Properties

Label 850.2.v.b.193.2
Level $850$
Weight $2$
Character 850.193
Analytic conductor $6.787$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(3\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 193.2
Character \(\chi\) \(=\) 850.193
Dual form 850.2.v.b.207.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.923880 - 0.382683i) q^{2} +(-1.23998 - 0.828527i) q^{3} +(0.707107 - 0.707107i) q^{4} +(-1.46265 - 0.290940i) q^{6} +(3.43494 + 0.683252i) q^{7} +(0.382683 - 0.923880i) q^{8} +(-0.296960 - 0.716925i) q^{9} +(0.279207 - 1.40367i) q^{11} +(-1.46265 + 0.290940i) q^{12} -0.687320 q^{13} +(3.43494 - 0.683252i) q^{14} -1.00000i q^{16} +(3.97099 + 1.10961i) q^{17} +(-0.548711 - 0.548711i) q^{18} +(0.0862003 - 0.208106i) q^{19} +(-3.69316 - 3.69316i) q^{21} +(-0.279207 - 1.40367i) q^{22} +(0.358556 + 0.536616i) q^{23} +(-1.23998 + 0.828527i) q^{24} +(-0.635001 + 0.263026i) q^{26} +(-1.09859 + 5.52298i) q^{27} +(2.91200 - 1.94574i) q^{28} +(3.16366 - 4.73475i) q^{29} +(-2.14661 - 10.7917i) q^{31} +(-0.382683 - 0.923880i) q^{32} +(-1.50919 + 1.50919i) q^{33} +(4.09335 - 0.494483i) q^{34} +(-0.716925 - 0.296960i) q^{36} +(0.235023 - 0.351736i) q^{37} -0.225252i q^{38} +(0.852262 + 0.569463i) q^{39} +(-1.49783 - 2.24166i) q^{41} +(-4.82535 - 1.99872i) q^{42} +(2.98993 + 1.23847i) q^{43} +(-0.795115 - 1.18997i) q^{44} +(0.536616 + 0.358556i) q^{46} -4.97288i q^{47} +(-0.828527 + 1.23998i) q^{48} +(4.86483 + 2.01508i) q^{49} +(-4.00460 - 4.66597i) q^{51} +(-0.486008 + 0.486008i) q^{52} +(-1.07924 - 2.60552i) q^{53} +(1.09859 + 5.52298i) q^{54} +(1.94574 - 2.91200i) q^{56} +(-0.279308 + 0.186628i) q^{57} +(1.11093 - 5.58502i) q^{58} +(-2.73373 + 1.13235i) q^{59} +(-11.0227 + 7.36516i) q^{61} +(-6.11303 - 9.14879i) q^{62} +(-0.530200 - 2.66550i) q^{63} +(-0.707107 - 0.707107i) q^{64} +(-0.816768 + 1.97185i) q^{66} +(5.28482 + 5.28482i) q^{67} +(3.59253 - 2.02330i) q^{68} -0.962466i q^{69} +(10.6099 - 2.11045i) q^{71} -0.775994 q^{72} +(-9.61892 + 1.91332i) q^{73} +(0.0825290 - 0.414901i) q^{74} +(-0.0862003 - 0.208106i) q^{76} +(1.91812 - 4.63076i) q^{77} +(1.00531 + 0.199969i) q^{78} +(-1.79628 - 0.357303i) q^{79} +(4.29203 - 4.29203i) q^{81} +(-2.24166 - 1.49783i) q^{82} +(2.36249 - 0.978574i) q^{83} -5.22292 q^{84} +3.23628 q^{86} +(-7.84575 + 3.24981i) q^{87} +(-1.18997 - 0.795115i) q^{88} +(9.75720 - 9.75720i) q^{89} +(-2.36090 - 0.469613i) q^{91} +(0.632982 + 0.125908i) q^{92} +(-6.27950 + 15.1601i) q^{93} +(-1.90304 - 4.59434i) q^{94} +(-0.290940 + 1.46265i) q^{96} +(-8.64723 + 1.72004i) q^{97} +5.26566 q^{98} +(-1.08924 + 0.216663i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9} + 32 q^{13} + 16 q^{18} - 48 q^{27} + 16 q^{29} + 16 q^{31} + 8 q^{33} - 16 q^{34} - 16 q^{37} + 32 q^{39} + 48 q^{41} + 48 q^{42} - 16 q^{43} - 16 q^{44} + 32 q^{46} - 8 q^{48} + 16 q^{49}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.923880 0.382683i 0.653281 0.270598i
\(3\) −1.23998 0.828527i −0.715902 0.478351i 0.143500 0.989650i \(-0.454164\pi\)
−0.859402 + 0.511300i \(0.829164\pi\)
\(4\) 0.707107 0.707107i 0.353553 0.353553i
\(5\) 0 0
\(6\) −1.46265 0.290940i −0.597126 0.118776i
\(7\) 3.43494 + 0.683252i 1.29829 + 0.258245i 0.795388 0.606101i \(-0.207267\pi\)
0.502898 + 0.864346i \(0.332267\pi\)
\(8\) 0.382683 0.923880i 0.135299 0.326641i
\(9\) −0.296960 0.716925i −0.0989867 0.238975i
\(10\) 0 0
\(11\) 0.279207 1.40367i 0.0841842 0.423222i −0.915593 0.402107i \(-0.868278\pi\)
0.999777 0.0211159i \(-0.00672189\pi\)
\(12\) −1.46265 + 0.290940i −0.422232 + 0.0839872i
\(13\) −0.687320 −0.190628 −0.0953141 0.995447i \(-0.530386\pi\)
−0.0953141 + 0.995447i \(0.530386\pi\)
\(14\) 3.43494 0.683252i 0.918027 0.182607i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) 3.97099 + 1.10961i 0.963106 + 0.269121i
\(18\) −0.548711 0.548711i −0.129332 0.129332i
\(19\) 0.0862003 0.208106i 0.0197757 0.0477428i −0.913683 0.406427i \(-0.866775\pi\)
0.933459 + 0.358684i \(0.116775\pi\)
\(20\) 0 0
\(21\) −3.69316 3.69316i −0.805914 0.805914i
\(22\) −0.279207 1.40367i −0.0595272 0.299263i
\(23\) 0.358556 + 0.536616i 0.0747640 + 0.111892i 0.866967 0.498365i \(-0.166066\pi\)
−0.792203 + 0.610257i \(0.791066\pi\)
\(24\) −1.23998 + 0.828527i −0.253110 + 0.169122i
\(25\) 0 0
\(26\) −0.635001 + 0.263026i −0.124534 + 0.0515836i
\(27\) −1.09859 + 5.52298i −0.211423 + 1.06290i
\(28\) 2.91200 1.94574i 0.550317 0.367710i
\(29\) 3.16366 4.73475i 0.587477 0.879222i −0.412012 0.911178i \(-0.635174\pi\)
0.999489 + 0.0319568i \(0.0101739\pi\)
\(30\) 0 0
\(31\) −2.14661 10.7917i −0.385542 1.93825i −0.343548 0.939135i \(-0.611629\pi\)
−0.0419943 0.999118i \(-0.513371\pi\)
\(32\) −0.382683 0.923880i −0.0676495 0.163320i
\(33\) −1.50919 + 1.50919i −0.262716 + 0.262716i
\(34\) 4.09335 0.494483i 0.702003 0.0848032i
\(35\) 0 0
\(36\) −0.716925 0.296960i −0.119488 0.0494934i
\(37\) 0.235023 0.351736i 0.0386375 0.0578251i −0.811648 0.584147i \(-0.801429\pi\)
0.850286 + 0.526322i \(0.176429\pi\)
\(38\) 0.225252i 0.0365408i
\(39\) 0.852262 + 0.569463i 0.136471 + 0.0911871i
\(40\) 0 0
\(41\) −1.49783 2.24166i −0.233922 0.350089i 0.695874 0.718164i \(-0.255017\pi\)
−0.929796 + 0.368075i \(0.880017\pi\)
\(42\) −4.82535 1.99872i −0.744568 0.308410i
\(43\) 2.98993 + 1.23847i 0.455960 + 0.188865i 0.598829 0.800877i \(-0.295633\pi\)
−0.142869 + 0.989742i \(0.545633\pi\)
\(44\) −0.795115 1.18997i −0.119868 0.179395i
\(45\) 0 0
\(46\) 0.536616 + 0.358556i 0.0791198 + 0.0528661i
\(47\) 4.97288i 0.725369i −0.931912 0.362685i \(-0.881860\pi\)
0.931912 0.362685i \(-0.118140\pi\)
\(48\) −0.828527 + 1.23998i −0.119588 + 0.178976i
\(49\) 4.86483 + 2.01508i 0.694976 + 0.287869i
\(50\) 0 0
\(51\) −4.00460 4.66597i −0.560756 0.653367i
\(52\) −0.486008 + 0.486008i −0.0673973 + 0.0673973i
\(53\) −1.07924 2.60552i −0.148245 0.357896i 0.832261 0.554384i \(-0.187046\pi\)
−0.980506 + 0.196488i \(0.937046\pi\)
\(54\) 1.09859 + 5.52298i 0.149499 + 0.751582i
\(55\) 0 0
\(56\) 1.94574 2.91200i 0.260010 0.389133i
\(57\) −0.279308 + 0.186628i −0.0369953 + 0.0247195i
\(58\) 1.11093 5.58502i 0.145872 0.733349i
\(59\) −2.73373 + 1.13235i −0.355902 + 0.147419i −0.553468 0.832870i \(-0.686696\pi\)
0.197567 + 0.980289i \(0.436696\pi\)
\(60\) 0 0
\(61\) −11.0227 + 7.36516i −1.41132 + 0.943012i −0.411821 + 0.911265i \(0.635107\pi\)
−0.999496 + 0.0317466i \(0.989893\pi\)
\(62\) −6.11303 9.14879i −0.776355 1.16190i
\(63\) −0.530200 2.66550i −0.0667989 0.335821i
\(64\) −0.707107 0.707107i −0.0883883 0.0883883i
\(65\) 0 0
\(66\) −0.816768 + 1.97185i −0.100537 + 0.242718i
\(67\) 5.28482 + 5.28482i 0.645644 + 0.645644i 0.951937 0.306293i \(-0.0990888\pi\)
−0.306293 + 0.951937i \(0.599089\pi\)
\(68\) 3.59253 2.02330i 0.435658 0.245361i
\(69\) 0.962466i 0.115867i
\(70\) 0 0
\(71\) 10.6099 2.11045i 1.25917 0.250464i 0.479995 0.877271i \(-0.340639\pi\)
0.779174 + 0.626807i \(0.215639\pi\)
\(72\) −0.775994 −0.0914518
\(73\) −9.61892 + 1.91332i −1.12581 + 0.223937i −0.722665 0.691199i \(-0.757083\pi\)
−0.403145 + 0.915136i \(0.632083\pi\)
\(74\) 0.0825290 0.414901i 0.00959380 0.0482313i
\(75\) 0 0
\(76\) −0.0862003 0.208106i −0.00988786 0.0238714i
\(77\) 1.91812 4.63076i 0.218590 0.527724i
\(78\) 1.00531 + 0.199969i 0.113829 + 0.0226420i
\(79\) −1.79628 0.357303i −0.202098 0.0401997i 0.0930034 0.995666i \(-0.470353\pi\)
−0.295101 + 0.955466i \(0.595353\pi\)
\(80\) 0 0
\(81\) 4.29203 4.29203i 0.476892 0.476892i
\(82\) −2.24166 1.49783i −0.247550 0.165408i
\(83\) 2.36249 0.978574i 0.259317 0.107412i −0.249238 0.968442i \(-0.580180\pi\)
0.508554 + 0.861030i \(0.330180\pi\)
\(84\) −5.22292 −0.569867
\(85\) 0 0
\(86\) 3.23628 0.348977
\(87\) −7.84575 + 3.24981i −0.841152 + 0.348417i
\(88\) −1.18997 0.795115i −0.126852 0.0847596i
\(89\) 9.75720 9.75720i 1.03426 1.03426i 0.0348693 0.999392i \(-0.488899\pi\)
0.999392 0.0348693i \(-0.0111015\pi\)
\(90\) 0 0
\(91\) −2.36090 0.469613i −0.247490 0.0492288i
\(92\) 0.632982 + 0.125908i 0.0659929 + 0.0131268i
\(93\) −6.27950 + 15.1601i −0.651154 + 1.57202i
\(94\) −1.90304 4.59434i −0.196284 0.473870i
\(95\) 0 0
\(96\) −0.290940 + 1.46265i −0.0296940 + 0.149282i
\(97\) −8.64723 + 1.72004i −0.877993 + 0.174644i −0.613453 0.789731i \(-0.710220\pi\)
−0.264540 + 0.964375i \(0.585220\pi\)
\(98\) 5.26566 0.531912
\(99\) −1.08924 + 0.216663i −0.109473 + 0.0217755i
\(100\) 0 0
\(101\) 13.2302i 1.31645i 0.752820 + 0.658226i \(0.228693\pi\)
−0.752820 + 0.658226i \(0.771307\pi\)
\(102\) −5.48536 2.77830i −0.543131 0.275093i
\(103\) 12.8336 + 12.8336i 1.26454 + 1.26454i 0.948871 + 0.315665i \(0.102227\pi\)
0.315665 + 0.948871i \(0.397773\pi\)
\(104\) −0.263026 + 0.635001i −0.0257918 + 0.0622669i
\(105\) 0 0
\(106\) −1.99418 1.99418i −0.193692 0.193692i
\(107\) 2.83228 + 14.2388i 0.273807 + 1.37652i 0.835643 + 0.549273i \(0.185095\pi\)
−0.561836 + 0.827249i \(0.689905\pi\)
\(108\) 3.12852 + 4.68215i 0.301042 + 0.450540i
\(109\) −10.7548 + 7.18615i −1.03013 + 0.688308i −0.951201 0.308572i \(-0.900149\pi\)
−0.0789251 + 0.996881i \(0.525149\pi\)
\(110\) 0 0
\(111\) −0.582846 + 0.241423i −0.0553213 + 0.0229148i
\(112\) 0.683252 3.43494i 0.0645613 0.324571i
\(113\) −2.50435 + 1.67335i −0.235589 + 0.157416i −0.667761 0.744376i \(-0.732747\pi\)
0.432172 + 0.901791i \(0.357747\pi\)
\(114\) −0.186628 + 0.279308i −0.0174793 + 0.0261596i
\(115\) 0 0
\(116\) −1.11093 5.58502i −0.103147 0.518556i
\(117\) 0.204107 + 0.492757i 0.0188697 + 0.0455554i
\(118\) −2.09231 + 2.09231i −0.192613 + 0.192613i
\(119\) 12.8820 + 6.52464i 1.18089 + 0.598113i
\(120\) 0 0
\(121\) 8.27034 + 3.42569i 0.751849 + 0.311426i
\(122\) −7.36516 + 11.0227i −0.666810 + 0.997951i
\(123\) 4.02061i 0.362526i
\(124\) −9.14879 6.11303i −0.821586 0.548966i
\(125\) 0 0
\(126\) −1.50988 2.25970i −0.134511 0.201310i
\(127\) 11.5255 + 4.77400i 1.02272 + 0.423624i 0.830079 0.557645i \(-0.188295\pi\)
0.192640 + 0.981270i \(0.438295\pi\)
\(128\) −0.923880 0.382683i −0.0816602 0.0338248i
\(129\) −2.68135 4.01292i −0.236079 0.353318i
\(130\) 0 0
\(131\) 16.3126 + 10.8997i 1.42524 + 0.952314i 0.998858 + 0.0477705i \(0.0152116\pi\)
0.426381 + 0.904544i \(0.359788\pi\)
\(132\) 2.13432i 0.185769i
\(133\) 0.438282 0.655936i 0.0380039 0.0568768i
\(134\) 6.90495 + 2.86013i 0.596497 + 0.247077i
\(135\) 0 0
\(136\) 2.54478 3.24409i 0.218213 0.278178i
\(137\) 5.01618 5.01618i 0.428561 0.428561i −0.459577 0.888138i \(-0.651999\pi\)
0.888138 + 0.459577i \(0.151999\pi\)
\(138\) −0.368320 0.889203i −0.0313535 0.0756940i
\(139\) 2.05197 + 10.3159i 0.174045 + 0.874986i 0.964827 + 0.262887i \(0.0846745\pi\)
−0.790781 + 0.612099i \(0.790325\pi\)
\(140\) 0 0
\(141\) −4.12017 + 6.16627i −0.346981 + 0.519294i
\(142\) 8.99468 6.01005i 0.754817 0.504352i
\(143\) −0.191905 + 0.964770i −0.0160479 + 0.0806781i
\(144\) −0.716925 + 0.296960i −0.0597438 + 0.0247467i
\(145\) 0 0
\(146\) −8.15453 + 5.44868i −0.674874 + 0.450936i
\(147\) −4.36274 6.52931i −0.359833 0.538528i
\(148\) −0.0825290 0.414901i −0.00678384 0.0341047i
\(149\) −3.74622 3.74622i −0.306902 0.306902i 0.536804 0.843707i \(-0.319631\pi\)
−0.843707 + 0.536804i \(0.819631\pi\)
\(150\) 0 0
\(151\) −4.01503 + 9.69314i −0.326738 + 0.788816i 0.672092 + 0.740468i \(0.265396\pi\)
−0.998831 + 0.0483488i \(0.984604\pi\)
\(152\) −0.159277 0.159277i −0.0129191 0.0129191i
\(153\) −0.383716 3.17641i −0.0310216 0.256798i
\(154\) 5.01229i 0.403902i
\(155\) 0 0
\(156\) 1.00531 0.199969i 0.0804894 0.0160103i
\(157\) 15.0303 1.19955 0.599773 0.800170i \(-0.295258\pi\)
0.599773 + 0.800170i \(0.295258\pi\)
\(158\) −1.79628 + 0.357303i −0.142905 + 0.0284255i
\(159\) −0.820509 + 4.12498i −0.0650706 + 0.327132i
\(160\) 0 0
\(161\) 0.864973 + 2.08823i 0.0681694 + 0.164576i
\(162\) 2.32283 5.60781i 0.182499 0.440591i
\(163\) −14.6915 2.92232i −1.15073 0.228894i −0.417370 0.908736i \(-0.637048\pi\)
−0.733358 + 0.679842i \(0.762048\pi\)
\(164\) −2.64422 0.525968i −0.206479 0.0410712i
\(165\) 0 0
\(166\) 1.80817 1.80817i 0.140341 0.140341i
\(167\) 6.33305 + 4.23161i 0.490066 + 0.327452i 0.775930 0.630818i \(-0.217281\pi\)
−0.285865 + 0.958270i \(0.592281\pi\)
\(168\) −4.82535 + 1.99872i −0.372284 + 0.154205i
\(169\) −12.5276 −0.963661
\(170\) 0 0
\(171\) −0.174795 −0.0133669
\(172\) 2.98993 1.23847i 0.227980 0.0944324i
\(173\) −15.1101 10.0963i −1.14880 0.767606i −0.172713 0.984972i \(-0.555253\pi\)
−0.976090 + 0.217366i \(0.930253\pi\)
\(174\) −6.00487 + 6.00487i −0.455228 + 0.455228i
\(175\) 0 0
\(176\) −1.40367 0.279207i −0.105806 0.0210460i
\(177\) 4.32795 + 0.860883i 0.325309 + 0.0647080i
\(178\) 5.28056 12.7484i 0.395795 0.955533i
\(179\) −4.94606 11.9408i −0.369686 0.892501i −0.993802 0.111169i \(-0.964541\pi\)
0.624116 0.781332i \(-0.285459\pi\)
\(180\) 0 0
\(181\) −1.11267 + 5.59375i −0.0827039 + 0.415780i 0.917148 + 0.398548i \(0.130486\pi\)
−0.999852 + 0.0172328i \(0.994514\pi\)
\(182\) −2.36090 + 0.469613i −0.175002 + 0.0348100i
\(183\) 19.7702 1.46145
\(184\) 0.632982 0.125908i 0.0466641 0.00928206i
\(185\) 0 0
\(186\) 16.4091i 1.20318i
\(187\) 2.66626 5.26415i 0.194976 0.384953i
\(188\) −3.51636 3.51636i −0.256457 0.256457i
\(189\) −7.54717 + 18.2205i −0.548976 + 1.32535i
\(190\) 0 0
\(191\) 15.3527 + 15.3527i 1.11088 + 1.11088i 0.993032 + 0.117849i \(0.0375997\pi\)
0.117849 + 0.993032i \(0.462400\pi\)
\(192\) 0.290940 + 1.46265i 0.0209968 + 0.105558i
\(193\) 0.326059 + 0.487981i 0.0234702 + 0.0351257i 0.843019 0.537883i \(-0.180776\pi\)
−0.819549 + 0.573009i \(0.805776\pi\)
\(194\) −7.33077 + 4.89826i −0.526318 + 0.351675i
\(195\) 0 0
\(196\) 4.86483 2.01508i 0.347488 0.143934i
\(197\) −3.47533 + 17.4717i −0.247607 + 1.24481i 0.634190 + 0.773177i \(0.281334\pi\)
−0.881797 + 0.471629i \(0.843666\pi\)
\(198\) −0.923413 + 0.617005i −0.0656241 + 0.0438486i
\(199\) −1.99127 + 2.98014i −0.141157 + 0.211256i −0.895311 0.445441i \(-0.853047\pi\)
0.754154 + 0.656697i \(0.228047\pi\)
\(200\) 0 0
\(201\) −2.17445 10.9317i −0.153374 0.771062i
\(202\) 5.06297 + 12.2231i 0.356230 + 0.860014i
\(203\) 14.1020 14.1020i 0.989768 0.989768i
\(204\) −6.13102 0.467660i −0.429257 0.0327428i
\(205\) 0 0
\(206\) 16.7680 + 6.94551i 1.16828 + 0.483917i
\(207\) 0.278237 0.416411i 0.0193388 0.0289426i
\(208\) 0.687320i 0.0476571i
\(209\) −0.268044 0.179102i −0.0185410 0.0123887i
\(210\) 0 0
\(211\) 2.56243 + 3.83494i 0.176405 + 0.264008i 0.909127 0.416520i \(-0.136750\pi\)
−0.732722 + 0.680528i \(0.761750\pi\)
\(212\) −2.60552 1.07924i −0.178948 0.0741227i
\(213\) −14.9047 6.17372i −1.02125 0.423016i
\(214\) 8.06566 + 12.0711i 0.551357 + 0.825164i
\(215\) 0 0
\(216\) 4.68215 + 3.12852i 0.318580 + 0.212868i
\(217\) 38.5357i 2.61597i
\(218\) −7.18615 + 10.7548i −0.486707 + 0.728409i
\(219\) 13.5125 + 5.59706i 0.913090 + 0.378214i
\(220\) 0 0
\(221\) −2.72934 0.762659i −0.183595 0.0513020i
\(222\) −0.446091 + 0.446091i −0.0299397 + 0.0299397i
\(223\) 3.81376 + 9.20723i 0.255388 + 0.616562i 0.998623 0.0524694i \(-0.0167092\pi\)
−0.743234 + 0.669031i \(0.766709\pi\)
\(224\) −0.683252 3.43494i −0.0456517 0.229507i
\(225\) 0 0
\(226\) −1.67335 + 2.50435i −0.111310 + 0.166587i
\(227\) −13.2623 + 8.86159i −0.880250 + 0.588164i −0.911478 0.411348i \(-0.865058\pi\)
0.0312282 + 0.999512i \(0.490058\pi\)
\(228\) −0.0655350 + 0.329466i −0.00434016 + 0.0218195i
\(229\) −26.3976 + 10.9342i −1.74440 + 0.722554i −0.746004 + 0.665941i \(0.768030\pi\)
−0.998396 + 0.0566131i \(0.981970\pi\)
\(230\) 0 0
\(231\) −6.21514 + 4.15282i −0.408926 + 0.273236i
\(232\) −3.16366 4.73475i −0.207704 0.310852i
\(233\) −4.64291 23.3415i −0.304167 1.52915i −0.766383 0.642384i \(-0.777945\pi\)
0.462215 0.886768i \(-0.347055\pi\)
\(234\) 0.377140 + 0.377140i 0.0246544 + 0.0246544i
\(235\) 0 0
\(236\) −1.13235 + 2.73373i −0.0737096 + 0.177951i
\(237\) 1.93132 + 1.93132i 0.125453 + 0.125453i
\(238\) 14.3983 + 1.09827i 0.933301 + 0.0711901i
\(239\) 22.2129i 1.43683i −0.695614 0.718416i \(-0.744868\pi\)
0.695614 0.718416i \(-0.255132\pi\)
\(240\) 0 0
\(241\) −8.55756 + 1.70220i −0.551241 + 0.109649i −0.462849 0.886437i \(-0.653173\pi\)
−0.0883919 + 0.996086i \(0.528173\pi\)
\(242\) 8.95175 0.575440
\(243\) 7.69083 1.52980i 0.493367 0.0981369i
\(244\) −2.58630 + 13.0022i −0.165571 + 0.832381i
\(245\) 0 0
\(246\) 1.53862 + 3.71456i 0.0980989 + 0.236832i
\(247\) −0.0592472 + 0.143035i −0.00376981 + 0.00910113i
\(248\) −10.7917 2.14661i −0.685276 0.136310i
\(249\) −3.74021 0.743974i −0.237026 0.0471474i
\(250\) 0 0
\(251\) −7.55862 + 7.55862i −0.477096 + 0.477096i −0.904202 0.427106i \(-0.859533\pi\)
0.427106 + 0.904202i \(0.359533\pi\)
\(252\) −2.25970 1.50988i −0.142348 0.0951136i
\(253\) 0.853344 0.353466i 0.0536493 0.0222222i
\(254\) 12.4751 0.782755
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) −23.1908 + 9.60595i −1.44660 + 0.599203i −0.961389 0.275192i \(-0.911259\pi\)
−0.485215 + 0.874395i \(0.661259\pi\)
\(258\) −4.01292 2.68135i −0.249833 0.166933i
\(259\) 1.04761 1.04761i 0.0650955 0.0650955i
\(260\) 0 0
\(261\) −4.33395 0.862075i −0.268264 0.0533611i
\(262\) 19.2420 + 3.82748i 1.18878 + 0.236462i
\(263\) 3.53421 8.53235i 0.217929 0.526127i −0.776671 0.629906i \(-0.783093\pi\)
0.994600 + 0.103779i \(0.0330934\pi\)
\(264\) 0.816768 + 1.97185i 0.0502686 + 0.121359i
\(265\) 0 0
\(266\) 0.153904 0.773729i 0.00943647 0.0474404i
\(267\) −20.1828 + 4.01461i −1.23517 + 0.245690i
\(268\) 7.47387 0.456539
\(269\) 3.39522 0.675351i 0.207010 0.0411768i −0.0904959 0.995897i \(-0.528845\pi\)
0.297506 + 0.954720i \(0.403845\pi\)
\(270\) 0 0
\(271\) 20.2345i 1.22916i −0.788855 0.614579i \(-0.789326\pi\)
0.788855 0.614579i \(-0.210674\pi\)
\(272\) 1.10961 3.97099i 0.0672802 0.240777i
\(273\) 2.53838 + 2.53838i 0.153630 + 0.153630i
\(274\) 2.71474 6.55395i 0.164003 0.395939i
\(275\) 0 0
\(276\) −0.680566 0.680566i −0.0409653 0.0409653i
\(277\) −3.91058 19.6598i −0.234964 1.18124i −0.900493 0.434871i \(-0.856794\pi\)
0.665529 0.746372i \(-0.268206\pi\)
\(278\) 5.84350 + 8.74542i 0.350470 + 0.524515i
\(279\) −7.09941 + 4.74367i −0.425031 + 0.283996i
\(280\) 0 0
\(281\) 20.1942 8.36471i 1.20468 0.498997i 0.312175 0.950025i \(-0.398942\pi\)
0.892510 + 0.451028i \(0.148942\pi\)
\(282\) −1.44681 + 7.27361i −0.0861563 + 0.433137i
\(283\) 16.6821 11.1466i 0.991650 0.662600i 0.0498445 0.998757i \(-0.484127\pi\)
0.941806 + 0.336157i \(0.109127\pi\)
\(284\) 6.01005 8.99468i 0.356631 0.533736i
\(285\) 0 0
\(286\) 0.191905 + 0.964770i 0.0113476 + 0.0570481i
\(287\) −3.61334 8.72338i −0.213289 0.514925i
\(288\) −0.548711 + 0.548711i −0.0323331 + 0.0323331i
\(289\) 14.5375 + 8.81252i 0.855148 + 0.518384i
\(290\) 0 0
\(291\) 12.1475 + 5.03165i 0.712098 + 0.294961i
\(292\) −5.44868 + 8.15453i −0.318860 + 0.477208i
\(293\) 15.9816i 0.933653i 0.884349 + 0.466826i \(0.154603\pi\)
−0.884349 + 0.466826i \(0.845397\pi\)
\(294\) −6.52931 4.36274i −0.380797 0.254440i
\(295\) 0 0
\(296\) −0.235023 0.351736i −0.0136604 0.0204443i
\(297\) 7.44570 + 3.08411i 0.432044 + 0.178958i
\(298\) −4.89467 2.02744i −0.283541 0.117446i
\(299\) −0.246442 0.368827i −0.0142521 0.0213298i
\(300\) 0 0
\(301\) 9.42405 + 6.29695i 0.543193 + 0.362950i
\(302\) 10.4918i 0.603734i
\(303\) 10.9616 16.4052i 0.629726 0.942451i
\(304\) −0.208106 0.0862003i −0.0119357 0.00494393i
\(305\) 0 0
\(306\) −1.57007 2.78778i −0.0897548 0.159367i
\(307\) −1.37631 + 1.37631i −0.0785503 + 0.0785503i −0.745290 0.666740i \(-0.767689\pi\)
0.666740 + 0.745290i \(0.267689\pi\)
\(308\) −1.91812 4.63076i −0.109295 0.263862i
\(309\) −5.28042 26.5465i −0.300392 1.51018i
\(310\) 0 0
\(311\) −11.6826 + 17.4843i −0.662461 + 0.991442i 0.336304 + 0.941753i \(0.390823\pi\)
−0.998765 + 0.0496889i \(0.984177\pi\)
\(312\) 0.852262 0.569463i 0.0482498 0.0322395i
\(313\) −5.54040 + 27.8535i −0.313162 + 1.57437i 0.428465 + 0.903559i \(0.359055\pi\)
−0.741627 + 0.670813i \(0.765945\pi\)
\(314\) 13.8862 5.75183i 0.783641 0.324595i
\(315\) 0 0
\(316\) −1.52281 + 1.01751i −0.0856650 + 0.0572395i
\(317\) −15.3659 22.9967i −0.863035 1.29162i −0.955225 0.295882i \(-0.904387\pi\)
0.0921896 0.995741i \(-0.470613\pi\)
\(318\) 0.820509 + 4.12498i 0.0460119 + 0.231317i
\(319\) −5.76271 5.76271i −0.322650 0.322650i
\(320\) 0 0
\(321\) 8.28531 20.0025i 0.462441 1.11643i
\(322\) 1.59826 + 1.59826i 0.0890676 + 0.0890676i
\(323\) 0.573218 0.730738i 0.0318947 0.0406593i
\(324\) 6.06985i 0.337214i
\(325\) 0 0
\(326\) −14.6915 + 2.92232i −0.813688 + 0.161853i
\(327\) 19.2897 1.06672
\(328\) −2.64422 + 0.525968i −0.146003 + 0.0290418i
\(329\) 3.39773 17.0816i 0.187323 0.941737i
\(330\) 0 0
\(331\) −13.1660 31.7855i −0.723668 1.74709i −0.662620 0.748955i \(-0.730556\pi\)
−0.0610482 0.998135i \(-0.519444\pi\)
\(332\) 0.978574 2.36249i 0.0537062 0.129658i
\(333\) −0.321961 0.0640420i −0.0176434 0.00350948i
\(334\) 7.47034 + 1.48594i 0.408759 + 0.0813072i
\(335\) 0 0
\(336\) −3.69316 + 3.69316i −0.201479 + 0.201479i
\(337\) −10.9142 7.29265i −0.594536 0.397256i 0.221582 0.975142i \(-0.428878\pi\)
−0.816118 + 0.577886i \(0.803878\pi\)
\(338\) −11.5740 + 4.79410i −0.629542 + 0.260765i
\(339\) 4.49175 0.243959
\(340\) 0 0
\(341\) −15.7474 −0.852769
\(342\) −0.161489 + 0.0668910i −0.00873233 + 0.00361705i
\(343\) −5.05041 3.37457i −0.272696 0.182210i
\(344\) 2.28839 2.28839i 0.123382 0.123382i
\(345\) 0 0
\(346\) −17.8236 3.54534i −0.958205 0.190599i
\(347\) 18.8905 + 3.75756i 1.01410 + 0.201717i 0.674045 0.738690i \(-0.264555\pi\)
0.340052 + 0.940407i \(0.389555\pi\)
\(348\) −3.24981 + 7.84575i −0.174208 + 0.420576i
\(349\) 8.24203 + 19.8980i 0.441186 + 1.06512i 0.975533 + 0.219852i \(0.0705575\pi\)
−0.534347 + 0.845265i \(0.679443\pi\)
\(350\) 0 0
\(351\) 0.755082 3.79605i 0.0403033 0.202618i
\(352\) −1.40367 + 0.279207i −0.0748159 + 0.0148818i
\(353\) −7.84481 −0.417537 −0.208768 0.977965i \(-0.566946\pi\)
−0.208768 + 0.977965i \(0.566946\pi\)
\(354\) 4.32795 0.860883i 0.230028 0.0457554i
\(355\) 0 0
\(356\) 13.7988i 0.731333i
\(357\) −10.5675 18.7635i −0.559293 0.993069i
\(358\) −9.13913 9.13913i −0.483018 0.483018i
\(359\) −4.46689 + 10.7840i −0.235753 + 0.569159i −0.996835 0.0794970i \(-0.974669\pi\)
0.761082 + 0.648656i \(0.224669\pi\)
\(360\) 0 0
\(361\) 13.3992 + 13.3992i 0.705218 + 0.705218i
\(362\) 1.11267 + 5.59375i 0.0584805 + 0.294001i
\(363\) −7.41677 11.1000i −0.389280 0.582598i
\(364\) −2.00148 + 1.33734i −0.104906 + 0.0700959i
\(365\) 0 0
\(366\) 18.2653 7.56573i 0.954741 0.395467i
\(367\) −2.94262 + 14.7935i −0.153603 + 0.772216i 0.824786 + 0.565445i \(0.191296\pi\)
−0.978389 + 0.206771i \(0.933704\pi\)
\(368\) 0.536616 0.358556i 0.0279731 0.0186910i
\(369\) −1.16231 + 1.73952i −0.0605074 + 0.0905557i
\(370\) 0 0
\(371\) −1.92691 9.68722i −0.100040 0.502935i
\(372\) 6.27950 + 15.1601i 0.325577 + 0.786012i
\(373\) 0.0702693 0.0702693i 0.00363841 0.00363841i −0.705285 0.708924i \(-0.749181\pi\)
0.708924 + 0.705285i \(0.249181\pi\)
\(374\) 0.448801 5.88377i 0.0232069 0.304243i
\(375\) 0 0
\(376\) −4.59434 1.90304i −0.236935 0.0981418i
\(377\) −2.17445 + 3.25429i −0.111990 + 0.167604i
\(378\) 19.7217i 1.01438i
\(379\) −11.0779 7.40200i −0.569032 0.380215i 0.237516 0.971384i \(-0.423667\pi\)
−0.806548 + 0.591168i \(0.798667\pi\)
\(380\) 0 0
\(381\) −10.3359 15.4688i −0.529526 0.792492i
\(382\) 20.0592 + 8.30880i 1.02632 + 0.425115i
\(383\) 26.2569 + 10.8760i 1.34167 + 0.555736i 0.933960 0.357377i \(-0.116329\pi\)
0.407705 + 0.913114i \(0.366329\pi\)
\(384\) 0.828527 + 1.23998i 0.0422806 + 0.0632774i
\(385\) 0 0
\(386\) 0.487981 + 0.326059i 0.0248376 + 0.0165959i
\(387\) 2.51133i 0.127658i
\(388\) −4.89826 + 7.33077i −0.248672 + 0.372163i
\(389\) 28.5749 + 11.8361i 1.44880 + 0.600115i 0.961915 0.273349i \(-0.0881313\pi\)
0.486890 + 0.873463i \(0.338131\pi\)
\(390\) 0 0
\(391\) 0.828384 + 2.52876i 0.0418932 + 0.127885i
\(392\) 3.72338 3.72338i 0.188059 0.188059i
\(393\) −11.1966 27.0309i −0.564792 1.36353i
\(394\) 3.47533 + 17.4717i 0.175085 + 0.880211i
\(395\) 0 0
\(396\) −0.617005 + 0.923413i −0.0310057 + 0.0464033i
\(397\) −5.96544 + 3.98598i −0.299397 + 0.200051i −0.696190 0.717857i \(-0.745123\pi\)
0.396793 + 0.917908i \(0.370123\pi\)
\(398\) −0.699239 + 3.51531i −0.0350497 + 0.176207i
\(399\) −1.08692 + 0.450218i −0.0544141 + 0.0225391i
\(400\) 0 0
\(401\) 6.19658 4.14042i 0.309442 0.206763i −0.391146 0.920329i \(-0.627921\pi\)
0.700588 + 0.713566i \(0.252921\pi\)
\(402\) −6.19231 9.26744i −0.308844 0.462218i
\(403\) 1.47541 + 7.41737i 0.0734953 + 0.369486i
\(404\) 9.35515 + 9.35515i 0.465436 + 0.465436i
\(405\) 0 0
\(406\) 7.63196 18.4252i 0.378768 0.914426i
\(407\) −0.428102 0.428102i −0.0212202 0.0212202i
\(408\) −5.84329 + 1.91418i −0.289286 + 0.0947659i
\(409\) 18.1578i 0.897847i −0.893570 0.448924i \(-0.851808\pi\)
0.893570 0.448924i \(-0.148192\pi\)
\(410\) 0 0
\(411\) −10.3760 + 2.06391i −0.511810 + 0.101805i
\(412\) 18.1495 0.894162
\(413\) −10.1639 + 2.02172i −0.500132 + 0.0994825i
\(414\) 0.0977039 0.491190i 0.00480188 0.0241407i
\(415\) 0 0
\(416\) 0.263026 + 0.635001i 0.0128959 + 0.0311335i
\(417\) 6.00263 14.4916i 0.293950 0.709659i
\(418\) −0.316180 0.0628921i −0.0154649 0.00307615i
\(419\) 5.30674 + 1.05558i 0.259251 + 0.0515683i 0.323005 0.946397i \(-0.395307\pi\)
−0.0637533 + 0.997966i \(0.520307\pi\)
\(420\) 0 0
\(421\) 12.5830 12.5830i 0.613260 0.613260i −0.330534 0.943794i \(-0.607229\pi\)
0.943794 + 0.330534i \(0.107229\pi\)
\(422\) 3.83494 + 2.56243i 0.186682 + 0.124737i
\(423\) −3.56518 + 1.47675i −0.173345 + 0.0718019i
\(424\) −2.82020 −0.136961
\(425\) 0 0
\(426\) −16.1327 −0.781632
\(427\) −42.8947 + 17.7676i −2.07582 + 0.859833i
\(428\) 12.0711 + 8.06566i 0.583479 + 0.389868i
\(429\) 1.03730 1.03730i 0.0500811 0.0500811i
\(430\) 0 0
\(431\) −10.0155 1.99220i −0.482429 0.0959611i −0.0521163 0.998641i \(-0.516597\pi\)
−0.430313 + 0.902680i \(0.641597\pi\)
\(432\) 5.52298 + 1.09859i 0.265724 + 0.0528559i
\(433\) −13.3385 + 32.2019i −0.641006 + 1.54752i 0.184319 + 0.982867i \(0.440992\pi\)
−0.825325 + 0.564658i \(0.809008\pi\)
\(434\) −14.7470 35.6023i −0.707877 1.70897i
\(435\) 0 0
\(436\) −2.52344 + 12.6862i −0.120851 + 0.607558i
\(437\) 0.142581 0.0283611i 0.00682056 0.00135669i
\(438\) 14.6258 0.698849
\(439\) −2.63978 + 0.525084i −0.125990 + 0.0250609i −0.257682 0.966230i \(-0.582959\pi\)
0.131693 + 0.991291i \(0.457959\pi\)
\(440\) 0 0
\(441\) 4.08612i 0.194577i
\(442\) −2.81344 + 0.339868i −0.133822 + 0.0161659i
\(443\) 21.5344 + 21.5344i 1.02313 + 1.02313i 0.999726 + 0.0234065i \(0.00745121\pi\)
0.0234065 + 0.999726i \(0.492549\pi\)
\(444\) −0.241423 + 0.582846i −0.0114574 + 0.0276607i
\(445\) 0 0
\(446\) 7.04691 + 7.04691i 0.333681 + 0.333681i
\(447\) 1.54139 + 7.74908i 0.0729052 + 0.366519i
\(448\) −1.94574 2.91200i −0.0919275 0.137579i
\(449\) 21.9479 14.6651i 1.03578 0.692089i 0.0832522 0.996529i \(-0.473469\pi\)
0.952532 + 0.304440i \(0.0984693\pi\)
\(450\) 0 0
\(451\) −3.56476 + 1.47657i −0.167858 + 0.0695291i
\(452\) −0.587603 + 2.95408i −0.0276385 + 0.138948i
\(453\) 13.0096 8.69273i 0.611244 0.408420i
\(454\) −8.86159 + 13.2623i −0.415895 + 0.622431i
\(455\) 0 0
\(456\) 0.0655350 + 0.329466i 0.00306896 + 0.0154287i
\(457\) 9.81102 + 23.6859i 0.458940 + 1.10798i 0.968827 + 0.247738i \(0.0796872\pi\)
−0.509887 + 0.860241i \(0.670313\pi\)
\(458\) −20.2038 + 20.2038i −0.944063 + 0.944063i
\(459\) −10.4908 + 20.7127i −0.489671 + 0.966785i
\(460\) 0 0
\(461\) −12.3509 5.11592i −0.575240 0.238272i 0.0760463 0.997104i \(-0.475770\pi\)
−0.651286 + 0.758832i \(0.725770\pi\)
\(462\) −4.15282 + 6.21514i −0.193207 + 0.289154i
\(463\) 32.8821i 1.52816i 0.645121 + 0.764081i \(0.276807\pi\)
−0.645121 + 0.764081i \(0.723193\pi\)
\(464\) −4.73475 3.16366i −0.219805 0.146869i
\(465\) 0 0
\(466\) −13.2219 19.7880i −0.612492 0.916660i
\(467\) −4.42354 1.83229i −0.204697 0.0847883i 0.277979 0.960587i \(-0.410335\pi\)
−0.482676 + 0.875799i \(0.660335\pi\)
\(468\) 0.492757 + 0.204107i 0.0227777 + 0.00943483i
\(469\) 14.5422 + 21.7639i 0.671496 + 1.00496i
\(470\) 0 0
\(471\) −18.6372 12.4530i −0.858758 0.573803i
\(472\) 2.95897i 0.136198i
\(473\) 2.57321 3.85109i 0.118317 0.177073i
\(474\) 2.52339 + 1.04522i 0.115903 + 0.0480086i
\(475\) 0 0
\(476\) 13.7225 4.49531i 0.628972 0.206042i
\(477\) −1.54747 + 1.54747i −0.0708540 + 0.0708540i
\(478\) −8.50050 20.5220i −0.388804 0.938655i
\(479\) −6.42297 32.2905i −0.293473 1.47539i −0.793070 0.609130i \(-0.791519\pi\)
0.499597 0.866258i \(-0.333481\pi\)
\(480\) 0 0
\(481\) −0.161536 + 0.241755i −0.00736539 + 0.0110231i
\(482\) −7.25475 + 4.84747i −0.330445 + 0.220796i
\(483\) 0.657607 3.30601i 0.0299222 0.150429i
\(484\) 8.27034 3.42569i 0.375925 0.155713i
\(485\) 0 0
\(486\) 6.51997 4.35651i 0.295752 0.197615i
\(487\) −16.8849 25.2701i −0.765130 1.14510i −0.985499 0.169681i \(-0.945726\pi\)
0.220369 0.975417i \(-0.429274\pi\)
\(488\) 2.58630 + 13.0022i 0.117076 + 0.588582i
\(489\) 15.7959 + 15.7959i 0.714318 + 0.714318i
\(490\) 0 0
\(491\) 6.24928 15.0871i 0.282026 0.680871i −0.717857 0.696191i \(-0.754877\pi\)
0.999883 + 0.0153199i \(0.00487666\pi\)
\(492\) 2.84300 + 2.84300i 0.128172 + 0.128172i
\(493\) 17.8166 15.2912i 0.802420 0.688682i
\(494\) 0.154820i 0.00696570i
\(495\) 0 0
\(496\) −10.7917 + 2.14661i −0.484563 + 0.0963856i
\(497\) 37.8865 1.69944
\(498\) −3.74021 + 0.743974i −0.167603 + 0.0333383i
\(499\) 4.87821 24.5244i 0.218379 1.09786i −0.703592 0.710604i \(-0.748422\pi\)
0.921971 0.387260i \(-0.126578\pi\)
\(500\) 0 0
\(501\) −4.34684 10.4942i −0.194203 0.468847i
\(502\) −4.09070 + 9.87582i −0.182577 + 0.440779i
\(503\) −4.24133 0.843653i −0.189111 0.0376166i 0.0996258 0.995025i \(-0.468235\pi\)
−0.288737 + 0.957408i \(0.593235\pi\)
\(504\) −2.66550 0.530200i −0.118731 0.0236170i
\(505\) 0 0
\(506\) 0.653121 0.653121i 0.0290348 0.0290348i
\(507\) 15.5340 + 10.3795i 0.689887 + 0.460968i
\(508\) 11.5255 4.77400i 0.511360 0.211812i
\(509\) 14.6760 0.650503 0.325251 0.945628i \(-0.394551\pi\)
0.325251 + 0.945628i \(0.394551\pi\)
\(510\) 0 0
\(511\) −34.3477 −1.51945
\(512\) −0.923880 + 0.382683i −0.0408301 + 0.0169124i
\(513\) 1.05467 + 0.704705i 0.0465646 + 0.0311135i
\(514\) −17.7495 + 17.7495i −0.782896 + 0.782896i
\(515\) 0 0
\(516\) −4.73356 0.941563i −0.208383 0.0414500i
\(517\) −6.98029 1.38847i −0.306993 0.0610646i
\(518\) 0.566964 1.36877i 0.0249110 0.0601404i
\(519\) 10.3712 + 25.0383i 0.455246 + 1.09906i
\(520\) 0 0
\(521\) −1.76990 + 8.89788i −0.0775406 + 0.389823i 0.922452 + 0.386111i \(0.126182\pi\)
−0.999993 + 0.00371240i \(0.998818\pi\)
\(522\) −4.33395 + 0.862075i −0.189692 + 0.0377320i
\(523\) −7.38904 −0.323100 −0.161550 0.986865i \(-0.551649\pi\)
−0.161550 + 0.986865i \(0.551649\pi\)
\(524\) 19.2420 3.82748i 0.840592 0.167204i
\(525\) 0 0
\(526\) 9.23535i 0.402680i
\(527\) 3.45048 45.2358i 0.150305 1.97050i
\(528\) 1.50919 + 1.50919i 0.0656791 + 0.0656791i
\(529\) 8.64232 20.8644i 0.375753 0.907149i
\(530\) 0 0
\(531\) 1.62362 + 1.62362i 0.0704591 + 0.0704591i
\(532\) −0.153904 0.773729i −0.00667259 0.0335454i
\(533\) 1.02949 + 1.54074i 0.0445921 + 0.0667368i
\(534\) −17.1102 + 11.4327i −0.740430 + 0.494739i
\(535\) 0 0
\(536\) 6.90495 2.86013i 0.298249 0.123539i
\(537\) −3.76031 + 18.9043i −0.162269 + 0.815783i
\(538\) 2.87833 1.92324i 0.124093 0.0829166i
\(539\) 4.18681 6.26600i 0.180338 0.269896i
\(540\) 0 0
\(541\) −1.09529 5.50641i −0.0470904 0.236739i 0.950071 0.312034i \(-0.101010\pi\)
−0.997161 + 0.0752947i \(0.976010\pi\)
\(542\) −7.74341 18.6942i −0.332608 0.802986i
\(543\) 6.01426 6.01426i 0.258097 0.258097i
\(544\) −0.494483 4.09335i −0.0212008 0.175501i
\(545\) 0 0
\(546\) 3.31656 + 1.37376i 0.141936 + 0.0587916i
\(547\) −20.5784 + 30.7977i −0.879868 + 1.31682i 0.0678469 + 0.997696i \(0.478387\pi\)
−0.947715 + 0.319119i \(0.896613\pi\)
\(548\) 7.09395i 0.303038i
\(549\) 8.55358 + 5.71532i 0.365058 + 0.243924i
\(550\) 0 0
\(551\) −0.712622 1.06651i −0.0303587 0.0454350i
\(552\) −0.889203 0.368320i −0.0378470 0.0156767i
\(553\) −5.92600 2.45463i −0.251999 0.104381i
\(554\) −11.1364 16.6668i −0.473140 0.708104i
\(555\) 0 0
\(556\) 8.74542 + 5.84350i 0.370888 + 0.247820i
\(557\) 31.1211i 1.31864i −0.751862 0.659321i \(-0.770844\pi\)
0.751862 0.659321i \(-0.229156\pi\)
\(558\) −4.74367 + 7.09941i −0.200816 + 0.300542i
\(559\) −2.05504 0.851225i −0.0869189 0.0360030i
\(560\) 0 0
\(561\) −7.66760 + 4.31836i −0.323726 + 0.182321i
\(562\) 15.4560 15.4560i 0.651971 0.651971i
\(563\) −11.8843 28.6912i −0.500863 1.20919i −0.949014 0.315233i \(-0.897917\pi\)
0.448151 0.893958i \(-0.352083\pi\)
\(564\) 1.44681 + 7.27361i 0.0609217 + 0.306274i
\(565\) 0 0
\(566\) 11.1466 16.6821i 0.468529 0.701203i
\(567\) 17.6754 11.8103i 0.742298 0.495988i
\(568\) 2.11045 10.6099i 0.0885525 0.445183i
\(569\) 2.92191 1.21029i 0.122493 0.0507381i −0.320595 0.947216i \(-0.603883\pi\)
0.443088 + 0.896478i \(0.353883\pi\)
\(570\) 0 0
\(571\) −1.63933 + 1.09537i −0.0686039 + 0.0458397i −0.589399 0.807842i \(-0.700635\pi\)
0.520795 + 0.853682i \(0.325635\pi\)
\(572\) 0.546498 + 0.817893i 0.0228502 + 0.0341978i
\(573\) −6.31688 31.7571i −0.263891 1.32667i
\(574\) −6.67659 6.67659i −0.278675 0.278675i
\(575\) 0 0
\(576\) −0.296960 + 0.716925i −0.0123733 + 0.0298719i
\(577\) −23.0553 23.0553i −0.959807 0.959807i 0.0394163 0.999223i \(-0.487450\pi\)
−0.999223 + 0.0394163i \(0.987450\pi\)
\(578\) 16.8033 + 2.57844i 0.698926 + 0.107249i
\(579\) 0.875235i 0.0363735i
\(580\) 0 0
\(581\) 8.78362 1.74717i 0.364406 0.0724848i
\(582\) 13.1483 0.545016
\(583\) −3.95863 + 0.787420i −0.163950 + 0.0326116i
\(584\) −1.91332 + 9.61892i −0.0791739 + 0.398034i
\(585\) 0 0
\(586\) 6.11588 + 14.7650i 0.252645 + 0.609938i
\(587\) −11.7884 + 28.4598i −0.486560 + 1.17466i 0.469879 + 0.882731i \(0.344297\pi\)
−0.956440 + 0.291930i \(0.905703\pi\)
\(588\) −7.70184 1.53199i −0.317619 0.0631783i
\(589\) −2.43086 0.483529i −0.100162 0.0199235i
\(590\) 0 0
\(591\) 18.7851 18.7851i 0.772716 0.772716i
\(592\) −0.351736 0.235023i −0.0144563 0.00965937i
\(593\) −6.97472 + 2.88902i −0.286417 + 0.118638i −0.521267 0.853394i \(-0.674540\pi\)
0.234849 + 0.972032i \(0.424540\pi\)
\(594\) 8.05917 0.330672
\(595\) 0 0
\(596\) −5.29796 −0.217013
\(597\) 4.93825 2.04549i 0.202109 0.0837164i
\(598\) −0.368827 0.246442i −0.0150825 0.0100778i
\(599\) −0.148385 + 0.148385i −0.00606283 + 0.00606283i −0.710132 0.704069i \(-0.751365\pi\)
0.704069 + 0.710132i \(0.251365\pi\)
\(600\) 0 0
\(601\) −12.7537 2.53686i −0.520233 0.103481i −0.0720121 0.997404i \(-0.522942\pi\)
−0.448220 + 0.893923i \(0.647942\pi\)
\(602\) 11.1164 + 2.21119i 0.453072 + 0.0901216i
\(603\) 2.21944 5.35821i 0.0903826 0.218203i
\(604\) 4.01503 + 9.69314i 0.163369 + 0.394408i
\(605\) 0 0
\(606\) 3.84919 19.3512i 0.156363 0.786089i
\(607\) 1.06561 0.211963i 0.0432517 0.00860330i −0.173417 0.984848i \(-0.555481\pi\)
0.216669 + 0.976245i \(0.430481\pi\)
\(608\) −0.225252 −0.00913519
\(609\) −29.1701 + 5.80230i −1.18203 + 0.235121i
\(610\) 0 0
\(611\) 3.41796i 0.138276i
\(612\) −2.51739 1.97474i −0.101760 0.0798239i
\(613\) −22.9407 22.9407i −0.926565 0.926565i 0.0709174 0.997482i \(-0.477407\pi\)
−0.997482 + 0.0709174i \(0.977407\pi\)
\(614\) −0.744855 + 1.79824i −0.0300599 + 0.0725710i
\(615\) 0 0
\(616\) −3.54423 3.54423i −0.142801 0.142801i
\(617\) 0.407054 + 2.04640i 0.0163874 + 0.0823850i 0.988114 0.153726i \(-0.0491272\pi\)
−0.971726 + 0.236111i \(0.924127\pi\)
\(618\) −15.0374 22.5050i −0.604891 0.905284i
\(619\) 29.8012 19.9126i 1.19781 0.800353i 0.213528 0.976937i \(-0.431505\pi\)
0.984286 + 0.176584i \(0.0565047\pi\)
\(620\) 0 0
\(621\) −3.35762 + 1.39077i −0.134737 + 0.0558098i
\(622\) −4.10239 + 20.6241i −0.164491 + 0.826951i
\(623\) 40.1820 26.8488i 1.60986 1.07567i
\(624\) 0.569463 0.852262i 0.0227968 0.0341178i
\(625\) 0 0
\(626\) 5.54040 + 27.8535i 0.221439 + 1.11325i
\(627\) 0.183979 + 0.444164i 0.00734741 + 0.0177382i
\(628\) 10.6280 10.6280i 0.424104 0.424104i
\(629\) 1.32356 1.13596i 0.0527739 0.0452936i
\(630\) 0 0
\(631\) 26.5925 + 11.0150i 1.05863 + 0.438499i 0.842965 0.537969i \(-0.180808\pi\)
0.215664 + 0.976468i \(0.430808\pi\)
\(632\) −1.01751 + 1.52281i −0.0404745 + 0.0605743i
\(633\) 6.87829i 0.273387i
\(634\) −22.9967 15.3659i −0.913315 0.610258i
\(635\) 0 0
\(636\) 2.33661 + 3.49699i 0.0926527 + 0.138665i
\(637\) −3.34370 1.38500i −0.132482 0.0548759i
\(638\) −7.52935 3.11876i −0.298090 0.123473i
\(639\) −4.66377 6.97982i −0.184496 0.276117i
\(640\) 0 0
\(641\) 17.5118 + 11.7010i 0.691676 + 0.462163i 0.851070 0.525052i \(-0.175954\pi\)
−0.159394 + 0.987215i \(0.550954\pi\)
\(642\) 21.6505i 0.854479i
\(643\) 10.0396 15.0254i 0.395924 0.592542i −0.578933 0.815375i \(-0.696531\pi\)
0.974857 + 0.222833i \(0.0715305\pi\)
\(644\) 2.08823 + 0.864973i 0.0822878 + 0.0340847i
\(645\) 0 0
\(646\) 0.249943 0.894475i 0.00983387 0.0351926i
\(647\) 30.4615 30.4615i 1.19756 1.19756i 0.222671 0.974894i \(-0.428523\pi\)
0.974894 0.222671i \(-0.0714774\pi\)
\(648\) −2.32283 5.60781i −0.0912494 0.220296i
\(649\) 0.826166 + 4.15342i 0.0324299 + 0.163036i
\(650\) 0 0
\(651\) −31.9279 + 47.7834i −1.25135 + 1.87278i
\(652\) −12.4549 + 8.32208i −0.487770 + 0.325918i
\(653\) −8.20651 + 41.2569i −0.321145 + 1.61451i 0.396456 + 0.918054i \(0.370240\pi\)
−0.717602 + 0.696454i \(0.754760\pi\)
\(654\) 17.8213 7.38184i 0.696870 0.288653i
\(655\) 0 0
\(656\) −2.24166 + 1.49783i −0.0875222 + 0.0584805i
\(657\) 4.22815 + 6.32787i 0.164956 + 0.246874i
\(658\) −3.39773 17.0816i −0.132457 0.665909i
\(659\) −13.4187 13.4187i −0.522718 0.522718i 0.395673 0.918391i \(-0.370511\pi\)
−0.918391 + 0.395673i \(0.870511\pi\)
\(660\) 0 0
\(661\) 9.49648 22.9265i 0.369370 0.891738i −0.624484 0.781038i \(-0.714691\pi\)
0.993854 0.110701i \(-0.0353094\pi\)
\(662\) −24.3276 24.3276i −0.945518 0.945518i
\(663\) 2.75244 + 3.20701i 0.106896 + 0.124550i
\(664\) 2.55714i 0.0992362i
\(665\) 0 0
\(666\) −0.321961 + 0.0640420i −0.0124757 + 0.00248158i
\(667\) 3.67509 0.142300
\(668\) 7.47034 1.48594i 0.289036 0.0574929i
\(669\) 2.89946 14.5766i 0.112100 0.563563i
\(670\) 0 0
\(671\) 7.26062 + 17.5287i 0.280293 + 0.676688i
\(672\) −1.99872 + 4.82535i −0.0771025 + 0.186142i
\(673\) −8.33039 1.65702i −0.321113 0.0638733i 0.0319020 0.999491i \(-0.489844\pi\)
−0.353015 + 0.935618i \(0.614844\pi\)
\(674\) −12.8742 2.56084i −0.495896 0.0986398i
\(675\) 0 0
\(676\) −8.85834 + 8.85834i −0.340706 + 0.340706i
\(677\) 4.53636 + 3.03110i 0.174347 + 0.116495i 0.639682 0.768640i \(-0.279066\pi\)
−0.465335 + 0.885135i \(0.654066\pi\)
\(678\) 4.14984 1.71892i 0.159374 0.0660147i
\(679\) −30.8779 −1.18499
\(680\) 0 0
\(681\) 23.7871 0.911522
\(682\) −14.5487 + 6.02626i −0.557098 + 0.230758i
\(683\) −30.4635 20.3551i −1.16565 0.778866i −0.186595 0.982437i \(-0.559745\pi\)
−0.979060 + 0.203571i \(0.934745\pi\)
\(684\) −0.123598 + 0.123598i −0.00472590 + 0.00472590i
\(685\) 0 0
\(686\) −5.95736 1.18499i −0.227453 0.0452432i
\(687\) 41.7917 + 8.31289i 1.59445 + 0.317157i
\(688\) 1.23847 2.98993i 0.0472162 0.113990i
\(689\) 0.741785 + 1.79083i 0.0282598 + 0.0682251i
\(690\) 0 0
\(691\) −1.37635 + 6.91939i −0.0523589 + 0.263226i −0.998094 0.0617127i \(-0.980344\pi\)
0.945735 + 0.324939i \(0.105344\pi\)
\(692\) −17.8236 + 3.54534i −0.677553 + 0.134774i
\(693\) −3.88951 −0.147750
\(694\) 18.8905 3.75756i 0.717075 0.142635i
\(695\) 0 0
\(696\) 8.49217i 0.321895i
\(697\) −3.46050 10.5636i −0.131076 0.400126i
\(698\) 15.2293 + 15.2293i 0.576437 + 0.576437i
\(699\) −13.5820 + 32.7897i −0.513717 + 1.24022i
\(700\) 0 0
\(701\) 16.7123 + 16.7123i 0.631215 + 0.631215i 0.948373 0.317158i \(-0.102728\pi\)
−0.317158 + 0.948373i \(0.602728\pi\)
\(702\) −0.755082 3.79605i −0.0284987 0.143273i
\(703\) −0.0529394 0.0792294i −0.00199665 0.00298819i
\(704\) −1.18997 + 0.795115i −0.0448488 + 0.0299670i
\(705\) 0 0
\(706\) −7.24766 + 3.00208i −0.272769 + 0.112985i
\(707\) −9.03956 + 45.4449i −0.339967 + 1.70913i
\(708\) 3.66906 2.45159i 0.137892 0.0921363i
\(709\) −14.4329 + 21.6003i −0.542038 + 0.811217i −0.996845 0.0793729i \(-0.974708\pi\)
0.454807 + 0.890590i \(0.349708\pi\)
\(710\) 0 0
\(711\) 0.277265 + 1.39390i 0.0103982 + 0.0522755i
\(712\) −5.28056 12.7484i −0.197897 0.477766i
\(713\) 5.02134 5.02134i 0.188051 0.188051i
\(714\) −16.9436 13.2912i −0.634098 0.497410i
\(715\) 0 0
\(716\) −11.9408 4.94606i −0.446250 0.184843i
\(717\) −18.4040 + 27.5435i −0.687309 + 1.02863i
\(718\) 11.6725i 0.435615i
\(719\) 31.3017 + 20.9151i 1.16735 + 0.780002i 0.979351 0.202167i \(-0.0647983\pi\)
0.188004 + 0.982168i \(0.439798\pi\)
\(720\) 0 0
\(721\) 35.3142 + 52.8514i 1.31517 + 1.96829i
\(722\) 17.5068 + 7.25157i 0.651537 + 0.269875i
\(723\) 12.0215 + 4.97948i 0.447085 + 0.185189i
\(724\) 3.16861 + 4.74216i 0.117760 + 0.176241i
\(725\) 0 0
\(726\) −11.1000 7.41677i −0.411959 0.275262i
\(727\) 11.7248i 0.434847i −0.976077 0.217424i \(-0.930235\pi\)
0.976077 0.217424i \(-0.0697653\pi\)
\(728\) −1.33734 + 2.00148i −0.0495653 + 0.0741797i
\(729\) −27.6274 11.4436i −1.02324 0.423838i
\(730\) 0 0
\(731\) 10.4988 + 8.23562i 0.388311 + 0.304605i
\(732\) 13.9796 13.9796i 0.516702 0.516702i
\(733\) 15.1940 + 36.6816i 0.561203 + 1.35486i 0.908805 + 0.417222i \(0.136996\pi\)
−0.347601 + 0.937642i \(0.613004\pi\)
\(734\) 2.94262 + 14.7935i 0.108614 + 0.546039i
\(735\) 0 0
\(736\) 0.358556 0.536616i 0.0132165 0.0197799i
\(737\) 8.89371 5.94259i 0.327604 0.218898i
\(738\) −0.408149 + 2.05190i −0.0150242 + 0.0755315i
\(739\) −41.6307 + 17.2440i −1.53141 + 0.634332i −0.979838 0.199795i \(-0.935973\pi\)
−0.551574 + 0.834126i \(0.685973\pi\)
\(740\) 0 0
\(741\) 0.191974 0.128273i 0.00705234 0.00471223i
\(742\) −5.48737 8.21243i −0.201448 0.301488i
\(743\) 5.03606 + 25.3180i 0.184755 + 0.928826i 0.956241 + 0.292580i \(0.0945137\pi\)
−0.771486 + 0.636246i \(0.780486\pi\)
\(744\) 11.6030 + 11.6030i 0.425387 + 0.425387i
\(745\) 0 0
\(746\) 0.0380295 0.0918113i 0.00139236 0.00336145i
\(747\) −1.40313 1.40313i −0.0513378 0.0513378i
\(748\) −1.83698 5.60765i −0.0671668 0.205036i
\(749\) 50.8448i 1.85783i
\(750\) 0 0
\(751\) 19.7948 3.93743i 0.722322 0.143679i 0.179779 0.983707i \(-0.442462\pi\)
0.542543 + 0.840028i \(0.317462\pi\)
\(752\) −4.97288 −0.181342
\(753\) 15.6351 3.11001i 0.569773 0.113335i
\(754\) −0.763564 + 3.83870i −0.0278074 + 0.139797i
\(755\) 0 0
\(756\) 7.54717 + 18.2205i 0.274488 + 0.662673i
\(757\) −4.45049 + 10.7444i −0.161756 + 0.390513i −0.983889 0.178783i \(-0.942784\pi\)
0.822133 + 0.569296i \(0.192784\pi\)
\(758\) −13.0672 2.59924i −0.474624 0.0944086i
\(759\) −1.35098 0.268728i −0.0490376 0.00975419i
\(760\) 0 0
\(761\) −27.7743 + 27.7743i −1.00682 + 1.00682i −0.00684140 + 0.999977i \(0.502178\pi\)
−0.999977 + 0.00684140i \(0.997822\pi\)
\(762\) −15.4688 10.3359i −0.560376 0.374431i
\(763\) −41.8522 + 17.3357i −1.51515 + 0.627596i
\(764\) 21.7120 0.785511
\(765\) 0 0
\(766\) 28.4203 1.02687
\(767\) 1.87895 0.778286i 0.0678449 0.0281023i
\(768\) 1.23998 + 0.828527i 0.0447439 + 0.0298969i
\(769\) −4.24272 + 4.24272i −0.152997 + 0.152997i −0.779455 0.626458i \(-0.784504\pi\)
0.626458 + 0.779455i \(0.284504\pi\)
\(770\) 0 0
\(771\) 36.7149 + 7.30305i 1.32226 + 0.263013i
\(772\) 0.575613 + 0.114497i 0.0207168 + 0.00412082i
\(773\) 3.89373 9.40030i 0.140048 0.338105i −0.838257 0.545275i \(-0.816425\pi\)
0.978305 + 0.207170i \(0.0664252\pi\)
\(774\) −0.961046 2.32017i −0.0345441 0.0833968i
\(775\) 0 0
\(776\) −1.72004 + 8.64723i −0.0617459 + 0.310417i
\(777\) −2.16700 + 0.431042i −0.0777405 + 0.0154636i
\(778\) 30.9292 1.10887
\(779\) −0.595617 + 0.118476i −0.0213402 + 0.00424483i
\(780\) 0 0
\(781\) 15.4821i 0.553994i
\(782\) 1.73304 + 2.01926i 0.0619734 + 0.0722085i
\(783\) 22.6744 + 22.6744i 0.810316 + 0.810316i
\(784\) 2.01508 4.86483i 0.0719672 0.173744i
\(785\) 0 0
\(786\) −20.6885 20.6885i −0.737936 0.737936i
\(787\) 7.71384 + 38.7801i 0.274969 + 1.38236i 0.833336 + 0.552768i \(0.186428\pi\)
−0.558367 + 0.829594i \(0.688572\pi\)
\(788\) 9.89692 + 14.8118i 0.352563 + 0.527648i
\(789\) −11.4516 + 7.65174i −0.407689 + 0.272409i
\(790\) 0 0
\(791\) −9.74560 + 4.03676i −0.346514 + 0.143531i
\(792\) −0.216663 + 1.08924i −0.00769880 + 0.0387045i
\(793\) 7.57614 5.06222i 0.269037 0.179765i
\(794\) −3.98598 + 5.96544i −0.141457 + 0.211706i
\(795\) 0 0
\(796\) 0.699239 + 3.51531i 0.0247839 + 0.124597i
\(797\) 16.6329 + 40.1553i 0.589166 + 1.42237i 0.884301 + 0.466917i \(0.154635\pi\)
−0.295135 + 0.955455i \(0.595365\pi\)
\(798\) −0.831894 + 0.831894i −0.0294487 + 0.0294487i
\(799\) 5.51797 19.7473i 0.195212 0.698608i
\(800\) 0 0
\(801\) −9.89268 4.09768i −0.349541 0.144785i
\(802\) 4.14042 6.19658i 0.146203 0.218809i
\(803\) 14.0360i 0.495320i
\(804\) −9.26744 6.19231i −0.326837 0.218386i
\(805\) 0 0
\(806\) 4.20160 + 6.28815i 0.147995 + 0.221490i
\(807\) −4.76954 1.97561i −0.167896 0.0695447i
\(808\) 12.2231 + 5.06297i 0.430007 + 0.178115i
\(809\) −25.9551 38.8446i −0.912534 1.36570i −0.930667 0.365868i \(-0.880772\pi\)
0.0181324 0.999836i \(-0.494228\pi\)
\(810\) 0 0
\(811\) −12.7865 8.54365i −0.448994 0.300008i 0.310440 0.950593i \(-0.399524\pi\)
−0.759433 + 0.650585i \(0.774524\pi\)
\(812\) 19.9433i 0.699872i
\(813\) −16.7648 + 25.0904i −0.587969 + 0.879957i
\(814\) −0.559342 0.231687i −0.0196049 0.00812062i
\(815\) 0 0
\(816\) −4.66597 + 4.00460i −0.163342 + 0.140189i
\(817\) 0.515466 0.515466i 0.0180339 0.0180339i
\(818\) −6.94870 16.7757i −0.242956 0.586547i
\(819\) 0.364417 + 1.83205i 0.0127338 + 0.0640169i
\(820\) 0 0
\(821\) 8.91045 13.3354i 0.310977 0.465410i −0.642753 0.766073i \(-0.722208\pi\)
0.953730 + 0.300663i \(0.0972080\pi\)
\(822\) −8.79634 + 5.87753i −0.306808 + 0.205002i
\(823\) −2.73864 + 13.7681i −0.0954631 + 0.479925i 0.903246 + 0.429124i \(0.141178\pi\)
−0.998709 + 0.0508015i \(0.983822\pi\)
\(824\) 16.7680 6.94551i 0.584139 0.241958i
\(825\) 0 0
\(826\) −8.61653 + 5.75738i −0.299807 + 0.200325i
\(827\) −18.4325 27.5862i −0.640962 0.959267i −0.999667 0.0258161i \(-0.991782\pi\)
0.358705 0.933451i \(-0.383218\pi\)
\(828\) −0.0977039 0.491190i −0.00339544 0.0170700i
\(829\) −19.3397 19.3397i −0.671696 0.671696i 0.286411 0.958107i \(-0.407538\pi\)
−0.958107 + 0.286411i \(0.907538\pi\)
\(830\) 0 0
\(831\) −11.4397 + 27.6178i −0.396837 + 0.958050i
\(832\) 0.486008 + 0.486008i 0.0168493 + 0.0168493i
\(833\) 17.0822 + 13.3999i 0.591865 + 0.464281i
\(834\) 15.6856i 0.543149i
\(835\) 0 0
\(836\) −0.316180 + 0.0628921i −0.0109353 + 0.00217517i
\(837\) 61.9607 2.14168
\(838\) 5.30674 1.05558i 0.183318 0.0364643i
\(839\) −2.67790 + 13.4627i −0.0924512 + 0.464784i 0.906630 + 0.421927i \(0.138646\pi\)
−0.999081 + 0.0428571i \(0.986354\pi\)
\(840\) 0 0
\(841\) −1.31132 3.16579i −0.0452178 0.109165i
\(842\) 6.80990 16.4405i 0.234685 0.566579i
\(843\) −31.9708 6.35938i −1.10113 0.219029i
\(844\) 4.52362 + 0.899804i 0.155709 + 0.0309725i
\(845\) 0 0
\(846\) −2.72867 + 2.72867i −0.0938138 + 0.0938138i
\(847\) 26.0675 + 17.4178i 0.895691 + 0.598482i
\(848\) −2.60552 + 1.07924i −0.0894741 + 0.0370614i
\(849\) −29.9208 −1.02688
\(850\) 0 0
\(851\) 0.273016 0.00935887
\(852\) −14.9047 + 6.17372i −0.510626 + 0.211508i
\(853\) −24.6422 16.4654i −0.843734 0.563765i 0.0568820 0.998381i \(-0.481884\pi\)
−0.900616 + 0.434616i \(0.856884\pi\)
\(854\) −32.8302 + 32.8302i −1.12343 + 1.12343i
\(855\) 0 0
\(856\) 14.2388 + 2.83228i 0.486674 + 0.0968055i
\(857\) 2.81677 + 0.560290i 0.0962190 + 0.0191391i 0.242965 0.970035i \(-0.421880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(858\) 0.561381 1.35529i 0.0191652 0.0462689i
\(859\) 14.7311 + 35.5640i 0.502618 + 1.21343i 0.948053 + 0.318112i \(0.103049\pi\)
−0.445435 + 0.895314i \(0.646951\pi\)
\(860\) 0 0
\(861\) −2.74709 + 13.8106i −0.0936206 + 0.470663i
\(862\) −10.0155 + 1.99220i −0.341129 + 0.0678547i
\(863\) −12.3538 −0.420530 −0.210265 0.977644i \(-0.567433\pi\)
−0.210265 + 0.977644i \(0.567433\pi\)
\(864\) 5.52298 1.09859i 0.187895 0.0373747i
\(865\) 0 0
\(866\) 34.8551i 1.18442i
\(867\) −10.7248 22.9721i −0.364233 0.780173i
\(868\) −27.2488 27.2488i −0.924885 0.924885i
\(869\) −1.00307 + 2.42163i −0.0340268 + 0.0821480i
\(870\) 0 0
\(871\) −3.63236 3.63236i −0.123078 0.123078i
\(872\) 2.52344 + 12.6862i 0.0854545 + 0.429609i
\(873\) 3.80102 + 5.68863i 0.128645 + 0.192531i
\(874\) 0.120874 0.0807655i 0.00408863 0.00273193i
\(875\) 0 0
\(876\) 13.5125 5.59706i 0.456545 0.189107i
\(877\) 0.843295 4.23953i 0.0284760 0.143159i −0.963932 0.266149i \(-0.914249\pi\)
0.992408 + 0.122991i \(0.0392485\pi\)
\(878\) −2.23789 + 1.49531i −0.0755253 + 0.0504644i
\(879\) 13.2412 19.8168i 0.446613 0.668404i
\(880\) 0 0
\(881\) −5.73703 28.8420i −0.193285 0.971711i −0.948631 0.316385i \(-0.897531\pi\)
0.755346 0.655327i \(-0.227469\pi\)
\(882\) −1.56369 3.77508i −0.0526522 0.127114i
\(883\) −34.6701 + 34.6701i −1.16674 + 1.16674i −0.183773 + 0.982969i \(0.558831\pi\)
−0.982969 + 0.183773i \(0.941169\pi\)
\(884\) −2.46922 + 1.39065i −0.0830487 + 0.0467727i
\(885\) 0 0
\(886\) 28.1361 + 11.6544i 0.945251 + 0.391536i
\(887\) 4.91559 7.35669i 0.165049 0.247014i −0.739721 0.672914i \(-0.765043\pi\)
0.904770 + 0.425900i \(0.140043\pi\)
\(888\) 0.630868i 0.0211706i
\(889\) 36.3274 + 24.2732i 1.21838 + 0.814097i
\(890\) 0 0
\(891\) −4.82623 7.22296i −0.161685 0.241978i
\(892\) 9.20723 + 3.81376i 0.308281 + 0.127694i
\(893\) −1.03489 0.428664i −0.0346312 0.0143447i
\(894\) 4.38950 + 6.56936i 0.146807 + 0.219712i
\(895\) 0 0
\(896\) −2.91200 1.94574i −0.0972832 0.0650026i
\(897\) 0.661522i 0.0220876i
\(898\) 14.6651 21.9479i 0.489380 0.732410i
\(899\) −57.8873 23.9777i −1.93065 0.799702i
\(900\) 0 0
\(901\) −1.39454 11.5441i −0.0464589 0.384588i
\(902\) −2.72835 + 2.72835i −0.0908441 + 0.0908441i
\(903\) −6.46843 15.6162i −0.215256 0.519674i
\(904\) 0.587603 + 2.95408i 0.0195434 + 0.0982512i
\(905\) 0 0
\(906\) 8.69273 13.0096i 0.288796 0.432214i
\(907\) 7.60237 5.07974i 0.252433 0.168670i −0.422916 0.906169i \(-0.638993\pi\)
0.675348 + 0.737499i \(0.263993\pi\)
\(908\) −3.11178 + 15.6440i −0.103268 + 0.519163i
\(909\) 9.48505 3.92884i 0.314599 0.130311i
\(910\) 0 0
\(911\) 25.4797 17.0250i 0.844181 0.564064i −0.0565701 0.998399i \(-0.518016\pi\)
0.900752 + 0.434335i \(0.143016\pi\)
\(912\) 0.186628 + 0.279308i 0.00617986 + 0.00924882i
\(913\) −0.713971 3.58938i −0.0236290 0.118791i
\(914\) 18.1284 + 18.1284i 0.599634 + 0.599634i
\(915\) 0 0
\(916\) −10.9342 + 26.3976i −0.361277 + 0.872200i
\(917\) 48.5856 + 48.5856i 1.60444 + 1.60444i
\(918\) −1.76588 + 23.1507i −0.0582828 + 0.764087i
\(919\) 43.0164i 1.41898i 0.704716 + 0.709490i \(0.251074\pi\)
−0.704716 + 0.709490i \(0.748926\pi\)
\(920\) 0 0
\(921\) 2.84691 0.566286i 0.0938089 0.0186597i
\(922\) −13.3685 −0.440270
\(923\) −7.29243 + 1.45055i −0.240033 + 0.0477456i
\(924\) −1.45828 + 7.33126i −0.0479738 + 0.241181i
\(925\) 0 0
\(926\) 12.5834 + 30.3791i 0.413517 + 0.998319i
\(927\) 5.38968 13.0118i 0.177020 0.427365i
\(928\) −5.58502 1.11093i −0.183337 0.0364681i
\(929\) −41.3633 8.22767i −1.35709 0.269941i −0.537677 0.843151i \(-0.680698\pi\)
−0.819408 + 0.573210i \(0.805698\pi\)
\(930\) 0 0
\(931\) 0.838701 0.838701i 0.0274873 0.0274873i
\(932\) −19.7880 13.2219i −0.648176 0.433098i
\(933\) 28.9724 12.0008i 0.948514 0.392887i
\(934\) −4.78801 −0.156668
\(935\) 0 0
\(936\) 0.533356 0.0174333
\(937\) −39.8003 + 16.4858i −1.30022 + 0.538569i −0.922015 0.387153i \(-0.873458\pi\)
−0.378205 + 0.925722i \(0.623458\pi\)
\(938\) 21.7639 + 14.5422i 0.710617 + 0.474819i
\(939\) 29.9474 29.9474i 0.977295 0.977295i
\(940\) 0 0
\(941\) 16.9565 + 3.37287i 0.552768 + 0.109952i 0.463568 0.886061i \(-0.346569\pi\)
0.0891997 + 0.996014i \(0.471569\pi\)
\(942\) −21.9841 4.37291i −0.716280 0.142477i
\(943\) 0.665857 1.60752i 0.0216833 0.0523481i
\(944\) 1.13235 + 2.73373i 0.0368548 + 0.0889754i
\(945\) 0 0
\(946\) 0.903593 4.54267i 0.0293783 0.147695i
\(947\) −8.23276 + 1.63760i −0.267529 + 0.0532148i −0.327032 0.945013i \(-0.606048\pi\)
0.0595030 + 0.998228i \(0.481048\pi\)
\(948\) 2.73129 0.0887083
\(949\) 6.61128 1.31506i 0.214611 0.0426888i
\(950\) 0 0
\(951\) 41.2465i 1.33751i
\(952\) 10.9577 9.40452i 0.355141 0.304802i
\(953\) −17.1743 17.1743i −0.556330 0.556330i 0.371930 0.928261i \(-0.378696\pi\)
−0.928261 + 0.371930i \(0.878696\pi\)
\(954\) −0.837487 + 2.02187i −0.0271146 + 0.0654605i
\(955\) 0 0
\(956\) −15.7069 15.7069i −0.507997 0.507997i
\(957\) 2.37108 + 11.9202i 0.0766460 + 0.385326i
\(958\) −18.2911 27.3745i −0.590958 0.884431i
\(959\) 20.6576 13.8030i 0.667068 0.445721i
\(960\) 0 0
\(961\) −83.2134 + 34.4681i −2.68430 + 1.11187i
\(962\) −0.0567238 + 0.285170i −0.00182885 + 0.00919424i
\(963\) 9.36712 6.25891i 0.301851 0.201690i
\(964\) −4.84747 + 7.25475i −0.156126 + 0.233660i
\(965\) 0 0
\(966\) −0.657607 3.30601i −0.0211582 0.106369i
\(967\) −0.445933 1.07658i −0.0143402 0.0346204i 0.916547 0.399926i \(-0.130964\pi\)
−0.930887 + 0.365306i \(0.880964\pi\)
\(968\) 6.32985 6.32985i 0.203449 0.203449i
\(969\) −1.31621 + 0.431173i −0.0422829 + 0.0138513i
\(970\) 0 0
\(971\) −17.7627 7.35756i −0.570033 0.236115i 0.0790013 0.996875i \(-0.474827\pi\)
−0.649034 + 0.760759i \(0.724827\pi\)
\(972\) 4.35651 6.51997i 0.139735 0.209128i
\(973\) 36.8366i 1.18093i
\(974\) −25.2701 16.8849i −0.809706 0.541029i
\(975\) 0 0
\(976\) 7.36516 + 11.0227i 0.235753 + 0.352829i
\(977\) 23.2223 + 9.61901i 0.742949 + 0.307739i 0.721861 0.692038i \(-0.243287\pi\)
0.0210877 + 0.999778i \(0.493287\pi\)
\(978\) 20.6384 + 8.54871i 0.659943 + 0.273357i
\(979\) −10.9716 16.4202i −0.350654 0.524791i
\(980\) 0 0
\(981\) 8.34569 + 5.57641i 0.266457 + 0.178041i
\(982\) 16.3302i 0.521116i
\(983\) −19.1109 + 28.6015i −0.609543 + 0.912245i −0.999965 0.00839065i \(-0.997329\pi\)
0.390422 + 0.920636i \(0.372329\pi\)
\(984\) 3.71456 + 1.53862i 0.118416 + 0.0490494i
\(985\) 0 0
\(986\) 10.6087 20.9454i 0.337850 0.667036i
\(987\) −18.3657 + 18.3657i −0.584585 + 0.584585i
\(988\) 0.0592472 + 0.143035i 0.00188490 + 0.00455056i
\(989\) 0.407473 + 2.04851i 0.0129569 + 0.0651387i
\(990\) 0 0
\(991\) 16.9127 25.3117i 0.537250 0.804052i −0.459191 0.888337i \(-0.651861\pi\)
0.996442 + 0.0842855i \(0.0268608\pi\)
\(992\) −9.14879 + 6.11303i −0.290474 + 0.194089i
\(993\) −10.0096 + 50.3218i −0.317646 + 1.59691i
\(994\) 35.0026 14.4985i 1.11021 0.459866i
\(995\) 0 0
\(996\) −3.17080 + 2.11866i −0.100471 + 0.0671323i
\(997\) −30.7399 46.0056i −0.973543 1.45701i −0.887548 0.460715i \(-0.847593\pi\)
−0.0859950 0.996296i \(-0.527407\pi\)
\(998\) −4.87821 24.5244i −0.154417 0.776307i
\(999\) 1.68444 + 1.68444i 0.0532933 + 0.0532933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.b.193.2 yes 24
5.2 odd 4 850.2.s.a.57.2 24
5.3 odd 4 850.2.s.b.57.2 yes 24
5.4 even 2 850.2.v.a.193.2 yes 24
17.3 odd 16 850.2.s.a.343.2 yes 24
85.3 even 16 850.2.v.a.207.2 yes 24
85.37 even 16 inner 850.2.v.b.207.2 yes 24
85.54 odd 16 850.2.s.b.343.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
850.2.s.a.57.2 24 5.2 odd 4
850.2.s.a.343.2 yes 24 17.3 odd 16
850.2.s.b.57.2 yes 24 5.3 odd 4
850.2.s.b.343.2 yes 24 85.54 odd 16
850.2.v.a.193.2 yes 24 5.4 even 2
850.2.v.a.207.2 yes 24 85.3 even 16
850.2.v.b.193.2 yes 24 1.1 even 1 trivial
850.2.v.b.207.2 yes 24 85.37 even 16 inner