Properties

Label 850.2.s.b.57.2
Level $850$
Weight $2$
Character 850.57
Analytic conductor $6.787$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(7,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.s (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(3\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 57.2
Character \(\chi\) \(=\) 850.57
Dual form 850.2.s.b.343.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.382683 - 0.923880i) q^{2} +(0.828527 - 1.23998i) q^{3} +(-0.707107 + 0.707107i) q^{4} +(-1.46265 - 0.290940i) q^{6} +(0.683252 - 3.43494i) q^{7} +(0.923880 + 0.382683i) q^{8} +(0.296960 + 0.716925i) q^{9} +(0.279207 - 1.40367i) q^{11} +(0.290940 + 1.46265i) q^{12} -0.687320i q^{13} +(-3.43494 + 0.683252i) q^{14} -1.00000i q^{16} +(1.10961 - 3.97099i) q^{17} +(0.548711 - 0.548711i) q^{18} +(-0.0862003 + 0.208106i) q^{19} +(-3.69316 - 3.69316i) q^{21} +(-1.40367 + 0.279207i) q^{22} +(-0.536616 + 0.358556i) q^{23} +(1.23998 - 0.828527i) q^{24} +(-0.635001 + 0.263026i) q^{26} +(5.52298 + 1.09859i) q^{27} +(1.94574 + 2.91200i) q^{28} +(-3.16366 + 4.73475i) q^{29} +(-2.14661 - 10.7917i) q^{31} +(-0.923880 + 0.382683i) q^{32} +(-1.50919 - 1.50919i) q^{33} +(-4.09335 + 0.494483i) q^{34} +(-0.716925 - 0.296960i) q^{36} +(-0.351736 - 0.235023i) q^{37} +0.225252 q^{38} +(-0.852262 - 0.569463i) q^{39} +(-1.49783 - 2.24166i) q^{41} +(-1.99872 + 4.82535i) q^{42} +(-1.23847 + 2.98993i) q^{43} +(0.795115 + 1.18997i) q^{44} +(0.536616 + 0.358556i) q^{46} -4.97288 q^{47} +(-1.23998 - 0.828527i) q^{48} +(-4.86483 - 2.01508i) q^{49} +(-4.00460 - 4.66597i) q^{51} +(0.486008 + 0.486008i) q^{52} +(2.60552 - 1.07924i) q^{53} +(-1.09859 - 5.52298i) q^{54} +(1.94574 - 2.91200i) q^{56} +(0.186628 + 0.279308i) q^{57} +(5.58502 + 1.11093i) q^{58} +(2.73373 - 1.13235i) q^{59} +(-11.0227 + 7.36516i) q^{61} +(-9.14879 + 6.11303i) q^{62} +(2.66550 - 0.530200i) q^{63} +(0.707107 + 0.707107i) q^{64} +(-0.816768 + 1.97185i) q^{66} +(5.28482 - 5.28482i) q^{67} +(2.02330 + 3.59253i) q^{68} +0.962466i q^{69} +(10.6099 - 2.11045i) q^{71} +0.775994i q^{72} +(-1.91332 - 9.61892i) q^{73} +(-0.0825290 + 0.414901i) q^{74} +(-0.0862003 - 0.208106i) q^{76} +(-4.63076 - 1.91812i) q^{77} +(-0.199969 + 1.00531i) q^{78} +(1.79628 + 0.357303i) q^{79} +(4.29203 - 4.29203i) q^{81} +(-1.49783 + 2.24166i) q^{82} +(0.978574 + 2.36249i) q^{83} +5.22292 q^{84} +3.23628 q^{86} +(3.24981 + 7.84575i) q^{87} +(0.795115 - 1.18997i) q^{88} +(-9.75720 + 9.75720i) q^{89} +(-2.36090 - 0.469613i) q^{91} +(0.125908 - 0.632982i) q^{92} +(-15.1601 - 6.27950i) q^{93} +(1.90304 + 4.59434i) q^{94} +(-0.290940 + 1.46265i) q^{96} +(1.72004 + 8.64723i) q^{97} +5.26566i q^{98} +(1.08924 - 0.216663i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{3} - 16 q^{7} - 8 q^{9} - 16 q^{18} - 8 q^{22} - 32 q^{23} + 8 q^{27} - 16 q^{29} + 16 q^{31} + 8 q^{33} + 16 q^{34} + 48 q^{37} - 32 q^{39} + 48 q^{41} + 16 q^{42} - 8 q^{43} + 16 q^{44} + 32 q^{46}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.382683 0.923880i −0.270598 0.653281i
\(3\) 0.828527 1.23998i 0.478351 0.715902i −0.511300 0.859402i \(-0.670836\pi\)
0.989650 + 0.143500i \(0.0458358\pi\)
\(4\) −0.707107 + 0.707107i −0.353553 + 0.353553i
\(5\) 0 0
\(6\) −1.46265 0.290940i −0.597126 0.118776i
\(7\) 0.683252 3.43494i 0.258245 1.29829i −0.606101 0.795388i \(-0.707267\pi\)
0.864346 0.502898i \(-0.167733\pi\)
\(8\) 0.923880 + 0.382683i 0.326641 + 0.135299i
\(9\) 0.296960 + 0.716925i 0.0989867 + 0.238975i
\(10\) 0 0
\(11\) 0.279207 1.40367i 0.0841842 0.423222i −0.915593 0.402107i \(-0.868278\pi\)
0.999777 0.0211159i \(-0.00672189\pi\)
\(12\) 0.290940 + 1.46265i 0.0839872 + 0.422232i
\(13\) 0.687320i 0.190628i −0.995447 0.0953141i \(-0.969614\pi\)
0.995447 0.0953141i \(-0.0303855\pi\)
\(14\) −3.43494 + 0.683252i −0.918027 + 0.182607i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) 1.10961 3.97099i 0.269121 0.963106i
\(18\) 0.548711 0.548711i 0.129332 0.129332i
\(19\) −0.0862003 + 0.208106i −0.0197757 + 0.0477428i −0.933459 0.358684i \(-0.883225\pi\)
0.913683 + 0.406427i \(0.133225\pi\)
\(20\) 0 0
\(21\) −3.69316 3.69316i −0.805914 0.805914i
\(22\) −1.40367 + 0.279207i −0.299263 + 0.0595272i
\(23\) −0.536616 + 0.358556i −0.111892 + 0.0747640i −0.610257 0.792203i \(-0.708934\pi\)
0.498365 + 0.866967i \(0.333934\pi\)
\(24\) 1.23998 0.828527i 0.253110 0.169122i
\(25\) 0 0
\(26\) −0.635001 + 0.263026i −0.124534 + 0.0515836i
\(27\) 5.52298 + 1.09859i 1.06290 + 0.211423i
\(28\) 1.94574 + 2.91200i 0.367710 + 0.550317i
\(29\) −3.16366 + 4.73475i −0.587477 + 0.879222i −0.999489 0.0319568i \(-0.989826\pi\)
0.412012 + 0.911178i \(0.364826\pi\)
\(30\) 0 0
\(31\) −2.14661 10.7917i −0.385542 1.93825i −0.343548 0.939135i \(-0.611629\pi\)
−0.0419943 0.999118i \(-0.513371\pi\)
\(32\) −0.923880 + 0.382683i −0.163320 + 0.0676495i
\(33\) −1.50919 1.50919i −0.262716 0.262716i
\(34\) −4.09335 + 0.494483i −0.702003 + 0.0848032i
\(35\) 0 0
\(36\) −0.716925 0.296960i −0.119488 0.0494934i
\(37\) −0.351736 0.235023i −0.0578251 0.0386375i 0.526322 0.850286i \(-0.323571\pi\)
−0.584147 + 0.811648i \(0.698571\pi\)
\(38\) 0.225252 0.0365408
\(39\) −0.852262 0.569463i −0.136471 0.0911871i
\(40\) 0 0
\(41\) −1.49783 2.24166i −0.233922 0.350089i 0.695874 0.718164i \(-0.255017\pi\)
−0.929796 + 0.368075i \(0.880017\pi\)
\(42\) −1.99872 + 4.82535i −0.308410 + 0.744568i
\(43\) −1.23847 + 2.98993i −0.188865 + 0.455960i −0.989742 0.142869i \(-0.954367\pi\)
0.800877 + 0.598829i \(0.204367\pi\)
\(44\) 0.795115 + 1.18997i 0.119868 + 0.179395i
\(45\) 0 0
\(46\) 0.536616 + 0.358556i 0.0791198 + 0.0528661i
\(47\) −4.97288 −0.725369 −0.362685 0.931912i \(-0.618140\pi\)
−0.362685 + 0.931912i \(0.618140\pi\)
\(48\) −1.23998 0.828527i −0.178976 0.119588i
\(49\) −4.86483 2.01508i −0.694976 0.287869i
\(50\) 0 0
\(51\) −4.00460 4.66597i −0.560756 0.653367i
\(52\) 0.486008 + 0.486008i 0.0673973 + 0.0673973i
\(53\) 2.60552 1.07924i 0.357896 0.148245i −0.196488 0.980506i \(-0.562954\pi\)
0.554384 + 0.832261i \(0.312954\pi\)
\(54\) −1.09859 5.52298i −0.149499 0.751582i
\(55\) 0 0
\(56\) 1.94574 2.91200i 0.260010 0.389133i
\(57\) 0.186628 + 0.279308i 0.0247195 + 0.0369953i
\(58\) 5.58502 + 1.11093i 0.733349 + 0.145872i
\(59\) 2.73373 1.13235i 0.355902 0.147419i −0.197567 0.980289i \(-0.563304\pi\)
0.553468 + 0.832870i \(0.313304\pi\)
\(60\) 0 0
\(61\) −11.0227 + 7.36516i −1.41132 + 0.943012i −0.411821 + 0.911265i \(0.635107\pi\)
−0.999496 + 0.0317466i \(0.989893\pi\)
\(62\) −9.14879 + 6.11303i −1.16190 + 0.776355i
\(63\) 2.66550 0.530200i 0.335821 0.0667989i
\(64\) 0.707107 + 0.707107i 0.0883883 + 0.0883883i
\(65\) 0 0
\(66\) −0.816768 + 1.97185i −0.100537 + 0.242718i
\(67\) 5.28482 5.28482i 0.645644 0.645644i −0.306293 0.951937i \(-0.599089\pi\)
0.951937 + 0.306293i \(0.0990888\pi\)
\(68\) 2.02330 + 3.59253i 0.245361 + 0.435658i
\(69\) 0.962466i 0.115867i
\(70\) 0 0
\(71\) 10.6099 2.11045i 1.25917 0.250464i 0.479995 0.877271i \(-0.340639\pi\)
0.779174 + 0.626807i \(0.215639\pi\)
\(72\) 0.775994i 0.0914518i
\(73\) −1.91332 9.61892i −0.223937 1.12581i −0.915136 0.403145i \(-0.867917\pi\)
0.691199 0.722665i \(-0.257083\pi\)
\(74\) −0.0825290 + 0.414901i −0.00959380 + 0.0482313i
\(75\) 0 0
\(76\) −0.0862003 0.208106i −0.00988786 0.0238714i
\(77\) −4.63076 1.91812i −0.527724 0.218590i
\(78\) −0.199969 + 1.00531i −0.0226420 + 0.113829i
\(79\) 1.79628 + 0.357303i 0.202098 + 0.0401997i 0.295101 0.955466i \(-0.404647\pi\)
−0.0930034 + 0.995666i \(0.529647\pi\)
\(80\) 0 0
\(81\) 4.29203 4.29203i 0.476892 0.476892i
\(82\) −1.49783 + 2.24166i −0.165408 + 0.247550i
\(83\) 0.978574 + 2.36249i 0.107412 + 0.259317i 0.968442 0.249238i \(-0.0801801\pi\)
−0.861030 + 0.508554i \(0.830180\pi\)
\(84\) 5.22292 0.569867
\(85\) 0 0
\(86\) 3.23628 0.348977
\(87\) 3.24981 + 7.84575i 0.348417 + 0.841152i
\(88\) 0.795115 1.18997i 0.0847596 0.126852i
\(89\) −9.75720 + 9.75720i −1.03426 + 1.03426i −0.0348693 + 0.999392i \(0.511101\pi\)
−0.999392 + 0.0348693i \(0.988899\pi\)
\(90\) 0 0
\(91\) −2.36090 0.469613i −0.247490 0.0492288i
\(92\) 0.125908 0.632982i 0.0131268 0.0659929i
\(93\) −15.1601 6.27950i −1.57202 0.651154i
\(94\) 1.90304 + 4.59434i 0.196284 + 0.473870i
\(95\) 0 0
\(96\) −0.290940 + 1.46265i −0.0296940 + 0.149282i
\(97\) 1.72004 + 8.64723i 0.174644 + 0.877993i 0.964375 + 0.264540i \(0.0852200\pi\)
−0.789731 + 0.613453i \(0.789780\pi\)
\(98\) 5.26566i 0.531912i
\(99\) 1.08924 0.216663i 0.109473 0.0217755i
\(100\) 0 0
\(101\) 13.2302i 1.31645i 0.752820 + 0.658226i \(0.228693\pi\)
−0.752820 + 0.658226i \(0.771307\pi\)
\(102\) −2.77830 + 5.48536i −0.275093 + 0.543131i
\(103\) −12.8336 + 12.8336i −1.26454 + 1.26454i −0.315665 + 0.948871i \(0.602227\pi\)
−0.948871 + 0.315665i \(0.897773\pi\)
\(104\) 0.263026 0.635001i 0.0257918 0.0622669i
\(105\) 0 0
\(106\) −1.99418 1.99418i −0.193692 0.193692i
\(107\) 14.2388 2.83228i 1.37652 0.273807i 0.549273 0.835643i \(-0.314905\pi\)
0.827249 + 0.561836i \(0.189905\pi\)
\(108\) −4.68215 + 3.12852i −0.450540 + 0.301042i
\(109\) 10.7548 7.18615i 1.03013 0.688308i 0.0789251 0.996881i \(-0.474851\pi\)
0.951201 + 0.308572i \(0.0998512\pi\)
\(110\) 0 0
\(111\) −0.582846 + 0.241423i −0.0553213 + 0.0229148i
\(112\) −3.43494 0.683252i −0.324571 0.0645613i
\(113\) −1.67335 2.50435i −0.157416 0.235589i 0.744376 0.667761i \(-0.232747\pi\)
−0.901791 + 0.432172i \(0.857747\pi\)
\(114\) 0.186628 0.279308i 0.0174793 0.0261596i
\(115\) 0 0
\(116\) −1.11093 5.58502i −0.103147 0.518556i
\(117\) 0.492757 0.204107i 0.0455554 0.0188697i
\(118\) −2.09231 2.09231i −0.192613 0.192613i
\(119\) −12.8820 6.52464i −1.18089 0.598113i
\(120\) 0 0
\(121\) 8.27034 + 3.42569i 0.751849 + 0.311426i
\(122\) 11.0227 + 7.36516i 0.997951 + 0.666810i
\(123\) −4.02061 −0.362526
\(124\) 9.14879 + 6.11303i 0.821586 + 0.548966i
\(125\) 0 0
\(126\) −1.50988 2.25970i −0.134511 0.201310i
\(127\) 4.77400 11.5255i 0.423624 1.02272i −0.557645 0.830079i \(-0.688295\pi\)
0.981270 0.192640i \(-0.0617049\pi\)
\(128\) 0.382683 0.923880i 0.0338248 0.0816602i
\(129\) 2.68135 + 4.01292i 0.236079 + 0.353318i
\(130\) 0 0
\(131\) 16.3126 + 10.8997i 1.42524 + 0.952314i 0.998858 + 0.0477705i \(0.0152116\pi\)
0.426381 + 0.904544i \(0.359788\pi\)
\(132\) 2.13432 0.185769
\(133\) 0.655936 + 0.438282i 0.0568768 + 0.0380039i
\(134\) −6.90495 2.86013i −0.596497 0.247077i
\(135\) 0 0
\(136\) 2.54478 3.24409i 0.218213 0.278178i
\(137\) −5.01618 5.01618i −0.428561 0.428561i 0.459577 0.888138i \(-0.348001\pi\)
−0.888138 + 0.459577i \(0.848001\pi\)
\(138\) 0.889203 0.368320i 0.0756940 0.0313535i
\(139\) −2.05197 10.3159i −0.174045 0.874986i −0.964827 0.262887i \(-0.915325\pi\)
0.790781 0.612099i \(-0.209675\pi\)
\(140\) 0 0
\(141\) −4.12017 + 6.16627i −0.346981 + 0.519294i
\(142\) −6.01005 8.99468i −0.504352 0.754817i
\(143\) −0.964770 0.191905i −0.0806781 0.0160479i
\(144\) 0.716925 0.296960i 0.0597438 0.0247467i
\(145\) 0 0
\(146\) −8.15453 + 5.44868i −0.674874 + 0.450936i
\(147\) −6.52931 + 4.36274i −0.538528 + 0.359833i
\(148\) 0.414901 0.0825290i 0.0341047 0.00678384i
\(149\) 3.74622 + 3.74622i 0.306902 + 0.306902i 0.843707 0.536804i \(-0.180369\pi\)
−0.536804 + 0.843707i \(0.680369\pi\)
\(150\) 0 0
\(151\) −4.01503 + 9.69314i −0.326738 + 0.788816i 0.672092 + 0.740468i \(0.265396\pi\)
−0.998831 + 0.0483488i \(0.984604\pi\)
\(152\) −0.159277 + 0.159277i −0.0129191 + 0.0129191i
\(153\) 3.17641 0.383716i 0.256798 0.0310216i
\(154\) 5.01229i 0.403902i
\(155\) 0 0
\(156\) 1.00531 0.199969i 0.0804894 0.0160103i
\(157\) 15.0303i 1.19955i −0.800170 0.599773i \(-0.795258\pi\)
0.800170 0.599773i \(-0.204742\pi\)
\(158\) −0.357303 1.79628i −0.0284255 0.142905i
\(159\) 0.820509 4.12498i 0.0650706 0.327132i
\(160\) 0 0
\(161\) 0.864973 + 2.08823i 0.0681694 + 0.164576i
\(162\) −5.60781 2.32283i −0.440591 0.182499i
\(163\) 2.92232 14.6915i 0.228894 1.15073i −0.679842 0.733358i \(-0.737952\pi\)
0.908736 0.417370i \(-0.137048\pi\)
\(164\) 2.64422 + 0.525968i 0.206479 + 0.0410712i
\(165\) 0 0
\(166\) 1.80817 1.80817i 0.140341 0.140341i
\(167\) 4.23161 6.33305i 0.327452 0.490066i −0.630818 0.775930i \(-0.717281\pi\)
0.958270 + 0.285865i \(0.0922807\pi\)
\(168\) −1.99872 4.82535i −0.154205 0.372284i
\(169\) 12.5276 0.963661
\(170\) 0 0
\(171\) −0.174795 −0.0133669
\(172\) −1.23847 2.98993i −0.0944324 0.227980i
\(173\) 10.0963 15.1101i 0.767606 1.14880i −0.217366 0.976090i \(-0.569747\pi\)
0.984972 0.172713i \(-0.0552534\pi\)
\(174\) 6.00487 6.00487i 0.455228 0.455228i
\(175\) 0 0
\(176\) −1.40367 0.279207i −0.105806 0.0210460i
\(177\) 0.860883 4.32795i 0.0647080 0.325309i
\(178\) 12.7484 + 5.28056i 0.955533 + 0.395795i
\(179\) 4.94606 + 11.9408i 0.369686 + 0.892501i 0.993802 + 0.111169i \(0.0354594\pi\)
−0.624116 + 0.781332i \(0.714541\pi\)
\(180\) 0 0
\(181\) −1.11267 + 5.59375i −0.0827039 + 0.415780i 0.917148 + 0.398548i \(0.130486\pi\)
−0.999852 + 0.0172328i \(0.994514\pi\)
\(182\) 0.469613 + 2.36090i 0.0348100 + 0.175002i
\(183\) 19.7702i 1.46145i
\(184\) −0.632982 + 0.125908i −0.0466641 + 0.00928206i
\(185\) 0 0
\(186\) 16.4091i 1.20318i
\(187\) −5.26415 2.66626i −0.384953 0.194976i
\(188\) 3.51636 3.51636i 0.256457 0.256457i
\(189\) 7.54717 18.2205i 0.548976 1.32535i
\(190\) 0 0
\(191\) 15.3527 + 15.3527i 1.11088 + 1.11088i 0.993032 + 0.117849i \(0.0375997\pi\)
0.117849 + 0.993032i \(0.462400\pi\)
\(192\) 1.46265 0.290940i 0.105558 0.0209968i
\(193\) −0.487981 + 0.326059i −0.0351257 + 0.0234702i −0.573009 0.819549i \(-0.694224\pi\)
0.537883 + 0.843019i \(0.319224\pi\)
\(194\) 7.33077 4.89826i 0.526318 0.351675i
\(195\) 0 0
\(196\) 4.86483 2.01508i 0.347488 0.143934i
\(197\) 17.4717 + 3.47533i 1.24481 + 0.247607i 0.773177 0.634190i \(-0.218666\pi\)
0.471629 + 0.881797i \(0.343666\pi\)
\(198\) −0.617005 0.923413i −0.0438486 0.0656241i
\(199\) 1.99127 2.98014i 0.141157 0.211256i −0.754154 0.656697i \(-0.771953\pi\)
0.895311 + 0.445441i \(0.146953\pi\)
\(200\) 0 0
\(201\) −2.17445 10.9317i −0.153374 0.771062i
\(202\) 12.2231 5.06297i 0.860014 0.356230i
\(203\) 14.1020 + 14.1020i 0.989768 + 0.989768i
\(204\) 6.13102 + 0.467660i 0.429257 + 0.0327428i
\(205\) 0 0
\(206\) 16.7680 + 6.94551i 1.16828 + 0.483917i
\(207\) −0.416411 0.278237i −0.0289426 0.0193388i
\(208\) −0.687320 −0.0476571
\(209\) 0.268044 + 0.179102i 0.0185410 + 0.0123887i
\(210\) 0 0
\(211\) 2.56243 + 3.83494i 0.176405 + 0.264008i 0.909127 0.416520i \(-0.136750\pi\)
−0.732722 + 0.680528i \(0.761750\pi\)
\(212\) −1.07924 + 2.60552i −0.0741227 + 0.178948i
\(213\) 6.17372 14.9047i 0.423016 1.02125i
\(214\) −8.06566 12.0711i −0.551357 0.825164i
\(215\) 0 0
\(216\) 4.68215 + 3.12852i 0.318580 + 0.212868i
\(217\) −38.5357 −2.61597
\(218\) −10.7548 7.18615i −0.728409 0.486707i
\(219\) −13.5125 5.59706i −0.913090 0.378214i
\(220\) 0 0
\(221\) −2.72934 0.762659i −0.183595 0.0513020i
\(222\) 0.446091 + 0.446091i 0.0299397 + 0.0299397i
\(223\) −9.20723 + 3.81376i −0.616562 + 0.255388i −0.669031 0.743234i \(-0.733291\pi\)
0.0524694 + 0.998623i \(0.483291\pi\)
\(224\) 0.683252 + 3.43494i 0.0456517 + 0.229507i
\(225\) 0 0
\(226\) −1.67335 + 2.50435i −0.111310 + 0.166587i
\(227\) 8.86159 + 13.2623i 0.588164 + 0.880250i 0.999512 0.0312282i \(-0.00994186\pi\)
−0.411348 + 0.911478i \(0.634942\pi\)
\(228\) −0.329466 0.0655350i −0.0218195 0.00434016i
\(229\) 26.3976 10.9342i 1.74440 0.722554i 0.746004 0.665941i \(-0.231970\pi\)
0.998396 0.0566131i \(-0.0180302\pi\)
\(230\) 0 0
\(231\) −6.21514 + 4.15282i −0.408926 + 0.273236i
\(232\) −4.73475 + 3.16366i −0.310852 + 0.207704i
\(233\) 23.3415 4.64291i 1.52915 0.304167i 0.642384 0.766383i \(-0.277945\pi\)
0.886768 + 0.462215i \(0.152945\pi\)
\(234\) −0.377140 0.377140i −0.0246544 0.0246544i
\(235\) 0 0
\(236\) −1.13235 + 2.73373i −0.0737096 + 0.177951i
\(237\) 1.93132 1.93132i 0.125453 0.125453i
\(238\) −1.09827 + 14.3983i −0.0711901 + 0.933301i
\(239\) 22.2129i 1.43683i 0.695614 + 0.718416i \(0.255132\pi\)
−0.695614 + 0.718416i \(0.744868\pi\)
\(240\) 0 0
\(241\) −8.55756 + 1.70220i −0.551241 + 0.109649i −0.462849 0.886437i \(-0.653173\pi\)
−0.0883919 + 0.996086i \(0.528173\pi\)
\(242\) 8.95175i 0.575440i
\(243\) 1.52980 + 7.69083i 0.0981369 + 0.493367i
\(244\) 2.58630 13.0022i 0.165571 0.832381i
\(245\) 0 0
\(246\) 1.53862 + 3.71456i 0.0980989 + 0.236832i
\(247\) 0.143035 + 0.0592472i 0.00910113 + 0.00376981i
\(248\) 2.14661 10.7917i 0.136310 0.685276i
\(249\) 3.74021 + 0.743974i 0.237026 + 0.0471474i
\(250\) 0 0
\(251\) −7.55862 + 7.55862i −0.477096 + 0.477096i −0.904202 0.427106i \(-0.859533\pi\)
0.427106 + 0.904202i \(0.359533\pi\)
\(252\) −1.50988 + 2.25970i −0.0951136 + 0.142348i
\(253\) 0.353466 + 0.853344i 0.0222222 + 0.0536493i
\(254\) −12.4751 −0.782755
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) 9.60595 + 23.1908i 0.599203 + 1.44660i 0.874395 + 0.485215i \(0.161259\pi\)
−0.275192 + 0.961389i \(0.588741\pi\)
\(258\) 2.68135 4.01292i 0.166933 0.249833i
\(259\) −1.04761 + 1.04761i −0.0650955 + 0.0650955i
\(260\) 0 0
\(261\) −4.33395 0.862075i −0.268264 0.0533611i
\(262\) 3.82748 19.2420i 0.236462 1.18878i
\(263\) 8.53235 + 3.53421i 0.526127 + 0.217929i 0.629906 0.776671i \(-0.283093\pi\)
−0.103779 + 0.994600i \(0.533093\pi\)
\(264\) −0.816768 1.97185i −0.0502686 0.121359i
\(265\) 0 0
\(266\) 0.153904 0.773729i 0.00943647 0.0474404i
\(267\) 4.01461 + 20.1828i 0.245690 + 1.23517i
\(268\) 7.47387i 0.456539i
\(269\) −3.39522 + 0.675351i −0.207010 + 0.0411768i −0.297506 0.954720i \(-0.596155\pi\)
0.0904959 + 0.995897i \(0.471155\pi\)
\(270\) 0 0
\(271\) 20.2345i 1.22916i −0.788855 0.614579i \(-0.789326\pi\)
0.788855 0.614579i \(-0.210674\pi\)
\(272\) −3.97099 1.10961i −0.240777 0.0672802i
\(273\) −2.53838 + 2.53838i −0.153630 + 0.153630i
\(274\) −2.71474 + 6.55395i −0.164003 + 0.395939i
\(275\) 0 0
\(276\) −0.680566 0.680566i −0.0409653 0.0409653i
\(277\) −19.6598 + 3.91058i −1.18124 + 0.234964i −0.746372 0.665529i \(-0.768206\pi\)
−0.434871 + 0.900493i \(0.643206\pi\)
\(278\) −8.74542 + 5.84350i −0.524515 + 0.350470i
\(279\) 7.09941 4.74367i 0.425031 0.283996i
\(280\) 0 0
\(281\) 20.1942 8.36471i 1.20468 0.498997i 0.312175 0.950025i \(-0.398942\pi\)
0.892510 + 0.451028i \(0.148942\pi\)
\(282\) 7.27361 + 1.44681i 0.433137 + 0.0861563i
\(283\) 11.1466 + 16.6821i 0.662600 + 0.991650i 0.998757 + 0.0498445i \(0.0158726\pi\)
−0.336157 + 0.941806i \(0.609127\pi\)
\(284\) −6.01005 + 8.99468i −0.356631 + 0.533736i
\(285\) 0 0
\(286\) 0.191905 + 0.964770i 0.0113476 + 0.0570481i
\(287\) −8.72338 + 3.61334i −0.514925 + 0.213289i
\(288\) −0.548711 0.548711i −0.0323331 0.0323331i
\(289\) −14.5375 8.81252i −0.855148 0.518384i
\(290\) 0 0
\(291\) 12.1475 + 5.03165i 0.712098 + 0.294961i
\(292\) 8.15453 + 5.44868i 0.477208 + 0.318860i
\(293\) −15.9816 −0.933653 −0.466826 0.884349i \(-0.654603\pi\)
−0.466826 + 0.884349i \(0.654603\pi\)
\(294\) 6.52931 + 4.36274i 0.380797 + 0.254440i
\(295\) 0 0
\(296\) −0.235023 0.351736i −0.0136604 0.0204443i
\(297\) 3.08411 7.44570i 0.178958 0.432044i
\(298\) 2.02744 4.89467i 0.117446 0.283541i
\(299\) 0.246442 + 0.368827i 0.0142521 + 0.0213298i
\(300\) 0 0
\(301\) 9.42405 + 6.29695i 0.543193 + 0.362950i
\(302\) 10.4918 0.603734
\(303\) 16.4052 + 10.9616i 0.942451 + 0.629726i
\(304\) 0.208106 + 0.0862003i 0.0119357 + 0.00494393i
\(305\) 0 0
\(306\) −1.57007 2.78778i −0.0897548 0.159367i
\(307\) 1.37631 + 1.37631i 0.0785503 + 0.0785503i 0.745290 0.666740i \(-0.232311\pi\)
−0.666740 + 0.745290i \(0.732311\pi\)
\(308\) 4.63076 1.91812i 0.263862 0.109295i
\(309\) 5.28042 + 26.5465i 0.300392 + 1.51018i
\(310\) 0 0
\(311\) −11.6826 + 17.4843i −0.662461 + 0.991442i 0.336304 + 0.941753i \(0.390823\pi\)
−0.998765 + 0.0496889i \(0.984177\pi\)
\(312\) −0.569463 0.852262i −0.0322395 0.0482498i
\(313\) −27.8535 5.54040i −1.57437 0.313162i −0.670813 0.741627i \(-0.734055\pi\)
−0.903559 + 0.428465i \(0.859055\pi\)
\(314\) −13.8862 + 5.75183i −0.783641 + 0.324595i
\(315\) 0 0
\(316\) −1.52281 + 1.01751i −0.0856650 + 0.0572395i
\(317\) −22.9967 + 15.3659i −1.29162 + 0.863035i −0.995741 0.0921896i \(-0.970613\pi\)
−0.295882 + 0.955225i \(0.595613\pi\)
\(318\) −4.12498 + 0.820509i −0.231317 + 0.0460119i
\(319\) 5.76271 + 5.76271i 0.322650 + 0.322650i
\(320\) 0 0
\(321\) 8.28531 20.0025i 0.462441 1.11643i
\(322\) 1.59826 1.59826i 0.0890676 0.0890676i
\(323\) 0.730738 + 0.573218i 0.0406593 + 0.0318947i
\(324\) 6.06985i 0.337214i
\(325\) 0 0
\(326\) −14.6915 + 2.92232i −0.813688 + 0.161853i
\(327\) 19.2897i 1.06672i
\(328\) −0.525968 2.64422i −0.0290418 0.146003i
\(329\) −3.39773 + 17.0816i −0.187323 + 0.941737i
\(330\) 0 0
\(331\) −13.1660 31.7855i −0.723668 1.74709i −0.662620 0.748955i \(-0.730556\pi\)
−0.0610482 0.998135i \(-0.519444\pi\)
\(332\) −2.36249 0.978574i −0.129658 0.0537062i
\(333\) 0.0640420 0.321961i 0.00350948 0.0176434i
\(334\) −7.47034 1.48594i −0.408759 0.0813072i
\(335\) 0 0
\(336\) −3.69316 + 3.69316i −0.201479 + 0.201479i
\(337\) −7.29265 + 10.9142i −0.397256 + 0.594536i −0.975142 0.221582i \(-0.928878\pi\)
0.577886 + 0.816118i \(0.303878\pi\)
\(338\) −4.79410 11.5740i −0.260765 0.629542i
\(339\) −4.49175 −0.243959
\(340\) 0 0
\(341\) −15.7474 −0.852769
\(342\) 0.0668910 + 0.161489i 0.00361705 + 0.00873233i
\(343\) 3.37457 5.05041i 0.182210 0.272696i
\(344\) −2.28839 + 2.28839i −0.123382 + 0.123382i
\(345\) 0 0
\(346\) −17.8236 3.54534i −0.958205 0.190599i
\(347\) 3.75756 18.8905i 0.201717 1.01410i −0.738690 0.674045i \(-0.764555\pi\)
0.940407 0.340052i \(-0.110445\pi\)
\(348\) −7.84575 3.24981i −0.420576 0.174208i
\(349\) −8.24203 19.8980i −0.441186 1.06512i −0.975533 0.219852i \(-0.929443\pi\)
0.534347 0.845265i \(-0.320557\pi\)
\(350\) 0 0
\(351\) 0.755082 3.79605i 0.0403033 0.202618i
\(352\) 0.279207 + 1.40367i 0.0148818 + 0.0748159i
\(353\) 7.84481i 0.417537i −0.977965 0.208768i \(-0.933054\pi\)
0.977965 0.208768i \(-0.0669455\pi\)
\(354\) −4.32795 + 0.860883i −0.230028 + 0.0457554i
\(355\) 0 0
\(356\) 13.7988i 0.731333i
\(357\) −18.7635 + 10.5675i −0.993069 + 0.559293i
\(358\) 9.13913 9.13913i 0.483018 0.483018i
\(359\) 4.46689 10.7840i 0.235753 0.569159i −0.761082 0.648656i \(-0.775331\pi\)
0.996835 + 0.0794970i \(0.0253314\pi\)
\(360\) 0 0
\(361\) 13.3992 + 13.3992i 0.705218 + 0.705218i
\(362\) 5.59375 1.11267i 0.294001 0.0584805i
\(363\) 11.1000 7.41677i 0.582598 0.389280i
\(364\) 2.00148 1.33734i 0.104906 0.0700959i
\(365\) 0 0
\(366\) 18.2653 7.56573i 0.954741 0.395467i
\(367\) 14.7935 + 2.94262i 0.772216 + 0.153603i 0.565445 0.824786i \(-0.308704\pi\)
0.206771 + 0.978389i \(0.433704\pi\)
\(368\) 0.358556 + 0.536616i 0.0186910 + 0.0279731i
\(369\) 1.16231 1.73952i 0.0605074 0.0905557i
\(370\) 0 0
\(371\) −1.92691 9.68722i −0.100040 0.502935i
\(372\) 15.1601 6.27950i 0.786012 0.325577i
\(373\) 0.0702693 + 0.0702693i 0.00363841 + 0.00363841i 0.708924 0.705285i \(-0.249181\pi\)
−0.705285 + 0.708924i \(0.749181\pi\)
\(374\) −0.448801 + 5.88377i −0.0232069 + 0.304243i
\(375\) 0 0
\(376\) −4.59434 1.90304i −0.236935 0.0981418i
\(377\) 3.25429 + 2.17445i 0.167604 + 0.111990i
\(378\) −19.7217 −1.01438
\(379\) 11.0779 + 7.40200i 0.569032 + 0.380215i 0.806548 0.591168i \(-0.201333\pi\)
−0.237516 + 0.971384i \(0.576333\pi\)
\(380\) 0 0
\(381\) −10.3359 15.4688i −0.529526 0.792492i
\(382\) 8.30880 20.0592i 0.425115 1.02632i
\(383\) −10.8760 + 26.2569i −0.555736 + 1.34167i 0.357377 + 0.933960i \(0.383671\pi\)
−0.913114 + 0.407705i \(0.866329\pi\)
\(384\) −0.828527 1.23998i −0.0422806 0.0632774i
\(385\) 0 0
\(386\) 0.487981 + 0.326059i 0.0248376 + 0.0165959i
\(387\) −2.51133 −0.127658
\(388\) −7.33077 4.89826i −0.372163 0.248672i
\(389\) −28.5749 11.8361i −1.44880 0.600115i −0.486890 0.873463i \(-0.661869\pi\)
−0.961915 + 0.273349i \(0.911869\pi\)
\(390\) 0 0
\(391\) 0.828384 + 2.52876i 0.0418932 + 0.127885i
\(392\) −3.72338 3.72338i −0.188059 0.188059i
\(393\) 27.0309 11.1966i 1.36353 0.564792i
\(394\) −3.47533 17.4717i −0.175085 0.880211i
\(395\) 0 0
\(396\) −0.617005 + 0.923413i −0.0310057 + 0.0464033i
\(397\) 3.98598 + 5.96544i 0.200051 + 0.299397i 0.917908 0.396793i \(-0.129877\pi\)
−0.717857 + 0.696190i \(0.754877\pi\)
\(398\) −3.51531 0.699239i −0.176207 0.0350497i
\(399\) 1.08692 0.450218i 0.0544141 0.0225391i
\(400\) 0 0
\(401\) 6.19658 4.14042i 0.309442 0.206763i −0.391146 0.920329i \(-0.627921\pi\)
0.700588 + 0.713566i \(0.252921\pi\)
\(402\) −9.26744 + 6.19231i −0.462218 + 0.308844i
\(403\) −7.41737 + 1.47541i −0.369486 + 0.0734953i
\(404\) −9.35515 9.35515i −0.465436 0.465436i
\(405\) 0 0
\(406\) 7.63196 18.4252i 0.378768 0.914426i
\(407\) −0.428102 + 0.428102i −0.0212202 + 0.0212202i
\(408\) −1.91418 5.84329i −0.0947659 0.289286i
\(409\) 18.1578i 0.897847i 0.893570 + 0.448924i \(0.148192\pi\)
−0.893570 + 0.448924i \(0.851808\pi\)
\(410\) 0 0
\(411\) −10.3760 + 2.06391i −0.511810 + 0.101805i
\(412\) 18.1495i 0.894162i
\(413\) −2.02172 10.1639i −0.0994825 0.500132i
\(414\) −0.0977039 + 0.491190i −0.00480188 + 0.0241407i
\(415\) 0 0
\(416\) 0.263026 + 0.635001i 0.0128959 + 0.0311335i
\(417\) −14.4916 6.00263i −0.709659 0.293950i
\(418\) 0.0628921 0.316180i 0.00307615 0.0154649i
\(419\) −5.30674 1.05558i −0.259251 0.0515683i 0.0637533 0.997966i \(-0.479693\pi\)
−0.323005 + 0.946397i \(0.604693\pi\)
\(420\) 0 0
\(421\) 12.5830 12.5830i 0.613260 0.613260i −0.330534 0.943794i \(-0.607229\pi\)
0.943794 + 0.330534i \(0.107229\pi\)
\(422\) 2.56243 3.83494i 0.124737 0.186682i
\(423\) −1.47675 3.56518i −0.0718019 0.173345i
\(424\) 2.82020 0.136961
\(425\) 0 0
\(426\) −16.1327 −0.781632
\(427\) 17.7676 + 42.8947i 0.859833 + 2.07582i
\(428\) −8.06566 + 12.0711i −0.389868 + 0.583479i
\(429\) −1.03730 + 1.03730i −0.0500811 + 0.0500811i
\(430\) 0 0
\(431\) −10.0155 1.99220i −0.482429 0.0959611i −0.0521163 0.998641i \(-0.516597\pi\)
−0.430313 + 0.902680i \(0.641597\pi\)
\(432\) 1.09859 5.52298i 0.0528559 0.265724i
\(433\) −32.2019 13.3385i −1.54752 0.641006i −0.564658 0.825325i \(-0.690992\pi\)
−0.982867 + 0.184319i \(0.940992\pi\)
\(434\) 14.7470 + 35.6023i 0.707877 + 1.70897i
\(435\) 0 0
\(436\) −2.52344 + 12.6862i −0.120851 + 0.607558i
\(437\) −0.0283611 0.142581i −0.00135669 0.00682056i
\(438\) 14.6258i 0.698849i
\(439\) 2.63978 0.525084i 0.125990 0.0250609i −0.131693 0.991291i \(-0.542041\pi\)
0.257682 + 0.966230i \(0.417041\pi\)
\(440\) 0 0
\(441\) 4.08612i 0.194577i
\(442\) 0.339868 + 2.81344i 0.0161659 + 0.133822i
\(443\) −21.5344 + 21.5344i −1.02313 + 1.02313i −0.0234065 + 0.999726i \(0.507451\pi\)
−0.999726 + 0.0234065i \(0.992549\pi\)
\(444\) 0.241423 0.582846i 0.0114574 0.0276607i
\(445\) 0 0
\(446\) 7.04691 + 7.04691i 0.333681 + 0.333681i
\(447\) 7.74908 1.54139i 0.366519 0.0729052i
\(448\) 2.91200 1.94574i 0.137579 0.0919275i
\(449\) −21.9479 + 14.6651i −1.03578 + 0.692089i −0.952532 0.304440i \(-0.901531\pi\)
−0.0832522 + 0.996529i \(0.526531\pi\)
\(450\) 0 0
\(451\) −3.56476 + 1.47657i −0.167858 + 0.0695291i
\(452\) 2.95408 + 0.587603i 0.138948 + 0.0276385i
\(453\) 8.69273 + 13.0096i 0.408420 + 0.611244i
\(454\) 8.86159 13.2623i 0.415895 0.622431i
\(455\) 0 0
\(456\) 0.0655350 + 0.329466i 0.00306896 + 0.0154287i
\(457\) 23.6859 9.81102i 1.10798 0.458940i 0.247738 0.968827i \(-0.420313\pi\)
0.860241 + 0.509887i \(0.170313\pi\)
\(458\) −20.2038 20.2038i −0.944063 0.944063i
\(459\) 10.4908 20.7127i 0.489671 0.966785i
\(460\) 0 0
\(461\) −12.3509 5.11592i −0.575240 0.238272i 0.0760463 0.997104i \(-0.475770\pi\)
−0.651286 + 0.758832i \(0.725770\pi\)
\(462\) 6.21514 + 4.15282i 0.289154 + 0.193207i
\(463\) −32.8821 −1.52816 −0.764081 0.645121i \(-0.776807\pi\)
−0.764081 + 0.645121i \(0.776807\pi\)
\(464\) 4.73475 + 3.16366i 0.219805 + 0.146869i
\(465\) 0 0
\(466\) −13.2219 19.7880i −0.612492 0.916660i
\(467\) −1.83229 + 4.42354i −0.0847883 + 0.204697i −0.960587 0.277979i \(-0.910335\pi\)
0.875799 + 0.482676i \(0.160335\pi\)
\(468\) −0.204107 + 0.492757i −0.00943483 + 0.0227777i
\(469\) −14.5422 21.7639i −0.671496 1.00496i
\(470\) 0 0
\(471\) −18.6372 12.4530i −0.858758 0.573803i
\(472\) 2.95897 0.136198
\(473\) 3.85109 + 2.57321i 0.177073 + 0.118317i
\(474\) −2.52339 1.04522i −0.115903 0.0480086i
\(475\) 0 0
\(476\) 13.7225 4.49531i 0.628972 0.206042i
\(477\) 1.54747 + 1.54747i 0.0708540 + 0.0708540i
\(478\) 20.5220 8.50050i 0.938655 0.388804i
\(479\) 6.42297 + 32.2905i 0.293473 + 1.47539i 0.793070 + 0.609130i \(0.208481\pi\)
−0.499597 + 0.866258i \(0.666519\pi\)
\(480\) 0 0
\(481\) −0.161536 + 0.241755i −0.00736539 + 0.0110231i
\(482\) 4.84747 + 7.25475i 0.220796 + 0.330445i
\(483\) 3.30601 + 0.657607i 0.150429 + 0.0299222i
\(484\) −8.27034 + 3.42569i −0.375925 + 0.155713i
\(485\) 0 0
\(486\) 6.51997 4.35651i 0.295752 0.197615i
\(487\) −25.2701 + 16.8849i −1.14510 + 0.765130i −0.975417 0.220369i \(-0.929274\pi\)
−0.169681 + 0.985499i \(0.554274\pi\)
\(488\) −13.0022 + 2.58630i −0.588582 + 0.117076i
\(489\) −15.7959 15.7959i −0.714318 0.714318i
\(490\) 0 0
\(491\) 6.24928 15.0871i 0.282026 0.680871i −0.717857 0.696191i \(-0.754877\pi\)
0.999883 + 0.0153199i \(0.00487666\pi\)
\(492\) 2.84300 2.84300i 0.128172 0.128172i
\(493\) 15.2912 + 17.8166i 0.688682 + 0.802420i
\(494\) 0.154820i 0.00696570i
\(495\) 0 0
\(496\) −10.7917 + 2.14661i −0.484563 + 0.0963856i
\(497\) 37.8865i 1.69944i
\(498\) −0.743974 3.74021i −0.0333383 0.167603i
\(499\) −4.87821 + 24.5244i −0.218379 + 1.09786i 0.703592 + 0.710604i \(0.251578\pi\)
−0.921971 + 0.387260i \(0.873422\pi\)
\(500\) 0 0
\(501\) −4.34684 10.4942i −0.194203 0.468847i
\(502\) 9.87582 + 4.09070i 0.440779 + 0.182577i
\(503\) 0.843653 4.24133i 0.0376166 0.189111i −0.957408 0.288737i \(-0.906765\pi\)
0.995025 + 0.0996258i \(0.0317646\pi\)
\(504\) 2.66550 + 0.530200i 0.118731 + 0.0236170i
\(505\) 0 0
\(506\) 0.653121 0.653121i 0.0290348 0.0290348i
\(507\) 10.3795 15.5340i 0.460968 0.689887i
\(508\) 4.77400 + 11.5255i 0.211812 + 0.511360i
\(509\) −14.6760 −0.650503 −0.325251 0.945628i \(-0.605449\pi\)
−0.325251 + 0.945628i \(0.605449\pi\)
\(510\) 0 0
\(511\) −34.3477 −1.51945
\(512\) 0.382683 + 0.923880i 0.0169124 + 0.0408301i
\(513\) −0.704705 + 1.05467i −0.0311135 + 0.0465646i
\(514\) 17.7495 17.7495i 0.782896 0.782896i
\(515\) 0 0
\(516\) −4.73356 0.941563i −0.208383 0.0414500i
\(517\) −1.38847 + 6.98029i −0.0610646 + 0.306993i
\(518\) 1.36877 + 0.566964i 0.0601404 + 0.0249110i
\(519\) −10.3712 25.0383i −0.455246 1.09906i
\(520\) 0 0
\(521\) −1.76990 + 8.89788i −0.0775406 + 0.389823i 0.922452 + 0.386111i \(0.126182\pi\)
−0.999993 + 0.00371240i \(0.998818\pi\)
\(522\) 0.862075 + 4.33395i 0.0377320 + 0.189692i
\(523\) 7.38904i 0.323100i −0.986865 0.161550i \(-0.948351\pi\)
0.986865 0.161550i \(-0.0516494\pi\)
\(524\) −19.2420 + 3.82748i −0.840592 + 0.167204i
\(525\) 0 0
\(526\) 9.23535i 0.402680i
\(527\) −45.2358 3.45048i −1.97050 0.150305i
\(528\) −1.50919 + 1.50919i −0.0656791 + 0.0656791i
\(529\) −8.64232 + 20.8644i −0.375753 + 0.907149i
\(530\) 0 0
\(531\) 1.62362 + 1.62362i 0.0704591 + 0.0704591i
\(532\) −0.773729 + 0.153904i −0.0335454 + 0.00667259i
\(533\) −1.54074 + 1.02949i −0.0667368 + 0.0445921i
\(534\) 17.1102 11.4327i 0.740430 0.494739i
\(535\) 0 0
\(536\) 6.90495 2.86013i 0.298249 0.123539i
\(537\) 18.9043 + 3.76031i 0.815783 + 0.162269i
\(538\) 1.92324 + 2.87833i 0.0829166 + 0.124093i
\(539\) −4.18681 + 6.26600i −0.180338 + 0.269896i
\(540\) 0 0
\(541\) −1.09529 5.50641i −0.0470904 0.236739i 0.950071 0.312034i \(-0.101010\pi\)
−0.997161 + 0.0752947i \(0.976010\pi\)
\(542\) −18.6942 + 7.74341i −0.802986 + 0.332608i
\(543\) 6.01426 + 6.01426i 0.258097 + 0.258097i
\(544\) 0.494483 + 4.09335i 0.0212008 + 0.175501i
\(545\) 0 0
\(546\) 3.31656 + 1.37376i 0.141936 + 0.0587916i
\(547\) 30.7977 + 20.5784i 1.31682 + 0.879868i 0.997696 0.0678469i \(-0.0216129\pi\)
0.319119 + 0.947715i \(0.396613\pi\)
\(548\) 7.09395 0.303038
\(549\) −8.55358 5.71532i −0.365058 0.243924i
\(550\) 0 0
\(551\) −0.712622 1.06651i −0.0303587 0.0454350i
\(552\) −0.368320 + 0.889203i −0.0156767 + 0.0378470i
\(553\) 2.45463 5.92600i 0.104381 0.251999i
\(554\) 11.1364 + 16.6668i 0.473140 + 0.708104i
\(555\) 0 0
\(556\) 8.74542 + 5.84350i 0.370888 + 0.247820i
\(557\) −31.1211 −1.31864 −0.659321 0.751862i \(-0.729156\pi\)
−0.659321 + 0.751862i \(0.729156\pi\)
\(558\) −7.09941 4.74367i −0.300542 0.200816i
\(559\) 2.05504 + 0.851225i 0.0869189 + 0.0360030i
\(560\) 0 0
\(561\) −7.66760 + 4.31836i −0.323726 + 0.182321i
\(562\) −15.4560 15.4560i −0.651971 0.651971i
\(563\) 28.6912 11.8843i 1.20919 0.500863i 0.315233 0.949014i \(-0.397917\pi\)
0.893958 + 0.448151i \(0.147917\pi\)
\(564\) −1.44681 7.27361i −0.0609217 0.306274i
\(565\) 0 0
\(566\) 11.1466 16.6821i 0.468529 0.701203i
\(567\) −11.8103 17.6754i −0.495988 0.742298i
\(568\) 10.6099 + 2.11045i 0.445183 + 0.0885525i
\(569\) −2.92191 + 1.21029i −0.122493 + 0.0507381i −0.443088 0.896478i \(-0.646117\pi\)
0.320595 + 0.947216i \(0.396117\pi\)
\(570\) 0 0
\(571\) −1.63933 + 1.09537i −0.0686039 + 0.0458397i −0.589399 0.807842i \(-0.700635\pi\)
0.520795 + 0.853682i \(0.325635\pi\)
\(572\) 0.817893 0.546498i 0.0341978 0.0228502i
\(573\) 31.7571 6.31688i 1.32667 0.263891i
\(574\) 6.67659 + 6.67659i 0.278675 + 0.278675i
\(575\) 0 0
\(576\) −0.296960 + 0.716925i −0.0123733 + 0.0298719i
\(577\) −23.0553 + 23.0553i −0.959807 + 0.959807i −0.999223 0.0394163i \(-0.987450\pi\)
0.0394163 + 0.999223i \(0.487450\pi\)
\(578\) −2.57844 + 16.8033i −0.107249 + 0.698926i
\(579\) 0.875235i 0.0363735i
\(580\) 0 0
\(581\) 8.78362 1.74717i 0.364406 0.0724848i
\(582\) 13.1483i 0.545016i
\(583\) −0.787420 3.95863i −0.0326116 0.163950i
\(584\) 1.91332 9.61892i 0.0791739 0.398034i
\(585\) 0 0
\(586\) 6.11588 + 14.7650i 0.252645 + 0.609938i
\(587\) 28.4598 + 11.7884i 1.17466 + 0.486560i 0.882731 0.469879i \(-0.155703\pi\)
0.291930 + 0.956440i \(0.405703\pi\)
\(588\) 1.53199 7.70184i 0.0631783 0.317619i
\(589\) 2.43086 + 0.483529i 0.100162 + 0.0199235i
\(590\) 0 0
\(591\) 18.7851 18.7851i 0.772716 0.772716i
\(592\) −0.235023 + 0.351736i −0.00965937 + 0.0144563i
\(593\) −2.88902 6.97472i −0.118638 0.286417i 0.853394 0.521267i \(-0.174540\pi\)
−0.972032 + 0.234849i \(0.924540\pi\)
\(594\) −8.05917 −0.330672
\(595\) 0 0
\(596\) −5.29796 −0.217013
\(597\) −2.04549 4.93825i −0.0837164 0.202109i
\(598\) 0.246442 0.368827i 0.0100778 0.0150825i
\(599\) 0.148385 0.148385i 0.00606283 0.00606283i −0.704069 0.710132i \(-0.748635\pi\)
0.710132 + 0.704069i \(0.248635\pi\)
\(600\) 0 0
\(601\) −12.7537 2.53686i −0.520233 0.103481i −0.0720121 0.997404i \(-0.522942\pi\)
−0.448220 + 0.893923i \(0.647942\pi\)
\(602\) 2.21119 11.1164i 0.0901216 0.453072i
\(603\) 5.35821 + 2.21944i 0.218203 + 0.0903826i
\(604\) −4.01503 9.69314i −0.163369 0.394408i
\(605\) 0 0
\(606\) 3.84919 19.3512i 0.156363 0.786089i
\(607\) −0.211963 1.06561i −0.00860330 0.0432517i 0.976245 0.216669i \(-0.0695192\pi\)
−0.984848 + 0.173417i \(0.944519\pi\)
\(608\) 0.225252i 0.00913519i
\(609\) 29.1701 5.80230i 1.18203 0.235121i
\(610\) 0 0
\(611\) 3.41796i 0.138276i
\(612\) −1.97474 + 2.51739i −0.0798239 + 0.101760i
\(613\) 22.9407 22.9407i 0.926565 0.926565i −0.0709174 0.997482i \(-0.522593\pi\)
0.997482 + 0.0709174i \(0.0225927\pi\)
\(614\) 0.744855 1.79824i 0.0300599 0.0725710i
\(615\) 0 0
\(616\) −3.54423 3.54423i −0.142801 0.142801i
\(617\) 2.04640 0.407054i 0.0823850 0.0163874i −0.153726 0.988114i \(-0.549127\pi\)
0.236111 + 0.971726i \(0.424127\pi\)
\(618\) 22.5050 15.0374i 0.905284 0.604891i
\(619\) −29.8012 + 19.9126i −1.19781 + 0.800353i −0.984286 0.176584i \(-0.943495\pi\)
−0.213528 + 0.976937i \(0.568495\pi\)
\(620\) 0 0
\(621\) −3.35762 + 1.39077i −0.134737 + 0.0558098i
\(622\) 20.6241 + 4.10239i 0.826951 + 0.164491i
\(623\) 26.8488 + 40.1820i 1.07567 + 1.60986i
\(624\) −0.569463 + 0.852262i −0.0227968 + 0.0341178i
\(625\) 0 0
\(626\) 5.54040 + 27.8535i 0.221439 + 1.11325i
\(627\) 0.444164 0.183979i 0.0177382 0.00734741i
\(628\) 10.6280 + 10.6280i 0.424104 + 0.424104i
\(629\) −1.32356 + 1.13596i −0.0527739 + 0.0452936i
\(630\) 0 0
\(631\) 26.5925 + 11.0150i 1.05863 + 0.438499i 0.842965 0.537969i \(-0.180808\pi\)
0.215664 + 0.976468i \(0.430808\pi\)
\(632\) 1.52281 + 1.01751i 0.0605743 + 0.0404745i
\(633\) 6.87829 0.273387
\(634\) 22.9967 + 15.3659i 0.913315 + 0.610258i
\(635\) 0 0
\(636\) 2.33661 + 3.49699i 0.0926527 + 0.138665i
\(637\) −1.38500 + 3.34370i −0.0548759 + 0.132482i
\(638\) 3.11876 7.52935i 0.123473 0.298090i
\(639\) 4.66377 + 6.97982i 0.184496 + 0.276117i
\(640\) 0 0
\(641\) 17.5118 + 11.7010i 0.691676 + 0.462163i 0.851070 0.525052i \(-0.175954\pi\)
−0.159394 + 0.987215i \(0.550954\pi\)
\(642\) −21.6505 −0.854479
\(643\) 15.0254 + 10.0396i 0.592542 + 0.395924i 0.815375 0.578933i \(-0.196531\pi\)
−0.222833 + 0.974857i \(0.571531\pi\)
\(644\) −2.08823 0.864973i −0.0822878 0.0340847i
\(645\) 0 0
\(646\) 0.249943 0.894475i 0.00983387 0.0351926i
\(647\) −30.4615 30.4615i −1.19756 1.19756i −0.974894 0.222671i \(-0.928523\pi\)
−0.222671 0.974894i \(-0.571477\pi\)
\(648\) 5.60781 2.32283i 0.220296 0.0912494i
\(649\) −0.826166 4.15342i −0.0324299 0.163036i
\(650\) 0 0
\(651\) −31.9279 + 47.7834i −1.25135 + 1.87278i
\(652\) 8.32208 + 12.4549i 0.325918 + 0.487770i
\(653\) −41.2569 8.20651i −1.61451 0.321145i −0.696454 0.717602i \(-0.745240\pi\)
−0.918054 + 0.396456i \(0.870240\pi\)
\(654\) −17.8213 + 7.38184i −0.696870 + 0.288653i
\(655\) 0 0
\(656\) −2.24166 + 1.49783i −0.0875222 + 0.0584805i
\(657\) 6.32787 4.22815i 0.246874 0.164956i
\(658\) 17.0816 3.39773i 0.665909 0.132457i
\(659\) 13.4187 + 13.4187i 0.522718 + 0.522718i 0.918391 0.395673i \(-0.129489\pi\)
−0.395673 + 0.918391i \(0.629489\pi\)
\(660\) 0 0
\(661\) 9.49648 22.9265i 0.369370 0.891738i −0.624484 0.781038i \(-0.714691\pi\)
0.993854 0.110701i \(-0.0353094\pi\)
\(662\) −24.3276 + 24.3276i −0.945518 + 0.945518i
\(663\) −3.20701 + 2.75244i −0.124550 + 0.106896i
\(664\) 2.55714i 0.0992362i
\(665\) 0 0
\(666\) −0.321961 + 0.0640420i −0.0124757 + 0.00248158i
\(667\) 3.67509i 0.142300i
\(668\) 1.48594 + 7.47034i 0.0574929 + 0.289036i
\(669\) −2.89946 + 14.5766i −0.112100 + 0.563563i
\(670\) 0 0
\(671\) 7.26062 + 17.5287i 0.280293 + 0.676688i
\(672\) 4.82535 + 1.99872i 0.186142 + 0.0771025i
\(673\) 1.65702 8.33039i 0.0638733 0.321113i −0.935618 0.353015i \(-0.885156\pi\)
0.999491 + 0.0319020i \(0.0101565\pi\)
\(674\) 12.8742 + 2.56084i 0.495896 + 0.0986398i
\(675\) 0 0
\(676\) −8.85834 + 8.85834i −0.340706 + 0.340706i
\(677\) 3.03110 4.53636i 0.116495 0.174347i −0.768640 0.639682i \(-0.779066\pi\)
0.885135 + 0.465335i \(0.154066\pi\)
\(678\) 1.71892 + 4.14984i 0.0660147 + 0.159374i
\(679\) 30.8779 1.18499
\(680\) 0 0
\(681\) 23.7871 0.911522
\(682\) 6.02626 + 14.5487i 0.230758 + 0.557098i
\(683\) 20.3551 30.4635i 0.778866 1.16565i −0.203571 0.979060i \(-0.565255\pi\)
0.982437 0.186595i \(-0.0597451\pi\)
\(684\) 0.123598 0.123598i 0.00472590 0.00472590i
\(685\) 0 0
\(686\) −5.95736 1.18499i −0.227453 0.0452432i
\(687\) 8.31289 41.7917i 0.317157 1.59445i
\(688\) 2.98993 + 1.23847i 0.113990 + 0.0472162i
\(689\) −0.741785 1.79083i −0.0282598 0.0682251i
\(690\) 0 0
\(691\) −1.37635 + 6.91939i −0.0523589 + 0.263226i −0.998094 0.0617127i \(-0.980344\pi\)
0.945735 + 0.324939i \(0.105344\pi\)
\(692\) 3.54534 + 17.8236i 0.134774 + 0.677553i
\(693\) 3.88951i 0.147750i
\(694\) −18.8905 + 3.75756i −0.717075 + 0.142635i
\(695\) 0 0
\(696\) 8.49217i 0.321895i
\(697\) −10.5636 + 3.46050i −0.400126 + 0.131076i
\(698\) −15.2293 + 15.2293i −0.576437 + 0.576437i
\(699\) 13.5820 32.7897i 0.513717 1.24022i
\(700\) 0 0
\(701\) 16.7123 + 16.7123i 0.631215 + 0.631215i 0.948373 0.317158i \(-0.102728\pi\)
−0.317158 + 0.948373i \(0.602728\pi\)
\(702\) −3.79605 + 0.755082i −0.143273 + 0.0284987i
\(703\) 0.0792294 0.0529394i 0.00298819 0.00199665i
\(704\) 1.18997 0.795115i 0.0448488 0.0299670i
\(705\) 0 0
\(706\) −7.24766 + 3.00208i −0.272769 + 0.112985i
\(707\) 45.4449 + 9.03956i 1.70913 + 0.339967i
\(708\) 2.45159 + 3.66906i 0.0921363 + 0.137892i
\(709\) 14.4329 21.6003i 0.542038 0.811217i −0.454807 0.890590i \(-0.650292\pi\)
0.996845 + 0.0793729i \(0.0252918\pi\)
\(710\) 0 0
\(711\) 0.277265 + 1.39390i 0.0103982 + 0.0522755i
\(712\) −12.7484 + 5.28056i −0.477766 + 0.197897i
\(713\) 5.02134 + 5.02134i 0.188051 + 0.188051i
\(714\) 16.9436 + 13.2912i 0.634098 + 0.497410i
\(715\) 0 0
\(716\) −11.9408 4.94606i −0.446250 0.184843i
\(717\) 27.5435 + 18.4040i 1.02863 + 0.687309i
\(718\) −11.6725 −0.435615
\(719\) −31.3017 20.9151i −1.16735 0.780002i −0.188004 0.982168i \(-0.560202\pi\)
−0.979351 + 0.202167i \(0.935202\pi\)
\(720\) 0 0
\(721\) 35.3142 + 52.8514i 1.31517 + 1.96829i
\(722\) 7.25157 17.5068i 0.269875 0.651537i
\(723\) −4.97948 + 12.0215i −0.185189 + 0.447085i
\(724\) −3.16861 4.74216i −0.117760 0.176241i
\(725\) 0 0
\(726\) −11.1000 7.41677i −0.411959 0.275262i
\(727\) −11.7248 −0.434847 −0.217424 0.976077i \(-0.569765\pi\)
−0.217424 + 0.976077i \(0.569765\pi\)
\(728\) −2.00148 1.33734i −0.0741797 0.0495653i
\(729\) 27.6274 + 11.4436i 1.02324 + 0.423838i
\(730\) 0 0
\(731\) 10.4988 + 8.23562i 0.388311 + 0.304605i
\(732\) −13.9796 13.9796i −0.516702 0.516702i
\(733\) −36.6816 + 15.1940i −1.35486 + 0.561203i −0.937642 0.347601i \(-0.886996\pi\)
−0.417222 + 0.908805i \(0.636996\pi\)
\(734\) −2.94262 14.7935i −0.108614 0.546039i
\(735\) 0 0
\(736\) 0.358556 0.536616i 0.0132165 0.0197799i
\(737\) −5.94259 8.89371i −0.218898 0.327604i
\(738\) −2.05190 0.408149i −0.0755315 0.0150242i
\(739\) 41.6307 17.2440i 1.53141 0.634332i 0.551574 0.834126i \(-0.314027\pi\)
0.979838 + 0.199795i \(0.0640275\pi\)
\(740\) 0 0
\(741\) 0.191974 0.128273i 0.00705234 0.00471223i
\(742\) −8.21243 + 5.48737i −0.301488 + 0.201448i
\(743\) −25.3180 + 5.03606i −0.928826 + 0.184755i −0.636246 0.771486i \(-0.719514\pi\)
−0.292580 + 0.956241i \(0.594514\pi\)
\(744\) −11.6030 11.6030i −0.425387 0.425387i
\(745\) 0 0
\(746\) 0.0380295 0.0918113i 0.00139236 0.00336145i
\(747\) −1.40313 + 1.40313i −0.0513378 + 0.0513378i
\(748\) 5.60765 1.83698i 0.205036 0.0671668i
\(749\) 50.8448i 1.85783i
\(750\) 0 0
\(751\) 19.7948 3.93743i 0.722322 0.143679i 0.179779 0.983707i \(-0.442462\pi\)
0.542543 + 0.840028i \(0.317462\pi\)
\(752\) 4.97288i 0.181342i
\(753\) 3.11001 + 15.6351i 0.113335 + 0.569773i
\(754\) 0.763564 3.83870i 0.0278074 0.139797i
\(755\) 0 0
\(756\) 7.54717 + 18.2205i 0.274488 + 0.662673i
\(757\) 10.7444 + 4.45049i 0.390513 + 0.161756i 0.569296 0.822133i \(-0.307216\pi\)
−0.178783 + 0.983889i \(0.557216\pi\)
\(758\) 2.59924 13.0672i 0.0944086 0.474624i
\(759\) 1.35098 + 0.268728i 0.0490376 + 0.00975419i
\(760\) 0 0
\(761\) −27.7743 + 27.7743i −1.00682 + 1.00682i −0.00684140 + 0.999977i \(0.502178\pi\)
−0.999977 + 0.00684140i \(0.997822\pi\)
\(762\) −10.3359 + 15.4688i −0.374431 + 0.560376i
\(763\) −17.3357 41.8522i −0.627596 1.51515i
\(764\) −21.7120 −0.785511
\(765\) 0 0
\(766\) 28.4203 1.02687
\(767\) −0.778286 1.87895i −0.0281023 0.0678449i
\(768\) −0.828527 + 1.23998i −0.0298969 + 0.0447439i
\(769\) 4.24272 4.24272i 0.152997 0.152997i −0.626458 0.779455i \(-0.715496\pi\)
0.779455 + 0.626458i \(0.215496\pi\)
\(770\) 0 0
\(771\) 36.7149 + 7.30305i 1.32226 + 0.263013i
\(772\) 0.114497 0.575613i 0.00412082 0.0207168i
\(773\) 9.40030 + 3.89373i 0.338105 + 0.140048i 0.545275 0.838257i \(-0.316425\pi\)
−0.207170 + 0.978305i \(0.566425\pi\)
\(774\) 0.961046 + 2.32017i 0.0345441 + 0.0833968i
\(775\) 0 0
\(776\) −1.72004 + 8.64723i −0.0617459 + 0.310417i
\(777\) 0.431042 + 2.16700i 0.0154636 + 0.0777405i
\(778\) 30.9292i 1.10887i
\(779\) 0.595617 0.118476i 0.0213402 0.00424483i
\(780\) 0 0
\(781\) 15.4821i 0.553994i
\(782\) 2.01926 1.73304i 0.0722085 0.0619734i
\(783\) −22.6744 + 22.6744i −0.810316 + 0.810316i
\(784\) −2.01508 + 4.86483i −0.0719672 + 0.173744i
\(785\) 0 0
\(786\) −20.6885 20.6885i −0.737936 0.737936i
\(787\) 38.7801 7.71384i 1.38236 0.274969i 0.552768 0.833336i \(-0.313572\pi\)
0.829594 + 0.558367i \(0.188572\pi\)
\(788\) −14.8118 + 9.89692i −0.527648 + 0.352563i
\(789\) 11.4516 7.65174i 0.407689 0.272409i
\(790\) 0 0
\(791\) −9.74560 + 4.03676i −0.346514 + 0.143531i
\(792\) 1.08924 + 0.216663i 0.0387045 + 0.00769880i
\(793\) 5.06222 + 7.57614i 0.179765 + 0.269037i
\(794\) 3.98598 5.96544i 0.141457 0.211706i
\(795\) 0 0
\(796\) 0.699239 + 3.51531i 0.0247839 + 0.124597i
\(797\) 40.1553 16.6329i 1.42237 0.589166i 0.466917 0.884301i \(-0.345365\pi\)
0.955455 + 0.295135i \(0.0953647\pi\)
\(798\) −0.831894 0.831894i −0.0294487 0.0294487i
\(799\) −5.51797 + 19.7473i −0.195212 + 0.698608i
\(800\) 0 0
\(801\) −9.89268 4.09768i −0.349541 0.144785i
\(802\) −6.19658 4.14042i −0.218809 0.146203i
\(803\) −14.0360 −0.495320
\(804\) 9.26744 + 6.19231i 0.326837 + 0.218386i
\(805\) 0 0
\(806\) 4.20160 + 6.28815i 0.147995 + 0.221490i
\(807\) −1.97561 + 4.76954i −0.0695447 + 0.167896i
\(808\) −5.06297 + 12.2231i −0.178115 + 0.430007i
\(809\) 25.9551 + 38.8446i 0.912534 + 1.36570i 0.930667 + 0.365868i \(0.119228\pi\)
−0.0181324 + 0.999836i \(0.505772\pi\)
\(810\) 0 0
\(811\) −12.7865 8.54365i −0.448994 0.300008i 0.310440 0.950593i \(-0.399524\pi\)
−0.759433 + 0.650585i \(0.774524\pi\)
\(812\) −19.9433 −0.699872
\(813\) −25.0904 16.7648i −0.879957 0.587969i
\(814\) 0.559342 + 0.231687i 0.0196049 + 0.00812062i
\(815\) 0 0
\(816\) −4.66597 + 4.00460i −0.163342 + 0.140189i
\(817\) −0.515466 0.515466i −0.0180339 0.0180339i
\(818\) 16.7757 6.94870i 0.586547 0.242956i
\(819\) −0.364417 1.83205i −0.0127338 0.0640169i
\(820\) 0 0
\(821\) 8.91045 13.3354i 0.310977 0.465410i −0.642753 0.766073i \(-0.722208\pi\)
0.953730 + 0.300663i \(0.0972080\pi\)
\(822\) 5.87753 + 8.79634i 0.205002 + 0.306808i
\(823\) −13.7681 2.73864i −0.479925 0.0954631i −0.0508015 0.998709i \(-0.516178\pi\)
−0.429124 + 0.903246i \(0.641178\pi\)
\(824\) −16.7680 + 6.94551i −0.584139 + 0.241958i
\(825\) 0 0
\(826\) −8.61653 + 5.75738i −0.299807 + 0.200325i
\(827\) −27.5862 + 18.4325i −0.959267 + 0.640962i −0.933451 0.358705i \(-0.883218\pi\)
−0.0258161 + 0.999667i \(0.508218\pi\)
\(828\) 0.491190 0.0977039i 0.0170700 0.00339544i
\(829\) 19.3397 + 19.3397i 0.671696 + 0.671696i 0.958107 0.286411i \(-0.0924622\pi\)
−0.286411 + 0.958107i \(0.592462\pi\)
\(830\) 0 0
\(831\) −11.4397 + 27.6178i −0.396837 + 0.958050i
\(832\) 0.486008 0.486008i 0.0168493 0.0168493i
\(833\) −13.3999 + 17.0822i −0.464281 + 0.591865i
\(834\) 15.6856i 0.543149i
\(835\) 0 0
\(836\) −0.316180 + 0.0628921i −0.0109353 + 0.00217517i
\(837\) 61.9607i 2.14168i
\(838\) 1.05558 + 5.30674i 0.0364643 + 0.183318i
\(839\) 2.67790 13.4627i 0.0924512 0.464784i −0.906630 0.421927i \(-0.861354\pi\)
0.999081 0.0428571i \(-0.0136460\pi\)
\(840\) 0 0
\(841\) −1.31132 3.16579i −0.0452178 0.109165i
\(842\) −16.4405 6.80990i −0.566579 0.234685i
\(843\) 6.35938 31.9708i 0.219029 1.10113i
\(844\) −4.52362 0.899804i −0.155709 0.0309725i
\(845\) 0 0
\(846\) −2.72867 + 2.72867i −0.0938138 + 0.0938138i
\(847\) 17.4178 26.0675i 0.598482 0.895691i
\(848\) −1.07924 2.60552i −0.0370614 0.0894741i
\(849\) 29.9208 1.02688
\(850\) 0 0
\(851\) 0.273016 0.00935887
\(852\) 6.17372 + 14.9047i 0.211508 + 0.510626i
\(853\) 16.4654 24.6422i 0.563765 0.843734i −0.434616 0.900616i \(-0.643116\pi\)
0.998381 + 0.0568820i \(0.0181159\pi\)
\(854\) 32.8302 32.8302i 1.12343 1.12343i
\(855\) 0 0
\(856\) 14.2388 + 2.83228i 0.486674 + 0.0968055i
\(857\) 0.560290 2.81677i 0.0191391 0.0962190i −0.970035 0.242965i \(-0.921880\pi\)
0.989174 + 0.146746i \(0.0468800\pi\)
\(858\) 1.35529 + 0.561381i 0.0462689 + 0.0191652i
\(859\) −14.7311 35.5640i −0.502618 1.21343i −0.948053 0.318112i \(-0.896951\pi\)
0.445435 0.895314i \(-0.353049\pi\)
\(860\) 0 0
\(861\) −2.74709 + 13.8106i −0.0936206 + 0.470663i
\(862\) 1.99220 + 10.0155i 0.0678547 + 0.341129i
\(863\) 12.3538i 0.420530i −0.977644 0.210265i \(-0.932567\pi\)
0.977644 0.210265i \(-0.0674326\pi\)
\(864\) −5.52298 + 1.09859i −0.187895 + 0.0373747i
\(865\) 0 0
\(866\) 34.8551i 1.18442i
\(867\) −22.9721 + 10.7248i −0.780173 + 0.364233i
\(868\) 27.2488 27.2488i 0.924885 0.924885i
\(869\) 1.00307 2.42163i 0.0340268 0.0821480i
\(870\) 0 0
\(871\) −3.63236 3.63236i −0.123078 0.123078i
\(872\) 12.6862 2.52344i 0.429609 0.0854545i
\(873\) −5.68863 + 3.80102i −0.192531 + 0.128645i
\(874\) −0.120874 + 0.0807655i −0.00408863 + 0.00273193i
\(875\) 0 0
\(876\) 13.5125 5.59706i 0.456545 0.189107i
\(877\) −4.23953 0.843295i −0.143159 0.0284760i 0.122991 0.992408i \(-0.460751\pi\)
−0.266149 + 0.963932i \(0.585751\pi\)
\(878\) −1.49531 2.23789i −0.0504644 0.0755253i
\(879\) −13.2412 + 19.8168i −0.446613 + 0.668404i
\(880\) 0 0
\(881\) −5.73703 28.8420i −0.193285 0.971711i −0.948631 0.316385i \(-0.897531\pi\)
0.755346 0.655327i \(-0.227469\pi\)
\(882\) −3.77508 + 1.56369i −0.127114 + 0.0526522i
\(883\) −34.6701 34.6701i −1.16674 1.16674i −0.982969 0.183773i \(-0.941169\pi\)
−0.183773 0.982969i \(-0.558831\pi\)
\(884\) 2.46922 1.39065i 0.0830487 0.0467727i
\(885\) 0 0
\(886\) 28.1361 + 11.6544i 0.945251 + 0.391536i
\(887\) −7.35669 4.91559i −0.247014 0.165049i 0.425900 0.904770i \(-0.359957\pi\)
−0.672914 + 0.739721i \(0.734957\pi\)
\(888\) −0.630868 −0.0211706
\(889\) −36.3274 24.2732i −1.21838 0.814097i
\(890\) 0 0
\(891\) −4.82623 7.22296i −0.161685 0.241978i
\(892\) 3.81376 9.20723i 0.127694 0.308281i
\(893\) 0.428664 1.03489i 0.0143447 0.0346312i
\(894\) −4.38950 6.56936i −0.146807 0.219712i
\(895\) 0 0
\(896\) −2.91200 1.94574i −0.0972832 0.0650026i
\(897\) 0.661522 0.0220876
\(898\) 21.9479 + 14.6651i 0.732410 + 0.489380i
\(899\) 57.8873 + 23.9777i 1.93065 + 0.799702i
\(900\) 0 0
\(901\) −1.39454 11.5441i −0.0464589 0.384588i
\(902\) 2.72835 + 2.72835i 0.0908441 + 0.0908441i
\(903\) 15.6162 6.46843i 0.519674 0.215256i
\(904\) −0.587603 2.95408i −0.0195434 0.0982512i
\(905\) 0 0
\(906\) 8.69273 13.0096i 0.288796 0.432214i
\(907\) −5.07974 7.60237i −0.168670 0.252433i 0.737499 0.675348i \(-0.236007\pi\)
−0.906169 + 0.422916i \(0.861007\pi\)
\(908\) −15.6440 3.11178i −0.519163 0.103268i
\(909\) −9.48505 + 3.92884i −0.314599 + 0.130311i
\(910\) 0 0
\(911\) 25.4797 17.0250i 0.844181 0.564064i −0.0565701 0.998399i \(-0.518016\pi\)
0.900752 + 0.434335i \(0.143016\pi\)
\(912\) 0.279308 0.186628i 0.00924882 0.00617986i
\(913\) 3.58938 0.713971i 0.118791 0.0236290i
\(914\) −18.1284 18.1284i −0.599634 0.599634i
\(915\) 0 0
\(916\) −10.9342 + 26.3976i −0.361277 + 0.872200i
\(917\) 48.5856 48.5856i 1.60444 1.60444i
\(918\) −23.1507 1.76588i −0.764087 0.0582828i
\(919\) 43.0164i 1.41898i −0.704716 0.709490i \(-0.748926\pi\)
0.704716 0.709490i \(-0.251074\pi\)
\(920\) 0 0
\(921\) 2.84691 0.566286i 0.0938089 0.0186597i
\(922\) 13.3685i 0.440270i
\(923\) −1.45055 7.29243i −0.0477456 0.240033i
\(924\) 1.45828 7.33126i 0.0479738 0.241181i
\(925\) 0 0
\(926\) 12.5834 + 30.3791i 0.413517 + 0.998319i
\(927\) −13.0118 5.38968i −0.427365 0.177020i
\(928\) 1.11093 5.58502i 0.0364681 0.183337i
\(929\) 41.3633 + 8.22767i 1.35709 + 0.269941i 0.819408 0.573210i \(-0.194302\pi\)
0.537677 + 0.843151i \(0.319302\pi\)
\(930\) 0 0
\(931\) 0.838701 0.838701i 0.0274873 0.0274873i
\(932\) −13.2219 + 19.7880i −0.433098 + 0.648176i
\(933\) 12.0008 + 28.9724i 0.392887 + 0.948514i
\(934\) 4.78801 0.156668
\(935\) 0 0
\(936\) 0.533356 0.0174333
\(937\) 16.4858 + 39.8003i 0.538569 + 1.30022i 0.925722 + 0.378205i \(0.123458\pi\)
−0.387153 + 0.922015i \(0.626542\pi\)
\(938\) −14.5422 + 21.7639i −0.474819 + 0.710617i
\(939\) −29.9474 + 29.9474i −0.977295 + 0.977295i
\(940\) 0 0
\(941\) 16.9565 + 3.37287i 0.552768 + 0.109952i 0.463568 0.886061i \(-0.346569\pi\)
0.0891997 + 0.996014i \(0.471569\pi\)
\(942\) −4.37291 + 21.9841i −0.142477 + 0.716280i
\(943\) 1.60752 + 0.665857i 0.0523481 + 0.0216833i
\(944\) −1.13235 2.73373i −0.0368548 0.0889754i
\(945\) 0 0
\(946\) 0.903593 4.54267i 0.0293783 0.147695i
\(947\) 1.63760 + 8.23276i 0.0532148 + 0.267529i 0.998228 0.0595030i \(-0.0189516\pi\)
−0.945013 + 0.327032i \(0.893952\pi\)
\(948\) 2.73129i 0.0887083i
\(949\) −6.61128 + 1.31506i −0.214611 + 0.0426888i
\(950\) 0 0
\(951\) 41.2465i 1.33751i
\(952\) −9.40452 10.9577i −0.304802 0.355141i
\(953\) 17.1743 17.1743i 0.556330 0.556330i −0.371930 0.928261i \(-0.621304\pi\)
0.928261 + 0.371930i \(0.121304\pi\)
\(954\) 0.837487 2.02187i 0.0271146 0.0654605i
\(955\) 0 0
\(956\) −15.7069 15.7069i −0.507997 0.507997i
\(957\) 11.9202 2.37108i 0.385326 0.0766460i
\(958\) 27.3745 18.2911i 0.884431 0.590958i
\(959\) −20.6576 + 13.8030i −0.667068 + 0.445721i
\(960\) 0 0
\(961\) −83.2134 + 34.4681i −2.68430 + 1.11187i
\(962\) 0.285170 + 0.0567238i 0.00919424 + 0.00182885i
\(963\) 6.25891 + 9.36712i 0.201690 + 0.301851i
\(964\) 4.84747 7.25475i 0.156126 0.233660i
\(965\) 0 0
\(966\) −0.657607 3.30601i −0.0211582 0.106369i
\(967\) −1.07658 + 0.445933i −0.0346204 + 0.0143402i −0.399926 0.916547i \(-0.630964\pi\)
0.365306 + 0.930887i \(0.380964\pi\)
\(968\) 6.32985 + 6.32985i 0.203449 + 0.203449i
\(969\) 1.31621 0.431173i 0.0422829 0.0138513i
\(970\) 0 0
\(971\) −17.7627 7.35756i −0.570033 0.236115i 0.0790013 0.996875i \(-0.474827\pi\)
−0.649034 + 0.760759i \(0.724827\pi\)
\(972\) −6.51997 4.35651i −0.209128 0.139735i
\(973\) −36.8366 −1.18093
\(974\) 25.2701 + 16.8849i 0.809706 + 0.541029i
\(975\) 0 0
\(976\) 7.36516 + 11.0227i 0.235753 + 0.352829i
\(977\) 9.61901 23.2223i 0.307739 0.742949i −0.692038 0.721861i \(-0.743287\pi\)
0.999778 0.0210877i \(-0.00671293\pi\)
\(978\) −8.54871 + 20.6384i −0.273357 + 0.659943i
\(979\) 10.9716 + 16.4202i 0.350654 + 0.524791i
\(980\) 0 0
\(981\) 8.34569 + 5.57641i 0.266457 + 0.178041i
\(982\) −16.3302 −0.521116
\(983\) −28.6015 19.1109i −0.912245 0.609543i 0.00839065 0.999965i \(-0.497329\pi\)
−0.920636 + 0.390422i \(0.872329\pi\)
\(984\) −3.71456 1.53862i −0.118416 0.0490494i
\(985\) 0 0
\(986\) 10.6087 20.9454i 0.337850 0.667036i
\(987\) 18.3657 + 18.3657i 0.584585 + 0.584585i
\(988\) −0.143035 + 0.0592472i −0.00455056 + 0.00188490i
\(989\) −0.407473 2.04851i −0.0129569 0.0651387i
\(990\) 0 0
\(991\) 16.9127 25.3117i 0.537250 0.804052i −0.459191 0.888337i \(-0.651861\pi\)
0.996442 + 0.0842855i \(0.0268608\pi\)
\(992\) 6.11303 + 9.14879i 0.194089 + 0.290474i
\(993\) −50.3218 10.0096i −1.59691 0.317646i
\(994\) −35.0026 + 14.4985i −1.11021 + 0.459866i
\(995\) 0 0
\(996\) −3.17080 + 2.11866i −0.100471 + 0.0671323i
\(997\) −46.0056 + 30.7399i −1.45701 + 0.973543i −0.460715 + 0.887548i \(0.652407\pi\)
−0.996296 + 0.0859950i \(0.972593\pi\)
\(998\) 24.5244 4.87821i 0.776307 0.154417i
\(999\) −1.68444 1.68444i −0.0532933 0.0532933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.s.b.57.2 yes 24
5.2 odd 4 850.2.v.b.193.2 yes 24
5.3 odd 4 850.2.v.a.193.2 yes 24
5.4 even 2 850.2.s.a.57.2 24
17.3 odd 16 850.2.v.a.207.2 yes 24
85.3 even 16 inner 850.2.s.b.343.2 yes 24
85.37 even 16 850.2.s.a.343.2 yes 24
85.54 odd 16 850.2.v.b.207.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
850.2.s.a.57.2 24 5.4 even 2
850.2.s.a.343.2 yes 24 85.37 even 16
850.2.s.b.57.2 yes 24 1.1 even 1 trivial
850.2.s.b.343.2 yes 24 85.3 even 16 inner
850.2.v.a.193.2 yes 24 5.3 odd 4
850.2.v.a.207.2 yes 24 17.3 odd 16
850.2.v.b.193.2 yes 24 5.2 odd 4
850.2.v.b.207.2 yes 24 85.54 odd 16