i −0.754597 + 1.30700i
\(203\) 1.28453i 0.0901563i
\(204\) 0.274662 + 0.158576i 0.0192302 + 0.0111026i
\(205\) −1.83734 + 7.78691i −0.128325 + 0.543861i
\(206\) 22.4198 + 6.00737i 1.56206 + 0.418553i
\(207\) 7.41034 7.41034i 0.515054 0.515054i
\(208\) 0 0
\(209\) 0.698690i 0.0483294i
\(210\) 0.0880427 0.373138i 0.00607552 0.0257490i
\(211\) 2.73779 + 4.74199i 0.188477 + 0.326452i 0.944743 0.327813i \(-0.106311\pi\)
−0.756265 + 0.654265i \(0.772978\pi\)
\(212\) 0.694360 + 2.59139i 0.0476889 + 0.177977i
\(213\) 3.08543 0.211410
\(214\) 6.59375 + 24.6082i 0.450739 + 1.68218i
\(215\) 15.2262 4.57497i 1.03842 0.312010i
\(216\) −1.96199 + 1.96199i −0.133497 + 0.133497i
\(217\) −4.95108 + 1.32664i −0.336102 + 0.0900581i
\(218\) 4.76121 17.7691i 0.322470 1.20347i
\(219\) −0.200087 + 0.746736i −0.0135206 + 0.0504597i
\(220\) −0.120051 + 0.127501i −0.00809385 + 0.00859612i
\(221\) 0 0
\(222\) 1.50490 + 1.50490i 0.101002 + 0.101002i
\(223\) −9.28408 16.0805i −0.621708 1.07683i −0.989168 0.146790i \(-0.953106\pi\)
0.367460 0.930039i \(-0.380227\pi\)
\(224\) 1.34257 0.775132i 0.0897041 0.0517907i
\(225\) −13.2438 6.61824i −0.882917 0.441216i
\(226\) −5.10737 5.10737i −0.339737 0.339737i
\(227\) 5.53101 + 3.19333i 0.367106 + 0.211949i 0.672193 0.740376i \(-0.265352\pi\)
−0.305087 + 0.952324i \(0.598686\pi\)
\(228\) 0.398672 + 0.230173i 0.0264027 + 0.0152436i
\(229\) −11.1149 11.1149i −0.734491 0.734491i 0.237015 0.971506i \(-0.423831\pi\)
−0.971506 + 0.237015i \(0.923831\pi\)
\(230\) −3.60889 12.0110i −0.237963 0.791980i
\(231\) 0.0143493 0.00828454i 0.000944111 0.000545083i
\(232\) −2.76319 4.78599i −0.181412 0.314215i
\(233\) 5.85956 + 5.85956i 0.383873 + 0.383873i 0.872495 0.488623i \(-0.162500\pi\)
−0.488623 + 0.872495i \(0.662500\pi\)
\(234\) 0 0
\(235\) 20.4274 0.614751i 1.33254 0.0401019i
\(236\) 0.503890 1.88054i 0.0328004 0.122413i
\(237\) −0.568865 + 2.12303i −0.0369517 + 0.137906i
\(238\) 2.63817 0.706895i 0.171007 0.0458212i
\(239\) 13.8081 13.8081i 0.893170 0.893170i −0.101650 0.994820i \(-0.532412\pi\)
0.994820 + 0.101650i \(0.0324123\pi\)
\(240\) 0.604485 + 2.01182i 0.0390193 + 0.129863i
\(241\) −4.43437 16.5493i −0.285643 1.06603i −0.948368 0.317172i \(-0.897267\pi\)
0.662725 0.748863i \(-0.269400\pi\)
\(242\) 17.3950 1.11819
\(243\) 1.35505 + 5.05712i 0.0869266 + 0.324414i
\(244\) 2.00715 + 3.47649i 0.128495 + 0.222559i
\(245\) 7.87694 + 12.7420i 0.503239 + 0.814058i
\(246\) 1.11880i 0.0713323i
\(247\) 0 0
\(248\) 15.5933 15.5933i 0.990176 0.990176i
\(249\) −2.55866 0.685590i −0.162148 0.0434475i
\(250\) −14.4832 + 10.2059i −0.915999 + 0.645479i
\(251\) 8.61959 + 4.97652i 0.544063 + 0.314115i 0.746724 0.665134i \(-0.231626\pi\)
−0.202661 + 0.979249i \(0.564959\pi\)
\(252\) 0.830319i 0.0523052i
\(253\) 0.271008 0.469399i 0.0170381 0.0295109i
\(254\) −3.72326 + 0.997644i −0.233618 + 0.0625978i
\(255\) 0.0417144 + 1.38612i 0.00261226 + 0.0868022i
\(256\) −5.76971 + 9.99343i −0.360607 + 0.624589i
\(257\) −2.65761 0.712105i −0.165777 0.0444199i 0.174976 0.984573i \(-0.444015\pi\)
−0.340753 + 0.940153i \(0.610682\pi\)
\(258\) −1.92538 + 1.11162i −0.119869 + 0.0692062i
\(259\) 3.73211 0.231902
\(260\) 0 0
\(261\) −6.93669 −0.429370
\(262\) −9.06767 + 5.23522i −0.560202 + 0.323433i
\(263\) 5.96686 + 1.59881i 0.367932 + 0.0985871i 0.438048 0.898952i \(-0.355670\pi\)
−0.0701155 + 0.997539i \(0.522337\pi\)
\(264\) −0.0356423 + 0.0617342i −0.00219363 + 0.00379948i
\(265\) −8.04147 + 8.54049i −0.493983 + 0.524638i
\(266\) 3.82930 1.02606i 0.234789 0.0629116i
\(267\) −0.897179 + 1.55396i −0.0549065 + 0.0951008i
\(268\) 2.50088i 0.152766i
\(269\) −18.3796 10.6115i −1.12063 0.646994i −0.179066 0.983837i \(-0.557308\pi\)
−0.941561 + 0.336843i \(0.890641\pi\)
\(270\) 4.05651 + 0.957143i 0.246872 + 0.0582499i
\(271\) 12.4458 + 3.33484i 0.756027 + 0.202577i 0.616190 0.787598i \(-0.288675\pi\)
0.139837 + 0.990174i \(0.455342\pi\)
\(272\) −10.5820 + 10.5820i −0.641629 + 0.641629i
\(273\) 0 0
\(274\) 6.42690i 0.388263i
\(275\) −0.750220 0.153350i −0.0452400 0.00924733i
\(276\) 0.178559 + 0.309274i 0.0107480 + 0.0186161i
\(277\) −5.50674 20.5514i −0.330868 1.23482i −0.908280 0.418363i \(-0.862604\pi\)
0.577412 0.816453i \(-0.304063\pi\)
\(278\) 20.3214 1.21880
\(279\) −7.16409 26.7367i −0.428903 1.60069i
\(280\) 2.54728 + 1.37021i 0.152229 + 0.0818857i
\(281\) 4.22655 4.22655i 0.252135 0.252135i −0.569711 0.821845i \(-0.692945\pi\)
0.821845 + 0.569711i \(0.192945\pi\)
\(282\) −2.76044 + 0.739656i −0.164382 + 0.0440459i
\(283\) −0.398044 + 1.48552i −0.0236613 + 0.0883050i −0.976747 0.214396i \(-0.931222\pi\)
0.953086 + 0.302701i \(0.0978884\pi\)
\(284\) 2.06974 7.72438i 0.122817 0.458358i
\(285\) 0.0605484 + 2.01195i 0.00358658 + 0.119178i
\(286\) 0 0
\(287\) −1.38730 1.38730i −0.0818897 0.0818897i
\(288\) 4.18585 + 7.25011i 0.246654 + 0.427217i
\(289\) 6.16679 3.56040i 0.362752 0.209435i
\(290\) −3.93252 + 7.31074i −0.230925 + 0.429301i
\(291\) −1.05631 1.05631i −0.0619218 0.0619218i
\(292\) 1.73524 + 1.00184i 0.101547 + 0.0586282i
\(293\) −2.41782 1.39593i −0.141251 0.0815512i 0.427709 0.903916i \(-0.359321\pi\)
−0.568960 + 0.822365i \(0.692654\pi\)
\(294\) −1.48124 1.48124i −0.0863877 0.0863877i
\(295\) 8.15266 2.44960i 0.474666 0.142621i
\(296\) −13.9053 + 8.02825i −0.808232 + 0.466633i
\(297\) 0.0900642 + 0.155996i 0.00522606 + 0.00905180i
\(298\) −4.76785 4.76785i −0.276194 0.276194i
\(299\) 0 0
\(300\) 0.334650 0.377556i 0.0193210 0.0217982i
\(301\) −1.00905 + 3.76583i −0.0581607 + 0.217059i
\(302\) 2.83896 10.5951i 0.163364 0.609682i
\(303\) 2.57964 0.691212i 0.148196 0.0397091i
\(304\) −15.3598 + 15.3598i −0.880944 + 0.880944i
\(305\) −8.31502 + 15.4580i −0.476116 + 0.885123i
\(306\) 3.81736 + 14.2466i 0.218224 + 0.814423i
\(307\) −2.12112 −0.121058 −0.0605292 0.998166i \(-0.519279\pi\)
−0.0605292 + 0.998166i \(0.519279\pi\)
\(308\) −0.0111148 0.0414808i −0.000633322 0.00236359i
\(309\) −1.44495 2.50272i −0.0822001 0.142375i
\(310\) −32.2399 7.60708i −1.83110 0.432053i
\(311\) 21.2656i 1.20586i −0.797794 0.602931i \(-0.794000\pi\)
0.797794 0.602931i \(-0.206000\pi\)
\(312\) 0 0
\(313\) −14.3666 + 14.3666i −0.812050 + 0.812050i −0.984941 0.172891i \(-0.944689\pi\)
0.172891 + 0.984941i \(0.444689\pi\)
\(314\) −4.97657 1.33347i −0.280844 0.0752519i
\(315\) 3.08813 1.90904i 0.173996 0.107562i
\(316\) 4.93342 + 2.84831i 0.277527 + 0.160230i
\(317\) 8.78989i 0.493689i −0.969055 0.246845i \(-0.920606\pi\)
0.969055 0.246845i \(-0.0793937\pi\)
\(318\) 0.820184 1.42060i 0.0459936 0.0796633i
\(319\) −0.346541 + 0.0928554i −0.0194026 + 0.00519890i
\(320\) −11.2693 + 0.339143i −0.629973 + 0.0189587i
\(321\) 1.58599 2.74701i 0.0885212 0.153323i
\(322\) 2.97061 + 0.795974i 0.165546 + 0.0443579i
\(323\) −12.4185 + 7.16982i −0.690984 + 0.398940i
\(324\) 4.42414 0.245786
\(325\) 0 0
\(326\) −17.2237 −0.953930
\(327\) −1.98356 + 1.14521i −0.109691 + 0.0633302i
\(328\) 8.15316 + 2.18463i 0.450183 + 0.120626i
\(329\) −2.50574 + 4.34006i −0.138146 + 0.239275i
\(330\) 0.107030 0.00322099i 0.00589179 0.000177310i
\(331\) −17.5522 + 4.70310i −0.964756 + 0.258506i −0.706612 0.707601i \(-0.749777\pi\)
−0.258144 + 0.966107i \(0.583111\pi\)
\(332\) −3.43276 + 5.94572i −0.188397 + 0.326314i
\(333\) 20.1541i 1.10444i
\(334\) 22.4512 + 12.9622i 1.22848 + 0.709261i
\(335\) −9.30131 + 5.74994i −0.508185 + 0.314153i
\(336\) −0.497574 0.133325i −0.0271449 0.00727345i
\(337\) −17.2522 + 17.2522i −0.939788 + 0.939788i −0.998287 0.0584999i \(-0.981368\pi\)
0.0584999 + 0.998287i \(0.481368\pi\)
\(338\) 0 0
\(339\) 0.899302i 0.0488434i
\(340\) 3.49814 + 0.825394i 0.189713 + 0.0447633i
\(341\) −0.715803 1.23981i −0.0387629 0.0671393i
\(342\) 5.54089 + 20.6789i 0.299617 + 1.11819i
\(343\) −7.51173 −0.405595
\(344\) −4.34120 16.2016i −0.234062 0.873530i
\(345\) −0.739717 + 1.37517i −0.0398250 + 0.0740366i
\(346\) 7.65777 7.65777i 0.411684 0.411684i
\(347\) 7.50674 2.01142i 0.402983 0.107979i −0.0516340 0.998666i \(-0.516443\pi\)
0.454617 + 0.890687i \(0.349776\pi\)
\(348\) 0.0611797 0.228326i 0.00327958 0.0122395i
\(349\) −1.31241 + 4.89796i −0.0702515 + 0.262182i −0.992115 0.125333i \(-0.960000\pi\)
0.921863 + 0.387515i \(0.126667\pi\)
\(350\) −0.261271 4.33692i −0.0139655 0.231818i
\(351\) 0 0
\(352\) 0.306166 + 0.306166i 0.0163187 + 0.0163187i
\(353\) 12.8089 + 22.1857i 0.681749 + 1.18082i 0.974447 + 0.224618i \(0.0721136\pi\)
−0.292698 + 0.956205i \(0.594553\pi\)
\(354\) −1.03091 + 0.595199i −0.0547925 + 0.0316345i
\(355\) 33.4873 10.0618i 1.77732 0.534025i
\(356\) 3.28851 + 3.28851i 0.174291 + 0.174291i
\(357\) −0.294499 0.170029i −0.0155865 0.00899888i
\(358\) −7.78702 4.49584i −0.411557 0.237613i
\(359\) 10.0443 + 10.0443i 0.530117 + 0.530117i 0.920607 0.390490i \(-0.127694\pi\)
−0.390490 + 0.920607i \(0.627694\pi\)
\(360\) −7.39937 + 13.7558i −0.389981 + 0.724994i
\(361\) −1.57095 + 0.906990i −0.0826817 + 0.0477363i
\(362\) −2.84552 4.92858i −0.149557 0.259040i
\(363\) −1.53145 1.53145i −0.0803801 0.0803801i
\(364\) 0 0
\(365\) 0.263540 + 8.75710i 0.0137943 + 0.458368i
\(366\) 0.635270 2.37086i 0.0332061 0.123927i
\(367\) −5.20802 + 19.4366i −0.271857 + 1.01458i 0.686062 + 0.727543i \(0.259338\pi\)
−0.957919 + 0.287040i \(0.907329\pi\)
\(368\) −16.2769 + 4.36137i −0.848490 + 0.227352i
\(369\) 7.49167 7.49167i 0.390001 0.390001i
\(370\) 21.2408 + 11.4257i 1.10426 + 0.593991i
\(371\) −0.744507 2.77854i −0.0386529 0.144255i
\(372\) 0.943243 0.0489049
\(373\) 6.78245 + 25.3125i 0.351182 + 1.31063i 0.885221 + 0.465170i \(0.154007\pi\)
−0.534039 + 0.845460i \(0.679327\pi\)
\(374\) 0.381413 + 0.660627i 0.0197224 + 0.0341602i
\(375\) 2.17362 + 0.376572i 0.112246 + 0.0194461i
\(376\) 21.5607i 1.11191i
\(377\) 0 0
\(378\) −0.722700 + 0.722700i −0.0371717 + 0.0371717i
\(379\) 21.7627 + 5.83130i 1.11787 + 0.299534i 0.770023 0.638016i \(-0.220245\pi\)
0.347852 + 0.937550i \(0.386911\pi\)
\(380\) 5.07755 + 1.19806i 0.260473 + 0.0614591i
\(381\) 0.415627 + 0.239962i 0.0212932 + 0.0122936i
\(382\) 37.2130i 1.90398i
\(383\) 12.0630 20.8938i 0.616392 1.06762i −0.373747 0.927531i \(-0.621927\pi\)
0.990139 0.140091i \(-0.0447396\pi\)
\(384\) 2.60055 0.696814i 0.132709 0.0355591i
\(385\) 0.128721 0.136709i 0.00656024 0.00696735i
\(386\) −12.5494 + 21.7362i −0.638748 + 1.10634i
\(387\) −20.3361 5.44905i −1.03374 0.276991i
\(388\) −3.35305 + 1.93589i −0.170225 + 0.0982797i
\(389\) 14.3262 0.726365 0.363183 0.931718i \(-0.381690\pi\)
0.363183 + 0.931718i \(0.381690\pi\)
\(390\) 0 0
\(391\) −11.1241 −0.562571
\(392\) 13.6867 7.90203i 0.691284 0.399113i
\(393\) 1.25922 + 0.337408i 0.0635194 + 0.0170200i
\(394\) 4.52662 7.84034i 0.228048 0.394991i
\(395\) 0.749265 + 24.8972i 0.0376996 + 1.25271i
\(396\) 0.224004 0.0600217i 0.0112566 0.00301620i
\(397\) 16.7465 29.0058i 0.840484 1.45576i −0.0490017 0.998799i \(-0.515604\pi\)
0.889486 0.456963i \(-0.151063\pi\)
\(398\) 14.7430i 0.739000i
\(399\) −0.427464 0.246797i −0.0214000 0.0123553i
\(400\) 13.1214 + 19.8638i 0.656070 + 0.993189i
\(401\) −17.9170 4.80084i −0.894731 0.239743i −0.217979 0.975953i \(-0.569946\pi\)
−0.676752 + 0.736211i \(0.736613\pi\)
\(402\) 1.08126 1.08126i 0.0539285 0.0539285i
\(403\) 0 0
\(404\) 6.92181i 0.344373i
\(405\) 10.1718 + 16.4543i 0.505442 + 0.817621i
\(406\) −1.01782 1.76292i −0.0505136 0.0874922i
\(407\) 0.269785 + 1.00685i 0.0133727 + 0.0499077i
\(408\) 1.46302 0.0724301
\(409\) 1.33873 + 4.99622i 0.0661960 + 0.247047i 0.991093 0.133171i \(-0.0425158\pi\)
−0.924897 + 0.380218i \(0.875849\pi\)
\(410\) −3.64850 12.1428i −0.180187 0.599690i
\(411\) 0.565822 0.565822i 0.0279099 0.0279099i
\(412\) −7.23487 + 1.93858i −0.356436 + 0.0955068i
\(413\) −0.540281 + 2.01636i −0.0265855 + 0.0992184i
\(414\) −4.29840 + 16.0418i −0.211255 + 0.788414i
\(415\) −30.0058 + 0.903008i −1.47293 + 0.0443269i
\(416\) 0 0
\(417\) −1.78909 1.78909i −0.0876122 0.0876122i
\(418\) 0.553620 + 0.958899i 0.0270785 + 0.0469013i
\(419\) −0.872048 + 0.503477i −0.0426023 + 0.0245965i −0.521150 0.853465i \(-0.674497\pi\)
0.478548 + 0.878062i \(0.341163\pi\)
\(420\) 0.0356008 + 0.118485i 0.00173714 + 0.00578148i
\(421\) −0.294746 0.294746i −0.0143650 0.0143650i 0.699888 0.714253i \(-0.253233\pi\)
−0.714253 + 0.699888i \(0.753233\pi\)
\(422\) −7.51482 4.33868i −0.365816 0.211204i
\(423\) −23.4371 13.5314i −1.13955 0.657920i
\(424\) 8.75094 + 8.75094i 0.424983 + 0.424983i
\(425\) 4.97298 + 14.9080i 0.241225 + 0.723146i
\(426\) −4.23451 + 2.44480i −0.205163 + 0.118451i
\(427\) −2.15211 3.72756i −0.104148 0.180389i
\(428\) −5.81326 5.81326i −0.280995 0.280995i
\(429\) 0 0
\(430\) −17.2718 + 18.3436i −0.832918 + 0.884606i
\(431\) 1.07449 4.01004i 0.0517562 0.193157i −0.935207 0.354100i \(-0.884787\pi\)
0.986964 + 0.160944i \(0.0514538\pi\)
\(432\) 1.44942 5.40930i 0.0697352 0.260255i
\(433\) 14.4842 3.88103i 0.696067 0.186511i 0.106599 0.994302i \(-0.466004\pi\)
0.589468 + 0.807792i \(0.299337\pi\)
\(434\) 5.74380 5.74380i 0.275711 0.275711i
\(435\) 0.989854 0.297418i 0.0474598 0.0142601i
\(436\) 1.53644 + 5.73407i 0.0735821 + 0.274612i
\(437\) −16.1466 −0.772399
\(438\) −0.317086 1.18338i −0.0151509 0.0565441i
\(439\) −6.94098 12.0221i −0.331275 0.573785i 0.651487 0.758660i \(-0.274145\pi\)
−0.982762 + 0.184875i \(0.940812\pi\)
\(440\) −0.185519 + 0.786257i −0.00884427 + 0.0374833i
\(441\) 19.8372i 0.944628i
\(442\) 0 0
\(443\) 10.0594 10.0594i 0.477938 0.477938i −0.426533 0.904472i \(-0.640265\pi\)
0.904472 + 0.426533i \(0.140265\pi\)
\(444\) −0.663384 0.177753i −0.0314828 0.00843580i
\(445\) −4.66984 + 19.7915i −0.221372 + 0.938206i
\(446\) 25.4834 + 14.7128i 1.20667 + 0.696673i
\(447\) 0.839520i 0.0397079i
\(448\) 1.38235 2.39430i 0.0653100 0.113120i
\(449\) −6.42946 + 1.72277i −0.303425 + 0.0813024i −0.407319 0.913286i \(-0.633536\pi\)
0.103894 + 0.994588i \(0.466870\pi\)
\(450\) 23.4201 1.41091i 1.10404 0.0665108i
\(451\) 0.273982 0.474551i 0.0129013 0.0223457i
\(452\) 2.25141 + 0.603263i 0.105897 + 0.0283751i
\(453\) −1.18274 + 0.682853i −0.0555698 + 0.0320832i
\(454\) −10.1212 −0.475011
\(455\) 0 0
\(456\) 2.12357 0.0994451
\(457\) −32.0071 + 18.4793i −1.49723 + 0.864426i −0.999995 0.00318917i \(-0.998985\pi\)
−0.497236 + 0.867616i \(0.665652\pi\)
\(458\) 24.0614 + 6.44722i 1.12431 + 0.301259i
\(459\) 1.84844 3.20160i 0.0862780 0.149438i
\(460\) 2.94653 + 2.77437i 0.137383 + 0.129355i
\(461\) −24.8502 + 6.65860i −1.15739 + 0.310122i −0.785923 0.618324i \(-0.787812\pi\)
−0.371468 + 0.928446i \(0.621145\pi\)
\(462\) −0.0131288 + 0.0227398i −0.000610809 + 0.00105795i
\(463\) 15.9580i 0.741632i 0.928706 + 0.370816i \(0.120922\pi\)
−0.928706 + 0.370816i \(0.879078\pi\)
\(464\) 9.65955 + 5.57694i 0.448433 + 0.258903i
\(465\) 2.16867 + 3.50812i 0.100570 + 0.162685i
\(466\) −12.6847 3.39887i −0.587609 0.157449i
\(467\) 18.6259 18.6259i 0.861902 0.861902i −0.129657 0.991559i \(-0.541388\pi\)
0.991559 + 0.129657i \(0.0413877\pi\)
\(468\) 0 0
\(469\) 2.68150i 0.123820i
\(470\) −27.5480 + 17.0298i −1.27069 + 0.785524i
\(471\) 0.320738 + 0.555534i 0.0147788 + 0.0255976i
\(472\) −2.32443 8.67489i −0.106991 0.399294i
\(473\) −1.08889 −0.0500671
\(474\) −0.901501 3.36445i −0.0414073 0.154534i
\(475\) 7.21827 + 21.6390i 0.331197 + 0.992865i
\(476\) −0.623222 + 0.623222i −0.0285653 + 0.0285653i
\(477\) 15.0046 4.02047i 0.687014 0.184085i
\(478\) −8.00943 + 29.8916i −0.366343 + 1.36721i
\(479\) −4.29638 + 16.0343i −0.196307 + 0.732627i 0.795618 + 0.605799i \(0.207146\pi\)
−0.991925 + 0.126828i \(0.959520\pi\)
\(480\) −0.908170 0.855105i −0.0414521 0.0390300i
\(481\) 0 0
\(482\) 19.1990 + 19.1990i 0.874490 + 0.874490i
\(483\) −0.191455 0.331609i −0.00871149 0.0150888i
\(484\) −4.86130 + 2.80667i −0.220968 + 0.127576i
\(485\) −14.9092 8.01979i −0.676991 0.364160i
\(486\) −5.86681 5.86681i −0.266124 0.266124i
\(487\) 22.7590 + 13.1399i 1.03131 + 0.595425i 0.917359 0.398062i \(-0.130317\pi\)
0.113948 + 0.993487i \(0.463650\pi\)
\(488\) 16.0369 + 9.25893i 0.725958 + 0.419132i
\(489\) 1.51637 + 1.51637i 0.0685724 + 0.0685724i
\(490\) −20.9069 11.2460i −0.944477 0.508043i
\(491\) −36.0301 + 20.8020i −1.62602 + 0.938781i −0.640752 + 0.767748i \(0.721377\pi\)
−0.985265 + 0.171034i \(0.945289\pi\)
\(492\) 0.180519 + 0.312668i 0.00813842 + 0.0140961i
\(493\) 5.20655 + 5.20655i 0.234491 + 0.234491i
\(494\) 0 0
\(495\) 0.738254 + 0.695118i 0.0331821 + 0.0312432i
\(496\) −11.5195 + 42.9915i −0.517242 + 1.93037i
\(497\) −2.21922 + 8.28224i −0.0995456 + 0.371509i
\(498\) 4.05480 1.08648i 0.181700 0.0486864i
\(499\) 8.31651 8.31651i 0.372298 0.372298i −0.496015 0.868314i \(-0.665204\pi\)
0.868314 + 0.496015i \(0.165204\pi\)
\(500\) 2.40085 5.18908i 0.107369 0.232063i
\(501\) −0.835410 3.11779i −0.0373234 0.139293i
\(502\) −15.7730 −0.703982
\(503\) 2.76277 + 10.3108i 0.123186 + 0.459736i 0.999769 0.0215156i \(-0.00684916\pi\)
−0.876583 + 0.481251i \(0.840182\pi\)
\(504\) −1.91512 3.31708i −0.0853062 0.147755i
\(505\) 25.7437 15.9144i 1.14558 0.708180i
\(506\) 0.858953i 0.0381851i
\(507\) 0 0
\(508\) 0.879556 0.879556i 0.0390240 0.0390240i
\(509\) −2.91197 0.780260i −0.129071 0.0345844i 0.193705 0.981060i \(-0.437949\pi\)
−0.322776 + 0.946475i \(0.604616\pi\)
\(510\) −1.15557 1.86929i −0.0511694 0.0827735i
\(511\) −1.86056 1.07419i −0.0823062 0.0475195i
\(512\) 9.00279i 0.397871i
\(513\) 2.68301 4.64712i 0.118458 0.205175i
\(514\) 4.21162 1.12850i 0.185767 0.0497760i
\(515\) −23.8441 22.4509i −1.05070 0.989304i
\(516\) 0.358718 0.621318i 0.0157917 0.0273520i
\(517\) −1.35200 0.362267i −0.0594608 0.0159325i
\(518\) −5.12203 + 2.95721i −0.225049 + 0.129932i
\(519\) −1.34838 −0.0591871
\(520\) 0 0
\(521\) −5.84796 −0.256204 −0.128102 0.991761i \(-0.540888\pi\)
−0.128102 + 0.991761i \(0.540888\pi\)
\(522\) 9.52007 5.49642i 0.416682 0.240572i
\(523\) −2.86434 0.767497i −0.125249 0.0335603i 0.195650 0.980674i \(-0.437318\pi\)
−0.320899 + 0.947113i \(0.603985\pi\)
\(524\) 1.68940 2.92613i 0.0738020 0.127829i
\(525\) −0.358819 + 0.404823i −0.0156601 + 0.0176679i
\(526\) −9.45590 + 2.53370i −0.412297 + 0.110475i
\(527\) −14.6909 + 25.4453i −0.639944 + 1.10842i
\(528\) 0.143873i 0.00626129i
\(529\) 9.07083 + 5.23704i 0.394384 + 0.227698i
\(530\) 4.26908 18.0930i 0.185437 0.785909i
\(531\) −10.8887 2.91762i −0.472529 0.126614i
\(532\) −0.904605 + 0.904605i −0.0392196 + 0.0392196i
\(533\) 0 0
\(534\) 2.84359i 0.123054i
\(535\) 8.25511 34.9864i 0.356900 1.51259i
\(536\) 5.76825 + 9.99091i 0.249151 + 0.431542i
\(537\) 0.289755 + 1.08138i 0.0125038 + 0.0466650i
\(538\) 33.6329 1.45002
\(539\) −0.265543 0.991021i −0.0114378 0.0426863i
\(540\) −1.28809 + 0.387029i −0.0554307 + 0.0166551i
\(541\) 15.4678 15.4678i 0.665013 0.665013i −0.291544 0.956557i \(-0.594169\pi\)
0.956557 + 0.291544i \(0.0941691\pi\)
\(542\) −19.7233 + 5.28484i −0.847188 + 0.227003i
\(543\) −0.183392 + 0.684429i −0.00787011 + 0.0293717i
\(544\) 2.29997 8.58362i 0.0986105 0.368020i
\(545\) −17.7937 + 18.8979i −0.762198 + 0.809497i
\(546\) 0 0
\(547\) 1.76989 + 1.76989i 0.0756751 + 0.0756751i 0.743931 0.668256i \(-0.232959\pi\)
−0.668256 + 0.743931i \(0.732959\pi\)
\(548\) −1.03698 1.79610i −0.0442976 0.0767256i
\(549\) 20.1295 11.6218i 0.859106 0.496005i
\(550\) 1.15113 0.383990i 0.0490843 0.0163734i
\(551\) 7.55729 + 7.55729i 0.321952 + 0.321952i
\(552\) 1.42667 + 0.823688i 0.0607231 + 0.0350585i
\(553\) −5.28972 3.05402i −0.224942 0.129870i
\(554\) 23.8419 + 23.8419i 1.01295 + 1.01295i
\(555\) −0.864126 2.87595i −0.0366801 0.122077i
\(556\) −5.67915 + 3.27886i −0.240850 + 0.139055i
\(557\) −4.71734 8.17068i −0.199880 0.346203i 0.748609 0.663012i \(-0.230722\pi\)
−0.948489 + 0.316809i \(0.897389\pi\)
\(558\) 31.0175 + 31.0175i 1.31308 + 1.31308i
\(559\) 0 0
\(560\) −5.83514 + 0.175605i −0.246580 + 0.00742067i
\(561\) 0.0245819 0.0917409i 0.00103785 0.00387330i
\(562\) −2.45163 + 9.14960i −0.103416 + 0.385953i
\(563\) −9.45863 + 2.53443i −0.398634 + 0.106814i −0.452566 0.891731i \(-0.649491\pi\)
0.0539320 + 0.998545i \(0.482825\pi\)
\(564\) 0.652105 0.652105i 0.0274586 0.0274586i
\(565\) 2.93269 + 9.76047i 0.123379 + 0.410626i
\(566\) −0.630795 2.35416i −0.0265143 0.0989527i
\(567\) −4.74366 −0.199215
\(568\) −9.54766 35.6324i −0.400611 1.49510i
\(569\) −3.20931 5.55868i −0.134541 0.233032i 0.790881 0.611970i \(-0.209623\pi\)
−0.925422 + 0.378938i \(0.876289\pi\)
\(570\) −1.67731 2.71327i −0.0702546 0.113646i
\(571\) 1.72174i 0.0720527i −0.999351 0.0360264i \(-0.988530\pi\)
0.999351 0.0360264i \(-0.0114700\pi\)
\(572\) 0 0
\(573\) 3.27622 3.27622i 0.136866 0.136866i
\(574\) 3.00322 + 0.804709i 0.125352 + 0.0335879i
\(575\) −3.54389 + 17.3375i −0.147791 + 0.723023i
\(576\) 12.9297 + 7.46495i 0.538736 + 0.311040i
\(577\) 24.8642i 1.03511i −0.855650 0.517554i \(-0.826843\pi\)
0.855650 0.517554i \(-0.173157\pi\)
\(578\) −5.64230 + 9.77275i −0.234689 + 0.406493i
\(579\) 3.01849 0.808803i 0.125444 0.0336127i
\(580\) −0.0805813 2.67762i −0.00334596 0.111182i
\(581\) 3.68068 6.37512i 0.152700 0.264484i
\(582\) 2.28668 + 0.612715i 0.0947861 + 0.0253979i
\(583\) 0.695777 0.401707i 0.0288161 0.0166370i
\(584\) 9.24291 0.382474
\(585\) 0 0
\(586\) 4.42437 0.182769
\(587\) 23.1811 13.3836i 0.956785 0.552400i 0.0616029 0.998101i \(-0.480379\pi\)
0.895182 + 0.445701i \(0.147045\pi\)
\(588\) 0.652955 + 0.174959i 0.0269274 + 0.00721517i
\(589\) −21.3238 + 36.9338i −0.878630 + 1.52183i
\(590\) −9.24791 + 9.82180i −0.380731 + 0.404357i
\(591\) −1.08878 + 0.291739i −0.0447866 + 0.0120005i
\(592\) 16.2034 28.0651i 0.665956 1.15347i
\(593\) 19.8452i 0.814944i −0.913218 0.407472i \(-0.866410\pi\)
0.913218 0.407472i \(-0.133590\pi\)
\(594\) −0.247213 0.142728i −0.0101433 0.00585621i
\(595\) −3.75078 0.885004i −0.153767 0.0362816i
\(596\) 2.10174 + 0.563161i 0.0860908 + 0.0230680i
\(597\) −1.29797 + 1.29797i −0.0531224 + 0.0531224i
\(598\) 0 0
\(599\) 36.5285i 1.49252i −0.665657 0.746258i \(-0.731849\pi\)
0.665657 0.746258i \(-0.268151\pi\)
\(600\) 0.466084 2.28018i 0.0190278 0.0930881i
\(601\) −14.9478 25.8903i −0.609732 1.05609i −0.991284 0.131740i \(-0.957944\pi\)
0.381552 0.924347i \(-0.375390\pi\)
\(602\) −1.59908 5.96785i −0.0651736 0.243231i
\(603\) 14.4806 0.589695
\(604\) 0.916132 + 3.41905i 0.0372769 + 0.139119i
\(605\) −21.6155 11.6272i −0.878796 0.472713i
\(606\) −2.99266 + 2.99266i −0.121568 + 0.121568i
\(607\) −17.2598 + 4.62475i −0.700553 + 0.187713i −0.591478 0.806321i \(-0.701456\pi\)
−0.109075 + 0.994034i \(0.534789\pi\)
\(608\) 3.33841 12.4591i 0.135390 0.505283i
\(609\) −0.0655981 + 0.244816i −0.00265817 + 0.00992043i
\(610\) −0.836730 27.8035i −0.0338782 1.12573i
\(611\) 0 0
\(612\) −3.36551 3.36551i −0.136043 0.136043i
\(613\) 7.68729 + 13.3148i 0.310487 + 0.537779i 0.978468 0.206399i \(-0.0661746\pi\)
−0.667981 + 0.744178i \(0.732841\pi\)
\(614\) 2.91107 1.68071i 0.117481 0.0678278i
\(615\) −0.747835 + 1.39026i −0.0301556 + 0.0560607i
\(616\) −0.140078 0.140078i −0.00564390 0.00564390i
\(617\) 1.07707 + 0.621849i 0.0433614 + 0.0250347i 0.521524 0.853237i \(-0.325364\pi\)
−0.478163 + 0.878271i \(0.658697\pi\)
\(618\) 3.96616 + 2.28986i 0.159542 + 0.0921117i
\(619\) −28.7865 28.7865i −1.15703 1.15703i −0.985112 0.171915i \(-0.945005\pi\)
−0.171915 0.985112i \(-0.554995\pi\)
\(620\) 10.2374 3.07599i 0.411143 0.123535i
\(621\) 3.60504 2.08137i 0.144665 0.0835226i
\(622\) 16.8502 + 29.1854i 0.675631 + 1.17023i
\(623\) −3.52601 3.52601i −0.141266 0.141266i
\(624\) 0 0
\(625\) 24.8192 3.00128i 0.992768 0.120051i
\(626\) 8.33343 31.1008i 0.333071 1.24304i
\(627\) 0.0356806 0.133162i 0.00142495 0.00531797i
\(628\) 1.60594 0.430310i 0.0640839 0.0171712i
\(629\) 15.1272 15.1272i 0.603163 0.603163i
\(630\) −2.72556 + 5.06695i −0.108589 + 0.201872i
\(631\) 5.36381 + 20.0180i 0.213530 + 0.796904i 0.986679 + 0.162680i \(0.0520137\pi\)
−0.773149 + 0.634224i \(0.781320\pi\)
\(632\) 26.2784 1.04530
\(633\) 0.279626 + 1.04358i 0.0111141 + 0.0414785i
\(634\) 6.96483 + 12.0634i 0.276609 + 0.479101i
\(635\) 5.29349 + 1.24901i 0.210066 + 0.0495655i
\(636\) 0.529346i 0.0209899i
\(637\) 0 0
\(638\) 0.402025 0.402025i 0.0159163 0.0159163i
\(639\) −44.7256 11.9842i −1.76932 0.474087i
\(640\) 25.9523 16.0434i 1.02586 0.634169i
\(641\) −15.3071 8.83753i −0.604592 0.349061i 0.166254 0.986083i \(-0.446833\pi\)
−0.770846 + 0.637022i \(0.780166\pi\)
\(642\) 5.02675i 0.198390i
\(643\) −1.33452 + 2.31145i −0.0526282 + 0.0911547i −0.891139 0.453730i \(-0.850093\pi\)
0.838511 + 0.544884i \(0.183426\pi\)
\(644\) −0.958617 + 0.256861i −0.0377748 + 0.0101217i
\(645\) 3.13556 0.0943630i 0.123463 0.00371554i
\(646\) 11.3623 19.6801i 0.447043 0.774302i
\(647\) 40.7326 + 10.9143i 1.60136 + 0.429084i 0.945454 0.325755i \(-0.105619\pi\)
0.655910 + 0.754839i \(0.272285\pi\)
\(648\) 17.6742 10.2042i 0.694309 0.400860i
\(649\) −0.583029 −0.0228859
\(650\) 0 0
\(651\) −1.01136 −0.0396385
\(652\) 4.81343 2.77904i 0.188508 0.108835i
\(653\) −24.4045 6.53917i −0.955023 0.255898i −0.252531 0.967589i \(-0.581263\pi\)
−0.702492 + 0.711691i \(0.747930\pi\)
\(654\) 1.81485 3.14342i 0.0709664 0.122917i
\(655\) 14.7671 0.444408i 0.576999 0.0173644i
\(656\) −16.4555 + 4.40924i −0.642479 + 0.172152i
\(657\) 5.80083 10.0473i 0.226312 0.391984i
\(658\) 7.94187i 0.309606i
\(659\) −32.7551 18.9112i −1.27596 0.736675i −0.299856 0.953985i \(-0.596939\pi\)
−0.976103 + 0.217310i \(0.930272\pi\)
\(660\) −0.0293915 + 0.0181694i −0.00114406 + 0.000707243i
\(661\) 16.6205 + 4.45346i 0.646463 + 0.173219i 0.567129 0.823629i \(-0.308054\pi\)
0.0793341 + 0.996848i \(0.474721\pi\)
\(662\) 20.3625 20.3625i 0.791409 0.791409i
\(663\) 0 0
\(664\) 31.6705i 1.22905i
\(665\) −5.44425 1.28458i −0.211119 0.0498140i
\(666\) −15.9694 27.6599i −0.618804 1.07180i
\(667\) 2.14588 + 8.00852i 0.0830887 + 0.310091i
\(668\) −8.36582 −0.323683
\(669\) −0.948235 3.53886i −0.0366609 0.136820i
\(670\) 8.20927 15.2614i 0.317152 0.589600i
\(671\) 0.850052 0.850052i 0.0328159 0.0328159i
\(672\) 0.295461 0.0791687i 0.0113977 0.00305400i
\(673\) 8.14322 30.3909i 0.313898 1.17148i −0.611113 0.791543i \(-0.709278\pi\)
0.925011 0.379940i \(-0.124055\pi\)
\(674\) 10.0072 37.3474i 0.385464 1.43857i
\(675\) −4.40098 3.90085i −0.169394 0.150144i
\(676\) 0 0
\(677\) −28.8731 28.8731i −1.10968 1.10968i −0.993191 0.116494i \(-0.962835\pi\)
−0.116494 0.993191i \(-0.537165\pi\)
\(678\) −0.712579 1.23422i −0.0273664 0.0474001i
\(679\) 3.59521 2.07570i 0.137972 0.0796579i
\(680\) 15.8787 4.77101i 0.608919 0.182960i
\(681\) 0.891066 + 0.891066i 0.0341457 + 0.0341457i
\(682\) 1.96477 + 1.13436i 0.0752349 + 0.0434369i
\(683\) 27.5215 + 15.8896i 1.05308 + 0.607998i 0.923511 0.383572i \(-0.125306\pi\)
0.129572 + 0.991570i \(0.458640\pi\)
\(684\) −4.88503 4.88503i −0.186784 0.186784i
\(685\) 4.29589 7.98627i 0.164138 0.305140i
\(686\) 10.3093 5.95206i 0.393610 0.227251i
\(687\) −1.55074 2.68597i −0.0591646 0.102476i
\(688\) 23.9378 + 23.9378i 0.912619 + 0.912619i
\(689\) 0 0
\(690\) −0.0744368 2.47344i −0.00283376 0.0941623i
\(691\) 6.94735 25.9278i 0.264289 0.986342i −0.698394 0.715713i \(-0.746102\pi\)
0.962684 0.270629i \(-0.0872315\pi\)
\(692\) −0.904508 + 3.37567i −0.0343842 + 0.128324i
\(693\) −0.240182 + 0.0643565i −0.00912374 + 0.00244470i
\(694\) −8.70863 + 8.70863i −0.330575 + 0.330575i
\(695\) −25.2520 13.5833i −0.957865 0.515245i
\(696\) −0.282220 1.05326i −0.0106975 0.0399237i
\(697\) −11.2462 −0.425980
\(698\) −2.07982 7.76199i −0.0787223 0.293796i
\(699\) 0.817526 + 1.41600i 0.0309217 + 0.0535579i
\(700\) 0.772778 + 1.16987i 0.0292082 + 0.0442168i
\(701\) 39.3253i 1.48530i 0.669681 + 0.742649i \(0.266431\pi\)
−0.669681 + 0.742649i \(0.733569\pi\)
\(702\) 0 0
\(703\) 21.9572 21.9572i 0.828131 0.828131i
\(704\) 0.745863 + 0.199854i 0.0281108 + 0.00753226i
\(705\) 3.92461 + 0.926020i 0.147809 + 0.0348759i
\(706\) −35.1585 20.2987i −1.32321 0.763953i
\(707\) 7.42171i 0.279122i
\(708\) 0.192071 0.332676i 0.00721845 0.0125027i
\(709\) −36.2309 + 9.70804i −1.36068 + 0.364593i −0.864066 0.503378i \(-0.832090\pi\)
−0.496614 + 0.867972i \(0.665424\pi\)
\(710\) −37.9861 + 40.3433i −1.42559 + 1.51406i
\(711\) 16.4923 28.5654i 0.618508 1.07129i
\(712\) 20.7223 + 5.55253i 0.776602 + 0.208090i
\(713\) −28.6518 + 16.5421i −1.07302 + 0.619507i
\(714\) 0.538902 0.0201679
\(715\) 0 0
\(716\) 2.90161 0.108438
\(717\) 3.33680 1.92650i 0.124615 0.0719465i
\(718\) −21.7438 5.82623i −0.811471 0.217433i
\(719\) 14.5578 25.2148i 0.542913 0.940353i −0.455822 0.890071i \(-0.650655\pi\)
0.998735 0.0502820i \(-0.0160120\pi\)
\(720\) −0.948298 31.5108i −0.0353410 1.17434i
\(721\) 7.75737 2.07858i 0.288900 0.0774104i
\(722\) 1.43734 2.48955i 0.0534923 0.0926514i
\(723\) 3.38055i 0.125724i
\(724\) 1.59045 + 0.918247i 0.0591086 + 0.0341264i
\(725\) 9.77335 6.45597i 0.362973 0.239769i
\(726\) 3.31526 + 0.888322i 0.123041 + 0.0329687i
\(727\) −15.6053 + 15.6053i −0.578768 + 0.578768i −0.934564 0.355796i \(-0.884210\pi\)
0.355796 + 0.934564i \(0.384210\pi\)
\(728\) 0 0
\(729\) 24.9204i 0.922977i
\(730\) −7.30054 11.8096i −0.270205 0.437094i
\(731\) 11.1740 + 19.3539i 0.413284 + 0.715829i
\(732\) 0.205002 + 0.765076i 0.00757708 + 0.0282780i
\(733\) −34.8651 −1.28777 −0.643886 0.765121i \(-0.722679\pi\)
−0.643886 + 0.765121i \(0.722679\pi\)
\(734\) −8.25335 30.8019i −0.304637 1.13692i
\(735\) 0.850540 + 2.83073i 0.0313727 + 0.104413i
\(736\) 7.07547 7.07547i 0.260805 0.260805i
\(737\) 0.723416 0.193839i 0.0266474 0.00714014i
\(738\) −4.34557 + 16.2179i −0.159963 + 0.596989i
\(739\) 8.85631 33.0522i 0.325785 1.21584i −0.587736 0.809053i \(-0.699981\pi\)
0.913521 0.406792i \(-0.133353\pi\)
\(740\) −7.77962 + 0.234123i −0.285985 + 0.00860654i
\(741\) 0 0
\(742\) 3.22341 + 3.22341i 0.118335 + 0.118335i
\(743\) −1.56456 2.70989i −0.0573980 0.0994162i 0.835899 0.548884i \(-0.184947\pi\)
−0.893297 + 0.449468i \(0.851614\pi\)
\(744\) 3.76821 2.17558i 0.138149 0.0797605i
\(745\) 2.73774 + 9.11163i 0.100303 + 0.333824i
\(746\) −29.3652 29.3652i −1.07514 1.07514i
\(747\) 34.4268 + 19.8763i 1.25961 + 0.727236i
\(748\) −0.213184 0.123082i −0.00779478 0.00450032i
\(749\) 6.23310 + 6.23310i 0.227753 + 0.227753i
\(750\) −3.28152 + 1.20550i −0.119824 + 0.0440185i
\(751\) 6.28199 3.62691i 0.229233 0.132348i −0.380985 0.924581i \(-0.624415\pi\)
0.610218 + 0.792233i \(0.291082\pi\)
\(752\) 21.7579 + 37.6858i 0.793430 + 1.37426i
\(753\) 1.38865 + 1.38865i 0.0506051 + 0.0506051i
\(754\) 0 0
\(755\) −10.6098 + 11.2682i −0.386131 + 0.410093i
\(756\) 0.0853627 0.318578i 0.00310461 0.0115866i
\(757\) 4.28134 15.9782i 0.155608 0.580737i −0.843445 0.537216i \(-0.819476\pi\)
0.999053 0.0435205i \(-0.0138574\pi\)
\(758\) −34.4882 + 9.24108i −1.25267 + 0.335651i
\(759\) 0.0756220 0.0756220i 0.00274490 0.00274490i
\(760\) 23.0479 6.92511i 0.836034 0.251200i
\(761\) 5.99332 + 22.3674i 0.217258 + 0.810817i 0.985360 + 0.170489i \(0.0545348\pi\)
−0.768102 + 0.640328i \(0.778799\pi\)
\(762\) −0.760555 −0.0275520
\(763\) −1.64740 6.14819i −0.0596400 0.222579i
\(764\) −6.00431 10.3998i −0.217228 0.376251i
\(765\) 4.77918 20.2549i 0.172792 0.732317i
\(766\) 38.2335i 1.38143i
\(767\) 0 0
\(768\) −1.60998 + 1.60998i −0.0580951 + 0.0580951i
\(769\) 5.69177 + 1.52511i 0.205251 + 0.0549967i 0.359979 0.932960i \(-0.382784\pi\)
−0.154729 + 0.987957i \(0.549450\pi\)
\(770\) −0.0683359 + 0.289618i −0.00246266 + 0.0104371i
\(771\) −0.470143 0.271437i −0.0169318 0.00977557i
\(772\) 8.09938i 0.291503i
\(773\) −4.04499 + 7.00612i −0.145488 + 0.251993i −0.929555 0.368684i \(-0.879809\pi\)
0.784067 + 0.620676i \(0.213142\pi\)
\(774\) 32.2274 8.63532i 1.15839 0.310390i
\(775\) 34.9776 + 31.0027i 1.25643 + 1.11365i
\(776\) −8.93019 + 15.4675i −0.320575 + 0.555252i
\(777\) 0.711294 + 0.190591i 0.0255175 + 0.00683740i
\(778\) −19.6616 + 11.3516i −0.704901 + 0.406975i
\(779\) −16.3238 −0.584863
\(780\) 0 0
\(781\) −2.39481 −0.0856930
\(782\) 15.2670 8.81441i 0.545947 0.315203i
\(783\) −2.66148 0.713141i −0.0951135 0.0254856i
\(784\) −15.9487 + 27.6239i −0.569595 + 0.986567i
\(785\) 5.29272 + 4.98347i 0.188905 + 0.177868i
\(786\) −1.99554 + 0.534703i −0.0711785 + 0.0190722i
\(787\) −8.10582 + 14.0397i −0.288941 + 0.500461i −0.973557 0.228443i \(-0.926637\pi\)
0.684616 + 0.728904i \(0.259970\pi\)
\(788\) 2.92148i 0.104073i
\(789\) 1.05556 + 0.609429i 0.0375790 + 0.0216962i
\(790\) −20.7561 33.5758i −0.738467 1.19457i
\(791\) −2.41401 0.646831i −0.0858322 0.0229987i
\(792\) 0.756445 0.756445i 0.0268791 0.0268791i
\(793\) 0 0
\(794\) 53.0777i 1.88366i
\(795\) −1.96875 + 1.21705i −0.0698244 + 0.0431644i
\(796\) 2.37878 + 4.12017i 0.0843137 + 0.146036i
\(797\) −4.31449 16.1019i −0.152827 0.570358i −0.999282 0.0378972i \(-0.987934\pi\)
0.846455 0.532461i \(-0.178733\pi\)
\(798\) 0.782216 0.0276901
\(799\) 7.43502 + 27.7479i 0.263032 + 0.981649i
\(800\) −12.6453 6.31917i −0.447078 0.223416i
\(801\) 19.0411 19.0411i 0.672783 0.672783i
\(802\) 28.3937 7.60807i 1.00262 0.268650i
\(803\) 0.155301 0.579592i 0.00548047 0.0204534i
\(804\) −0.127715 + 0.476638i −0.00450415 + 0.0168097i
\(805\) −3.15933 2.97473i −0.111352 0.104846i
\(806\) 0 0
\(807\) −2.96103 2.96103i −0.104233 0.104233i
\(808\) −15.9651 27.6523i −0.561649 0.972804i
\(809\) −20.8943 + 12.0633i −0.734603 + 0.424123i −0.820104 0.572215i \(-0.806084\pi\)
0.0855005 + 0.996338i \(0.472751\pi\)
\(810\) −26.9979 14.5224i −0.948611 0.510267i
\(811\) −17.7808 17.7808i −0.624369 0.624369i 0.322276 0.946646i \(-0.395552\pi\)
−0.946646 + 0.322276i \(0.895552\pi\)
\(812\) 0.568894 + 0.328451i 0.0199642 + 0.0115264i
\(813\) 2.20171 + 1.27116i 0.0772173 + 0.0445815i
\(814\) −1.16806 1.16806i −0.0409403 0.0409403i
\(815\) 21.4027 + 11.5127i 0.749703 + 0.403272i
\(816\) −2.55720 + 1.47640i −0.0895200 + 0.0516844i
\(817\) 16.2190 + 28.0921i 0.567431 + 0.982819i
\(818\) −5.79615 5.79615i −0.202658 0.202658i
\(819\) 0 0
\(820\) 2.97887 + 2.80481i 0.104027 + 0.0979484i
\(821\) −10.2562 + 38.2768i −0.357945 + 1.33587i 0.518792 + 0.854901i \(0.326382\pi\)
−0.876737 + 0.480970i \(0.840285\pi\)
\(822\) −0.328208 + 1.22489i −0.0114476 + 0.0427229i
\(823\) 38.5831 10.3383i 1.34492 0.360371i 0.486664 0.873589i \(-0.338214\pi\)
0.858258 + 0.513219i \(0.171547\pi\)
\(824\) −24.4316 + 24.4316i −0.851116 + 0.851116i
\(825\) −0.135152 0.0675387i −0.00470537 0.00235140i
\(826\) −0.856204 3.19540i −0.0297912 0.111182i
\(827\) −25.6019 −0.890264 −0.445132 0.895465i \(-0.646843\pi\)
−0.445132 + 0.895465i \(0.646843\pi\)
\(828\) −1.38709 5.17670i −0.0482048 0.179903i
\(829\) −9.41684 16.3104i −0.327060 0.566485i 0.654867 0.755744i \(-0.272725\pi\)
−0.981927 + 0.189259i \(0.939391\pi\)
\(830\) 40.4652 25.0150i 1.40457 0.868283i
\(831\) 4.19807i 0.145629i
\(832\) 0 0
\(833\) −14.8894 + 14.8894i −0.515888 + 0.515888i
\(834\) 3.87301 + 1.03777i 0.134111 + 0.0359351i
\(835\) −19.2344 31.1142i −0.665633 1.07675i
\(836\) −0.309436 0.178653i −0.0107021 0.00617885i
\(837\) 10.9949i 0.380040i
\(838\) 0.797879 1.38197i 0.0275623 0.0477393i
\(839\) −24.0857 + 6.45374i −0.831530 + 0.222808i −0.649381 0.760463i \(-0.724972\pi\)
−0.182149 + 0.983271i \(0.558305\pi\)
\(840\) 0.415508 + 0.391229i 0.0143364 + 0.0134987i
\(841\) −11.7560 + 20.3621i −0.405381 + 0.702140i
\(842\) 0.638063 + 0.170969i 0.0219891 + 0.00589196i
\(843\) 1.02137 0.589688i 0.0351778 0.0203099i
\(844\) 2.80018 0.0963863
\(845\) 0 0
\(846\) 42.8875 1.47450
\(847\) 5.21239 3.00937i 0.179100 0.103403i
\(848\) −24.1267 6.46474i −0.828516 0.222000i
\(849\) −0.151725 + 0.262795i −0.00520717 + 0.00901909i
\(850\) −18.6377 16.5197i −0.639268 0.566621i
\(851\) 23.2682 6.23469i 0.797623 0.213722i
\(852\) 0.788935 1.36648i 0.0270285 0.0468147i
\(853\) 2.14143i 0.0733210i 0.999328 + 0.0366605i \(0.0116720\pi\)
−0.999328 + 0.0366605i \(0.988328\pi\)
\(854\) 5.90721 + 3.41053i 0.202140 + 0.116706i
\(855\) 6.93697 29.3999i 0.237240 1.00546i
\(856\) −36.6319 9.81549i −1.25205 0.335487i
\(857\) 36.4384 36.4384i 1.24471 1.24471i 0.286686 0.958025i \(-0.407446\pi\)
0.958025 0.286686i \(-0.0925537\pi\)
\(858\) 0 0
\(859\) 4.40721i 0.150372i 0.997170 + 0.0751861i \(0.0239551\pi\)
−0.997170 + 0.0751861i \(0.976045\pi\)
\(860\) 1.86714 7.91321i 0.0636689 0.269838i
\(861\) −0.193556 0.335249i −0.00659637 0.0114252i
\(862\) 1.70278 + 6.35486i 0.0579969 + 0.216447i
\(863\) −53.8912 −1.83448 −0.917239 0.398338i \(-0.869587\pi\)
−0.917239 + 0.398338i \(0.869587\pi\)
\(864\) 0.860671 + 3.21207i 0.0292806 + 0.109277i
\(865\) −14.6344 + 4.39716i −0.497586 + 0.149508i
\(866\) −16.8033 + 16.8033i −0.570998 + 0.570998i
\(867\) 1.35714 0.363644i 0.0460908 0.0123500i
\(868\) −0.678436 + 2.53196i −0.0230276 + 0.0859403i
\(869\) 0.441535 1.64783i 0.0149780 0.0558988i
\(870\) −1.12283 + 1.19251i −0.0380676 + 0.0404300i
\(871\) 0 0
\(872\) 19.3636 + 19.3636i 0.655733 + 0.655733i
\(873\) 11.2091 + 19.4148i 0.379372 + 0.657091i
\(874\) 22.1600 12.7941i 0.749574 0.432767i
\(875\) −2.57424 + 5.56383i −0.0870251 + 0.188092i
\(876\) 0.279553 + 0.279553i 0.00944522 + 0.00944522i
\(877\) −11.3743 6.56696i −0.384083 0.221750i 0.295510 0.955340i \(-0.404510\pi\)
−0.679593 + 0.733589i \(0.737844\pi\)
\(878\) 19.0519 + 10.9996i 0.642971 + 0.371220i
\(879\) −0.389521 0.389521i −0.0131382 0.0131382i
\(880\) −0.469182 1.56151i −0.0158161 0.0526386i
\(881\) 31.7049 18.3049i 1.06817 0.616706i 0.140486 0.990083i \(-0.455133\pi\)
0.927680 + 0.373376i \(0.121800\pi\)
\(882\) 15.7184 + 27.2250i 0.529265 + 0.916714i
\(883\) −7.40474 7.40474i −0.249189 0.249189i 0.571449 0.820638i \(-0.306382\pi\)
−0.820638 + 0.571449i \(0.806382\pi\)
\(884\) 0 0
\(885\) 1.67889 0.0505253i 0.0564354 0.00169839i
\(886\) −5.83502 + 21.7766i −0.196031 + 0.731599i
\(887\) −14.1308 + 52.7370i −0.474467 + 1.77074i 0.148948 + 0.988845i \(0.452411\pi\)
−0.623416 + 0.781891i \(0.714255\pi\)
\(888\) −3.06017 + 0.819971i −0.102693 + 0.0275164i
\(889\) −0.943078 + 0.943078i −0.0316298 + 0.0316298i
\(890\) −9.27315 30.8625i −0.310837 1.03451i
\(891\) −0.342907 1.27975i −0.0114878 0.0428731i
\(892\) −9.49566 −0.317938
\(893\) 10.7919 + 40.2760i 0.361138 + 1.34779i
\(894\) −0.665210 1.15218i −0.0222479 0.0385346i
\(895\) 6.67128 + 10.7917i 0.222996 + 0.360727i
\(896\) 7.48186i 0.249951i
\(897\) 0 0
\(898\) 7.45887 7.45887i 0.248906 0.248906i
\(899\) 21.1526 + 5.66782i 0.705479 + 0.189032i
\(900\) −6.31749 + 4.17314i −0.210583 + 0.139105i
\(901\) −14.2799 8.24448i −0.475731 0.274664i
\(902\) 0.868379i 0.0289139i
\(903\) −0.384625 + 0.666190i −0.0127995 + 0.0221694i
\(904\) 10.3857 2.78284i 0.345423 0.0925558i
\(905\) 0.241550 + 8.02642i 0.00802940 + 0.266807i
\(906\) 1.08214 1.87433i 0.0359518 0.0622703i
\(907\) 39.5809 + 10.6057i 1.31426 + 0.352155i 0.846825 0.531871i \(-0.178511\pi\)
0.467437 + 0.884027i \(0.345178\pi\)
\(908\) 2.82853 1.63305i 0.0938680 0.0541947i
\(909\) −40.0785 −1.32932
\(910\) 0 0
\(911\) 24.2232 0.802551 0.401276 0.915957i \(-0.368567\pi\)
0.401276 + 0.915957i \(0.368567\pi\)
\(912\) −3.71178 + 2.14299i −0.122909 + 0.0709616i
\(913\) 1.98595 + 0.532133i 0.0657253 + 0.0176110i
\(914\) 29.2849 50.7229i 0.968658 1.67777i
\(915\) −2.37415 + 2.52148i −0.0784869 + 0.0833575i
\(916\) −7.76460 + 2.08052i −0.256550 + 0.0687423i
\(917\) −1.81141 + 3.13746i −0.0598182 + 0.103608i
\(918\) 5.85860i 0.193363i
\(919\) 30.2077 + 17.4404i 0.996460 + 0.575307i 0.907199 0.420702i \(-0.138216\pi\)
0.0892612 + 0.996008i \(0.471549\pi\)
\(920\) 18.1703 + 4.28732i 0.599057 + 0.141349i
\(921\) −0.404259 0.108321i −0.0133208 0.00356929i
\(922\) 28.8290 28.8290i 0.949432 0.949432i
\(923\) 0 0
\(924\) 0.00847334i 0.000278753i
\(925\) −18.7574 28.3958i −0.616739 0.933647i
\(926\) −12.6446 21.9012i −0.415529 0.719717i
\(927\) 11.2247 + 41.8912i 0.368668 + 1.37589i
\(928\) −6.62322 −0.217418
\(929\) 2.24604 + 8.38235i 0.0736903 + 0.275016i 0.992933 0.118675i \(-0.0378647\pi\)
−0.919243 + 0.393691i \(0.871198\pi\)
\(930\) −5.75606 3.09624i −0.188749 0.101530i
\(931\) −21.6120 + 21.6120i −0.708304 + 0.708304i
\(932\) 4.09336 1.09681i 0.134083 0.0359273i
\(933\) 1.08599 4.05296i 0.0355536 0.132688i
\(934\) −10.8040 + 40.3211i −0.353518 + 1.31935i
\(935\) −0.0323774 1.07586i −0.00105885 0.0351844i
\(936\) 0 0
\(937\) −25.8920 25.8920i −0.845856 0.845856i 0.143757 0.989613i \(-0.454082\pi\)
−0.989613 + 0.143757i \(0.954082\pi\)
\(938\) 2.12474 + 3.68015i 0.0693751 + 0.120161i
\(939\) −3.47178 + 2.00443i −0.113297 + 0.0654122i
\(940\) 4.95098 9.20410i 0.161483 0.300205i
\(941\) 20.9205 + 20.9205i 0.681989 + 0.681989i 0.960448 0.278459i \(-0.0898236\pi\)
−0.278459 + 0.960448i \(0.589824\pi\)
\(942\) −0.880376 0.508285i −0.0286842 0.0165608i
\(943\) −10.9668 6.33169i −0.357128 0.206188i
\(944\) 12.8171 + 12.8171i 0.417162 + 0.417162i
\(945\) 1.38112 0.414980i 0.0449279 0.0134993i
\(946\) 1.49442 0.862801i 0.0485876 0.0280521i
\(947\) −13.8023 23.9064i −0.448516 0.776852i 0.549774 0.835314i \(-0.314714\pi\)
−0.998290 + 0.0584612i \(0.981381\pi\)
\(948\) 0.794793 + 0.794793i 0.0258137 + 0.0258137i
\(949\) 0 0
\(950\) −27.0526 23.9783i −0.877702 0.777960i
\(951\) 0.448880 1.67524i 0.0145559 0.0543235i
\(952\) −1.05229 + 3.92719i −0.0341048 + 0.127281i
\(953\) −27.9135 + 7.47941i −0.904208 + 0.242282i −0.680822 0.732448i \(-0.738377\pi\)
−0.223385 + 0.974730i \(0.571711\pi\)
\(954\) −17.4070 + 17.4070i −0.563572 + 0.563572i
\(955\) 24.8740 46.2421i 0.804905 1.49636i
\(956\) −2.58464 9.64602i −0.0835933 0.311974i
\(957\) −0.0707884 −0.00228826
\(958\) −6.80864 25.4102i −0.219977 0.820966i
\(959\) 1.11187 + 1.92582i 0.0359042 + 0.0621878i
\(960\) −2.16511 0.510862i −0.0698786 0.0164880i
\(961\) 56.3841i 1.81884i
\(962\) 0 0
\(963\) −33.6599 + 33.6599i −1.08467 + 1.08467i
\(964\) −8.46323 2.26771i −0.272582 0.0730382i
\(965\) 30.1233 18.6218i 0.969703 0.599456i
\(966\) 0.525514 + 0.303406i 0.0169081 + 0.00976192i
\(967\) 4.31688i 0.138822i −0.997588 0.0694108i \(-0.977888\pi\)
0.997588 0.0694108i \(-0.0221119\pi\)
\(968\) −12.9471 + 22.4250i −0.416136 + 0.720768i
\(969\) −2.73296 + 0.732295i −0.0877954 + 0.0235247i
\(970\) 26.8163 0.807022i 0.861021 0.0259119i
\(971\) 6.77930 11.7421i 0.217558 0.376822i −0.736503 0.676435i \(-0.763524\pi\)
0.954061 + 0.299613i \(0.0968575\pi\)
\(972\) 2.58618 + 0.692966i 0.0829519 + 0.0222269i
\(973\) 6.08930 3.51566i 0.195214 0.112707i
\(974\) −41.6466 −1.33444
\(975\) 0 0
\(976\) −37.3745 −1.19633
\(977\) 41.2668 23.8254i 1.32024 0.762242i 0.336475 0.941692i \(-0.390765\pi\)
0.983767 + 0.179450i \(0.0574318\pi\)
\(978\) −3.28262 0.879575i −0.104967 0.0281257i
\(979\) 0.696362 1.20613i 0.0222558 0.0385482i
\(980\) 7.65731 0.230442i 0.244604 0.00736121i
\(981\) 33.2013 8.89627i 1.06004 0.284036i
\(982\) 32.9657 57.0983i 1.05198 1.82208i
\(983\) 7.39039i 0.235717i 0.993030 + 0.117858i \(0.0376029\pi\)
−0.993030 + 0.117858i \(0.962397\pi\)
\(984\) 1.44233 + 0.832728i 0.0459797 + 0.0265464i
\(985\) −10.8656 + 6.71696i −0.346207 + 0.214020i
\(986\) −11.2711 3.02008i −0.358945 0.0961789i
\(987\) −0.699200 + 0.699200i −0.0222558 + 0.0222558i
\(988\) 0 0
\(989\) 25.1641i 0.800171i
\(990\) −1.56399 0.369026i −0.0497068 0.0117284i
\(991\) −10.0052 17.3296i −0.317827 0.550493i 0.662207 0.749321i \(-0.269620\pi\)
−0.980034 + 0.198828i \(0.936287\pi\)
\(992\) −6.84035 25.5285i −0.217181 0.810531i
\(993\) −3.58541 −0.113780
\(994\) −3.51688 13.1252i −0.111549 0.416306i
\(995\) −9.85458 + 18.3201i −0.312411 + 0.580787i
\(996\) −0.957877 + 0.957877i −0.0303515 + 0.0303515i
\(997\) −32.6705 + 8.75402i −1.03468 + 0.277243i −0.735909 0.677081i \(-0.763245\pi\)
−0.298775 + 0.954324i \(0.596578\pi\)
\(998\) −4.82403 + 18.0035i −0.152702 + 0.569892i
\(999\) −2.07198 + 7.73273i −0.0655545 + 0.244653i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.g.427.2 20
5.3 odd 4 845.2.o.g.258.4 20
13.2 odd 12 845.2.k.d.577.4 20
13.3 even 3 845.2.f.d.437.4 20
13.4 even 6 845.2.t.f.657.2 20
13.5 odd 4 845.2.o.f.587.4 20
13.6 odd 12 845.2.o.g.357.4 20
13.7 odd 12 65.2.o.a.32.2 20
13.8 odd 4 845.2.o.e.587.2 20
13.9 even 3 845.2.t.e.657.4 20
13.10 even 6 845.2.f.e.437.7 20
13.11 odd 12 845.2.k.e.577.7 20
13.12 even 2 65.2.t.a.37.4 yes 20
39.20 even 12 585.2.cf.a.487.4 20
39.38 odd 2 585.2.dp.a.37.2 20
65.3 odd 12 845.2.k.d.268.4 20
65.7 even 12 325.2.x.b.318.2 20
65.8 even 4 845.2.t.f.418.2 20
65.12 odd 4 325.2.s.b.193.4 20
65.18 even 4 845.2.t.e.418.4 20
65.23 odd 12 845.2.k.e.268.7 20
65.28 even 12 845.2.f.d.408.7 20
65.33 even 12 65.2.t.a.58.4 yes 20
65.38 odd 4 65.2.o.a.63.2 yes 20
65.43 odd 12 845.2.o.e.488.2 20
65.48 odd 12 845.2.o.f.488.4 20
65.58 even 12 inner 845.2.t.g.188.2 20
65.59 odd 12 325.2.s.b.32.4 20
65.63 even 12 845.2.f.e.408.4 20
65.64 even 2 325.2.x.b.232.2 20
195.38 even 4 585.2.cf.a.388.4 20
195.98 odd 12 585.2.dp.a.253.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.2 20 13.7 odd 12
65.2.o.a.63.2 yes 20 65.38 odd 4
65.2.t.a.37.4 yes 20 13.12 even 2
65.2.t.a.58.4 yes 20 65.33 even 12
325.2.s.b.32.4 20 65.59 odd 12
325.2.s.b.193.4 20 65.12 odd 4
325.2.x.b.232.2 20 65.64 even 2
325.2.x.b.318.2 20 65.7 even 12
585.2.cf.a.388.4 20 195.38 even 4
585.2.cf.a.487.4 20 39.20 even 12
585.2.dp.a.37.2 20 39.38 odd 2
585.2.dp.a.253.2 20 195.98 odd 12
845.2.f.d.408.7 20 65.28 even 12
845.2.f.d.437.4 20 13.3 even 3
845.2.f.e.408.4 20 65.63 even 12
845.2.f.e.437.7 20 13.10 even 6
845.2.k.d.268.4 20 65.3 odd 12
845.2.k.d.577.4 20 13.2 odd 12
845.2.k.e.268.7 20 65.23 odd 12
845.2.k.e.577.7 20 13.11 odd 12
845.2.o.e.488.2 20 65.43 odd 12
845.2.o.e.587.2 20 13.8 odd 4
845.2.o.f.488.4 20 65.48 odd 12
845.2.o.f.587.4 20 13.5 odd 4
845.2.o.g.258.4 20 5.3 odd 4
845.2.o.g.357.4 20 13.6 odd 12
845.2.t.e.418.4 20 65.18 even 4
845.2.t.e.657.4 20 13.9 even 3
845.2.t.f.418.2 20 65.8 even 4
845.2.t.f.657.2 20 13.4 even 6
845.2.t.g.188.2 20 65.58 even 12 inner
845.2.t.g.427.2 20 1.1 even 1 trivial