Properties

Label 845.2.t.f.657.2
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.2
Root \(-1.58474i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.f.418.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37242 - 0.792369i) q^{2} +(-0.0510678 - 0.190588i) q^{3} +(0.255697 + 0.442881i) q^{4} +(-2.23506 + 0.0672627i) q^{5} +(-0.0809291 + 0.302032i) q^{6} +(0.274164 + 0.474866i) q^{7} +2.35905i q^{8} +(2.56436 - 1.48053i) q^{9} +(3.12074 + 1.67868i) q^{10} +(-0.0396372 - 0.147928i) q^{11} +(0.0713497 - 0.0713497i) q^{12} -0.868956i q^{14} +(0.126959 + 0.422539i) q^{15} +(2.38063 - 4.12338i) q^{16} +(-3.03602 - 0.813499i) q^{17} -4.69252 q^{18} +(4.40678 + 1.18079i) q^{19} +(-0.601287 - 0.972665i) q^{20} +(0.0765027 - 0.0765027i) q^{21} +(-0.0628146 + 0.234427i) q^{22} +(3.41860 - 0.916011i) q^{23} +(0.449606 - 0.120472i) q^{24} +(4.99095 - 0.300672i) q^{25} +(-0.831688 - 0.831688i) q^{27} +(-0.140206 + 0.242844i) q^{28} +(-2.02878 - 1.17132i) q^{29} +(0.160566 - 0.680501i) q^{30} +(-6.61000 - 6.61000i) q^{31} +(-2.44848 + 1.41363i) q^{32} +(-0.0261691 + 0.0151087i) q^{33} +(3.52211 + 3.52211i) q^{34} +(-0.644713 - 1.04291i) q^{35} +(1.31140 + 0.757137i) q^{36} +(3.40317 - 5.89447i) q^{37} +(-5.11234 - 5.11234i) q^{38} +(-0.158676 - 5.27261i) q^{40} +(-3.45612 + 0.926064i) q^{41} +(-0.165612 + 0.0443757i) q^{42} +(-1.84023 + 6.86784i) q^{43} +(0.0553794 - 0.0553794i) q^{44} +(-5.63190 + 3.48156i) q^{45} +(-5.41759 - 1.45164i) q^{46} -9.13956 q^{47} +(-0.907439 - 0.243147i) q^{48} +(3.34967 - 5.80180i) q^{49} +(-7.08794 - 3.54203i) q^{50} +0.620172i q^{51} +(-3.70952 + 3.70952i) q^{53} +(0.482424 + 1.80043i) q^{54} +(0.0985415 + 0.327962i) q^{55} +(-1.12023 + 0.646766i) q^{56} -0.900179i q^{57} +(1.85623 + 3.21508i) q^{58} +(0.985325 - 3.67728i) q^{59} +(-0.154672 + 0.164270i) q^{60} +(-3.92486 - 6.79805i) q^{61} +(3.83416 + 14.3093i) q^{62} +(1.40611 + 0.811818i) q^{63} -5.04207 q^{64} +0.0478868 q^{66} +(-4.23514 - 2.44516i) q^{67} +(-0.416019 - 1.55261i) q^{68} +(-0.349161 - 0.604765i) q^{69} +(0.0584483 + 1.94217i) q^{70} +(4.04725 - 15.1045i) q^{71} +(3.49265 + 6.04945i) q^{72} -3.91807i q^{73} +(-9.34119 + 5.39314i) q^{74} +(-0.312181 - 0.935860i) q^{75} +(0.603851 + 2.25360i) q^{76} +(0.0593789 - 0.0593789i) q^{77} +11.1394i q^{79} +(-5.04350 + 9.37611i) q^{80} +(4.32557 - 7.49210i) q^{81} +(5.47704 + 1.46757i) q^{82} +13.4251 q^{83} +(0.0534431 + 0.0143200i) q^{84} +(6.84039 + 1.61401i) q^{85} +(7.96744 - 7.96744i) q^{86} +(-0.119633 + 0.446477i) q^{87} +(0.348970 - 0.0935062i) q^{88} +(-8.78419 + 2.35372i) q^{89} +(10.4880 - 0.315631i) q^{90} +(1.27981 + 1.27981i) q^{92} +(-0.922226 + 1.59734i) q^{93} +(12.5433 + 7.24190i) q^{94} +(-9.92882 - 2.34273i) q^{95} +(0.394459 + 0.394459i) q^{96} +(-6.55668 + 3.78550i) q^{97} +(-9.19433 + 5.30835i) q^{98} +(-0.320657 - 0.320657i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 4 q^{6} - 2 q^{7} - 12 q^{9} + 10 q^{10} + 8 q^{11} - 24 q^{12} - 8 q^{15} - 2 q^{16} + 10 q^{17} + 16 q^{19} + 12 q^{20} + 4 q^{21} + 16 q^{22} + 2 q^{23} - 28 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37242 0.792369i −0.970450 0.560290i −0.0710765 0.997471i \(-0.522643\pi\)
−0.899373 + 0.437181i \(0.855977\pi\)
\(3\) −0.0510678 0.190588i −0.0294840 0.110036i 0.949616 0.313417i \(-0.101474\pi\)
−0.979100 + 0.203381i \(0.934807\pi\)
\(4\) 0.255697 + 0.442881i 0.127849 + 0.221440i
\(5\) −2.23506 + 0.0672627i −0.999547 + 0.0300808i
\(6\) −0.0809291 + 0.302032i −0.0330392 + 0.123304i
\(7\) 0.274164 + 0.474866i 0.103624 + 0.179482i 0.913175 0.407567i \(-0.133623\pi\)
−0.809551 + 0.587049i \(0.800289\pi\)
\(8\) 2.35905i 0.834050i
\(9\) 2.56436 1.48053i 0.854787 0.493511i
\(10\) 3.12074 + 1.67868i 0.986865 + 0.530844i
\(11\) −0.0396372 0.147928i −0.0119511 0.0446020i 0.959693 0.281051i \(-0.0906830\pi\)
−0.971644 + 0.236449i \(0.924016\pi\)
\(12\) 0.0713497 0.0713497i 0.0205969 0.0205969i
\(13\) 0 0
\(14\) 0.868956i 0.232238i
\(15\) 0.126959 + 0.422539i 0.0327807 + 0.109099i
\(16\) 2.38063 4.12338i 0.595158 1.03084i
\(17\) −3.03602 0.813499i −0.736343 0.197303i −0.128891 0.991659i \(-0.541142\pi\)
−0.607452 + 0.794356i \(0.707808\pi\)
\(18\) −4.69252 −1.10604
\(19\) 4.40678 + 1.18079i 1.01098 + 0.270893i 0.726041 0.687652i \(-0.241358\pi\)
0.284944 + 0.958544i \(0.408025\pi\)
\(20\) −0.601287 0.972665i −0.134452 0.217494i
\(21\) 0.0765027 0.0765027i 0.0166942 0.0166942i
\(22\) −0.0628146 + 0.234427i −0.0133921 + 0.0499801i
\(23\) 3.41860 0.916011i 0.712828 0.191002i 0.115858 0.993266i \(-0.463038\pi\)
0.596969 + 0.802264i \(0.296371\pi\)
\(24\) 0.449606 0.120472i 0.0917754 0.0245912i
\(25\) 4.99095 0.300672i 0.998190 0.0601343i
\(26\) 0 0
\(27\) −0.831688 0.831688i −0.160058 0.160058i
\(28\) −0.140206 + 0.242844i −0.0264964 + 0.0458932i
\(29\) −2.02878 1.17132i −0.376735 0.217508i 0.299662 0.954045i \(-0.403126\pi\)
−0.676397 + 0.736538i \(0.736459\pi\)
\(30\) 0.160566 0.680501i 0.0293152 0.124242i
\(31\) −6.61000 6.61000i −1.18719 1.18719i −0.977841 0.209350i \(-0.932865\pi\)
−0.209350 0.977841i \(-0.567135\pi\)
\(32\) −2.44848 + 1.41363i −0.432834 + 0.249897i
\(33\) −0.0261691 + 0.0151087i −0.00455546 + 0.00263009i
\(34\) 3.52211 + 3.52211i 0.604038 + 0.604038i
\(35\) −0.644713 1.04291i −0.108976 0.176284i
\(36\) 1.31140 + 0.757137i 0.218567 + 0.126190i
\(37\) 3.40317 5.89447i 0.559478 0.969045i −0.438062 0.898945i \(-0.644335\pi\)
0.997540 0.0700997i \(-0.0223318\pi\)
\(38\) −5.11234 5.11234i −0.829332 0.829332i
\(39\) 0 0
\(40\) −0.158676 5.27261i −0.0250889 0.833672i
\(41\) −3.45612 + 0.926064i −0.539755 + 0.144627i −0.518389 0.855145i \(-0.673468\pi\)
−0.0213659 + 0.999772i \(0.506801\pi\)
\(42\) −0.165612 + 0.0443757i −0.0255545 + 0.00684732i
\(43\) −1.84023 + 6.86784i −0.280633 + 1.04734i 0.671339 + 0.741150i \(0.265719\pi\)
−0.951972 + 0.306185i \(0.900947\pi\)
\(44\) 0.0553794 0.0553794i 0.00834876 0.00834876i
\(45\) −5.63190 + 3.48156i −0.839555 + 0.519001i
\(46\) −5.41759 1.45164i −0.798780 0.214032i
\(47\) −9.13956 −1.33314 −0.666571 0.745442i \(-0.732239\pi\)
−0.666571 + 0.745442i \(0.732239\pi\)
\(48\) −0.907439 0.243147i −0.130978 0.0350953i
\(49\) 3.34967 5.80180i 0.478524 0.828828i
\(50\) −7.08794 3.54203i −1.00239 0.500918i
\(51\) 0.620172i 0.0868415i
\(52\) 0 0
\(53\) −3.70952 + 3.70952i −0.509541 + 0.509541i −0.914386 0.404844i \(-0.867326\pi\)
0.404844 + 0.914386i \(0.367326\pi\)
\(54\) 0.482424 + 1.80043i 0.0656496 + 0.245008i
\(55\) 0.0985415 + 0.327962i 0.0132873 + 0.0442223i
\(56\) −1.12023 + 0.646766i −0.149697 + 0.0864278i
\(57\) 0.900179i 0.119232i
\(58\) 1.85623 + 3.21508i 0.243735 + 0.422161i
\(59\) 0.985325 3.67728i 0.128278 0.478742i −0.871657 0.490117i \(-0.836954\pi\)
0.999935 + 0.0113750i \(0.00362087\pi\)
\(60\) −0.154672 + 0.164270i −0.0199680 + 0.0212071i
\(61\) −3.92486 6.79805i −0.502526 0.870401i −0.999996 0.00291945i \(-0.999071\pi\)
0.497470 0.867481i \(-0.334263\pi\)
\(62\) 3.83416 + 14.3093i 0.486939 + 1.81728i
\(63\) 1.40611 + 0.811818i 0.177153 + 0.102279i
\(64\) −5.04207 −0.630258
\(65\) 0 0
\(66\) 0.0478868 0.00589446
\(67\) −4.23514 2.44516i −0.517405 0.298724i 0.218467 0.975844i \(-0.429894\pi\)
−0.735872 + 0.677120i \(0.763228\pi\)
\(68\) −0.416019 1.55261i −0.0504497 0.188281i
\(69\) −0.349161 0.604765i −0.0420341 0.0728051i
\(70\) 0.0584483 + 1.94217i 0.00698591 + 0.232133i
\(71\) 4.04725 15.1045i 0.480320 1.79258i −0.119947 0.992780i \(-0.538273\pi\)
0.600267 0.799799i \(-0.295061\pi\)
\(72\) 3.49265 + 6.04945i 0.411613 + 0.712935i
\(73\) 3.91807i 0.458575i −0.973359 0.229288i \(-0.926360\pi\)
0.973359 0.229288i \(-0.0736396\pi\)
\(74\) −9.34119 + 5.39314i −1.08589 + 0.626939i
\(75\) −0.312181 0.935860i −0.0360476 0.108064i
\(76\) 0.603851 + 2.25360i 0.0692665 + 0.258506i
\(77\) 0.0593789 0.0593789i 0.00676686 0.00676686i
\(78\) 0 0
\(79\) 11.1394i 1.25328i 0.779309 + 0.626640i \(0.215570\pi\)
−0.779309 + 0.626640i \(0.784430\pi\)
\(80\) −5.04350 + 9.37611i −0.563880 + 1.04828i
\(81\) 4.32557 7.49210i 0.480618 0.832455i
\(82\) 5.47704 + 1.46757i 0.604838 + 0.162066i
\(83\) 13.4251 1.47360 0.736798 0.676113i \(-0.236337\pi\)
0.736798 + 0.676113i \(0.236337\pi\)
\(84\) 0.0534431 + 0.0143200i 0.00583112 + 0.00156244i
\(85\) 6.84039 + 1.61401i 0.741945 + 0.175063i
\(86\) 7.96744 7.96744i 0.859151 0.859151i
\(87\) −0.119633 + 0.446477i −0.0128260 + 0.0478673i
\(88\) 0.348970 0.0935062i 0.0372003 0.00996779i
\(89\) −8.78419 + 2.35372i −0.931122 + 0.249493i −0.692333 0.721578i \(-0.743417\pi\)
−0.238789 + 0.971071i \(0.576750\pi\)
\(90\) 10.4880 0.315631i 1.10554 0.0332705i
\(91\) 0 0
\(92\) 1.27981 + 1.27981i 0.133430 + 0.133430i
\(93\) −0.922226 + 1.59734i −0.0956304 + 0.165637i
\(94\) 12.5433 + 7.24190i 1.29375 + 0.746945i
\(95\) −9.92882 2.34273i −1.01868 0.240359i
\(96\) 0.394459 + 0.394459i 0.0402593 + 0.0402593i
\(97\) −6.55668 + 3.78550i −0.665730 + 0.384360i −0.794457 0.607321i \(-0.792244\pi\)
0.128727 + 0.991680i \(0.458911\pi\)
\(98\) −9.19433 + 5.30835i −0.928767 + 0.536224i
\(99\) −0.320657 0.320657i −0.0322272 0.0322272i
\(100\) 1.40933 + 2.13352i 0.140933 + 0.213352i
\(101\) −11.7218 6.76758i −1.16636 0.673400i −0.213542 0.976934i \(-0.568500\pi\)
−0.952821 + 0.303534i \(0.901833\pi\)
\(102\) 0.491405 0.851139i 0.0486564 0.0842753i
\(103\) −10.3566 10.3566i −1.02046 1.02046i −0.999786 0.0206759i \(-0.993418\pi\)
−0.0206759 0.999786i \(-0.506582\pi\)
\(104\) 0 0
\(105\) −0.165842 + 0.176134i −0.0161845 + 0.0171889i
\(106\) 8.03034 2.15172i 0.779975 0.208994i
\(107\) −15.5283 + 4.16078i −1.50117 + 0.402238i −0.913493 0.406855i \(-0.866625\pi\)
−0.587680 + 0.809093i \(0.699959\pi\)
\(108\) 0.155678 0.580999i 0.0149801 0.0559066i
\(109\) 8.20821 8.20821i 0.786203 0.786203i −0.194666 0.980870i \(-0.562362\pi\)
0.980870 + 0.194666i \(0.0623623\pi\)
\(110\) 0.124626 0.528183i 0.0118826 0.0503603i
\(111\) −1.29721 0.347585i −0.123125 0.0329913i
\(112\) 2.61073 0.246691
\(113\) −4.40249 1.17964i −0.414151 0.110972i 0.0457259 0.998954i \(-0.485440\pi\)
−0.459877 + 0.887982i \(0.652107\pi\)
\(114\) −0.713274 + 1.23543i −0.0668042 + 0.115708i
\(115\) −7.57915 + 2.27728i −0.706760 + 0.212358i
\(116\) 1.19801i 0.111232i
\(117\) 0 0
\(118\) −4.26605 + 4.26605i −0.392722 + 0.392722i
\(119\) −0.446064 1.66473i −0.0408907 0.152606i
\(120\) −0.996791 + 0.299502i −0.0909942 + 0.0273407i
\(121\) 9.50597 5.48827i 0.864179 0.498934i
\(122\) 12.4397i 1.12624i
\(123\) 0.352993 + 0.611402i 0.0318283 + 0.0551283i
\(124\) 1.23728 4.61760i 0.111111 0.414673i
\(125\) −11.1348 + 1.00772i −0.995930 + 0.0901335i
\(126\) −1.28652 2.22832i −0.114612 0.198514i
\(127\) −0.629533 2.34945i −0.0558620 0.208480i 0.932354 0.361547i \(-0.117751\pi\)
−0.988216 + 0.153068i \(0.951085\pi\)
\(128\) 11.8168 + 6.82244i 1.04447 + 0.603024i
\(129\) 1.40290 0.123519
\(130\) 0 0
\(131\) 6.60705 0.577260 0.288630 0.957441i \(-0.406800\pi\)
0.288630 + 0.957441i \(0.406800\pi\)
\(132\) −0.0133827 0.00772653i −0.00116482 0.000672508i
\(133\) 0.647462 + 2.41636i 0.0561421 + 0.209525i
\(134\) 3.87494 + 6.71159i 0.334744 + 0.579793i
\(135\) 1.91481 + 1.80293i 0.164801 + 0.155171i
\(136\) 1.91909 7.16212i 0.164560 0.614147i
\(137\) −2.02775 3.51216i −0.173242 0.300064i 0.766309 0.642472i \(-0.222091\pi\)
−0.939552 + 0.342408i \(0.888758\pi\)
\(138\) 1.10666i 0.0942050i
\(139\) 11.1052 6.41160i 0.941932 0.543825i 0.0513668 0.998680i \(-0.483642\pi\)
0.890566 + 0.454855i \(0.150309\pi\)
\(140\) 0.297034 0.552200i 0.0251039 0.0466695i
\(141\) 0.466737 + 1.74189i 0.0393064 + 0.146693i
\(142\) −17.5229 + 17.5229i −1.47049 + 1.47049i
\(143\) 0 0
\(144\) 14.0984i 1.17487i
\(145\) 4.61322 + 2.48149i 0.383107 + 0.206077i
\(146\) −3.10455 + 5.37725i −0.256935 + 0.445024i
\(147\) −1.27681 0.342121i −0.105310 0.0282176i
\(148\) 3.48073 0.286114
\(149\) 4.10983 + 1.10123i 0.336690 + 0.0902159i 0.423203 0.906035i \(-0.360906\pi\)
−0.0865128 + 0.996251i \(0.527572\pi\)
\(150\) −0.313101 + 1.53176i −0.0255646 + 0.125068i
\(151\) 4.89430 4.89430i 0.398293 0.398293i −0.479338 0.877630i \(-0.659123\pi\)
0.877630 + 0.479338i \(0.159123\pi\)
\(152\) −2.78555 + 10.3958i −0.225938 + 0.843212i
\(153\) −8.98987 + 2.40883i −0.726788 + 0.194742i
\(154\) −0.128543 + 0.0344430i −0.0103583 + 0.00277550i
\(155\) 15.2183 + 14.3291i 1.22236 + 1.15094i
\(156\) 0 0
\(157\) 2.29887 + 2.29887i 0.183470 + 0.183470i 0.792866 0.609396i \(-0.208588\pi\)
−0.609396 + 0.792866i \(0.708588\pi\)
\(158\) 8.82651 15.2880i 0.702199 1.21625i
\(159\) 0.896426 + 0.517552i 0.0710912 + 0.0410445i
\(160\) 5.37740 3.32423i 0.425121 0.262804i
\(161\) 1.37224 + 1.37224i 0.108148 + 0.108148i
\(162\) −11.8730 + 6.85489i −0.932832 + 0.538571i
\(163\) 9.41236 5.43423i 0.737233 0.425642i −0.0838295 0.996480i \(-0.526715\pi\)
0.821062 + 0.570839i \(0.193382\pi\)
\(164\) −1.29386 1.29386i −0.101033 0.101033i
\(165\) 0.0574732 0.0355291i 0.00447428 0.00276594i
\(166\) −18.4249 10.6376i −1.43005 0.825640i
\(167\) 8.17941 14.1672i 0.632942 1.09629i −0.354005 0.935243i \(-0.615181\pi\)
0.986947 0.161044i \(-0.0514861\pi\)
\(168\) 0.180474 + 0.180474i 0.0139238 + 0.0139238i
\(169\) 0 0
\(170\) −8.10903 7.63522i −0.621934 0.585594i
\(171\) 13.0488 3.49641i 0.997865 0.267377i
\(172\) −3.51218 + 0.941085i −0.267801 + 0.0717570i
\(173\) 1.76871 6.60091i 0.134472 0.501858i −0.865527 0.500862i \(-0.833016\pi\)
1.00000 0.000995657i \(-0.000316928\pi\)
\(174\) 0.517961 0.517961i 0.0392666 0.0392666i
\(175\) 1.51112 + 2.28760i 0.114230 + 0.172926i
\(176\) −0.704325 0.188723i −0.0530905 0.0142256i
\(177\) −0.751164 −0.0564609
\(178\) 13.9206 + 3.73002i 1.04340 + 0.279577i
\(179\) 2.83696 4.91376i 0.212044 0.367272i −0.740310 0.672266i \(-0.765321\pi\)
0.952354 + 0.304994i \(0.0986545\pi\)
\(180\) −2.98198 1.60404i −0.222264 0.119558i
\(181\) 3.59115i 0.266928i 0.991054 + 0.133464i \(0.0426101\pi\)
−0.991054 + 0.133464i \(0.957390\pi\)
\(182\) 0 0
\(183\) −1.09519 + 1.09519i −0.0809588 + 0.0809588i
\(184\) 2.16092 + 8.06465i 0.159305 + 0.594534i
\(185\) −7.20980 + 13.4034i −0.530075 + 0.985436i
\(186\) 2.53137 1.46149i 0.185609 0.107161i
\(187\) 0.481358i 0.0352004i
\(188\) −2.33696 4.04773i −0.170440 0.295211i
\(189\) 0.166921 0.622959i 0.0121417 0.0453136i
\(190\) 11.7702 + 11.0825i 0.853903 + 0.804009i
\(191\) 11.7411 + 20.3361i 0.849553 + 1.47147i 0.881608 + 0.471982i \(0.156461\pi\)
−0.0320553 + 0.999486i \(0.510205\pi\)
\(192\) 0.257487 + 0.960956i 0.0185825 + 0.0693510i
\(193\) 13.7160 + 7.91891i 0.987296 + 0.570016i 0.904465 0.426548i \(-0.140270\pi\)
0.0828311 + 0.996564i \(0.473604\pi\)
\(194\) 11.9981 0.861411
\(195\) 0 0
\(196\) 3.42601 0.244715
\(197\) −4.94741 2.85639i −0.352488 0.203509i 0.313292 0.949657i \(-0.398568\pi\)
−0.665781 + 0.746148i \(0.731901\pi\)
\(198\) 0.185998 + 0.694156i 0.0132183 + 0.0493315i
\(199\) −4.65156 8.05674i −0.329740 0.571127i 0.652720 0.757599i \(-0.273628\pi\)
−0.982460 + 0.186472i \(0.940295\pi\)
\(200\) 0.709299 + 11.7739i 0.0501550 + 0.832541i
\(201\) −0.249738 + 0.932035i −0.0176152 + 0.0657407i
\(202\) 10.7248 + 18.5760i 0.754597 + 1.30700i
\(203\) 1.28453i 0.0901563i
\(204\) −0.274662 + 0.158576i −0.0192302 + 0.0111026i
\(205\) 7.66233 2.30227i 0.535160 0.160798i
\(206\) 6.00737 + 22.4198i 0.418553 + 1.56206i
\(207\) 7.41034 7.41034i 0.515054 0.515054i
\(208\) 0 0
\(209\) 0.698690i 0.0483294i
\(210\) 0.367168 0.110322i 0.0253370 0.00761292i
\(211\) 2.73779 4.74199i 0.188477 0.326452i −0.756265 0.654265i \(-0.772978\pi\)
0.944743 + 0.327813i \(0.106311\pi\)
\(212\) −2.59139 0.694360i −0.177977 0.0476889i
\(213\) −3.08543 −0.211410
\(214\) 24.6082 + 6.59375i 1.68218 + 0.450739i
\(215\) 3.65107 15.4738i 0.249001 1.05530i
\(216\) 1.96199 1.96199i 0.133497 0.133497i
\(217\) 1.32664 4.95108i 0.0900581 0.336102i
\(218\) −17.7691 + 4.76121i −1.20347 + 0.322470i
\(219\) −0.746736 + 0.200087i −0.0504597 + 0.0135206i
\(220\) −0.120051 + 0.127501i −0.00809385 + 0.00859612i
\(221\) 0 0
\(222\) 1.50490 + 1.50490i 0.101002 + 0.101002i
\(223\) 9.28408 16.0805i 0.621708 1.07683i −0.367460 0.930039i \(-0.619773\pi\)
0.989168 0.146790i \(-0.0468942\pi\)
\(224\) −1.34257 0.775132i −0.0897041 0.0517907i
\(225\) 12.3534 8.16030i 0.823563 0.544020i
\(226\) 5.10737 + 5.10737i 0.339737 + 0.339737i
\(227\) 5.53101 3.19333i 0.367106 0.211949i −0.305087 0.952324i \(-0.598686\pi\)
0.672193 + 0.740376i \(0.265352\pi\)
\(228\) 0.398672 0.230173i 0.0264027 0.0152436i
\(229\) 11.1149 + 11.1149i 0.734491 + 0.734491i 0.971506 0.237015i \(-0.0761691\pi\)
−0.237015 + 0.971506i \(0.576169\pi\)
\(230\) 12.2063 + 2.88009i 0.804857 + 0.189908i
\(231\) −0.0143493 0.00828454i −0.000944111 0.000545083i
\(232\) 2.76319 4.78599i 0.181412 0.314215i
\(233\) 5.85956 + 5.85956i 0.383873 + 0.383873i 0.872495 0.488623i \(-0.162500\pi\)
−0.488623 + 0.872495i \(0.662500\pi\)
\(234\) 0 0
\(235\) 20.4274 0.614751i 1.33254 0.0401019i
\(236\) 1.88054 0.503890i 0.122413 0.0328004i
\(237\) 2.12303 0.568865i 0.137906 0.0369517i
\(238\) −0.706895 + 2.63817i −0.0458212 + 0.171007i
\(239\) −13.8081 + 13.8081i −0.893170 + 0.893170i −0.994820 0.101650i \(-0.967588\pi\)
0.101650 + 0.994820i \(0.467588\pi\)
\(240\) 2.04453 + 0.482411i 0.131974 + 0.0311395i
\(241\) −16.5493 4.43437i −1.06603 0.285643i −0.317172 0.948368i \(-0.602733\pi\)
−0.748863 + 0.662725i \(0.769400\pi\)
\(242\) −17.3950 −1.11819
\(243\) −5.05712 1.35505i −0.324414 0.0869266i
\(244\) 2.00715 3.47649i 0.128495 0.222559i
\(245\) −7.09645 + 13.1926i −0.453376 + 0.842847i
\(246\) 1.11880i 0.0713323i
\(247\) 0 0
\(248\) 15.5933 15.5933i 0.990176 0.990176i
\(249\) −0.685590 2.55866i −0.0434475 0.162148i
\(250\) 16.0802 + 7.43987i 1.01700 + 0.470539i
\(251\) −8.61959 + 4.97652i −0.544063 + 0.314115i −0.746724 0.665134i \(-0.768374\pi\)
0.202661 + 0.979249i \(0.435041\pi\)
\(252\) 0.830319i 0.0523052i
\(253\) −0.271008 0.469399i −0.0170381 0.0295109i
\(254\) −0.997644 + 3.72326i −0.0625978 + 0.233618i
\(255\) −0.0417144 1.38612i −0.00261226 0.0868022i
\(256\) −5.76971 9.99343i −0.360607 0.624589i
\(257\) 0.712105 + 2.65761i 0.0444199 + 0.165777i 0.984573 0.174976i \(-0.0559847\pi\)
−0.940153 + 0.340753i \(0.889318\pi\)
\(258\) −1.92538 1.11162i −0.119869 0.0692062i
\(259\) 3.73211 0.231902
\(260\) 0 0
\(261\) −6.93669 −0.429370
\(262\) −9.06767 5.23522i −0.560202 0.323433i
\(263\) −1.59881 5.96686i −0.0985871 0.367932i 0.898952 0.438048i \(-0.144330\pi\)
−0.997539 + 0.0701155i \(0.977663\pi\)
\(264\) −0.0356423 0.0617342i −0.00219363 0.00379948i
\(265\) 8.04147 8.54049i 0.493983 0.524638i
\(266\) 1.02606 3.82930i 0.0629116 0.234789i
\(267\) 0.897179 + 1.55396i 0.0549065 + 0.0951008i
\(268\) 2.50088i 0.152766i
\(269\) 18.3796 10.6115i 1.12063 0.646994i 0.179066 0.983837i \(-0.442692\pi\)
0.941561 + 0.336843i \(0.109359\pi\)
\(270\) −1.19935 3.99162i −0.0729899 0.242922i
\(271\) 3.33484 + 12.4458i 0.202577 + 0.756027i 0.990174 + 0.139837i \(0.0446579\pi\)
−0.787598 + 0.616190i \(0.788675\pi\)
\(272\) −10.5820 + 10.5820i −0.641629 + 0.641629i
\(273\) 0 0
\(274\) 6.42690i 0.388263i
\(275\) −0.242305 0.726385i −0.0146116 0.0438026i
\(276\) 0.178559 0.309274i 0.0107480 0.0186161i
\(277\) 20.5514 + 5.50674i 1.23482 + 0.330868i 0.816453 0.577412i \(-0.195937\pi\)
0.418363 + 0.908280i \(0.362604\pi\)
\(278\) −20.3214 −1.21880
\(279\) −26.7367 7.16409i −1.60069 0.428903i
\(280\) 2.46028 1.52091i 0.147030 0.0908917i
\(281\) −4.22655 + 4.22655i −0.252135 + 0.252135i −0.821845 0.569711i \(-0.807055\pi\)
0.569711 + 0.821845i \(0.307055\pi\)
\(282\) 0.739656 2.76044i 0.0440459 0.164382i
\(283\) 1.48552 0.398044i 0.0883050 0.0236613i −0.214396 0.976747i \(-0.568778\pi\)
0.302701 + 0.953086i \(0.402112\pi\)
\(284\) 7.72438 2.06974i 0.458358 0.122817i
\(285\) 0.0605484 + 2.01195i 0.00358658 + 0.119178i
\(286\) 0 0
\(287\) −1.38730 1.38730i −0.0818897 0.0818897i
\(288\) −4.18585 + 7.25011i −0.246654 + 0.427217i
\(289\) −6.16679 3.56040i −0.362752 0.209435i
\(290\) −4.36503 7.06103i −0.256323 0.414638i
\(291\) 1.05631 + 1.05631i 0.0619218 + 0.0619218i
\(292\) 1.73524 1.00184i 0.101547 0.0586282i
\(293\) −2.41782 + 1.39593i −0.141251 + 0.0815512i −0.568960 0.822365i \(-0.692654\pi\)
0.427709 + 0.903916i \(0.359321\pi\)
\(294\) 1.48124 + 1.48124i 0.0863877 + 0.0863877i
\(295\) −1.95491 + 8.28521i −0.113819 + 0.482384i
\(296\) 13.9053 + 8.02825i 0.808232 + 0.466633i
\(297\) −0.0900642 + 0.155996i −0.00522606 + 0.00905180i
\(298\) −4.76785 4.76785i −0.276194 0.276194i
\(299\) 0 0
\(300\) 0.334650 0.377556i 0.0193210 0.0217982i
\(301\) −3.76583 + 1.00905i −0.217059 + 0.0581607i
\(302\) −10.5951 + 2.83896i −0.609682 + 0.163364i
\(303\) −0.691212 + 2.57964i −0.0397091 + 0.148196i
\(304\) 15.3598 15.3598i 0.880944 0.880944i
\(305\) 9.22953 + 14.9300i 0.528481 + 0.854891i
\(306\) 14.2466 + 3.81736i 0.814423 + 0.218224i
\(307\) 2.12112 0.121058 0.0605292 0.998166i \(-0.480721\pi\)
0.0605292 + 0.998166i \(0.480721\pi\)
\(308\) 0.0414808 + 0.0111148i 0.00236359 + 0.000633322i
\(309\) −1.44495 + 2.50272i −0.0822001 + 0.142375i
\(310\) −9.53204 31.7241i −0.541383 1.80181i
\(311\) 21.2656i 1.20586i −0.797794 0.602931i \(-0.794000\pi\)
0.797794 0.602931i \(-0.206000\pi\)
\(312\) 0 0
\(313\) −14.3666 + 14.3666i −0.812050 + 0.812050i −0.984941 0.172891i \(-0.944689\pi\)
0.172891 + 0.984941i \(0.444689\pi\)
\(314\) −1.33347 4.97657i −0.0752519 0.280844i
\(315\) −3.19734 1.71988i −0.180150 0.0969043i
\(316\) −4.93342 + 2.84831i −0.277527 + 0.160230i
\(317\) 8.78989i 0.493689i 0.969055 + 0.246845i \(0.0793937\pi\)
−0.969055 + 0.246845i \(0.920606\pi\)
\(318\) −0.820184 1.42060i −0.0459936 0.0796633i
\(319\) −0.0928554 + 0.346541i −0.00519890 + 0.0194026i
\(320\) 11.2693 0.339143i 0.629973 0.0189587i
\(321\) 1.58599 + 2.74701i 0.0885212 + 0.153323i
\(322\) −0.795974 2.97061i −0.0443579 0.165546i
\(323\) −12.4185 7.16982i −0.690984 0.398940i
\(324\) 4.42414 0.245786
\(325\) 0 0
\(326\) −17.2237 −0.953930
\(327\) −1.98356 1.14521i −0.109691 0.0633302i
\(328\) −2.18463 8.15316i −0.120626 0.450183i
\(329\) −2.50574 4.34006i −0.138146 0.239275i
\(330\) −0.107030 + 0.00322099i −0.00589179 + 0.000177310i
\(331\) −4.70310 + 17.5522i −0.258506 + 0.964756i 0.707601 + 0.706612i \(0.249777\pi\)
−0.966107 + 0.258144i \(0.916889\pi\)
\(332\) 3.43276 + 5.94572i 0.188397 + 0.326314i
\(333\) 20.1541i 1.10444i
\(334\) −22.4512 + 12.9622i −1.22848 + 0.709261i
\(335\) 9.63025 + 5.18020i 0.526157 + 0.283025i
\(336\) −0.133325 0.497574i −0.00727345 0.0271449i
\(337\) −17.2522 + 17.2522i −0.939788 + 0.939788i −0.998287 0.0584999i \(-0.981368\pi\)
0.0584999 + 0.998287i \(0.481368\pi\)
\(338\) 0 0
\(339\) 0.899302i 0.0488434i
\(340\) 1.03426 + 3.44218i 0.0560906 + 0.186678i
\(341\) −0.715803 + 1.23981i −0.0387629 + 0.0671393i
\(342\) −20.6789 5.54089i −1.11819 0.299617i
\(343\) 7.51173 0.405595
\(344\) −16.2016 4.34120i −0.873530 0.234062i
\(345\) 0.821073 + 1.32820i 0.0442051 + 0.0715078i
\(346\) −7.65777 + 7.65777i −0.411684 + 0.411684i
\(347\) −2.01142 + 7.50674i −0.107979 + 0.402983i −0.998666 0.0516340i \(-0.983557\pi\)
0.890687 + 0.454617i \(0.150224\pi\)
\(348\) −0.228326 + 0.0611797i −0.0122395 + 0.00327958i
\(349\) −4.89796 + 1.31241i −0.262182 + 0.0702515i −0.387515 0.921863i \(-0.626667\pi\)
0.125333 + 0.992115i \(0.460000\pi\)
\(350\) −0.261271 4.33692i −0.0139655 0.231818i
\(351\) 0 0
\(352\) 0.306166 + 0.306166i 0.0163187 + 0.0163187i
\(353\) −12.8089 + 22.1857i −0.681749 + 1.18082i 0.292698 + 0.956205i \(0.405447\pi\)
−0.974447 + 0.224618i \(0.927886\pi\)
\(354\) 1.03091 + 0.595199i 0.0547925 + 0.0316345i
\(355\) −8.02986 + 34.0317i −0.426181 + 1.80622i
\(356\) −3.28851 3.28851i −0.174291 0.174291i
\(357\) −0.294499 + 0.170029i −0.0155865 + 0.00899888i
\(358\) −7.78702 + 4.49584i −0.411557 + 0.237613i
\(359\) −10.0443 10.0443i −0.530117 0.530117i 0.390490 0.920607i \(-0.372306\pi\)
−0.920607 + 0.390490i \(0.872306\pi\)
\(360\) −8.21318 13.2859i −0.432873 0.700231i
\(361\) 1.57095 + 0.906990i 0.0826817 + 0.0477363i
\(362\) 2.84552 4.92858i 0.149557 0.259040i
\(363\) −1.53145 1.53145i −0.0803801 0.0803801i
\(364\) 0 0
\(365\) 0.263540 + 8.75710i 0.0137943 + 0.458368i
\(366\) 2.37086 0.635270i 0.123927 0.0332061i
\(367\) 19.4366 5.20802i 1.01458 0.271857i 0.287040 0.957919i \(-0.407329\pi\)
0.727543 + 0.686062i \(0.240662\pi\)
\(368\) 4.36137 16.2769i 0.227352 0.848490i
\(369\) −7.49167 + 7.49167i −0.390001 + 0.390001i
\(370\) 20.5153 12.6823i 1.06654 0.659320i
\(371\) −2.77854 0.744507i −0.144255 0.0386529i
\(372\) −0.943243 −0.0489049
\(373\) −25.3125 6.78245i −1.31063 0.351182i −0.465170 0.885221i \(-0.654007\pi\)
−0.845460 + 0.534039i \(0.820673\pi\)
\(374\) 0.381413 0.660627i 0.0197224 0.0341602i
\(375\) 0.760691 + 2.07070i 0.0392819 + 0.106931i
\(376\) 21.5607i 1.11191i
\(377\) 0 0
\(378\) −0.722700 + 0.722700i −0.0371717 + 0.0371717i
\(379\) 5.83130 + 21.7627i 0.299534 + 1.11787i 0.937550 + 0.347852i \(0.113089\pi\)
−0.638016 + 0.770023i \(0.720245\pi\)
\(380\) −1.50123 4.99631i −0.0770112 0.256306i
\(381\) −0.415627 + 0.239962i −0.0212932 + 0.0122936i
\(382\) 37.2130i 1.90398i
\(383\) −12.0630 20.8938i −0.616392 1.06762i −0.990139 0.140091i \(-0.955260\pi\)
0.373747 0.927531i \(-0.378073\pi\)
\(384\) 0.696814 2.60055i 0.0355591 0.132709i
\(385\) −0.128721 + 0.136709i −0.00656024 + 0.00696735i
\(386\) −12.5494 21.7362i −0.638748 1.10634i
\(387\) 5.44905 + 20.3361i 0.276991 + 1.03374i
\(388\) −3.35305 1.93589i −0.170225 0.0982797i
\(389\) 14.3262 0.726365 0.363183 0.931718i \(-0.381690\pi\)
0.363183 + 0.931718i \(0.381690\pi\)
\(390\) 0 0
\(391\) −11.1241 −0.562571
\(392\) 13.6867 + 7.90203i 0.691284 + 0.399113i
\(393\) −0.337408 1.25922i −0.0170200 0.0635194i
\(394\) 4.52662 + 7.84034i 0.228048 + 0.394991i
\(395\) −0.749265 24.8972i −0.0376996 1.25271i
\(396\) 0.0600217 0.224004i 0.00301620 0.0112566i
\(397\) −16.7465 29.0058i −0.840484 1.45576i −0.889486 0.456963i \(-0.848937\pi\)
0.0490017 0.998799i \(-0.484396\pi\)
\(398\) 14.7430i 0.739000i
\(399\) 0.427464 0.246797i 0.0214000 0.0123553i
\(400\) 10.6418 21.2954i 0.532092 1.06477i
\(401\) −4.80084 17.9170i −0.239743 0.894731i −0.975953 0.217979i \(-0.930054\pi\)
0.736211 0.676752i \(-0.236613\pi\)
\(402\) 1.08126 1.08126i 0.0539285 0.0539285i
\(403\) 0 0
\(404\) 6.92181i 0.344373i
\(405\) −9.16394 + 17.0362i −0.455360 + 0.846536i
\(406\) −1.01782 + 1.76292i −0.0505136 + 0.0874922i
\(407\) −1.00685 0.269785i −0.0499077 0.0133727i
\(408\) −1.46302 −0.0724301
\(409\) 4.99622 + 1.33873i 0.247047 + 0.0661960i 0.380218 0.924897i \(-0.375849\pi\)
−0.133171 + 0.991093i \(0.542516\pi\)
\(410\) −12.3402 2.91170i −0.609440 0.143799i
\(411\) −0.565822 + 0.565822i −0.0279099 + 0.0279099i
\(412\) 1.93858 7.23487i 0.0955068 0.356436i
\(413\) 2.01636 0.540281i 0.0992184 0.0265855i
\(414\) −16.0418 + 4.29840i −0.788414 + 0.211255i
\(415\) −30.0058 + 0.903008i −1.47293 + 0.0443269i
\(416\) 0 0
\(417\) −1.78909 1.78909i −0.0876122 0.0876122i
\(418\) −0.553620 + 0.958899i −0.0270785 + 0.0469013i
\(419\) 0.872048 + 0.503477i 0.0426023 + 0.0245965i 0.521150 0.853465i \(-0.325503\pi\)
−0.478548 + 0.878062i \(0.658837\pi\)
\(420\) −0.120412 0.0284114i −0.00587548 0.00138633i
\(421\) 0.294746 + 0.294746i 0.0143650 + 0.0143650i 0.714253 0.699888i \(-0.246767\pi\)
−0.699888 + 0.714253i \(0.746767\pi\)
\(422\) −7.51482 + 4.33868i −0.365816 + 0.211204i
\(423\) −23.4371 + 13.5314i −1.13955 + 0.657920i
\(424\) −8.75094 8.75094i −0.424983 0.424983i
\(425\) −15.3972 3.14729i −0.746875 0.152666i
\(426\) 4.23451 + 2.44480i 0.205163 + 0.118451i
\(427\) 2.15211 3.72756i 0.104148 0.180389i
\(428\) −5.81326 5.81326i −0.280995 0.280995i
\(429\) 0 0
\(430\) −17.2718 + 18.3436i −0.832918 + 0.884606i
\(431\) 4.01004 1.07449i 0.193157 0.0517562i −0.160944 0.986964i \(-0.551454\pi\)
0.354100 + 0.935207i \(0.384787\pi\)
\(432\) −5.40930 + 1.44942i −0.260255 + 0.0697352i
\(433\) −3.88103 + 14.4842i −0.186511 + 0.696067i 0.807792 + 0.589468i \(0.200663\pi\)
−0.994302 + 0.106599i \(0.966004\pi\)
\(434\) −5.74380 + 5.74380i −0.275711 + 0.275711i
\(435\) 0.237355 1.00595i 0.0113803 0.0482315i
\(436\) 5.73407 + 1.53644i 0.274612 + 0.0735821i
\(437\) 16.1466 0.772399
\(438\) 1.18338 + 0.317086i 0.0565441 + 0.0151509i
\(439\) −6.94098 + 12.0221i −0.331275 + 0.573785i −0.982762 0.184875i \(-0.940812\pi\)
0.651487 + 0.758660i \(0.274145\pi\)
\(440\) −0.773678 + 0.232464i −0.0368836 + 0.0110823i
\(441\) 19.8372i 0.944628i
\(442\) 0 0
\(443\) 10.0594 10.0594i 0.477938 0.477938i −0.426533 0.904472i \(-0.640265\pi\)
0.904472 + 0.426533i \(0.140265\pi\)
\(444\) −0.177753 0.663384i −0.00843580 0.0314828i
\(445\) 19.4748 5.85154i 0.923196 0.277389i
\(446\) −25.4834 + 14.7128i −1.20667 + 0.696673i
\(447\) 0.839520i 0.0397079i
\(448\) −1.38235 2.39430i −0.0653100 0.113120i
\(449\) −1.72277 + 6.42946i −0.0813024 + 0.303425i −0.994588 0.103894i \(-0.966870\pi\)
0.913286 + 0.407319i \(0.133536\pi\)
\(450\) −23.4201 + 1.41091i −1.10404 + 0.0665108i
\(451\) 0.273982 + 0.474551i 0.0129013 + 0.0223457i
\(452\) −0.603263 2.25141i −0.0283751 0.105897i
\(453\) −1.18274 0.682853i −0.0555698 0.0320832i
\(454\) −10.1212 −0.475011
\(455\) 0 0
\(456\) 2.12357 0.0994451
\(457\) −32.0071 18.4793i −1.49723 0.864426i −0.497236 0.867616i \(-0.665652\pi\)
−0.999995 + 0.00318917i \(0.998985\pi\)
\(458\) −6.44722 24.0614i −0.301259 1.12431i
\(459\) 1.84844 + 3.20160i 0.0862780 + 0.149438i
\(460\) −2.94653 2.77437i −0.137383 0.129355i
\(461\) −6.65860 + 24.8502i −0.310122 + 1.15739i 0.618324 + 0.785923i \(0.287812\pi\)
−0.928446 + 0.371468i \(0.878855\pi\)
\(462\) 0.0131288 + 0.0227398i 0.000610809 + 0.00105795i
\(463\) 15.9580i 0.741632i −0.928706 0.370816i \(-0.879078\pi\)
0.928706 0.370816i \(-0.120922\pi\)
\(464\) −9.65955 + 5.57694i −0.448433 + 0.258903i
\(465\) 1.95379 3.63218i 0.0906046 0.168438i
\(466\) −3.39887 12.6847i −0.157449 0.587609i
\(467\) 18.6259 18.6259i 0.861902 0.861902i −0.129657 0.991559i \(-0.541388\pi\)
0.991559 + 0.129657i \(0.0413877\pi\)
\(468\) 0 0
\(469\) 2.68150i 0.123820i
\(470\) −28.5222 15.3424i −1.31563 0.707690i
\(471\) 0.320738 0.555534i 0.0147788 0.0255976i
\(472\) 8.67489 + 2.32443i 0.399294 + 0.106991i
\(473\) 1.08889 0.0500671
\(474\) −3.36445 0.901501i −0.154534 0.0414073i
\(475\) 22.3491 + 4.56829i 1.02544 + 0.209607i
\(476\) 0.623222 0.623222i 0.0285653 0.0285653i
\(477\) −4.02047 + 15.0046i −0.184085 + 0.687014i
\(478\) 29.8916 8.00943i 1.36721 0.366343i
\(479\) −16.0343 + 4.29638i −0.732627 + 0.196307i −0.605799 0.795618i \(-0.707146\pi\)
−0.126828 + 0.991925i \(0.540480\pi\)
\(480\) −0.908170 0.855105i −0.0414521 0.0390300i
\(481\) 0 0
\(482\) 19.1990 + 19.1990i 0.874490 + 0.874490i
\(483\) 0.191455 0.331609i 0.00871149 0.0150888i
\(484\) 4.86130 + 2.80667i 0.220968 + 0.127576i
\(485\) 14.3999 8.90183i 0.653867 0.404211i
\(486\) 5.86681 + 5.86681i 0.266124 + 0.266124i
\(487\) 22.7590 13.1399i 1.03131 0.595425i 0.113948 0.993487i \(-0.463650\pi\)
0.917359 + 0.398062i \(0.130317\pi\)
\(488\) 16.0369 9.25893i 0.725958 0.419132i
\(489\) −1.51637 1.51637i −0.0685724 0.0685724i
\(490\) 20.1928 12.4829i 0.912217 0.563919i
\(491\) 36.0301 + 20.8020i 1.62602 + 0.938781i 0.985265 + 0.171034i \(0.0547107\pi\)
0.640752 + 0.767748i \(0.278623\pi\)
\(492\) −0.180519 + 0.312668i −0.00813842 + 0.0140961i
\(493\) 5.20655 + 5.20655i 0.234491 + 0.234491i
\(494\) 0 0
\(495\) 0.738254 + 0.695118i 0.0331821 + 0.0312432i
\(496\) −42.9915 + 11.5195i −1.93037 + 0.517242i
\(497\) 8.28224 2.21922i 0.371509 0.0995456i
\(498\) −1.08648 + 4.05480i −0.0486864 + 0.181700i
\(499\) −8.31651 + 8.31651i −0.372298 + 0.372298i −0.868314 0.496015i \(-0.834796\pi\)
0.496015 + 0.868314i \(0.334796\pi\)
\(500\) −3.29345 4.67373i −0.147287 0.209016i
\(501\) −3.11779 0.835410i −0.139293 0.0373234i
\(502\) 15.7730 0.703982
\(503\) −10.3108 2.76277i −0.459736 0.123186i 0.0215156 0.999769i \(-0.493151\pi\)
−0.481251 + 0.876583i \(0.659818\pi\)
\(504\) −1.91512 + 3.31708i −0.0853062 + 0.147755i
\(505\) 26.6541 + 14.3375i 1.18609 + 0.638010i
\(506\) 0.858953i 0.0381851i
\(507\) 0 0
\(508\) 0.879556 0.879556i 0.0390240 0.0390240i
\(509\) −0.780260 2.91197i −0.0345844 0.129071i 0.946475 0.322776i \(-0.104616\pi\)
−0.981060 + 0.193705i \(0.937949\pi\)
\(510\) −1.04107 + 1.93540i −0.0460993 + 0.0857008i
\(511\) 1.86056 1.07419i 0.0823062 0.0475195i
\(512\) 9.00279i 0.397871i
\(513\) −2.68301 4.64712i −0.118458 0.205175i
\(514\) 1.12850 4.21162i 0.0497760 0.185767i
\(515\) 23.8441 + 22.4509i 1.05070 + 0.989304i
\(516\) 0.358718 + 0.621318i 0.0157917 + 0.0273520i
\(517\) 0.362267 + 1.35200i 0.0159325 + 0.0594608i
\(518\) −5.12203 2.95721i −0.225049 0.129932i
\(519\) −1.34838 −0.0591871
\(520\) 0 0
\(521\) −5.84796 −0.256204 −0.128102 0.991761i \(-0.540888\pi\)
−0.128102 + 0.991761i \(0.540888\pi\)
\(522\) 9.52007 + 5.49642i 0.416682 + 0.240572i
\(523\) 0.767497 + 2.86434i 0.0335603 + 0.125249i 0.980674 0.195650i \(-0.0626817\pi\)
−0.947113 + 0.320899i \(0.896015\pi\)
\(524\) 1.68940 + 2.92613i 0.0738020 + 0.127829i
\(525\) 0.358819 0.404823i 0.0156601 0.0176679i
\(526\) −2.53370 + 9.45590i −0.110475 + 0.412297i
\(527\) 14.6909 + 25.4453i 0.639944 + 1.10842i
\(528\) 0.143873i 0.00626129i
\(529\) −9.07083 + 5.23704i −0.394384 + 0.227698i
\(530\) −17.8035 + 5.34936i −0.773336 + 0.232361i
\(531\) −2.91762 10.8887i −0.126614 0.472529i
\(532\) −0.904605 + 0.904605i −0.0392196 + 0.0392196i
\(533\) 0 0
\(534\) 2.84359i 0.123054i
\(535\) 34.4266 10.3441i 1.48839 0.447212i
\(536\) 5.76825 9.99091i 0.249151 0.431542i
\(537\) −1.08138 0.289755i −0.0466650 0.0125038i
\(538\) −33.6329 −1.45002
\(539\) −0.991021 0.265543i −0.0426863 0.0114378i
\(540\) −0.308870 + 1.30904i −0.0132916 + 0.0563320i
\(541\) −15.4678 + 15.4678i −0.665013 + 0.665013i −0.956557 0.291544i \(-0.905831\pi\)
0.291544 + 0.956557i \(0.405831\pi\)
\(542\) 5.28484 19.7233i 0.227003 0.847188i
\(543\) 0.684429 0.183392i 0.0293717 0.00787011i
\(544\) 8.58362 2.29997i 0.368020 0.0986105i
\(545\) −17.7937 + 18.8979i −0.762198 + 0.809497i
\(546\) 0 0
\(547\) 1.76989 + 1.76989i 0.0756751 + 0.0756751i 0.743931 0.668256i \(-0.232959\pi\)
−0.668256 + 0.743931i \(0.732959\pi\)
\(548\) 1.03698 1.79610i 0.0442976 0.0767256i
\(549\) −20.1295 11.6218i −0.859106 0.496005i
\(550\) −0.243019 + 1.18890i −0.0103624 + 0.0506950i
\(551\) −7.55729 7.55729i −0.321952 0.321952i
\(552\) 1.42667 0.823688i 0.0607231 0.0350585i
\(553\) −5.28972 + 3.05402i −0.224942 + 0.129870i
\(554\) −23.8419 23.8419i −1.01295 1.01295i
\(555\) 2.92271 + 0.689619i 0.124062 + 0.0292727i
\(556\) 5.67915 + 3.27886i 0.240850 + 0.139055i
\(557\) 4.71734 8.17068i 0.199880 0.346203i −0.748609 0.663012i \(-0.769278\pi\)
0.948489 + 0.316809i \(0.102611\pi\)
\(558\) 31.0175 + 31.0175i 1.31308 + 1.31308i
\(559\) 0 0
\(560\) −5.83514 + 0.175605i −0.246580 + 0.00742067i
\(561\) 0.0917409 0.0245819i 0.00387330 0.00103785i
\(562\) 9.14960 2.45163i 0.385953 0.103416i
\(563\) 2.53443 9.45863i 0.106814 0.398634i −0.891731 0.452566i \(-0.850509\pi\)
0.998545 + 0.0539320i \(0.0171754\pi\)
\(564\) −0.652105 + 0.652105i −0.0274586 + 0.0274586i
\(565\) 9.91916 + 2.34045i 0.417302 + 0.0984633i
\(566\) −2.35416 0.630795i −0.0989527 0.0265143i
\(567\) 4.74366 0.199215
\(568\) 35.6324 + 9.54766i 1.49510 + 0.400611i
\(569\) −3.20931 + 5.55868i −0.134541 + 0.233032i −0.925422 0.378938i \(-0.876289\pi\)
0.790881 + 0.611970i \(0.209623\pi\)
\(570\) 1.51111 2.80922i 0.0632934 0.117665i
\(571\) 1.72174i 0.0720527i −0.999351 0.0360264i \(-0.988530\pi\)
0.999351 0.0360264i \(-0.0114700\pi\)
\(572\) 0 0
\(573\) 3.27622 3.27622i 0.136866 0.136866i
\(574\) 0.804709 + 3.00322i 0.0335879 + 0.125352i
\(575\) 16.7867 5.59965i 0.700052 0.233521i
\(576\) −12.9297 + 7.46495i −0.538736 + 0.311040i
\(577\) 24.8642i 1.03511i 0.855650 + 0.517554i \(0.173157\pi\)
−0.855650 + 0.517554i \(0.826843\pi\)
\(578\) 5.64230 + 9.77275i 0.234689 + 0.406493i
\(579\) 0.808803 3.01849i 0.0336127 0.125444i
\(580\) 0.0805813 + 2.67762i 0.00334596 + 0.111182i
\(581\) 3.68068 + 6.37512i 0.152700 + 0.264484i
\(582\) −0.612715 2.28668i −0.0253979 0.0947861i
\(583\) 0.695777 + 0.401707i 0.0288161 + 0.0166370i
\(584\) 9.24291 0.382474
\(585\) 0 0
\(586\) 4.42437 0.182769
\(587\) 23.1811 + 13.3836i 0.956785 + 0.552400i 0.895182 0.445701i \(-0.147045\pi\)
0.0616029 + 0.998101i \(0.480379\pi\)
\(588\) −0.174959 0.652955i −0.00721517 0.0269274i
\(589\) −21.3238 36.9338i −0.878630 1.52183i
\(590\) 9.24791 9.82180i 0.380731 0.404357i
\(591\) −0.291739 + 1.08878i −0.0120005 + 0.0447866i
\(592\) −16.2034 28.0651i −0.665956 1.15347i
\(593\) 19.8452i 0.814944i 0.913218 + 0.407472i \(0.133590\pi\)
−0.913218 + 0.407472i \(0.866410\pi\)
\(594\) 0.247213 0.142728i 0.0101433 0.00585621i
\(595\) 1.10895 + 3.69077i 0.0454627 + 0.151307i
\(596\) 0.563161 + 2.10174i 0.0230680 + 0.0860908i
\(597\) −1.29797 + 1.29797i −0.0531224 + 0.0531224i
\(598\) 0 0
\(599\) 36.5285i 1.49252i −0.665657 0.746258i \(-0.731849\pi\)
0.665657 0.746258i \(-0.268151\pi\)
\(600\) 2.20774 0.736451i 0.0901306 0.0300655i
\(601\) −14.9478 + 25.8903i −0.609732 + 1.05609i 0.381552 + 0.924347i \(0.375390\pi\)
−0.991284 + 0.131740i \(0.957944\pi\)
\(602\) 5.96785 + 1.59908i 0.243231 + 0.0651736i
\(603\) −14.4806 −0.589695
\(604\) 3.41905 + 0.916132i 0.139119 + 0.0372769i
\(605\) −20.8772 + 12.9060i −0.848780 + 0.524703i
\(606\) 2.99266 2.99266i 0.121568 0.121568i
\(607\) 4.62475 17.2598i 0.187713 0.700553i −0.806321 0.591478i \(-0.798544\pi\)
0.994034 0.109075i \(-0.0347888\pi\)
\(608\) −12.4591 + 3.33841i −0.505283 + 0.135390i
\(609\) −0.244816 + 0.0655981i −0.00992043 + 0.00265817i
\(610\) −0.836730 27.8035i −0.0338782 1.12573i
\(611\) 0 0
\(612\) −3.36551 3.36551i −0.136043 0.136043i
\(613\) −7.68729 + 13.3148i −0.310487 + 0.537779i −0.978468 0.206399i \(-0.933825\pi\)
0.667981 + 0.744178i \(0.267159\pi\)
\(614\) −2.91107 1.68071i −0.117481 0.0678278i
\(615\) −0.830084 1.34277i −0.0334722 0.0541459i
\(616\) 0.140078 + 0.140078i 0.00564390 + 0.00564390i
\(617\) 1.07707 0.621849i 0.0433614 0.0250347i −0.478163 0.878271i \(-0.658697\pi\)
0.521524 + 0.853237i \(0.325364\pi\)
\(618\) 3.96616 2.28986i 0.159542 0.0921117i
\(619\) 28.7865 + 28.7865i 1.15703 + 1.15703i 0.985112 + 0.171915i \(0.0549954\pi\)
0.171915 + 0.985112i \(0.445005\pi\)
\(620\) −2.45480 + 10.4038i −0.0985872 + 0.417827i
\(621\) −3.60504 2.08137i −0.144665 0.0835226i
\(622\) −16.8502 + 29.1854i −0.675631 + 1.17023i
\(623\) −3.52601 3.52601i −0.141266 0.141266i
\(624\) 0 0
\(625\) 24.8192 3.00128i 0.992768 0.120051i
\(626\) 31.1008 8.33343i 1.24304 0.333071i
\(627\) −0.133162 + 0.0356806i −0.00531797 + 0.00142495i
\(628\) −0.430310 + 1.60594i −0.0171712 + 0.0640839i
\(629\) −15.1272 + 15.1272i −0.603163 + 0.603163i
\(630\) 3.02533 + 4.89388i 0.120532 + 0.194977i
\(631\) 20.0180 + 5.36381i 0.796904 + 0.213530i 0.634224 0.773149i \(-0.281320\pi\)
0.162680 + 0.986679i \(0.447986\pi\)
\(632\) −26.2784 −1.04530
\(633\) −1.04358 0.279626i −0.0414785 0.0111141i
\(634\) 6.96483 12.0634i 0.276609 0.479101i
\(635\) 1.56507 + 5.20880i 0.0621080 + 0.206705i
\(636\) 0.529346i 0.0209899i
\(637\) 0 0
\(638\) 0.402025 0.402025i 0.0159163 0.0159163i
\(639\) −11.9842 44.7256i −0.474087 1.76932i
\(640\) −26.8701 14.4537i −1.06213 0.571332i
\(641\) 15.3071 8.83753i 0.604592 0.349061i −0.166254 0.986083i \(-0.553167\pi\)
0.770846 + 0.637022i \(0.219834\pi\)
\(642\) 5.02675i 0.198390i
\(643\) 1.33452 + 2.31145i 0.0526282 + 0.0911547i 0.891139 0.453730i \(-0.149907\pi\)
−0.838511 + 0.544884i \(0.816574\pi\)
\(644\) −0.256861 + 0.958617i −0.0101217 + 0.0377748i
\(645\) −3.13556 + 0.0943630i −0.123463 + 0.00371554i
\(646\) 11.3623 + 19.6801i 0.447043 + 0.774302i
\(647\) −10.9143 40.7326i −0.429084 1.60136i −0.754839 0.655910i \(-0.772285\pi\)
0.325755 0.945454i \(-0.394381\pi\)
\(648\) 17.6742 + 10.2042i 0.694309 + 0.400860i
\(649\) −0.583029 −0.0228859
\(650\) 0 0
\(651\) −1.01136 −0.0396385
\(652\) 4.81343 + 2.77904i 0.188508 + 0.108835i
\(653\) 6.53917 + 24.4045i 0.255898 + 0.955023i 0.967589 + 0.252531i \(0.0812629\pi\)
−0.711691 + 0.702492i \(0.752070\pi\)
\(654\) 1.81485 + 3.14342i 0.0709664 + 0.122917i
\(655\) −14.7671 + 0.444408i −0.576999 + 0.0173644i
\(656\) −4.40924 + 16.4555i −0.172152 + 0.642479i
\(657\) −5.80083 10.0473i −0.226312 0.391984i
\(658\) 7.94187i 0.309606i
\(659\) 32.7551 18.9112i 1.27596 0.736675i 0.299856 0.953985i \(-0.403061\pi\)
0.976103 + 0.217310i \(0.0697281\pi\)
\(660\) 0.0304309 + 0.0163691i 0.00118452 + 0.000637165i
\(661\) 4.45346 + 16.6205i 0.173219 + 0.646463i 0.996848 + 0.0793341i \(0.0252794\pi\)
−0.823629 + 0.567129i \(0.808054\pi\)
\(662\) 20.3625 20.3625i 0.791409 0.791409i
\(663\) 0 0
\(664\) 31.6705i 1.22905i
\(665\) −1.60964 5.35715i −0.0624193 0.207741i
\(666\) −15.9694 + 27.6599i −0.618804 + 1.07180i
\(667\) −8.00852 2.14588i −0.310091 0.0830887i
\(668\) 8.36582 0.323683
\(669\) −3.53886 0.948235i −0.136820 0.0366609i
\(670\) −9.11214 14.7401i −0.352033 0.569461i
\(671\) −0.850052 + 0.850052i −0.0328159 + 0.0328159i
\(672\) −0.0791687 + 0.295461i −0.00305400 + 0.0113977i
\(673\) −30.3909 + 8.14322i −1.17148 + 0.313898i −0.791543 0.611113i \(-0.790722\pi\)
−0.379940 + 0.925011i \(0.624055\pi\)
\(674\) 37.3474 10.0072i 1.43857 0.385464i
\(675\) −4.40098 3.90085i −0.169394 0.150144i
\(676\) 0 0
\(677\) −28.8731 28.8731i −1.10968 1.10968i −0.993191 0.116494i \(-0.962835\pi\)
−0.116494 0.993191i \(-0.537165\pi\)
\(678\) 0.712579 1.23422i 0.0273664 0.0474001i
\(679\) −3.59521 2.07570i −0.137972 0.0796579i
\(680\) −3.80752 + 16.1368i −0.146012 + 0.618819i
\(681\) −0.891066 0.891066i −0.0341457 0.0341457i
\(682\) 1.96477 1.13436i 0.0752349 0.0434369i
\(683\) 27.5215 15.8896i 1.05308 0.607998i 0.129572 0.991570i \(-0.458640\pi\)
0.923511 + 0.383572i \(0.125306\pi\)
\(684\) 4.88503 + 4.88503i 0.186784 + 0.186784i
\(685\) 4.76837 + 7.71348i 0.182190 + 0.294717i
\(686\) −10.3093 5.95206i −0.393610 0.227251i
\(687\) 1.55074 2.68597i 0.0591646 0.102476i
\(688\) 23.9378 + 23.9378i 0.912619 + 0.912619i
\(689\) 0 0
\(690\) −0.0744368 2.47344i −0.00283376 0.0941623i
\(691\) 25.9278 6.94735i 0.986342 0.264289i 0.270629 0.962684i \(-0.412768\pi\)
0.715713 + 0.698394i \(0.246102\pi\)
\(692\) 3.37567 0.904508i 0.128324 0.0343842i
\(693\) 0.0643565 0.240182i 0.00244470 0.00912374i
\(694\) 8.70863 8.70863i 0.330575 0.330575i
\(695\) −24.3895 + 15.0773i −0.925147 + 0.571913i
\(696\) −1.05326 0.282220i −0.0399237 0.0106975i
\(697\) 11.2462 0.425980
\(698\) 7.76199 + 2.07982i 0.293796 + 0.0787223i
\(699\) 0.817526 1.41600i 0.0309217 0.0535579i
\(700\) −0.626745 + 1.25418i −0.0236887 + 0.0474035i
\(701\) 39.3253i 1.48530i 0.669681 + 0.742649i \(0.266431\pi\)
−0.669681 + 0.742649i \(0.733569\pi\)
\(702\) 0 0
\(703\) 21.9572 21.9572i 0.828131 0.828131i
\(704\) 0.199854 + 0.745863i 0.00753226 + 0.0281108i
\(705\) −1.16035 3.86182i −0.0437012 0.145445i
\(706\) 35.1585 20.2987i 1.32321 0.763953i
\(707\) 7.42171i 0.279122i
\(708\) −0.192071 0.332676i −0.00721845 0.0125027i
\(709\) −9.70804 + 36.2309i −0.364593 + 1.36068i 0.503378 + 0.864066i \(0.332090\pi\)
−0.867972 + 0.496614i \(0.834576\pi\)
\(710\) 37.9861 40.3433i 1.42559 1.51406i
\(711\) 16.4923 + 28.5654i 0.618508 + 1.07129i
\(712\) −5.55253 20.7223i −0.208090 0.776602i
\(713\) −28.6518 16.5421i −1.07302 0.619507i
\(714\) 0.538902 0.0201679
\(715\) 0 0
\(716\) 2.90161 0.108438
\(717\) 3.33680 + 1.92650i 0.124615 + 0.0719465i
\(718\) 5.82623 + 21.7438i 0.217433 + 0.811471i
\(719\) 14.5578 + 25.2148i 0.542913 + 0.940353i 0.998735 + 0.0502820i \(0.0160120\pi\)
−0.455822 + 0.890071i \(0.650655\pi\)
\(720\) 0.948298 + 31.5108i 0.0353410 + 1.17434i
\(721\) 2.07858 7.75737i 0.0774104 0.288900i
\(722\) −1.43734 2.48955i −0.0534923 0.0926514i
\(723\) 3.38055i 0.125724i
\(724\) −1.59045 + 0.918247i −0.0591086 + 0.0341264i
\(725\) −10.4777 5.23598i −0.389132 0.194459i
\(726\) 0.888322 + 3.31526i 0.0329687 + 0.123041i
\(727\) −15.6053 + 15.6053i −0.578768 + 0.578768i −0.934564 0.355796i \(-0.884210\pi\)
0.355796 + 0.934564i \(0.384210\pi\)
\(728\) 0 0
\(729\) 24.9204i 0.922977i
\(730\) 6.57717 12.2273i 0.243432 0.452552i
\(731\) 11.1740 19.3539i 0.413284 0.715829i
\(732\) −0.765076 0.205002i −0.0282780 0.00757708i
\(733\) 34.8651 1.28777 0.643886 0.765121i \(-0.277321\pi\)
0.643886 + 0.765121i \(0.277321\pi\)
\(734\) −30.8019 8.25335i −1.13692 0.304637i
\(735\) 2.87676 + 0.678777i 0.106111 + 0.0250371i
\(736\) −7.07547 + 7.07547i −0.260805 + 0.260805i
\(737\) −0.193839 + 0.723416i −0.00714014 + 0.0266474i
\(738\) 16.2179 4.34557i 0.596989 0.159963i
\(739\) 33.0522 8.85631i 1.21584 0.325785i 0.406792 0.913521i \(-0.366647\pi\)
0.809053 + 0.587736i \(0.199981\pi\)
\(740\) −7.77962 + 0.234123i −0.285985 + 0.00860654i
\(741\) 0 0
\(742\) 3.22341 + 3.22341i 0.118335 + 0.118335i
\(743\) 1.56456 2.70989i 0.0573980 0.0994162i −0.835899 0.548884i \(-0.815053\pi\)
0.893297 + 0.449468i \(0.148386\pi\)
\(744\) −3.76821 2.17558i −0.138149 0.0797605i
\(745\) −9.25977 2.18486i −0.339252 0.0800472i
\(746\) 29.3652 + 29.3652i 1.07514 + 1.07514i
\(747\) 34.4268 19.8763i 1.25961 0.727236i
\(748\) −0.213184 + 0.123082i −0.00779478 + 0.00450032i
\(749\) −6.23310 6.23310i −0.227753 0.227753i
\(750\) 0.596768 3.44463i 0.0217909 0.125780i
\(751\) −6.28199 3.62691i −0.229233 0.132348i 0.380985 0.924581i \(-0.375585\pi\)
−0.610218 + 0.792233i \(0.708918\pi\)
\(752\) −21.7579 + 37.6858i −0.793430 + 1.37426i
\(753\) 1.38865 + 1.38865i 0.0506051 + 0.0506051i
\(754\) 0 0
\(755\) −10.6098 + 11.2682i −0.386131 + 0.410093i
\(756\) 0.318578 0.0853627i 0.0115866 0.00310461i
\(757\) −15.9782 + 4.28134i −0.580737 + 0.155608i −0.537216 0.843445i \(-0.680524\pi\)
−0.0435205 + 0.999053i \(0.513857\pi\)
\(758\) 9.24108 34.4882i 0.335651 1.25267i
\(759\) −0.0756220 + 0.0756220i −0.00274490 + 0.00274490i
\(760\) 5.52661 23.4226i 0.200471 0.849626i
\(761\) 22.3674 + 5.99332i 0.810817 + 0.217258i 0.640328 0.768102i \(-0.278799\pi\)
0.170489 + 0.985360i \(0.445465\pi\)
\(762\) 0.760555 0.0275520
\(763\) 6.14819 + 1.64740i 0.222579 + 0.0596400i
\(764\) −6.00431 + 10.3998i −0.217228 + 0.376251i
\(765\) 19.9308 5.98855i 0.720601 0.216516i
\(766\) 38.2335i 1.38143i
\(767\) 0 0
\(768\) −1.60998 + 1.60998i −0.0580951 + 0.0580951i
\(769\) 1.52511 + 5.69177i 0.0549967 + 0.205251i 0.987957 0.154729i \(-0.0494504\pi\)
−0.932960 + 0.359979i \(0.882784\pi\)
\(770\) 0.284984 0.0856282i 0.0102701 0.00308583i
\(771\) 0.470143 0.271437i 0.0169318 0.00977557i
\(772\) 8.09938i 0.291503i
\(773\) 4.04499 + 7.00612i 0.145488 + 0.251993i 0.929555 0.368684i \(-0.120191\pi\)
−0.784067 + 0.620676i \(0.786858\pi\)
\(774\) 8.63532 32.2274i 0.310390 1.15839i
\(775\) −34.9776 31.0027i −1.25643 1.11365i
\(776\) −8.93019 15.4675i −0.320575 0.555252i
\(777\) −0.190591 0.711294i −0.00683740 0.0255175i
\(778\) −19.6616 11.3516i −0.704901 0.406975i
\(779\) −16.3238 −0.584863
\(780\) 0 0
\(781\) −2.39481 −0.0856930
\(782\) 15.2670 + 8.81441i 0.545947 + 0.315203i
\(783\) 0.713141 + 2.66148i 0.0254856 + 0.0951135i
\(784\) −15.9487 27.6239i −0.569595 0.986567i
\(785\) −5.29272 4.98347i −0.188905 0.177868i
\(786\) −0.534703 + 1.99554i −0.0190722 + 0.0711785i
\(787\) 8.10582 + 14.0397i 0.288941 + 0.500461i 0.973557 0.228443i \(-0.0733635\pi\)
−0.684616 + 0.728904i \(0.740030\pi\)
\(788\) 2.92148i 0.104073i
\(789\) −1.05556 + 0.609429i −0.0375790 + 0.0216962i
\(790\) −18.6994 + 34.7632i −0.665296 + 1.23682i
\(791\) −0.646831 2.41401i −0.0229987 0.0858322i
\(792\) 0.756445 0.756445i 0.0268791 0.0268791i
\(793\) 0 0
\(794\) 53.0777i 1.88366i
\(795\) −2.03837 1.09646i −0.0722937 0.0388875i
\(796\) 2.37878 4.12017i 0.0843137 0.146036i
\(797\) 16.1019 + 4.31449i 0.570358 + 0.152827i 0.532461 0.846455i \(-0.321267\pi\)
0.0378972 + 0.999282i \(0.487934\pi\)
\(798\) −0.782216 −0.0276901
\(799\) 27.7479 + 7.43502i 0.981649 + 0.263032i
\(800\) −11.7952 + 7.79154i −0.417023 + 0.275473i
\(801\) −19.0411 + 19.0411i −0.672783 + 0.672783i
\(802\) −7.60807 + 28.3937i −0.268650 + 1.00262i
\(803\) −0.579592 + 0.155301i −0.0204534 + 0.00548047i
\(804\) −0.476638 + 0.127715i −0.0168097 + 0.00450415i
\(805\) −3.15933 2.97473i −0.111352 0.104846i
\(806\) 0 0
\(807\) −2.96103 2.96103i −0.104233 0.104233i
\(808\) 15.9651 27.6523i 0.561649 0.972804i
\(809\) 20.8943 + 12.0633i 0.734603 + 0.424123i 0.820104 0.572215i \(-0.193916\pi\)
−0.0855005 + 0.996338i \(0.527249\pi\)
\(810\) 26.0758 16.1197i 0.916209 0.566388i
\(811\) 17.7808 + 17.7808i 0.624369 + 0.624369i 0.946646 0.322276i \(-0.104448\pi\)
−0.322276 + 0.946646i \(0.604448\pi\)
\(812\) 0.568894 0.328451i 0.0199642 0.0115264i
\(813\) 2.20171 1.27116i 0.0772173 0.0445815i
\(814\) 1.16806 + 1.16806i 0.0409403 + 0.0409403i
\(815\) −20.6716 + 12.7789i −0.724096 + 0.447625i
\(816\) 2.55720 + 1.47640i 0.0895200 + 0.0516844i
\(817\) −16.2190 + 28.0921i −0.567431 + 0.982819i
\(818\) −5.79615 5.79615i −0.202658 0.202658i
\(819\) 0 0
\(820\) 2.97887 + 2.80481i 0.104027 + 0.0979484i
\(821\) −38.2768 + 10.2562i −1.33587 + 0.357945i −0.854901 0.518792i \(-0.826382\pi\)
−0.480970 + 0.876737i \(0.659715\pi\)
\(822\) 1.22489 0.328208i 0.0427229 0.0114476i
\(823\) −10.3383 + 38.5831i −0.360371 + 1.34492i 0.513219 + 0.858258i \(0.328453\pi\)
−0.873589 + 0.486664i \(0.838214\pi\)
\(824\) 24.4316 24.4316i 0.851116 0.851116i
\(825\) −0.126066 + 0.0832753i −0.00438905 + 0.00289927i
\(826\) −3.19540 0.856204i −0.111182 0.0297912i
\(827\) 25.6019 0.890264 0.445132 0.895465i \(-0.353157\pi\)
0.445132 + 0.895465i \(0.353157\pi\)
\(828\) 5.17670 + 1.38709i 0.179903 + 0.0482048i
\(829\) −9.41684 + 16.3104i −0.327060 + 0.566485i −0.981927 0.189259i \(-0.939391\pi\)
0.654867 + 0.755744i \(0.272725\pi\)
\(830\) 41.8962 + 22.5364i 1.45424 + 0.782249i
\(831\) 4.19807i 0.145629i
\(832\) 0 0
\(833\) −14.8894 + 14.8894i −0.515888 + 0.515888i
\(834\) 1.03777 + 3.87301i 0.0359351 + 0.134111i
\(835\) −17.3285 + 32.2146i −0.599678 + 1.11483i
\(836\) 0.309436 0.178653i 0.0107021 0.00617885i
\(837\) 10.9949i 0.380040i
\(838\) −0.797879 1.38197i −0.0275623 0.0477393i
\(839\) −6.45374 + 24.0857i −0.222808 + 0.831530i 0.760463 + 0.649381i \(0.224972\pi\)
−0.983271 + 0.182149i \(0.941695\pi\)
\(840\) −0.415508 0.391229i −0.0143364 0.0134987i
\(841\) −11.7560 20.3621i −0.405381 0.702140i
\(842\) −0.170969 0.638063i −0.00589196 0.0219891i
\(843\) 1.02137 + 0.589688i 0.0351778 + 0.0203099i
\(844\) 2.80018 0.0963863
\(845\) 0 0
\(846\) 42.8875 1.47450
\(847\) 5.21239 + 3.00937i 0.179100 + 0.103403i
\(848\) 6.46474 + 24.1267i 0.222000 + 0.828516i
\(849\) −0.151725 0.262795i −0.00520717 0.00901909i
\(850\) 18.6377 + 16.5197i 0.639268 + 0.566621i
\(851\) 6.23469 23.2682i 0.213722 0.797623i
\(852\) −0.788935 1.36648i −0.0270285 0.0468147i
\(853\) 2.14143i 0.0733210i −0.999328 0.0366605i \(-0.988328\pi\)
0.999328 0.0366605i \(-0.0116720\pi\)
\(854\) −5.90721 + 3.41053i −0.202140 + 0.116706i
\(855\) −28.9296 + 8.69237i −0.989370 + 0.297273i
\(856\) −9.81549 36.6319i −0.335487 1.25205i
\(857\) 36.4384 36.4384i 1.24471 1.24471i 0.286686 0.958025i \(-0.407446\pi\)
0.958025 0.286686i \(-0.0925537\pi\)
\(858\) 0 0
\(859\) 4.40721i 0.150372i 0.997170 + 0.0751861i \(0.0239551\pi\)
−0.997170 + 0.0751861i \(0.976045\pi\)
\(860\) 7.78661 2.33962i 0.265521 0.0797802i
\(861\) −0.193556 + 0.335249i −0.00659637 + 0.0114252i
\(862\) −6.35486 1.70278i −0.216447 0.0579969i
\(863\) 53.8912 1.83448 0.917239 0.398338i \(-0.130413\pi\)
0.917239 + 0.398338i \(0.130413\pi\)
\(864\) 3.21207 + 0.860671i 0.109277 + 0.0292806i
\(865\) −3.50917 + 14.8724i −0.119315 + 0.505676i
\(866\) 16.8033 16.8033i 0.570998 0.570998i
\(867\) −0.363644 + 1.35714i −0.0123500 + 0.0460908i
\(868\) 2.53196 0.678436i 0.0859403 0.0230276i
\(869\) 1.64783 0.441535i 0.0558988 0.0149780i
\(870\) −1.12283 + 1.19251i −0.0380676 + 0.0404300i
\(871\) 0 0
\(872\) 19.3636 + 19.3636i 0.655733 + 0.655733i
\(873\) −11.2091 + 19.4148i −0.379372 + 0.657091i
\(874\) −22.1600 12.7941i −0.749574 0.432767i
\(875\) −3.53130 5.01127i −0.119380 0.169412i
\(876\) −0.279553 0.279553i −0.00944522 0.00944522i
\(877\) −11.3743 + 6.56696i −0.384083 + 0.221750i −0.679593 0.733589i \(-0.737844\pi\)
0.295510 + 0.955340i \(0.404510\pi\)
\(878\) 19.0519 10.9996i 0.642971 0.371220i
\(879\) 0.389521 + 0.389521i 0.0131382 + 0.0131382i
\(880\) 1.58690 + 0.374433i 0.0534944 + 0.0126221i
\(881\) −31.7049 18.3049i −1.06817 0.616706i −0.140486 0.990083i \(-0.544867\pi\)
−0.927680 + 0.373376i \(0.878200\pi\)
\(882\) −15.7184 + 27.2250i −0.529265 + 0.916714i
\(883\) −7.40474 7.40474i −0.249189 0.249189i 0.571449 0.820638i \(-0.306382\pi\)
−0.820638 + 0.571449i \(0.806382\pi\)
\(884\) 0 0
\(885\) 1.67889 0.0505253i 0.0564354 0.00169839i
\(886\) −21.7766 + 5.83502i −0.731599 + 0.196031i
\(887\) 52.7370 14.1308i 1.77074 0.474467i 0.781891 0.623416i \(-0.214255\pi\)
0.988845 + 0.148948i \(0.0475888\pi\)
\(888\) 0.819971 3.06017i 0.0275164 0.102693i
\(889\) 0.943078 0.943078i 0.0316298 0.0316298i
\(890\) −31.3643 7.40047i −1.05133 0.248064i
\(891\) −1.27975 0.342907i −0.0428731 0.0114878i
\(892\) 9.49566 0.317938
\(893\) −40.2760 10.7919i −1.34779 0.361138i
\(894\) −0.665210 + 1.15218i −0.0222479 + 0.0385346i
\(895\) −6.01025 + 11.1734i −0.200901 + 0.373484i
\(896\) 7.48186i 0.249951i
\(897\) 0 0
\(898\) 7.45887 7.45887i 0.248906 0.248906i
\(899\) 5.66782 + 21.1526i 0.189032 + 0.705479i
\(900\) 6.77279 + 3.38453i 0.225760 + 0.112818i
\(901\) 14.2799 8.24448i 0.475731 0.274664i
\(902\) 0.868379i 0.0289139i
\(903\) 0.384625 + 0.666190i 0.0127995 + 0.0221694i
\(904\) 2.78284 10.3857i 0.0925558 0.345423i
\(905\) −0.241550 8.02642i −0.00802940 0.266807i
\(906\) 1.08214 + 1.87433i 0.0359518 + 0.0622703i
\(907\) −10.6057 39.5809i −0.352155 1.31426i −0.884027 0.467437i \(-0.845178\pi\)
0.531871 0.846825i \(-0.321489\pi\)
\(908\) 2.82853 + 1.63305i 0.0938680 + 0.0541947i
\(909\) −40.0785 −1.32932
\(910\) 0 0
\(911\) 24.2232 0.802551 0.401276 0.915957i \(-0.368567\pi\)
0.401276 + 0.915957i \(0.368567\pi\)
\(912\) −3.71178 2.14299i −0.122909 0.0709616i
\(913\) −0.532133 1.98595i −0.0176110 0.0657253i
\(914\) 29.2849 + 50.7229i 0.968658 + 1.67777i
\(915\) 2.37415 2.52148i 0.0784869 0.0833575i
\(916\) −2.08052 + 7.76460i −0.0687423 + 0.256550i
\(917\) 1.81141 + 3.13746i 0.0598182 + 0.103608i
\(918\) 5.85860i 0.193363i
\(919\) −30.2077 + 17.4404i −0.996460 + 0.575307i −0.907199 0.420702i \(-0.861784\pi\)
−0.0892612 + 0.996008i \(0.528451\pi\)
\(920\) −5.37222 17.8796i −0.177117 0.589473i
\(921\) −0.108321 0.404259i −0.00356929 0.0133208i
\(922\) 28.8290 28.8290i 0.949432 0.949432i
\(923\) 0 0
\(924\) 0.00847334i 0.000278753i
\(925\) 15.2128 30.4422i 0.500193 1.00093i
\(926\) −12.6446 + 21.9012i −0.415529 + 0.719717i
\(927\) −41.8912 11.2247i −1.37589 0.368668i
\(928\) 6.62322 0.217418
\(929\) 8.38235 + 2.24604i 0.275016 + 0.0736903i 0.393691 0.919243i \(-0.371198\pi\)
−0.118675 + 0.992933i \(0.537865\pi\)
\(930\) −5.55945 + 3.43677i −0.182302 + 0.112696i
\(931\) 21.6120 21.6120i 0.708304 0.708304i
\(932\) −1.09681 + 4.09336i −0.0359273 + 0.134083i
\(933\) −4.05296 + 1.08599i −0.132688 + 0.0355536i
\(934\) −40.3211 + 10.8040i −1.31935 + 0.353518i
\(935\) −0.0323774 1.07586i −0.00105885 0.0351844i
\(936\) 0 0
\(937\) −25.8920 25.8920i −0.845856 0.845856i 0.143757 0.989613i \(-0.454082\pi\)
−0.989613 + 0.143757i \(0.954082\pi\)
\(938\) −2.12474 + 3.68015i −0.0693751 + 0.120161i
\(939\) 3.47178 + 2.00443i 0.113297 + 0.0654122i
\(940\) 5.49550 + 8.88972i 0.179243 + 0.289951i
\(941\) −20.9205 20.9205i −0.681989 0.681989i 0.278459 0.960448i \(-0.410176\pi\)
−0.960448 + 0.278459i \(0.910176\pi\)
\(942\) −0.880376 + 0.508285i −0.0286842 + 0.0165608i
\(943\) −10.9668 + 6.33169i −0.357128 + 0.206188i
\(944\) −12.8171 12.8171i −0.417162 0.417162i
\(945\) −0.331177 + 1.40358i −0.0107732 + 0.0456583i
\(946\) −1.49442 0.862801i −0.0485876 0.0280521i
\(947\) 13.8023 23.9064i 0.448516 0.776852i −0.549774 0.835314i \(-0.685286\pi\)
0.998290 + 0.0584612i \(0.0186194\pi\)
\(948\) 0.794793 + 0.794793i 0.0258137 + 0.0258137i
\(949\) 0 0
\(950\) −27.0526 23.9783i −0.877702 0.777960i
\(951\) 1.67524 0.448880i 0.0543235 0.0145559i
\(952\) 3.92719 1.05229i 0.127281 0.0341048i
\(953\) 7.47941 27.9135i 0.242282 0.904208i −0.732448 0.680822i \(-0.761623\pi\)
0.974730 0.223385i \(-0.0717108\pi\)
\(954\) 17.4070 17.4070i 0.563572 0.563572i
\(955\) −27.6098 44.6626i −0.893431 1.44525i
\(956\) −9.64602 2.58464i −0.311974 0.0835933i
\(957\) 0.0707884 0.00228826
\(958\) 25.4102 + 6.80864i 0.820966 + 0.219977i
\(959\) 1.11187 1.92582i 0.0359042 0.0621878i
\(960\) −0.640135 2.13047i −0.0206603 0.0687607i
\(961\) 56.3841i 1.81884i
\(962\) 0 0
\(963\) −33.6599 + 33.6599i −1.08467 + 1.08467i
\(964\) −2.26771 8.46323i −0.0730382 0.272582i
\(965\) −31.1886 16.7766i −1.00400 0.540059i
\(966\) −0.525514 + 0.303406i −0.0169081 + 0.00976192i
\(967\) 4.31688i 0.138822i 0.997588 + 0.0694108i \(0.0221119\pi\)
−0.997588 + 0.0694108i \(0.977888\pi\)
\(968\) 12.9471 + 22.4250i 0.416136 + 0.720768i
\(969\) −0.732295 + 2.73296i −0.0235247 + 0.0877954i
\(970\) −26.8163 + 0.807022i −0.861021 + 0.0259119i
\(971\) 6.77930 + 11.7421i 0.217558 + 0.376822i 0.954061 0.299613i \(-0.0968575\pi\)
−0.736503 + 0.676435i \(0.763524\pi\)
\(972\) −0.692966 2.58618i −0.0222269 0.0829519i
\(973\) 6.08930 + 3.51566i 0.195214 + 0.112707i
\(974\) −41.6466 −1.33444
\(975\) 0 0
\(976\) −37.3745 −1.19633
\(977\) 41.2668 + 23.8254i 1.32024 + 0.762242i 0.983767 0.179450i \(-0.0574318\pi\)
0.336475 + 0.941692i \(0.390765\pi\)
\(978\) 0.879575 + 3.28262i 0.0281257 + 0.104967i
\(979\) 0.696362 + 1.20613i 0.0222558 + 0.0385482i
\(980\) −7.65731 + 0.230442i −0.244604 + 0.00736121i
\(981\) 8.89627 33.2013i 0.284036 1.06004i
\(982\) −32.9657 57.0983i −1.05198 1.82208i
\(983\) 7.39039i 0.235717i −0.993030 0.117858i \(-0.962397\pi\)
0.993030 0.117858i \(-0.0376029\pi\)
\(984\) −1.44233 + 0.832728i −0.0459797 + 0.0265464i
\(985\) 11.2499 + 6.05141i 0.358450 + 0.192814i
\(986\) −3.02008 11.2711i −0.0961789 0.358945i
\(987\) −0.699200 + 0.699200i −0.0222558 + 0.0222558i
\(988\) 0 0
\(989\) 25.1641i 0.800171i
\(990\) −0.462408 1.53897i −0.0146963 0.0489115i
\(991\) −10.0052 + 17.3296i −0.317827 + 0.550493i −0.980034 0.198828i \(-0.936287\pi\)
0.662207 + 0.749321i \(0.269620\pi\)
\(992\) 25.5285 + 6.84035i 0.810531 + 0.217181i
\(993\) 3.58541 0.113780
\(994\) −13.1252 3.51688i −0.416306 0.111549i
\(995\) 10.9384 + 17.6944i 0.346771 + 0.560950i
\(996\) 0.957877 0.957877i 0.0303515 0.0303515i
\(997\) 8.75402 32.6705i 0.277243 1.03468i −0.677081 0.735909i \(-0.736755\pi\)
0.954324 0.298775i \(-0.0965781\pi\)
\(998\) 18.0035 4.82403i 0.569892 0.152702i
\(999\) −7.73273 + 2.07198i −0.244653 + 0.0655545i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.f.657.2 20
5.3 odd 4 845.2.o.e.488.2 20
13.2 odd 12 845.2.o.e.587.2 20
13.3 even 3 65.2.t.a.37.4 yes 20
13.4 even 6 845.2.f.d.437.4 20
13.5 odd 4 65.2.o.a.32.2 20
13.6 odd 12 845.2.k.e.577.7 20
13.7 odd 12 845.2.k.d.577.4 20
13.8 odd 4 845.2.o.g.357.4 20
13.9 even 3 845.2.f.e.437.7 20
13.10 even 6 845.2.t.g.427.2 20
13.11 odd 12 845.2.o.f.587.4 20
13.12 even 2 845.2.t.e.657.4 20
39.5 even 4 585.2.cf.a.487.4 20
39.29 odd 6 585.2.dp.a.37.2 20
65.3 odd 12 65.2.o.a.63.2 yes 20
65.8 even 4 845.2.t.g.188.2 20
65.18 even 4 65.2.t.a.58.4 yes 20
65.23 odd 12 845.2.o.g.258.4 20
65.28 even 12 inner 845.2.t.f.418.2 20
65.29 even 6 325.2.x.b.232.2 20
65.33 even 12 845.2.f.d.408.7 20
65.38 odd 4 845.2.o.f.488.4 20
65.42 odd 12 325.2.s.b.193.4 20
65.43 odd 12 845.2.k.d.268.4 20
65.44 odd 4 325.2.s.b.32.4 20
65.48 odd 12 845.2.k.e.268.7 20
65.57 even 4 325.2.x.b.318.2 20
65.58 even 12 845.2.f.e.408.4 20
65.63 even 12 845.2.t.e.418.4 20
195.68 even 12 585.2.cf.a.388.4 20
195.83 odd 4 585.2.dp.a.253.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.2 20 13.5 odd 4
65.2.o.a.63.2 yes 20 65.3 odd 12
65.2.t.a.37.4 yes 20 13.3 even 3
65.2.t.a.58.4 yes 20 65.18 even 4
325.2.s.b.32.4 20 65.44 odd 4
325.2.s.b.193.4 20 65.42 odd 12
325.2.x.b.232.2 20 65.29 even 6
325.2.x.b.318.2 20 65.57 even 4
585.2.cf.a.388.4 20 195.68 even 12
585.2.cf.a.487.4 20 39.5 even 4
585.2.dp.a.37.2 20 39.29 odd 6
585.2.dp.a.253.2 20 195.83 odd 4
845.2.f.d.408.7 20 65.33 even 12
845.2.f.d.437.4 20 13.4 even 6
845.2.f.e.408.4 20 65.58 even 12
845.2.f.e.437.7 20 13.9 even 3
845.2.k.d.268.4 20 65.43 odd 12
845.2.k.d.577.4 20 13.7 odd 12
845.2.k.e.268.7 20 65.48 odd 12
845.2.k.e.577.7 20 13.6 odd 12
845.2.o.e.488.2 20 5.3 odd 4
845.2.o.e.587.2 20 13.2 odd 12
845.2.o.f.488.4 20 65.38 odd 4
845.2.o.f.587.4 20 13.11 odd 12
845.2.o.g.258.4 20 65.23 odd 12
845.2.o.g.357.4 20 13.8 odd 4
845.2.t.e.418.4 20 65.63 even 12
845.2.t.e.657.4 20 13.12 even 2
845.2.t.f.418.2 20 65.28 even 12 inner
845.2.t.f.657.2 20 1.1 even 1 trivial
845.2.t.g.188.2 20 65.8 even 4
845.2.t.g.427.2 20 13.10 even 6