Properties

Label 850.2.v.a.193.2
Level $850$
Weight $2$
Character 850.193
Analytic conductor $6.787$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(3\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 193.2
Character \(\chi\) \(=\) 850.193
Dual form 850.2.v.a.207.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.923880 + 0.382683i) q^{2} +(1.23998 + 0.828527i) q^{3} +(0.707107 - 0.707107i) q^{4} +(-1.46265 - 0.290940i) q^{6} +(-3.43494 - 0.683252i) q^{7} +(-0.382683 + 0.923880i) q^{8} +(-0.296960 - 0.716925i) q^{9} +(0.279207 - 1.40367i) q^{11} +(1.46265 - 0.290940i) q^{12} +0.687320 q^{13} +(3.43494 - 0.683252i) q^{14} -1.00000i q^{16} +(-3.97099 - 1.10961i) q^{17} +(0.548711 + 0.548711i) q^{18} +(0.0862003 - 0.208106i) q^{19} +(-3.69316 - 3.69316i) q^{21} +(0.279207 + 1.40367i) q^{22} +(-0.358556 - 0.536616i) q^{23} +(-1.23998 + 0.828527i) q^{24} +(-0.635001 + 0.263026i) q^{26} +(1.09859 - 5.52298i) q^{27} +(-2.91200 + 1.94574i) q^{28} +(3.16366 - 4.73475i) q^{29} +(-2.14661 - 10.7917i) q^{31} +(0.382683 + 0.923880i) q^{32} +(1.50919 - 1.50919i) q^{33} +(4.09335 - 0.494483i) q^{34} +(-0.716925 - 0.296960i) q^{36} +(-0.235023 + 0.351736i) q^{37} +0.225252i q^{38} +(0.852262 + 0.569463i) q^{39} +(-1.49783 - 2.24166i) q^{41} +(4.82535 + 1.99872i) q^{42} +(-2.98993 - 1.23847i) q^{43} +(-0.795115 - 1.18997i) q^{44} +(0.536616 + 0.358556i) q^{46} +4.97288i q^{47} +(0.828527 - 1.23998i) q^{48} +(4.86483 + 2.01508i) q^{49} +(-4.00460 - 4.66597i) q^{51} +(0.486008 - 0.486008i) q^{52} +(1.07924 + 2.60552i) q^{53} +(1.09859 + 5.52298i) q^{54} +(1.94574 - 2.91200i) q^{56} +(0.279308 - 0.186628i) q^{57} +(-1.11093 + 5.58502i) q^{58} +(-2.73373 + 1.13235i) q^{59} +(-11.0227 + 7.36516i) q^{61} +(6.11303 + 9.14879i) q^{62} +(0.530200 + 2.66550i) q^{63} +(-0.707107 - 0.707107i) q^{64} +(-0.816768 + 1.97185i) q^{66} +(-5.28482 - 5.28482i) q^{67} +(-3.59253 + 2.02330i) q^{68} -0.962466i q^{69} +(10.6099 - 2.11045i) q^{71} +0.775994 q^{72} +(9.61892 - 1.91332i) q^{73} +(0.0825290 - 0.414901i) q^{74} +(-0.0862003 - 0.208106i) q^{76} +(-1.91812 + 4.63076i) q^{77} +(-1.00531 - 0.199969i) q^{78} +(-1.79628 - 0.357303i) q^{79} +(4.29203 - 4.29203i) q^{81} +(2.24166 + 1.49783i) q^{82} +(-2.36249 + 0.978574i) q^{83} -5.22292 q^{84} +3.23628 q^{86} +(7.84575 - 3.24981i) q^{87} +(1.18997 + 0.795115i) q^{88} +(9.75720 - 9.75720i) q^{89} +(-2.36090 - 0.469613i) q^{91} +(-0.632982 - 0.125908i) q^{92} +(6.27950 - 15.1601i) q^{93} +(-1.90304 - 4.59434i) q^{94} +(-0.290940 + 1.46265i) q^{96} +(8.64723 - 1.72004i) q^{97} -5.26566 q^{98} +(-1.08924 + 0.216663i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9} - 32 q^{13} - 16 q^{18} + 48 q^{27} + 16 q^{29} + 16 q^{31} - 8 q^{33} - 16 q^{34} + 16 q^{37} + 32 q^{39} + 48 q^{41} - 48 q^{42} + 16 q^{43} - 16 q^{44} + 32 q^{46} + 8 q^{48} + 16 q^{49}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.923880 + 0.382683i −0.653281 + 0.270598i
\(3\) 1.23998 + 0.828527i 0.715902 + 0.478351i 0.859402 0.511300i \(-0.170836\pi\)
−0.143500 + 0.989650i \(0.545836\pi\)
\(4\) 0.707107 0.707107i 0.353553 0.353553i
\(5\) 0 0
\(6\) −1.46265 0.290940i −0.597126 0.118776i
\(7\) −3.43494 0.683252i −1.29829 0.258245i −0.502898 0.864346i \(-0.667733\pi\)
−0.795388 + 0.606101i \(0.792733\pi\)
\(8\) −0.382683 + 0.923880i −0.135299 + 0.326641i
\(9\) −0.296960 0.716925i −0.0989867 0.238975i
\(10\) 0 0
\(11\) 0.279207 1.40367i 0.0841842 0.423222i −0.915593 0.402107i \(-0.868278\pi\)
0.999777 0.0211159i \(-0.00672189\pi\)
\(12\) 1.46265 0.290940i 0.422232 0.0839872i
\(13\) 0.687320 0.190628 0.0953141 0.995447i \(-0.469614\pi\)
0.0953141 + 0.995447i \(0.469614\pi\)
\(14\) 3.43494 0.683252i 0.918027 0.182607i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) −3.97099 1.10961i −0.963106 0.269121i
\(18\) 0.548711 + 0.548711i 0.129332 + 0.129332i
\(19\) 0.0862003 0.208106i 0.0197757 0.0477428i −0.913683 0.406427i \(-0.866775\pi\)
0.933459 + 0.358684i \(0.116775\pi\)
\(20\) 0 0
\(21\) −3.69316 3.69316i −0.805914 0.805914i
\(22\) 0.279207 + 1.40367i 0.0595272 + 0.299263i
\(23\) −0.358556 0.536616i −0.0747640 0.111892i 0.792203 0.610257i \(-0.208934\pi\)
−0.866967 + 0.498365i \(0.833934\pi\)
\(24\) −1.23998 + 0.828527i −0.253110 + 0.169122i
\(25\) 0 0
\(26\) −0.635001 + 0.263026i −0.124534 + 0.0515836i
\(27\) 1.09859 5.52298i 0.211423 1.06290i
\(28\) −2.91200 + 1.94574i −0.550317 + 0.367710i
\(29\) 3.16366 4.73475i 0.587477 0.879222i −0.412012 0.911178i \(-0.635174\pi\)
0.999489 + 0.0319568i \(0.0101739\pi\)
\(30\) 0 0
\(31\) −2.14661 10.7917i −0.385542 1.93825i −0.343548 0.939135i \(-0.611629\pi\)
−0.0419943 0.999118i \(-0.513371\pi\)
\(32\) 0.382683 + 0.923880i 0.0676495 + 0.163320i
\(33\) 1.50919 1.50919i 0.262716 0.262716i
\(34\) 4.09335 0.494483i 0.702003 0.0848032i
\(35\) 0 0
\(36\) −0.716925 0.296960i −0.119488 0.0494934i
\(37\) −0.235023 + 0.351736i −0.0386375 + 0.0578251i −0.850286 0.526322i \(-0.823571\pi\)
0.811648 + 0.584147i \(0.198571\pi\)
\(38\) 0.225252i 0.0365408i
\(39\) 0.852262 + 0.569463i 0.136471 + 0.0911871i
\(40\) 0 0
\(41\) −1.49783 2.24166i −0.233922 0.350089i 0.695874 0.718164i \(-0.255017\pi\)
−0.929796 + 0.368075i \(0.880017\pi\)
\(42\) 4.82535 + 1.99872i 0.744568 + 0.308410i
\(43\) −2.98993 1.23847i −0.455960 0.188865i 0.142869 0.989742i \(-0.454367\pi\)
−0.598829 + 0.800877i \(0.704367\pi\)
\(44\) −0.795115 1.18997i −0.119868 0.179395i
\(45\) 0 0
\(46\) 0.536616 + 0.358556i 0.0791198 + 0.0528661i
\(47\) 4.97288i 0.725369i 0.931912 + 0.362685i \(0.118140\pi\)
−0.931912 + 0.362685i \(0.881860\pi\)
\(48\) 0.828527 1.23998i 0.119588 0.178976i
\(49\) 4.86483 + 2.01508i 0.694976 + 0.287869i
\(50\) 0 0
\(51\) −4.00460 4.66597i −0.560756 0.653367i
\(52\) 0.486008 0.486008i 0.0673973 0.0673973i
\(53\) 1.07924 + 2.60552i 0.148245 + 0.357896i 0.980506 0.196488i \(-0.0629537\pi\)
−0.832261 + 0.554384i \(0.812954\pi\)
\(54\) 1.09859 + 5.52298i 0.149499 + 0.751582i
\(55\) 0 0
\(56\) 1.94574 2.91200i 0.260010 0.389133i
\(57\) 0.279308 0.186628i 0.0369953 0.0247195i
\(58\) −1.11093 + 5.58502i −0.145872 + 0.733349i
\(59\) −2.73373 + 1.13235i −0.355902 + 0.147419i −0.553468 0.832870i \(-0.686696\pi\)
0.197567 + 0.980289i \(0.436696\pi\)
\(60\) 0 0
\(61\) −11.0227 + 7.36516i −1.41132 + 0.943012i −0.411821 + 0.911265i \(0.635107\pi\)
−0.999496 + 0.0317466i \(0.989893\pi\)
\(62\) 6.11303 + 9.14879i 0.776355 + 1.16190i
\(63\) 0.530200 + 2.66550i 0.0667989 + 0.335821i
\(64\) −0.707107 0.707107i −0.0883883 0.0883883i
\(65\) 0 0
\(66\) −0.816768 + 1.97185i −0.100537 + 0.242718i
\(67\) −5.28482 5.28482i −0.645644 0.645644i 0.306293 0.951937i \(-0.400911\pi\)
−0.951937 + 0.306293i \(0.900911\pi\)
\(68\) −3.59253 + 2.02330i −0.435658 + 0.245361i
\(69\) 0.962466i 0.115867i
\(70\) 0 0
\(71\) 10.6099 2.11045i 1.25917 0.250464i 0.479995 0.877271i \(-0.340639\pi\)
0.779174 + 0.626807i \(0.215639\pi\)
\(72\) 0.775994 0.0914518
\(73\) 9.61892 1.91332i 1.12581 0.223937i 0.403145 0.915136i \(-0.367917\pi\)
0.722665 + 0.691199i \(0.242917\pi\)
\(74\) 0.0825290 0.414901i 0.00959380 0.0482313i
\(75\) 0 0
\(76\) −0.0862003 0.208106i −0.00988786 0.0238714i
\(77\) −1.91812 + 4.63076i −0.218590 + 0.527724i
\(78\) −1.00531 0.199969i −0.113829 0.0226420i
\(79\) −1.79628 0.357303i −0.202098 0.0401997i 0.0930034 0.995666i \(-0.470353\pi\)
−0.295101 + 0.955466i \(0.595353\pi\)
\(80\) 0 0
\(81\) 4.29203 4.29203i 0.476892 0.476892i
\(82\) 2.24166 + 1.49783i 0.247550 + 0.165408i
\(83\) −2.36249 + 0.978574i −0.259317 + 0.107412i −0.508554 0.861030i \(-0.669820\pi\)
0.249238 + 0.968442i \(0.419820\pi\)
\(84\) −5.22292 −0.569867
\(85\) 0 0
\(86\) 3.23628 0.348977
\(87\) 7.84575 3.24981i 0.841152 0.348417i
\(88\) 1.18997 + 0.795115i 0.126852 + 0.0847596i
\(89\) 9.75720 9.75720i 1.03426 1.03426i 0.0348693 0.999392i \(-0.488899\pi\)
0.999392 0.0348693i \(-0.0111015\pi\)
\(90\) 0 0
\(91\) −2.36090 0.469613i −0.247490 0.0492288i
\(92\) −0.632982 0.125908i −0.0659929 0.0131268i
\(93\) 6.27950 15.1601i 0.651154 1.57202i
\(94\) −1.90304 4.59434i −0.196284 0.473870i
\(95\) 0 0
\(96\) −0.290940 + 1.46265i −0.0296940 + 0.149282i
\(97\) 8.64723 1.72004i 0.877993 0.174644i 0.264540 0.964375i \(-0.414780\pi\)
0.613453 + 0.789731i \(0.289780\pi\)
\(98\) −5.26566 −0.531912
\(99\) −1.08924 + 0.216663i −0.109473 + 0.0217755i
\(100\) 0 0
\(101\) 13.2302i 1.31645i 0.752820 + 0.658226i \(0.228693\pi\)
−0.752820 + 0.658226i \(0.771307\pi\)
\(102\) 5.48536 + 2.77830i 0.543131 + 0.275093i
\(103\) −12.8336 12.8336i −1.26454 1.26454i −0.948871 0.315665i \(-0.897773\pi\)
−0.315665 0.948871i \(-0.602227\pi\)
\(104\) −0.263026 + 0.635001i −0.0257918 + 0.0622669i
\(105\) 0 0
\(106\) −1.99418 1.99418i −0.193692 0.193692i
\(107\) −2.83228 14.2388i −0.273807 1.37652i −0.835643 0.549273i \(-0.814905\pi\)
0.561836 0.827249i \(-0.310095\pi\)
\(108\) −3.12852 4.68215i −0.301042 0.450540i
\(109\) −10.7548 + 7.18615i −1.03013 + 0.688308i −0.951201 0.308572i \(-0.900149\pi\)
−0.0789251 + 0.996881i \(0.525149\pi\)
\(110\) 0 0
\(111\) −0.582846 + 0.241423i −0.0553213 + 0.0229148i
\(112\) −0.683252 + 3.43494i −0.0645613 + 0.324571i
\(113\) 2.50435 1.67335i 0.235589 0.157416i −0.432172 0.901791i \(-0.642253\pi\)
0.667761 + 0.744376i \(0.267253\pi\)
\(114\) −0.186628 + 0.279308i −0.0174793 + 0.0261596i
\(115\) 0 0
\(116\) −1.11093 5.58502i −0.103147 0.518556i
\(117\) −0.204107 0.492757i −0.0188697 0.0455554i
\(118\) 2.09231 2.09231i 0.192613 0.192613i
\(119\) 12.8820 + 6.52464i 1.18089 + 0.598113i
\(120\) 0 0
\(121\) 8.27034 + 3.42569i 0.751849 + 0.311426i
\(122\) 7.36516 11.0227i 0.666810 0.997951i
\(123\) 4.02061i 0.362526i
\(124\) −9.14879 6.11303i −0.821586 0.548966i
\(125\) 0 0
\(126\) −1.50988 2.25970i −0.134511 0.201310i
\(127\) −11.5255 4.77400i −1.02272 0.423624i −0.192640 0.981270i \(-0.561705\pi\)
−0.830079 + 0.557645i \(0.811705\pi\)
\(128\) 0.923880 + 0.382683i 0.0816602 + 0.0338248i
\(129\) −2.68135 4.01292i −0.236079 0.353318i
\(130\) 0 0
\(131\) 16.3126 + 10.8997i 1.42524 + 0.952314i 0.998858 + 0.0477705i \(0.0152116\pi\)
0.426381 + 0.904544i \(0.359788\pi\)
\(132\) 2.13432i 0.185769i
\(133\) −0.438282 + 0.655936i −0.0380039 + 0.0568768i
\(134\) 6.90495 + 2.86013i 0.596497 + 0.247077i
\(135\) 0 0
\(136\) 2.54478 3.24409i 0.218213 0.278178i
\(137\) −5.01618 + 5.01618i −0.428561 + 0.428561i −0.888138 0.459577i \(-0.848001\pi\)
0.459577 + 0.888138i \(0.348001\pi\)
\(138\) 0.368320 + 0.889203i 0.0313535 + 0.0756940i
\(139\) 2.05197 + 10.3159i 0.174045 + 0.874986i 0.964827 + 0.262887i \(0.0846745\pi\)
−0.790781 + 0.612099i \(0.790325\pi\)
\(140\) 0 0
\(141\) −4.12017 + 6.16627i −0.346981 + 0.519294i
\(142\) −8.99468 + 6.01005i −0.754817 + 0.504352i
\(143\) 0.191905 0.964770i 0.0160479 0.0806781i
\(144\) −0.716925 + 0.296960i −0.0597438 + 0.0247467i
\(145\) 0 0
\(146\) −8.15453 + 5.44868i −0.674874 + 0.450936i
\(147\) 4.36274 + 6.52931i 0.359833 + 0.538528i
\(148\) 0.0825290 + 0.414901i 0.00678384 + 0.0341047i
\(149\) −3.74622 3.74622i −0.306902 0.306902i 0.536804 0.843707i \(-0.319631\pi\)
−0.843707 + 0.536804i \(0.819631\pi\)
\(150\) 0 0
\(151\) −4.01503 + 9.69314i −0.326738 + 0.788816i 0.672092 + 0.740468i \(0.265396\pi\)
−0.998831 + 0.0483488i \(0.984604\pi\)
\(152\) 0.159277 + 0.159277i 0.0129191 + 0.0129191i
\(153\) 0.383716 + 3.17641i 0.0310216 + 0.256798i
\(154\) 5.01229i 0.403902i
\(155\) 0 0
\(156\) 1.00531 0.199969i 0.0804894 0.0160103i
\(157\) −15.0303 −1.19955 −0.599773 0.800170i \(-0.704742\pi\)
−0.599773 + 0.800170i \(0.704742\pi\)
\(158\) 1.79628 0.357303i 0.142905 0.0284255i
\(159\) −0.820509 + 4.12498i −0.0650706 + 0.327132i
\(160\) 0 0
\(161\) 0.864973 + 2.08823i 0.0681694 + 0.164576i
\(162\) −2.32283 + 5.60781i −0.182499 + 0.440591i
\(163\) 14.6915 + 2.92232i 1.15073 + 0.228894i 0.733358 0.679842i \(-0.237952\pi\)
0.417370 + 0.908736i \(0.362952\pi\)
\(164\) −2.64422 0.525968i −0.206479 0.0410712i
\(165\) 0 0
\(166\) 1.80817 1.80817i 0.140341 0.140341i
\(167\) −6.33305 4.23161i −0.490066 0.327452i 0.285865 0.958270i \(-0.407719\pi\)
−0.775930 + 0.630818i \(0.782719\pi\)
\(168\) 4.82535 1.99872i 0.372284 0.154205i
\(169\) −12.5276 −0.963661
\(170\) 0 0
\(171\) −0.174795 −0.0133669
\(172\) −2.98993 + 1.23847i −0.227980 + 0.0944324i
\(173\) 15.1101 + 10.0963i 1.14880 + 0.767606i 0.976090 0.217366i \(-0.0697466\pi\)
0.172713 + 0.984972i \(0.444747\pi\)
\(174\) −6.00487 + 6.00487i −0.455228 + 0.455228i
\(175\) 0 0
\(176\) −1.40367 0.279207i −0.105806 0.0210460i
\(177\) −4.32795 0.860883i −0.325309 0.0647080i
\(178\) −5.28056 + 12.7484i −0.395795 + 0.955533i
\(179\) −4.94606 11.9408i −0.369686 0.892501i −0.993802 0.111169i \(-0.964541\pi\)
0.624116 0.781332i \(-0.285459\pi\)
\(180\) 0 0
\(181\) −1.11267 + 5.59375i −0.0827039 + 0.415780i 0.917148 + 0.398548i \(0.130486\pi\)
−0.999852 + 0.0172328i \(0.994514\pi\)
\(182\) 2.36090 0.469613i 0.175002 0.0348100i
\(183\) −19.7702 −1.46145
\(184\) 0.632982 0.125908i 0.0466641 0.00928206i
\(185\) 0 0
\(186\) 16.4091i 1.20318i
\(187\) −2.66626 + 5.26415i −0.194976 + 0.384953i
\(188\) 3.51636 + 3.51636i 0.256457 + 0.256457i
\(189\) −7.54717 + 18.2205i −0.548976 + 1.32535i
\(190\) 0 0
\(191\) 15.3527 + 15.3527i 1.11088 + 1.11088i 0.993032 + 0.117849i \(0.0375997\pi\)
0.117849 + 0.993032i \(0.462400\pi\)
\(192\) −0.290940 1.46265i −0.0209968 0.105558i
\(193\) −0.326059 0.487981i −0.0234702 0.0351257i 0.819549 0.573009i \(-0.194224\pi\)
−0.843019 + 0.537883i \(0.819224\pi\)
\(194\) −7.33077 + 4.89826i −0.526318 + 0.351675i
\(195\) 0 0
\(196\) 4.86483 2.01508i 0.347488 0.143934i
\(197\) 3.47533 17.4717i 0.247607 1.24481i −0.634190 0.773177i \(-0.718666\pi\)
0.881797 0.471629i \(-0.156334\pi\)
\(198\) 0.923413 0.617005i 0.0656241 0.0438486i
\(199\) −1.99127 + 2.98014i −0.141157 + 0.211256i −0.895311 0.445441i \(-0.853047\pi\)
0.754154 + 0.656697i \(0.228047\pi\)
\(200\) 0 0
\(201\) −2.17445 10.9317i −0.153374 0.771062i
\(202\) −5.06297 12.2231i −0.356230 0.860014i
\(203\) −14.1020 + 14.1020i −0.989768 + 0.989768i
\(204\) −6.13102 0.467660i −0.429257 0.0327428i
\(205\) 0 0
\(206\) 16.7680 + 6.94551i 1.16828 + 0.483917i
\(207\) −0.278237 + 0.416411i −0.0193388 + 0.0289426i
\(208\) 0.687320i 0.0476571i
\(209\) −0.268044 0.179102i −0.0185410 0.0123887i
\(210\) 0 0
\(211\) 2.56243 + 3.83494i 0.176405 + 0.264008i 0.909127 0.416520i \(-0.136750\pi\)
−0.732722 + 0.680528i \(0.761750\pi\)
\(212\) 2.60552 + 1.07924i 0.178948 + 0.0741227i
\(213\) 14.9047 + 6.17372i 1.02125 + 0.423016i
\(214\) 8.06566 + 12.0711i 0.551357 + 0.825164i
\(215\) 0 0
\(216\) 4.68215 + 3.12852i 0.318580 + 0.212868i
\(217\) 38.5357i 2.61597i
\(218\) 7.18615 10.7548i 0.486707 0.728409i
\(219\) 13.5125 + 5.59706i 0.913090 + 0.378214i
\(220\) 0 0
\(221\) −2.72934 0.762659i −0.183595 0.0513020i
\(222\) 0.446091 0.446091i 0.0299397 0.0299397i
\(223\) −3.81376 9.20723i −0.255388 0.616562i 0.743234 0.669031i \(-0.233291\pi\)
−0.998623 + 0.0524694i \(0.983291\pi\)
\(224\) −0.683252 3.43494i −0.0456517 0.229507i
\(225\) 0 0
\(226\) −1.67335 + 2.50435i −0.111310 + 0.166587i
\(227\) 13.2623 8.86159i 0.880250 0.588164i −0.0312282 0.999512i \(-0.509942\pi\)
0.911478 + 0.411348i \(0.134942\pi\)
\(228\) 0.0655350 0.329466i 0.00434016 0.0218195i
\(229\) −26.3976 + 10.9342i −1.74440 + 0.722554i −0.746004 + 0.665941i \(0.768030\pi\)
−0.998396 + 0.0566131i \(0.981970\pi\)
\(230\) 0 0
\(231\) −6.21514 + 4.15282i −0.408926 + 0.273236i
\(232\) 3.16366 + 4.73475i 0.207704 + 0.310852i
\(233\) 4.64291 + 23.3415i 0.304167 + 1.52915i 0.766383 + 0.642384i \(0.222055\pi\)
−0.462215 + 0.886768i \(0.652945\pi\)
\(234\) 0.377140 + 0.377140i 0.0246544 + 0.0246544i
\(235\) 0 0
\(236\) −1.13235 + 2.73373i −0.0737096 + 0.177951i
\(237\) −1.93132 1.93132i −0.125453 0.125453i
\(238\) −14.3983 1.09827i −0.933301 0.0711901i
\(239\) 22.2129i 1.43683i −0.695614 0.718416i \(-0.744868\pi\)
0.695614 0.718416i \(-0.255132\pi\)
\(240\) 0 0
\(241\) −8.55756 + 1.70220i −0.551241 + 0.109649i −0.462849 0.886437i \(-0.653173\pi\)
−0.0883919 + 0.996086i \(0.528173\pi\)
\(242\) −8.95175 −0.575440
\(243\) −7.69083 + 1.52980i −0.493367 + 0.0981369i
\(244\) −2.58630 + 13.0022i −0.165571 + 0.832381i
\(245\) 0 0
\(246\) 1.53862 + 3.71456i 0.0980989 + 0.236832i
\(247\) 0.0592472 0.143035i 0.00376981 0.00910113i
\(248\) 10.7917 + 2.14661i 0.685276 + 0.136310i
\(249\) −3.74021 0.743974i −0.237026 0.0471474i
\(250\) 0 0
\(251\) −7.55862 + 7.55862i −0.477096 + 0.477096i −0.904202 0.427106i \(-0.859533\pi\)
0.427106 + 0.904202i \(0.359533\pi\)
\(252\) 2.25970 + 1.50988i 0.142348 + 0.0951136i
\(253\) −0.853344 + 0.353466i −0.0536493 + 0.0222222i
\(254\) 12.4751 0.782755
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) 23.1908 9.60595i 1.44660 0.599203i 0.485215 0.874395i \(-0.338741\pi\)
0.961389 + 0.275192i \(0.0887415\pi\)
\(258\) 4.01292 + 2.68135i 0.249833 + 0.166933i
\(259\) 1.04761 1.04761i 0.0650955 0.0650955i
\(260\) 0 0
\(261\) −4.33395 0.862075i −0.268264 0.0533611i
\(262\) −19.2420 3.82748i −1.18878 0.236462i
\(263\) −3.53421 + 8.53235i −0.217929 + 0.526127i −0.994600 0.103779i \(-0.966907\pi\)
0.776671 + 0.629906i \(0.216907\pi\)
\(264\) 0.816768 + 1.97185i 0.0502686 + 0.121359i
\(265\) 0 0
\(266\) 0.153904 0.773729i 0.00943647 0.0474404i
\(267\) 20.1828 4.01461i 1.23517 0.245690i
\(268\) −7.47387 −0.456539
\(269\) 3.39522 0.675351i 0.207010 0.0411768i −0.0904959 0.995897i \(-0.528845\pi\)
0.297506 + 0.954720i \(0.403845\pi\)
\(270\) 0 0
\(271\) 20.2345i 1.22916i −0.788855 0.614579i \(-0.789326\pi\)
0.788855 0.614579i \(-0.210674\pi\)
\(272\) −1.10961 + 3.97099i −0.0672802 + 0.240777i
\(273\) −2.53838 2.53838i −0.153630 0.153630i
\(274\) 2.71474 6.55395i 0.164003 0.395939i
\(275\) 0 0
\(276\) −0.680566 0.680566i −0.0409653 0.0409653i
\(277\) 3.91058 + 19.6598i 0.234964 + 1.18124i 0.900493 + 0.434871i \(0.143206\pi\)
−0.665529 + 0.746372i \(0.731794\pi\)
\(278\) −5.84350 8.74542i −0.350470 0.524515i
\(279\) −7.09941 + 4.74367i −0.425031 + 0.283996i
\(280\) 0 0
\(281\) 20.1942 8.36471i 1.20468 0.498997i 0.312175 0.950025i \(-0.398942\pi\)
0.892510 + 0.451028i \(0.148942\pi\)
\(282\) 1.44681 7.27361i 0.0861563 0.433137i
\(283\) −16.6821 + 11.1466i −0.991650 + 0.662600i −0.941806 0.336157i \(-0.890873\pi\)
−0.0498445 + 0.998757i \(0.515873\pi\)
\(284\) 6.01005 8.99468i 0.356631 0.533736i
\(285\) 0 0
\(286\) 0.191905 + 0.964770i 0.0113476 + 0.0570481i
\(287\) 3.61334 + 8.72338i 0.213289 + 0.514925i
\(288\) 0.548711 0.548711i 0.0323331 0.0323331i
\(289\) 14.5375 + 8.81252i 0.855148 + 0.518384i
\(290\) 0 0
\(291\) 12.1475 + 5.03165i 0.712098 + 0.294961i
\(292\) 5.44868 8.15453i 0.318860 0.477208i
\(293\) 15.9816i 0.933653i −0.884349 0.466826i \(-0.845397\pi\)
0.884349 0.466826i \(-0.154603\pi\)
\(294\) −6.52931 4.36274i −0.380797 0.254440i
\(295\) 0 0
\(296\) −0.235023 0.351736i −0.0136604 0.0204443i
\(297\) −7.44570 3.08411i −0.432044 0.178958i
\(298\) 4.89467 + 2.02744i 0.283541 + 0.117446i
\(299\) −0.246442 0.368827i −0.0142521 0.0213298i
\(300\) 0 0
\(301\) 9.42405 + 6.29695i 0.543193 + 0.362950i
\(302\) 10.4918i 0.603734i
\(303\) −10.9616 + 16.4052i −0.629726 + 0.942451i
\(304\) −0.208106 0.0862003i −0.0119357 0.00494393i
\(305\) 0 0
\(306\) −1.57007 2.78778i −0.0897548 0.159367i
\(307\) 1.37631 1.37631i 0.0785503 0.0785503i −0.666740 0.745290i \(-0.732311\pi\)
0.745290 + 0.666740i \(0.232311\pi\)
\(308\) 1.91812 + 4.63076i 0.109295 + 0.263862i
\(309\) −5.28042 26.5465i −0.300392 1.51018i
\(310\) 0 0
\(311\) −11.6826 + 17.4843i −0.662461 + 0.991442i 0.336304 + 0.941753i \(0.390823\pi\)
−0.998765 + 0.0496889i \(0.984177\pi\)
\(312\) −0.852262 + 0.569463i −0.0482498 + 0.0322395i
\(313\) 5.54040 27.8535i 0.313162 1.57437i −0.428465 0.903559i \(-0.640945\pi\)
0.741627 0.670813i \(-0.234055\pi\)
\(314\) 13.8862 5.75183i 0.783641 0.324595i
\(315\) 0 0
\(316\) −1.52281 + 1.01751i −0.0856650 + 0.0572395i
\(317\) 15.3659 + 22.9967i 0.863035 + 1.29162i 0.955225 + 0.295882i \(0.0956134\pi\)
−0.0921896 + 0.995741i \(0.529387\pi\)
\(318\) −0.820509 4.12498i −0.0460119 0.231317i
\(319\) −5.76271 5.76271i −0.322650 0.322650i
\(320\) 0 0
\(321\) 8.28531 20.0025i 0.462441 1.11643i
\(322\) −1.59826 1.59826i −0.0890676 0.0890676i
\(323\) −0.573218 + 0.730738i −0.0318947 + 0.0406593i
\(324\) 6.06985i 0.337214i
\(325\) 0 0
\(326\) −14.6915 + 2.92232i −0.813688 + 0.161853i
\(327\) −19.2897 −1.06672
\(328\) 2.64422 0.525968i 0.146003 0.0290418i
\(329\) 3.39773 17.0816i 0.187323 0.941737i
\(330\) 0 0
\(331\) −13.1660 31.7855i −0.723668 1.74709i −0.662620 0.748955i \(-0.730556\pi\)
−0.0610482 0.998135i \(-0.519444\pi\)
\(332\) −0.978574 + 2.36249i −0.0537062 + 0.129658i
\(333\) 0.321961 + 0.0640420i 0.0176434 + 0.00350948i
\(334\) 7.47034 + 1.48594i 0.408759 + 0.0813072i
\(335\) 0 0
\(336\) −3.69316 + 3.69316i −0.201479 + 0.201479i
\(337\) 10.9142 + 7.29265i 0.594536 + 0.397256i 0.816118 0.577886i \(-0.196122\pi\)
−0.221582 + 0.975142i \(0.571122\pi\)
\(338\) 11.5740 4.79410i 0.629542 0.260765i
\(339\) 4.49175 0.243959
\(340\) 0 0
\(341\) −15.7474 −0.852769
\(342\) 0.161489 0.0668910i 0.00873233 0.00361705i
\(343\) 5.05041 + 3.37457i 0.272696 + 0.182210i
\(344\) 2.28839 2.28839i 0.123382 0.123382i
\(345\) 0 0
\(346\) −17.8236 3.54534i −0.958205 0.190599i
\(347\) −18.8905 3.75756i −1.01410 0.201717i −0.340052 0.940407i \(-0.610445\pi\)
−0.674045 + 0.738690i \(0.735445\pi\)
\(348\) 3.24981 7.84575i 0.174208 0.420576i
\(349\) 8.24203 + 19.8980i 0.441186 + 1.06512i 0.975533 + 0.219852i \(0.0705575\pi\)
−0.534347 + 0.845265i \(0.679443\pi\)
\(350\) 0 0
\(351\) 0.755082 3.79605i 0.0403033 0.202618i
\(352\) 1.40367 0.279207i 0.0748159 0.0148818i
\(353\) 7.84481 0.417537 0.208768 0.977965i \(-0.433054\pi\)
0.208768 + 0.977965i \(0.433054\pi\)
\(354\) 4.32795 0.860883i 0.230028 0.0457554i
\(355\) 0 0
\(356\) 13.7988i 0.731333i
\(357\) 10.5675 + 18.7635i 0.559293 + 0.993069i
\(358\) 9.13913 + 9.13913i 0.483018 + 0.483018i
\(359\) −4.46689 + 10.7840i −0.235753 + 0.569159i −0.996835 0.0794970i \(-0.974669\pi\)
0.761082 + 0.648656i \(0.224669\pi\)
\(360\) 0 0
\(361\) 13.3992 + 13.3992i 0.705218 + 0.705218i
\(362\) −1.11267 5.59375i −0.0584805 0.294001i
\(363\) 7.41677 + 11.1000i 0.389280 + 0.582598i
\(364\) −2.00148 + 1.33734i −0.104906 + 0.0700959i
\(365\) 0 0
\(366\) 18.2653 7.56573i 0.954741 0.395467i
\(367\) 2.94262 14.7935i 0.153603 0.772216i −0.824786 0.565445i \(-0.808704\pi\)
0.978389 0.206771i \(-0.0662956\pi\)
\(368\) −0.536616 + 0.358556i −0.0279731 + 0.0186910i
\(369\) −1.16231 + 1.73952i −0.0605074 + 0.0905557i
\(370\) 0 0
\(371\) −1.92691 9.68722i −0.100040 0.502935i
\(372\) −6.27950 15.1601i −0.325577 0.786012i
\(373\) −0.0702693 + 0.0702693i −0.00363841 + 0.00363841i −0.708924 0.705285i \(-0.750819\pi\)
0.705285 + 0.708924i \(0.250819\pi\)
\(374\) 0.448801 5.88377i 0.0232069 0.304243i
\(375\) 0 0
\(376\) −4.59434 1.90304i −0.236935 0.0981418i
\(377\) 2.17445 3.25429i 0.111990 0.167604i
\(378\) 19.7217i 1.01438i
\(379\) −11.0779 7.40200i −0.569032 0.380215i 0.237516 0.971384i \(-0.423667\pi\)
−0.806548 + 0.591168i \(0.798667\pi\)
\(380\) 0 0
\(381\) −10.3359 15.4688i −0.529526 0.792492i
\(382\) −20.0592 8.30880i −1.02632 0.425115i
\(383\) −26.2569 10.8760i −1.34167 0.555736i −0.407705 0.913114i \(-0.633671\pi\)
−0.933960 + 0.357377i \(0.883671\pi\)
\(384\) 0.828527 + 1.23998i 0.0422806 + 0.0632774i
\(385\) 0 0
\(386\) 0.487981 + 0.326059i 0.0248376 + 0.0165959i
\(387\) 2.51133i 0.127658i
\(388\) 4.89826 7.33077i 0.248672 0.372163i
\(389\) 28.5749 + 11.8361i 1.44880 + 0.600115i 0.961915 0.273349i \(-0.0881313\pi\)
0.486890 + 0.873463i \(0.338131\pi\)
\(390\) 0 0
\(391\) 0.828384 + 2.52876i 0.0418932 + 0.127885i
\(392\) −3.72338 + 3.72338i −0.188059 + 0.188059i
\(393\) 11.1966 + 27.0309i 0.564792 + 1.36353i
\(394\) 3.47533 + 17.4717i 0.175085 + 0.880211i
\(395\) 0 0
\(396\) −0.617005 + 0.923413i −0.0310057 + 0.0464033i
\(397\) 5.96544 3.98598i 0.299397 0.200051i −0.396793 0.917908i \(-0.629877\pi\)
0.696190 + 0.717857i \(0.254877\pi\)
\(398\) 0.699239 3.51531i 0.0350497 0.176207i
\(399\) −1.08692 + 0.450218i −0.0544141 + 0.0225391i
\(400\) 0 0
\(401\) 6.19658 4.14042i 0.309442 0.206763i −0.391146 0.920329i \(-0.627921\pi\)
0.700588 + 0.713566i \(0.252921\pi\)
\(402\) 6.19231 + 9.26744i 0.308844 + 0.462218i
\(403\) −1.47541 7.41737i −0.0734953 0.369486i
\(404\) 9.35515 + 9.35515i 0.465436 + 0.465436i
\(405\) 0 0
\(406\) 7.63196 18.4252i 0.378768 0.914426i
\(407\) 0.428102 + 0.428102i 0.0212202 + 0.0212202i
\(408\) 5.84329 1.91418i 0.289286 0.0947659i
\(409\) 18.1578i 0.897847i −0.893570 0.448924i \(-0.851808\pi\)
0.893570 0.448924i \(-0.148192\pi\)
\(410\) 0 0
\(411\) −10.3760 + 2.06391i −0.511810 + 0.101805i
\(412\) −18.1495 −0.894162
\(413\) 10.1639 2.02172i 0.500132 0.0994825i
\(414\) 0.0977039 0.491190i 0.00480188 0.0241407i
\(415\) 0 0
\(416\) 0.263026 + 0.635001i 0.0128959 + 0.0311335i
\(417\) −6.00263 + 14.4916i −0.293950 + 0.709659i
\(418\) 0.316180 + 0.0628921i 0.0154649 + 0.00307615i
\(419\) 5.30674 + 1.05558i 0.259251 + 0.0515683i 0.323005 0.946397i \(-0.395307\pi\)
−0.0637533 + 0.997966i \(0.520307\pi\)
\(420\) 0 0
\(421\) 12.5830 12.5830i 0.613260 0.613260i −0.330534 0.943794i \(-0.607229\pi\)
0.943794 + 0.330534i \(0.107229\pi\)
\(422\) −3.83494 2.56243i −0.186682 0.124737i
\(423\) 3.56518 1.47675i 0.173345 0.0718019i
\(424\) −2.82020 −0.136961
\(425\) 0 0
\(426\) −16.1327 −0.781632
\(427\) 42.8947 17.7676i 2.07582 0.859833i
\(428\) −12.0711 8.06566i −0.583479 0.389868i
\(429\) 1.03730 1.03730i 0.0500811 0.0500811i
\(430\) 0 0
\(431\) −10.0155 1.99220i −0.482429 0.0959611i −0.0521163 0.998641i \(-0.516597\pi\)
−0.430313 + 0.902680i \(0.641597\pi\)
\(432\) −5.52298 1.09859i −0.265724 0.0528559i
\(433\) 13.3385 32.2019i 0.641006 1.54752i −0.184319 0.982867i \(-0.559008\pi\)
0.825325 0.564658i \(-0.190992\pi\)
\(434\) −14.7470 35.6023i −0.707877 1.70897i
\(435\) 0 0
\(436\) −2.52344 + 12.6862i −0.120851 + 0.607558i
\(437\) −0.142581 + 0.0283611i −0.00682056 + 0.00135669i
\(438\) −14.6258 −0.698849
\(439\) −2.63978 + 0.525084i −0.125990 + 0.0250609i −0.257682 0.966230i \(-0.582959\pi\)
0.131693 + 0.991291i \(0.457959\pi\)
\(440\) 0 0
\(441\) 4.08612i 0.194577i
\(442\) 2.81344 0.339868i 0.133822 0.0161659i
\(443\) −21.5344 21.5344i −1.02313 1.02313i −0.999726 0.0234065i \(-0.992549\pi\)
−0.0234065 0.999726i \(-0.507451\pi\)
\(444\) −0.241423 + 0.582846i −0.0114574 + 0.0276607i
\(445\) 0 0
\(446\) 7.04691 + 7.04691i 0.333681 + 0.333681i
\(447\) −1.54139 7.74908i −0.0729052 0.366519i
\(448\) 1.94574 + 2.91200i 0.0919275 + 0.137579i
\(449\) 21.9479 14.6651i 1.03578 0.692089i 0.0832522 0.996529i \(-0.473469\pi\)
0.952532 + 0.304440i \(0.0984693\pi\)
\(450\) 0 0
\(451\) −3.56476 + 1.47657i −0.167858 + 0.0695291i
\(452\) 0.587603 2.95408i 0.0276385 0.138948i
\(453\) −13.0096 + 8.69273i −0.611244 + 0.408420i
\(454\) −8.86159 + 13.2623i −0.415895 + 0.622431i
\(455\) 0 0
\(456\) 0.0655350 + 0.329466i 0.00306896 + 0.0154287i
\(457\) −9.81102 23.6859i −0.458940 1.10798i −0.968827 0.247738i \(-0.920313\pi\)
0.509887 0.860241i \(-0.329687\pi\)
\(458\) 20.2038 20.2038i 0.944063 0.944063i
\(459\) −10.4908 + 20.7127i −0.489671 + 0.966785i
\(460\) 0 0
\(461\) −12.3509 5.11592i −0.575240 0.238272i 0.0760463 0.997104i \(-0.475770\pi\)
−0.651286 + 0.758832i \(0.725770\pi\)
\(462\) 4.15282 6.21514i 0.193207 0.289154i
\(463\) 32.8821i 1.52816i −0.645121 0.764081i \(-0.723193\pi\)
0.645121 0.764081i \(-0.276807\pi\)
\(464\) −4.73475 3.16366i −0.219805 0.146869i
\(465\) 0 0
\(466\) −13.2219 19.7880i −0.612492 0.916660i
\(467\) 4.42354 + 1.83229i 0.204697 + 0.0847883i 0.482676 0.875799i \(-0.339665\pi\)
−0.277979 + 0.960587i \(0.589665\pi\)
\(468\) −0.492757 0.204107i −0.0227777 0.00943483i
\(469\) 14.5422 + 21.7639i 0.671496 + 1.00496i
\(470\) 0 0
\(471\) −18.6372 12.4530i −0.858758 0.573803i
\(472\) 2.95897i 0.136198i
\(473\) −2.57321 + 3.85109i −0.118317 + 0.177073i
\(474\) 2.52339 + 1.04522i 0.115903 + 0.0480086i
\(475\) 0 0
\(476\) 13.7225 4.49531i 0.628972 0.206042i
\(477\) 1.54747 1.54747i 0.0708540 0.0708540i
\(478\) 8.50050 + 20.5220i 0.388804 + 0.938655i
\(479\) −6.42297 32.2905i −0.293473 1.47539i −0.793070 0.609130i \(-0.791519\pi\)
0.499597 0.866258i \(-0.333481\pi\)
\(480\) 0 0
\(481\) −0.161536 + 0.241755i −0.00736539 + 0.0110231i
\(482\) 7.25475 4.84747i 0.330445 0.220796i
\(483\) −0.657607 + 3.30601i −0.0299222 + 0.150429i
\(484\) 8.27034 3.42569i 0.375925 0.155713i
\(485\) 0 0
\(486\) 6.51997 4.35651i 0.295752 0.197615i
\(487\) 16.8849 + 25.2701i 0.765130 + 1.14510i 0.985499 + 0.169681i \(0.0542738\pi\)
−0.220369 + 0.975417i \(0.570726\pi\)
\(488\) −2.58630 13.0022i −0.117076 0.588582i
\(489\) 15.7959 + 15.7959i 0.714318 + 0.714318i
\(490\) 0 0
\(491\) 6.24928 15.0871i 0.282026 0.680871i −0.717857 0.696191i \(-0.754877\pi\)
0.999883 + 0.0153199i \(0.00487666\pi\)
\(492\) −2.84300 2.84300i −0.128172 0.128172i
\(493\) −17.8166 + 15.2912i −0.802420 + 0.688682i
\(494\) 0.154820i 0.00696570i
\(495\) 0 0
\(496\) −10.7917 + 2.14661i −0.484563 + 0.0963856i
\(497\) −37.8865 −1.69944
\(498\) 3.74021 0.743974i 0.167603 0.0333383i
\(499\) 4.87821 24.5244i 0.218379 1.09786i −0.703592 0.710604i \(-0.748422\pi\)
0.921971 0.387260i \(-0.126578\pi\)
\(500\) 0 0
\(501\) −4.34684 10.4942i −0.194203 0.468847i
\(502\) 4.09070 9.87582i 0.182577 0.440779i
\(503\) 4.24133 + 0.843653i 0.189111 + 0.0376166i 0.288737 0.957408i \(-0.406765\pi\)
−0.0996258 + 0.995025i \(0.531765\pi\)
\(504\) −2.66550 0.530200i −0.118731 0.0236170i
\(505\) 0 0
\(506\) 0.653121 0.653121i 0.0290348 0.0290348i
\(507\) −15.5340 10.3795i −0.689887 0.460968i
\(508\) −11.5255 + 4.77400i −0.511360 + 0.211812i
\(509\) 14.6760 0.650503 0.325251 0.945628i \(-0.394551\pi\)
0.325251 + 0.945628i \(0.394551\pi\)
\(510\) 0 0
\(511\) −34.3477 −1.51945
\(512\) 0.923880 0.382683i 0.0408301 0.0169124i
\(513\) −1.05467 0.704705i −0.0465646 0.0311135i
\(514\) −17.7495 + 17.7495i −0.782896 + 0.782896i
\(515\) 0 0
\(516\) −4.73356 0.941563i −0.208383 0.0414500i
\(517\) 6.98029 + 1.38847i 0.306993 + 0.0610646i
\(518\) −0.566964 + 1.36877i −0.0249110 + 0.0601404i
\(519\) 10.3712 + 25.0383i 0.455246 + 1.09906i
\(520\) 0 0
\(521\) −1.76990 + 8.89788i −0.0775406 + 0.389823i 0.922452 + 0.386111i \(0.126182\pi\)
−0.999993 + 0.00371240i \(0.998818\pi\)
\(522\) 4.33395 0.862075i 0.189692 0.0377320i
\(523\) 7.38904 0.323100 0.161550 0.986865i \(-0.448351\pi\)
0.161550 + 0.986865i \(0.448351\pi\)
\(524\) 19.2420 3.82748i 0.840592 0.167204i
\(525\) 0 0
\(526\) 9.23535i 0.402680i
\(527\) −3.45048 + 45.2358i −0.150305 + 1.97050i
\(528\) −1.50919 1.50919i −0.0656791 0.0656791i
\(529\) 8.64232 20.8644i 0.375753 0.907149i
\(530\) 0 0
\(531\) 1.62362 + 1.62362i 0.0704591 + 0.0704591i
\(532\) 0.153904 + 0.773729i 0.00667259 + 0.0335454i
\(533\) −1.02949 1.54074i −0.0445921 0.0667368i
\(534\) −17.1102 + 11.4327i −0.740430 + 0.494739i
\(535\) 0 0
\(536\) 6.90495 2.86013i 0.298249 0.123539i
\(537\) 3.76031 18.9043i 0.162269 0.815783i
\(538\) −2.87833 + 1.92324i −0.124093 + 0.0829166i
\(539\) 4.18681 6.26600i 0.180338 0.269896i
\(540\) 0 0
\(541\) −1.09529 5.50641i −0.0470904 0.236739i 0.950071 0.312034i \(-0.101010\pi\)
−0.997161 + 0.0752947i \(0.976010\pi\)
\(542\) 7.74341 + 18.6942i 0.332608 + 0.802986i
\(543\) −6.01426 + 6.01426i −0.258097 + 0.258097i
\(544\) −0.494483 4.09335i −0.0212008 0.175501i
\(545\) 0 0
\(546\) 3.31656 + 1.37376i 0.141936 + 0.0587916i
\(547\) 20.5784 30.7977i 0.879868 1.31682i −0.0678469 0.997696i \(-0.521613\pi\)
0.947715 0.319119i \(-0.103387\pi\)
\(548\) 7.09395i 0.303038i
\(549\) 8.55358 + 5.71532i 0.365058 + 0.243924i
\(550\) 0 0
\(551\) −0.712622 1.06651i −0.0303587 0.0454350i
\(552\) 0.889203 + 0.368320i 0.0378470 + 0.0156767i
\(553\) 5.92600 + 2.45463i 0.251999 + 0.104381i
\(554\) −11.1364 16.6668i −0.473140 0.708104i
\(555\) 0 0
\(556\) 8.74542 + 5.84350i 0.370888 + 0.247820i
\(557\) 31.1211i 1.31864i 0.751862 + 0.659321i \(0.229156\pi\)
−0.751862 + 0.659321i \(0.770844\pi\)
\(558\) 4.74367 7.09941i 0.200816 0.300542i
\(559\) −2.05504 0.851225i −0.0869189 0.0360030i
\(560\) 0 0
\(561\) −7.66760 + 4.31836i −0.323726 + 0.182321i
\(562\) −15.4560 + 15.4560i −0.651971 + 0.651971i
\(563\) 11.8843 + 28.6912i 0.500863 + 1.20919i 0.949014 + 0.315233i \(0.102083\pi\)
−0.448151 + 0.893958i \(0.647917\pi\)
\(564\) 1.44681 + 7.27361i 0.0609217 + 0.306274i
\(565\) 0 0
\(566\) 11.1466 16.6821i 0.468529 0.701203i
\(567\) −17.6754 + 11.8103i −0.742298 + 0.495988i
\(568\) −2.11045 + 10.6099i −0.0885525 + 0.445183i
\(569\) 2.92191 1.21029i 0.122493 0.0507381i −0.320595 0.947216i \(-0.603883\pi\)
0.443088 + 0.896478i \(0.353883\pi\)
\(570\) 0 0
\(571\) −1.63933 + 1.09537i −0.0686039 + 0.0458397i −0.589399 0.807842i \(-0.700635\pi\)
0.520795 + 0.853682i \(0.325635\pi\)
\(572\) −0.546498 0.817893i −0.0228502 0.0341978i
\(573\) 6.31688 + 31.7571i 0.263891 + 1.32667i
\(574\) −6.67659 6.67659i −0.278675 0.278675i
\(575\) 0 0
\(576\) −0.296960 + 0.716925i −0.0123733 + 0.0298719i
\(577\) 23.0553 + 23.0553i 0.959807 + 0.959807i 0.999223 0.0394163i \(-0.0125499\pi\)
−0.0394163 + 0.999223i \(0.512550\pi\)
\(578\) −16.8033 2.57844i −0.698926 0.107249i
\(579\) 0.875235i 0.0363735i
\(580\) 0 0
\(581\) 8.78362 1.74717i 0.364406 0.0724848i
\(582\) −13.1483 −0.545016
\(583\) 3.95863 0.787420i 0.163950 0.0326116i
\(584\) −1.91332 + 9.61892i −0.0791739 + 0.398034i
\(585\) 0 0
\(586\) 6.11588 + 14.7650i 0.252645 + 0.609938i
\(587\) 11.7884 28.4598i 0.486560 1.17466i −0.469879 0.882731i \(-0.655703\pi\)
0.956440 0.291930i \(-0.0942975\pi\)
\(588\) 7.70184 + 1.53199i 0.317619 + 0.0631783i
\(589\) −2.43086 0.483529i −0.100162 0.0199235i
\(590\) 0 0
\(591\) 18.7851 18.7851i 0.772716 0.772716i
\(592\) 0.351736 + 0.235023i 0.0144563 + 0.00965937i
\(593\) 6.97472 2.88902i 0.286417 0.118638i −0.234849 0.972032i \(-0.575460\pi\)
0.521267 + 0.853394i \(0.325460\pi\)
\(594\) 8.05917 0.330672
\(595\) 0 0
\(596\) −5.29796 −0.217013
\(597\) −4.93825 + 2.04549i −0.202109 + 0.0837164i
\(598\) 0.368827 + 0.246442i 0.0150825 + 0.0100778i
\(599\) −0.148385 + 0.148385i −0.00606283 + 0.00606283i −0.710132 0.704069i \(-0.751365\pi\)
0.704069 + 0.710132i \(0.251365\pi\)
\(600\) 0 0
\(601\) −12.7537 2.53686i −0.520233 0.103481i −0.0720121 0.997404i \(-0.522942\pi\)
−0.448220 + 0.893923i \(0.647942\pi\)
\(602\) −11.1164 2.21119i −0.453072 0.0901216i
\(603\) −2.21944 + 5.35821i −0.0903826 + 0.218203i
\(604\) 4.01503 + 9.69314i 0.163369 + 0.394408i
\(605\) 0 0
\(606\) 3.84919 19.3512i 0.156363 0.786089i
\(607\) −1.06561 + 0.211963i −0.0432517 + 0.00860330i −0.216669 0.976245i \(-0.569519\pi\)
0.173417 + 0.984848i \(0.444519\pi\)
\(608\) 0.225252 0.00913519
\(609\) −29.1701 + 5.80230i −1.18203 + 0.235121i
\(610\) 0 0
\(611\) 3.41796i 0.138276i
\(612\) 2.51739 + 1.97474i 0.101760 + 0.0798239i
\(613\) 22.9407 + 22.9407i 0.926565 + 0.926565i 0.997482 0.0709174i \(-0.0225927\pi\)
−0.0709174 + 0.997482i \(0.522593\pi\)
\(614\) −0.744855 + 1.79824i −0.0300599 + 0.0725710i
\(615\) 0 0
\(616\) −3.54423 3.54423i −0.142801 0.142801i
\(617\) −0.407054 2.04640i −0.0163874 0.0823850i 0.971726 0.236111i \(-0.0758728\pi\)
−0.988114 + 0.153726i \(0.950873\pi\)
\(618\) 15.0374 + 22.5050i 0.604891 + 0.905284i
\(619\) 29.8012 19.9126i 1.19781 0.800353i 0.213528 0.976937i \(-0.431505\pi\)
0.984286 + 0.176584i \(0.0565047\pi\)
\(620\) 0 0
\(621\) −3.35762 + 1.39077i −0.134737 + 0.0558098i
\(622\) 4.10239 20.6241i 0.164491 0.826951i
\(623\) −40.1820 + 26.8488i −1.60986 + 1.07567i
\(624\) 0.569463 0.852262i 0.0227968 0.0341178i
\(625\) 0 0
\(626\) 5.54040 + 27.8535i 0.221439 + 1.11325i
\(627\) −0.183979 0.444164i −0.00734741 0.0177382i
\(628\) −10.6280 + 10.6280i −0.424104 + 0.424104i
\(629\) 1.32356 1.13596i 0.0527739 0.0452936i
\(630\) 0 0
\(631\) 26.5925 + 11.0150i 1.05863 + 0.438499i 0.842965 0.537969i \(-0.180808\pi\)
0.215664 + 0.976468i \(0.430808\pi\)
\(632\) 1.01751 1.52281i 0.0404745 0.0605743i
\(633\) 6.87829i 0.273387i
\(634\) −22.9967 15.3659i −0.913315 0.610258i
\(635\) 0 0
\(636\) 2.33661 + 3.49699i 0.0926527 + 0.138665i
\(637\) 3.34370 + 1.38500i 0.132482 + 0.0548759i
\(638\) 7.52935 + 3.11876i 0.298090 + 0.123473i
\(639\) −4.66377 6.97982i −0.184496 0.276117i
\(640\) 0 0
\(641\) 17.5118 + 11.7010i 0.691676 + 0.462163i 0.851070 0.525052i \(-0.175954\pi\)
−0.159394 + 0.987215i \(0.550954\pi\)
\(642\) 21.6505i 0.854479i
\(643\) −10.0396 + 15.0254i −0.395924 + 0.592542i −0.974857 0.222833i \(-0.928469\pi\)
0.578933 + 0.815375i \(0.303469\pi\)
\(644\) 2.08823 + 0.864973i 0.0822878 + 0.0340847i
\(645\) 0 0
\(646\) 0.249943 0.894475i 0.00983387 0.0351926i
\(647\) −30.4615 + 30.4615i −1.19756 + 1.19756i −0.222671 + 0.974894i \(0.571477\pi\)
−0.974894 + 0.222671i \(0.928523\pi\)
\(648\) 2.32283 + 5.60781i 0.0912494 + 0.220296i
\(649\) 0.826166 + 4.15342i 0.0324299 + 0.163036i
\(650\) 0 0
\(651\) −31.9279 + 47.7834i −1.25135 + 1.87278i
\(652\) 12.4549 8.32208i 0.487770 0.325918i
\(653\) 8.20651 41.2569i 0.321145 1.61451i −0.396456 0.918054i \(-0.629760\pi\)
0.717602 0.696454i \(-0.245240\pi\)
\(654\) 17.8213 7.38184i 0.696870 0.288653i
\(655\) 0 0
\(656\) −2.24166 + 1.49783i −0.0875222 + 0.0584805i
\(657\) −4.22815 6.32787i −0.164956 0.246874i
\(658\) 3.39773 + 17.0816i 0.132457 + 0.665909i
\(659\) −13.4187 13.4187i −0.522718 0.522718i 0.395673 0.918391i \(-0.370511\pi\)
−0.918391 + 0.395673i \(0.870511\pi\)
\(660\) 0 0
\(661\) 9.49648 22.9265i 0.369370 0.891738i −0.624484 0.781038i \(-0.714691\pi\)
0.993854 0.110701i \(-0.0353094\pi\)
\(662\) 24.3276 + 24.3276i 0.945518 + 0.945518i
\(663\) −2.75244 3.20701i −0.106896 0.124550i
\(664\) 2.55714i 0.0992362i
\(665\) 0 0
\(666\) −0.321961 + 0.0640420i −0.0124757 + 0.00248158i
\(667\) −3.67509 −0.142300
\(668\) −7.47034 + 1.48594i −0.289036 + 0.0574929i
\(669\) 2.89946 14.5766i 0.112100 0.563563i
\(670\) 0 0
\(671\) 7.26062 + 17.5287i 0.280293 + 0.676688i
\(672\) 1.99872 4.82535i 0.0771025 0.186142i
\(673\) 8.33039 + 1.65702i 0.321113 + 0.0638733i 0.353015 0.935618i \(-0.385156\pi\)
−0.0319020 + 0.999491i \(0.510156\pi\)
\(674\) −12.8742 2.56084i −0.495896 0.0986398i
\(675\) 0 0
\(676\) −8.85834 + 8.85834i −0.340706 + 0.340706i
\(677\) −4.53636 3.03110i −0.174347 0.116495i 0.465335 0.885135i \(-0.345934\pi\)
−0.639682 + 0.768640i \(0.720934\pi\)
\(678\) −4.14984 + 1.71892i −0.159374 + 0.0660147i
\(679\) −30.8779 −1.18499
\(680\) 0 0
\(681\) 23.7871 0.911522
\(682\) 14.5487 6.02626i 0.557098 0.230758i
\(683\) 30.4635 + 20.3551i 1.16565 + 0.778866i 0.979060 0.203571i \(-0.0652549\pi\)
0.186595 + 0.982437i \(0.440255\pi\)
\(684\) −0.123598 + 0.123598i −0.00472590 + 0.00472590i
\(685\) 0 0
\(686\) −5.95736 1.18499i −0.227453 0.0452432i
\(687\) −41.7917 8.31289i −1.59445 0.317157i
\(688\) −1.23847 + 2.98993i −0.0472162 + 0.113990i
\(689\) 0.741785 + 1.79083i 0.0282598 + 0.0682251i
\(690\) 0 0
\(691\) −1.37635 + 6.91939i −0.0523589 + 0.263226i −0.998094 0.0617127i \(-0.980344\pi\)
0.945735 + 0.324939i \(0.105344\pi\)
\(692\) 17.8236 3.54534i 0.677553 0.134774i
\(693\) 3.88951 0.147750
\(694\) 18.8905 3.75756i 0.717075 0.142635i
\(695\) 0 0
\(696\) 8.49217i 0.321895i
\(697\) 3.46050 + 10.5636i 0.131076 + 0.400126i
\(698\) −15.2293 15.2293i −0.576437 0.576437i
\(699\) −13.5820 + 32.7897i −0.513717 + 1.24022i
\(700\) 0 0
\(701\) 16.7123 + 16.7123i 0.631215 + 0.631215i 0.948373 0.317158i \(-0.102728\pi\)
−0.317158 + 0.948373i \(0.602728\pi\)
\(702\) 0.755082 + 3.79605i 0.0284987 + 0.143273i
\(703\) 0.0529394 + 0.0792294i 0.00199665 + 0.00298819i
\(704\) −1.18997 + 0.795115i −0.0448488 + 0.0299670i
\(705\) 0 0
\(706\) −7.24766 + 3.00208i −0.272769 + 0.112985i
\(707\) 9.03956 45.4449i 0.339967 1.70913i
\(708\) −3.66906 + 2.45159i −0.137892 + 0.0921363i
\(709\) −14.4329 + 21.6003i −0.542038 + 0.811217i −0.996845 0.0793729i \(-0.974708\pi\)
0.454807 + 0.890590i \(0.349708\pi\)
\(710\) 0 0
\(711\) 0.277265 + 1.39390i 0.0103982 + 0.0522755i
\(712\) 5.28056 + 12.7484i 0.197897 + 0.477766i
\(713\) −5.02134 + 5.02134i −0.188051 + 0.188051i
\(714\) −16.9436 13.2912i −0.634098 0.497410i
\(715\) 0 0
\(716\) −11.9408 4.94606i −0.446250 0.184843i
\(717\) 18.4040 27.5435i 0.687309 1.02863i
\(718\) 11.6725i 0.435615i
\(719\) 31.3017 + 20.9151i 1.16735 + 0.780002i 0.979351 0.202167i \(-0.0647983\pi\)
0.188004 + 0.982168i \(0.439798\pi\)
\(720\) 0 0
\(721\) 35.3142 + 52.8514i 1.31517 + 1.96829i
\(722\) −17.5068 7.25157i −0.651537 0.269875i
\(723\) −12.0215 4.97948i −0.447085 0.185189i
\(724\) 3.16861 + 4.74216i 0.117760 + 0.176241i
\(725\) 0 0
\(726\) −11.1000 7.41677i −0.411959 0.275262i
\(727\) 11.7248i 0.434847i 0.976077 + 0.217424i \(0.0697653\pi\)
−0.976077 + 0.217424i \(0.930235\pi\)
\(728\) 1.33734 2.00148i 0.0495653 0.0741797i
\(729\) −27.6274 11.4436i −1.02324 0.423838i
\(730\) 0 0
\(731\) 10.4988 + 8.23562i 0.388311 + 0.304605i
\(732\) −13.9796 + 13.9796i −0.516702 + 0.516702i
\(733\) −15.1940 36.6816i −0.561203 1.35486i −0.908805 0.417222i \(-0.863004\pi\)
0.347601 0.937642i \(-0.386996\pi\)
\(734\) 2.94262 + 14.7935i 0.108614 + 0.546039i
\(735\) 0 0
\(736\) 0.358556 0.536616i 0.0132165 0.0197799i
\(737\) −8.89371 + 5.94259i −0.327604 + 0.218898i
\(738\) 0.408149 2.05190i 0.0150242 0.0755315i
\(739\) −41.6307 + 17.2440i −1.53141 + 0.634332i −0.979838 0.199795i \(-0.935973\pi\)
−0.551574 + 0.834126i \(0.685973\pi\)
\(740\) 0 0
\(741\) 0.191974 0.128273i 0.00705234 0.00471223i
\(742\) 5.48737 + 8.21243i 0.201448 + 0.301488i
\(743\) −5.03606 25.3180i −0.184755 0.928826i −0.956241 0.292580i \(-0.905486\pi\)
0.771486 0.636246i \(-0.219514\pi\)
\(744\) 11.6030 + 11.6030i 0.425387 + 0.425387i
\(745\) 0 0
\(746\) 0.0380295 0.0918113i 0.00139236 0.00336145i
\(747\) 1.40313 + 1.40313i 0.0513378 + 0.0513378i
\(748\) 1.83698 + 5.60765i 0.0671668 + 0.205036i
\(749\) 50.8448i 1.85783i
\(750\) 0 0
\(751\) 19.7948 3.93743i 0.722322 0.143679i 0.179779 0.983707i \(-0.442462\pi\)
0.542543 + 0.840028i \(0.317462\pi\)
\(752\) 4.97288 0.181342
\(753\) −15.6351 + 3.11001i −0.569773 + 0.113335i
\(754\) −0.763564 + 3.83870i −0.0278074 + 0.139797i
\(755\) 0 0
\(756\) 7.54717 + 18.2205i 0.274488 + 0.662673i
\(757\) 4.45049 10.7444i 0.161756 0.390513i −0.822133 0.569296i \(-0.807216\pi\)
0.983889 + 0.178783i \(0.0572160\pi\)
\(758\) 13.0672 + 2.59924i 0.474624 + 0.0944086i
\(759\) −1.35098 0.268728i −0.0490376 0.00975419i
\(760\) 0 0
\(761\) −27.7743 + 27.7743i −1.00682 + 1.00682i −0.00684140 + 0.999977i \(0.502178\pi\)
−0.999977 + 0.00684140i \(0.997822\pi\)
\(762\) 15.4688 + 10.3359i 0.560376 + 0.374431i
\(763\) 41.8522 17.3357i 1.51515 0.627596i
\(764\) 21.7120 0.785511
\(765\) 0 0
\(766\) 28.4203 1.02687
\(767\) −1.87895 + 0.778286i −0.0678449 + 0.0281023i
\(768\) −1.23998 0.828527i −0.0447439 0.0298969i
\(769\) −4.24272 + 4.24272i −0.152997 + 0.152997i −0.779455 0.626458i \(-0.784504\pi\)
0.626458 + 0.779455i \(0.284504\pi\)
\(770\) 0 0
\(771\) 36.7149 + 7.30305i 1.32226 + 0.263013i
\(772\) −0.575613 0.114497i −0.0207168 0.00412082i
\(773\) −3.89373 + 9.40030i −0.140048 + 0.338105i −0.978305 0.207170i \(-0.933575\pi\)
0.838257 + 0.545275i \(0.183575\pi\)
\(774\) −0.961046 2.32017i −0.0345441 0.0833968i
\(775\) 0 0
\(776\) −1.72004 + 8.64723i −0.0617459 + 0.310417i
\(777\) 2.16700 0.431042i 0.0777405 0.0154636i
\(778\) −30.9292 −1.10887
\(779\) −0.595617 + 0.118476i −0.0213402 + 0.00424483i
\(780\) 0 0
\(781\) 15.4821i 0.553994i
\(782\) −1.73304 2.01926i −0.0619734 0.0722085i
\(783\) −22.6744 22.6744i −0.810316 0.810316i
\(784\) 2.01508 4.86483i 0.0719672 0.173744i
\(785\) 0 0
\(786\) −20.6885 20.6885i −0.737936 0.737936i
\(787\) −7.71384 38.7801i −0.274969 1.38236i −0.833336 0.552768i \(-0.813572\pi\)
0.558367 0.829594i \(-0.311428\pi\)
\(788\) −9.89692 14.8118i −0.352563 0.527648i
\(789\) −11.4516 + 7.65174i −0.407689 + 0.272409i
\(790\) 0 0
\(791\) −9.74560 + 4.03676i −0.346514 + 0.143531i
\(792\) 0.216663 1.08924i 0.00769880 0.0387045i
\(793\) −7.57614 + 5.06222i −0.269037 + 0.179765i
\(794\) −3.98598 + 5.96544i −0.141457 + 0.211706i
\(795\) 0 0
\(796\) 0.699239 + 3.51531i 0.0247839 + 0.124597i
\(797\) −16.6329 40.1553i −0.589166 1.42237i −0.884301 0.466917i \(-0.845365\pi\)
0.295135 0.955455i \(-0.404635\pi\)
\(798\) 0.831894 0.831894i 0.0294487 0.0294487i
\(799\) 5.51797 19.7473i 0.195212 0.698608i
\(800\) 0 0
\(801\) −9.89268 4.09768i −0.349541 0.144785i
\(802\) −4.14042 + 6.19658i −0.146203 + 0.218809i
\(803\) 14.0360i 0.495320i
\(804\) −9.26744 6.19231i −0.326837 0.218386i
\(805\) 0 0
\(806\) 4.20160 + 6.28815i 0.147995 + 0.221490i
\(807\) 4.76954 + 1.97561i 0.167896 + 0.0695447i
\(808\) −12.2231 5.06297i −0.430007 0.178115i
\(809\) −25.9551 38.8446i −0.912534 1.36570i −0.930667 0.365868i \(-0.880772\pi\)
0.0181324 0.999836i \(-0.494228\pi\)
\(810\) 0 0
\(811\) −12.7865 8.54365i −0.448994 0.300008i 0.310440 0.950593i \(-0.399524\pi\)
−0.759433 + 0.650585i \(0.774524\pi\)
\(812\) 19.9433i 0.699872i
\(813\) 16.7648 25.0904i 0.587969 0.879957i
\(814\) −0.559342 0.231687i −0.0196049 0.00812062i
\(815\) 0 0
\(816\) −4.66597 + 4.00460i −0.163342 + 0.140189i
\(817\) −0.515466 + 0.515466i −0.0180339 + 0.0180339i
\(818\) 6.94870 + 16.7757i 0.242956 + 0.586547i
\(819\) 0.364417 + 1.83205i 0.0127338 + 0.0640169i
\(820\) 0 0
\(821\) 8.91045 13.3354i 0.310977 0.465410i −0.642753 0.766073i \(-0.722208\pi\)
0.953730 + 0.300663i \(0.0972080\pi\)
\(822\) 8.79634 5.87753i 0.306808 0.205002i
\(823\) 2.73864 13.7681i 0.0954631 0.479925i −0.903246 0.429124i \(-0.858822\pi\)
0.998709 0.0508015i \(-0.0161776\pi\)
\(824\) 16.7680 6.94551i 0.584139 0.241958i
\(825\) 0 0
\(826\) −8.61653 + 5.75738i −0.299807 + 0.200325i
\(827\) 18.4325 + 27.5862i 0.640962 + 0.959267i 0.999667 + 0.0258161i \(0.00821843\pi\)
−0.358705 + 0.933451i \(0.616782\pi\)
\(828\) 0.0977039 + 0.491190i 0.00339544 + 0.0170700i
\(829\) −19.3397 19.3397i −0.671696 0.671696i 0.286411 0.958107i \(-0.407538\pi\)
−0.958107 + 0.286411i \(0.907538\pi\)
\(830\) 0 0
\(831\) −11.4397 + 27.6178i −0.396837 + 0.958050i
\(832\) −0.486008 0.486008i −0.0168493 0.0168493i
\(833\) −17.0822 13.3999i −0.591865 0.464281i
\(834\) 15.6856i 0.543149i
\(835\) 0 0
\(836\) −0.316180 + 0.0628921i −0.0109353 + 0.00217517i
\(837\) −61.9607 −2.14168
\(838\) −5.30674 + 1.05558i −0.183318 + 0.0364643i
\(839\) −2.67790 + 13.4627i −0.0924512 + 0.464784i 0.906630 + 0.421927i \(0.138646\pi\)
−0.999081 + 0.0428571i \(0.986354\pi\)
\(840\) 0 0
\(841\) −1.31132 3.16579i −0.0452178 0.109165i
\(842\) −6.80990 + 16.4405i −0.234685 + 0.566579i
\(843\) 31.9708 + 6.35938i 1.10113 + 0.219029i
\(844\) 4.52362 + 0.899804i 0.155709 + 0.0309725i
\(845\) 0 0
\(846\) −2.72867 + 2.72867i −0.0938138 + 0.0938138i
\(847\) −26.0675 17.4178i −0.895691 0.598482i
\(848\) 2.60552 1.07924i 0.0894741 0.0370614i
\(849\) −29.9208 −1.02688
\(850\) 0 0
\(851\) 0.273016 0.00935887
\(852\) 14.9047 6.17372i 0.510626 0.211508i
\(853\) 24.6422 + 16.4654i 0.843734 + 0.563765i 0.900616 0.434616i \(-0.143116\pi\)
−0.0568820 + 0.998381i \(0.518116\pi\)
\(854\) −32.8302 + 32.8302i −1.12343 + 1.12343i
\(855\) 0 0
\(856\) 14.2388 + 2.83228i 0.486674 + 0.0968055i
\(857\) −2.81677 0.560290i −0.0962190 0.0191391i 0.146746 0.989174i \(-0.453120\pi\)
−0.242965 + 0.970035i \(0.578120\pi\)
\(858\) −0.561381 + 1.35529i −0.0191652 + 0.0462689i
\(859\) 14.7311 + 35.5640i 0.502618 + 1.21343i 0.948053 + 0.318112i \(0.103049\pi\)
−0.445435 + 0.895314i \(0.646951\pi\)
\(860\) 0 0
\(861\) −2.74709 + 13.8106i −0.0936206 + 0.470663i
\(862\) 10.0155 1.99220i 0.341129 0.0678547i
\(863\) 12.3538 0.420530 0.210265 0.977644i \(-0.432567\pi\)
0.210265 + 0.977644i \(0.432567\pi\)
\(864\) 5.52298 1.09859i 0.187895 0.0373747i
\(865\) 0 0
\(866\) 34.8551i 1.18442i
\(867\) 10.7248 + 22.9721i 0.364233 + 0.780173i
\(868\) 27.2488 + 27.2488i 0.924885 + 0.924885i
\(869\) −1.00307 + 2.42163i −0.0340268 + 0.0821480i
\(870\) 0 0
\(871\) −3.63236 3.63236i −0.123078 0.123078i
\(872\) −2.52344 12.6862i −0.0854545 0.429609i
\(873\) −3.80102 5.68863i −0.128645 0.192531i
\(874\) 0.120874 0.0807655i 0.00408863 0.00273193i
\(875\) 0 0
\(876\) 13.5125 5.59706i 0.456545 0.189107i
\(877\) −0.843295 + 4.23953i −0.0284760 + 0.143159i −0.992408 0.122991i \(-0.960751\pi\)
0.963932 + 0.266149i \(0.0857515\pi\)
\(878\) 2.23789 1.49531i 0.0755253 0.0504644i
\(879\) 13.2412 19.8168i 0.446613 0.668404i
\(880\) 0 0
\(881\) −5.73703 28.8420i −0.193285 0.971711i −0.948631 0.316385i \(-0.897531\pi\)
0.755346 0.655327i \(-0.227469\pi\)
\(882\) 1.56369 + 3.77508i 0.0526522 + 0.127114i
\(883\) 34.6701 34.6701i 1.16674 1.16674i 0.183773 0.982969i \(-0.441169\pi\)
0.982969 0.183773i \(-0.0588310\pi\)
\(884\) −2.46922 + 1.39065i −0.0830487 + 0.0467727i
\(885\) 0 0
\(886\) 28.1361 + 11.6544i 0.945251 + 0.391536i
\(887\) −4.91559 + 7.35669i −0.165049 + 0.247014i −0.904770 0.425900i \(-0.859957\pi\)
0.739721 + 0.672914i \(0.234957\pi\)
\(888\) 0.630868i 0.0211706i
\(889\) 36.3274 + 24.2732i 1.21838 + 0.814097i
\(890\) 0 0
\(891\) −4.82623 7.22296i −0.161685 0.241978i
\(892\) −9.20723 3.81376i −0.308281 0.127694i
\(893\) 1.03489 + 0.428664i 0.0346312 + 0.0143447i
\(894\) 4.38950 + 6.56936i 0.146807 + 0.219712i
\(895\) 0 0
\(896\) −2.91200 1.94574i −0.0972832 0.0650026i
\(897\) 0.661522i 0.0220876i
\(898\) −14.6651 + 21.9479i −0.489380 + 0.732410i
\(899\) −57.8873 23.9777i −1.93065 0.799702i
\(900\) 0 0
\(901\) −1.39454 11.5441i −0.0464589 0.384588i
\(902\) 2.72835 2.72835i 0.0908441 0.0908441i
\(903\) 6.46843 + 15.6162i 0.215256 + 0.519674i
\(904\) 0.587603 + 2.95408i 0.0195434 + 0.0982512i
\(905\) 0 0
\(906\) 8.69273 13.0096i 0.288796 0.432214i
\(907\) −7.60237 + 5.07974i −0.252433 + 0.168670i −0.675348 0.737499i \(-0.736007\pi\)
0.422916 + 0.906169i \(0.361007\pi\)
\(908\) 3.11178 15.6440i 0.103268 0.519163i
\(909\) 9.48505 3.92884i 0.314599 0.130311i
\(910\) 0 0
\(911\) 25.4797 17.0250i 0.844181 0.564064i −0.0565701 0.998399i \(-0.518016\pi\)
0.900752 + 0.434335i \(0.143016\pi\)
\(912\) −0.186628 0.279308i −0.00617986 0.00924882i
\(913\) 0.713971 + 3.58938i 0.0236290 + 0.118791i
\(914\) 18.1284 + 18.1284i 0.599634 + 0.599634i
\(915\) 0 0
\(916\) −10.9342 + 26.3976i −0.361277 + 0.872200i
\(917\) −48.5856 48.5856i −1.60444 1.60444i
\(918\) 1.76588 23.1507i 0.0582828 0.764087i
\(919\) 43.0164i 1.41898i 0.704716 + 0.709490i \(0.251074\pi\)
−0.704716 + 0.709490i \(0.748926\pi\)
\(920\) 0 0
\(921\) 2.84691 0.566286i 0.0938089 0.0186597i
\(922\) 13.3685 0.440270
\(923\) 7.29243 1.45055i 0.240033 0.0477456i
\(924\) −1.45828 + 7.33126i −0.0479738 + 0.241181i
\(925\) 0 0
\(926\) 12.5834 + 30.3791i 0.413517 + 0.998319i
\(927\) −5.38968 + 13.0118i −0.177020 + 0.427365i
\(928\) 5.58502 + 1.11093i 0.183337 + 0.0364681i
\(929\) −41.3633 8.22767i −1.35709 0.269941i −0.537677 0.843151i \(-0.680698\pi\)
−0.819408 + 0.573210i \(0.805698\pi\)
\(930\) 0 0
\(931\) 0.838701 0.838701i 0.0274873 0.0274873i
\(932\) 19.7880 + 13.2219i 0.648176 + 0.433098i
\(933\) −28.9724 + 12.0008i −0.948514 + 0.392887i
\(934\) −4.78801 −0.156668
\(935\) 0 0
\(936\) 0.533356 0.0174333
\(937\) 39.8003 16.4858i 1.30022 0.538569i 0.378205 0.925722i \(-0.376542\pi\)
0.922015 + 0.387153i \(0.126542\pi\)
\(938\) −21.7639 14.5422i −0.710617 0.474819i
\(939\) 29.9474 29.9474i 0.977295 0.977295i
\(940\) 0 0
\(941\) 16.9565 + 3.37287i 0.552768 + 0.109952i 0.463568 0.886061i \(-0.346569\pi\)
0.0891997 + 0.996014i \(0.471569\pi\)
\(942\) 21.9841 + 4.37291i 0.716280 + 0.142477i
\(943\) −0.665857 + 1.60752i −0.0216833 + 0.0523481i
\(944\) 1.13235 + 2.73373i 0.0368548 + 0.0889754i
\(945\) 0 0
\(946\) 0.903593 4.54267i 0.0293783 0.147695i
\(947\) 8.23276 1.63760i 0.267529 0.0532148i −0.0595030 0.998228i \(-0.518952\pi\)
0.327032 + 0.945013i \(0.393952\pi\)
\(948\) −2.73129 −0.0887083
\(949\) 6.61128 1.31506i 0.214611 0.0426888i
\(950\) 0 0
\(951\) 41.2465i 1.33751i
\(952\) −10.9577 + 9.40452i −0.355141 + 0.304802i
\(953\) 17.1743 + 17.1743i 0.556330 + 0.556330i 0.928261 0.371930i \(-0.121304\pi\)
−0.371930 + 0.928261i \(0.621304\pi\)
\(954\) −0.837487 + 2.02187i −0.0271146 + 0.0654605i
\(955\) 0 0
\(956\) −15.7069 15.7069i −0.507997 0.507997i
\(957\) −2.37108 11.9202i −0.0766460 0.385326i
\(958\) 18.2911 + 27.3745i 0.590958 + 0.884431i
\(959\) 20.6576 13.8030i 0.667068 0.445721i
\(960\) 0 0
\(961\) −83.2134 + 34.4681i −2.68430 + 1.11187i
\(962\) 0.0567238 0.285170i 0.00182885 0.00919424i
\(963\) −9.36712 + 6.25891i −0.301851 + 0.201690i
\(964\) −4.84747 + 7.25475i −0.156126 + 0.233660i
\(965\) 0 0
\(966\) −0.657607 3.30601i −0.0211582 0.106369i
\(967\) 0.445933 + 1.07658i 0.0143402 + 0.0346204i 0.930887 0.365306i \(-0.119036\pi\)
−0.916547 + 0.399926i \(0.869036\pi\)
\(968\) −6.32985 + 6.32985i −0.203449 + 0.203449i
\(969\) −1.31621 + 0.431173i −0.0422829 + 0.0138513i
\(970\) 0 0
\(971\) −17.7627 7.35756i −0.570033 0.236115i 0.0790013 0.996875i \(-0.474827\pi\)
−0.649034 + 0.760759i \(0.724827\pi\)
\(972\) −4.35651 + 6.51997i −0.139735 + 0.209128i
\(973\) 36.8366i 1.18093i
\(974\) −25.2701 16.8849i −0.809706 0.541029i
\(975\) 0 0
\(976\) 7.36516 + 11.0227i 0.235753 + 0.352829i
\(977\) −23.2223 9.61901i −0.742949 0.307739i −0.0210877 0.999778i \(-0.506713\pi\)
−0.721861 + 0.692038i \(0.756713\pi\)
\(978\) −20.6384 8.54871i −0.659943 0.273357i
\(979\) −10.9716 16.4202i −0.350654 0.524791i
\(980\) 0 0
\(981\) 8.34569 + 5.57641i 0.266457 + 0.178041i
\(982\) 16.3302i 0.521116i
\(983\) 19.1109 28.6015i 0.609543 0.912245i −0.390422 0.920636i \(-0.627671\pi\)
0.999965 + 0.00839065i \(0.00267086\pi\)
\(984\) 3.71456 + 1.53862i 0.118416 + 0.0490494i
\(985\) 0 0
\(986\) 10.6087 20.9454i 0.337850 0.667036i
\(987\) 18.3657 18.3657i 0.584585 0.584585i
\(988\) −0.0592472 0.143035i −0.00188490 0.00455056i
\(989\) 0.407473 + 2.04851i 0.0129569 + 0.0651387i
\(990\) 0 0
\(991\) 16.9127 25.3117i 0.537250 0.804052i −0.459191 0.888337i \(-0.651861\pi\)
0.996442 + 0.0842855i \(0.0268608\pi\)
\(992\) 9.14879 6.11303i 0.290474 0.194089i
\(993\) 10.0096 50.3218i 0.317646 1.59691i
\(994\) 35.0026 14.4985i 1.11021 0.459866i
\(995\) 0 0
\(996\) −3.17080 + 2.11866i −0.100471 + 0.0671323i
\(997\) 30.7399 + 46.0056i 0.973543 + 1.45701i 0.887548 + 0.460715i \(0.152407\pi\)
0.0859950 + 0.996296i \(0.472593\pi\)
\(998\) 4.87821 + 24.5244i 0.154417 + 0.776307i
\(999\) 1.68444 + 1.68444i 0.0532933 + 0.0532933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.a.193.2 yes 24
5.2 odd 4 850.2.s.b.57.2 yes 24
5.3 odd 4 850.2.s.a.57.2 24
5.4 even 2 850.2.v.b.193.2 yes 24
17.3 odd 16 850.2.s.b.343.2 yes 24
85.3 even 16 850.2.v.b.207.2 yes 24
85.37 even 16 inner 850.2.v.a.207.2 yes 24
85.54 odd 16 850.2.s.a.343.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
850.2.s.a.57.2 24 5.3 odd 4
850.2.s.a.343.2 yes 24 85.54 odd 16
850.2.s.b.57.2 yes 24 5.2 odd 4
850.2.s.b.343.2 yes 24 17.3 odd 16
850.2.v.a.193.2 yes 24 1.1 even 1 trivial
850.2.v.a.207.2 yes 24 85.37 even 16 inner
850.2.v.b.193.2 yes 24 5.4 even 2
850.2.v.b.207.2 yes 24 85.3 even 16