Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [850,2,Mod(107,850)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(850, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([4, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("850.107");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 850 = 2 \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 850.v (of order \(16\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.78728417181\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
107.1 | 0.382683 | − | 0.923880i | −2.42161 | − | 0.481688i | −0.707107 | − | 0.707107i | 0 | −1.37173 | + | 2.05294i | 1.11717 | − | 1.67197i | −0.923880 | + | 0.382683i | 2.86054 | + | 1.18487i | 0 | ||||
107.2 | 0.382683 | − | 0.923880i | −0.133168 | − | 0.0264888i | −0.707107 | − | 0.707107i | 0 | −0.0754336 | + | 0.112894i | −1.64260 | + | 2.45833i | −0.923880 | + | 0.382683i | −2.75461 | − | 1.14100i | 0 | ||||
107.3 | 0.382683 | − | 0.923880i | 2.17210 | + | 0.432057i | −0.707107 | − | 0.707107i | 0 | 1.23039 | − | 1.84141i | 2.37319 | − | 3.55173i | −0.923880 | + | 0.382683i | 1.75969 | + | 0.728887i | 0 | ||||
143.1 | 0.382683 | + | 0.923880i | −2.42161 | + | 0.481688i | −0.707107 | + | 0.707107i | 0 | −1.37173 | − | 2.05294i | 1.11717 | + | 1.67197i | −0.923880 | − | 0.382683i | 2.86054 | − | 1.18487i | 0 | ||||
143.2 | 0.382683 | + | 0.923880i | −0.133168 | + | 0.0264888i | −0.707107 | + | 0.707107i | 0 | −0.0754336 | − | 0.112894i | −1.64260 | − | 2.45833i | −0.923880 | − | 0.382683i | −2.75461 | + | 1.14100i | 0 | ||||
143.3 | 0.382683 | + | 0.923880i | 2.17210 | − | 0.432057i | −0.707107 | + | 0.707107i | 0 | 1.23039 | + | 1.84141i | 2.37319 | + | 3.55173i | −0.923880 | − | 0.382683i | 1.75969 | − | 0.728887i | 0 | ||||
193.1 | −0.923880 | + | 0.382683i | −2.30201 | − | 1.53815i | 0.707107 | − | 0.707107i | 0 | 2.71541 | + | 0.540128i | −0.686850 | − | 0.136623i | −0.382683 | + | 0.923880i | 1.78528 | + | 4.31005i | 0 | ||||
193.2 | −0.923880 | + | 0.382683i | 1.23998 | + | 0.828527i | 0.707107 | − | 0.707107i | 0 | −1.46265 | − | 0.290940i | −3.43494 | − | 0.683252i | −0.382683 | + | 0.923880i | −0.296960 | − | 0.716925i | 0 | ||||
193.3 | −0.923880 | + | 0.382683i | 1.98591 | + | 1.32694i | 0.707107 | − | 0.707107i | 0 | −2.34254 | − | 0.465960i | 4.88716 | + | 0.972116i | −0.382683 | + | 0.923880i | 1.03501 | + | 2.49874i | 0 | ||||
207.1 | −0.923880 | − | 0.382683i | −2.30201 | + | 1.53815i | 0.707107 | + | 0.707107i | 0 | 2.71541 | − | 0.540128i | −0.686850 | + | 0.136623i | −0.382683 | − | 0.923880i | 1.78528 | − | 4.31005i | 0 | ||||
207.2 | −0.923880 | − | 0.382683i | 1.23998 | − | 0.828527i | 0.707107 | + | 0.707107i | 0 | −1.46265 | + | 0.290940i | −3.43494 | + | 0.683252i | −0.382683 | − | 0.923880i | −0.296960 | + | 0.716925i | 0 | ||||
207.3 | −0.923880 | − | 0.382683i | 1.98591 | − | 1.32694i | 0.707107 | + | 0.707107i | 0 | −2.34254 | + | 0.465960i | 4.88716 | − | 0.972116i | −0.382683 | − | 0.923880i | 1.03501 | − | 2.49874i | 0 | ||||
507.1 | 0.923880 | + | 0.382683i | −1.86340 | − | 2.78878i | 0.707107 | + | 0.707107i | 0 | −0.654339 | − | 3.28959i | −0.764874 | − | 3.84528i | 0.382683 | + | 0.923880i | −3.15696 | + | 7.62158i | 0 | ||||
507.2 | 0.923880 | + | 0.382683i | 0.00766459 | + | 0.0114709i | 0.707107 | + | 0.707107i | 0 | 0.00269145 | + | 0.0135308i | −0.407145 | − | 2.04686i | 0.382683 | + | 0.923880i | 1.14798 | − | 2.77146i | 0 | ||||
507.3 | 0.923880 | + | 0.382683i | 0.931857 | + | 1.39462i | 0.707107 | + | 0.707107i | 0 | 0.327225 | + | 1.64507i | 0.406652 | + | 2.04438i | 0.382683 | + | 0.923880i | 0.0714357 | − | 0.172461i | 0 | ||||
607.1 | −0.382683 | + | 0.923880i | −0.234689 | + | 1.17986i | −0.707107 | − | 0.707107i | 0 | −1.00024 | − | 0.668337i | −0.808827 | − | 0.540441i | 0.923880 | − | 0.382683i | 1.43465 | + | 0.594250i | 0 | ||||
607.2 | −0.382683 | + | 0.923880i | 0.180053 | − | 0.905187i | −0.707107 | − | 0.707107i | 0 | 0.767380 | + | 0.512747i | −2.98491 | − | 1.99445i | 0.923880 | − | 0.382683i | 1.98469 | + | 0.822087i | 0 | ||||
607.3 | −0.382683 | + | 0.923880i | 0.437319 | − | 2.19855i | −0.707107 | − | 0.707107i | 0 | 1.86384 | + | 1.24538i | 1.94597 | + | 1.30026i | 0.923880 | − | 0.382683i | −1.87075 | − | 0.774889i | 0 | ||||
793.1 | 0.923880 | − | 0.382683i | −1.86340 | + | 2.78878i | 0.707107 | − | 0.707107i | 0 | −0.654339 | + | 3.28959i | −0.764874 | + | 3.84528i | 0.382683 | − | 0.923880i | −3.15696 | − | 7.62158i | 0 | ||||
793.2 | 0.923880 | − | 0.382683i | 0.00766459 | − | 0.0114709i | 0.707107 | − | 0.707107i | 0 | 0.00269145 | − | 0.0135308i | −0.407145 | + | 2.04686i | 0.382683 | − | 0.923880i | 1.14798 | + | 2.77146i | 0 | ||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
85.r | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 850.2.v.a | yes | 24 |
5.b | even | 2 | 1 | 850.2.v.b | yes | 24 | |
5.c | odd | 4 | 1 | 850.2.s.a | ✓ | 24 | |
5.c | odd | 4 | 1 | 850.2.s.b | yes | 24 | |
17.e | odd | 16 | 1 | 850.2.s.b | yes | 24 | |
85.o | even | 16 | 1 | 850.2.v.b | yes | 24 | |
85.p | odd | 16 | 1 | 850.2.s.a | ✓ | 24 | |
85.r | even | 16 | 1 | inner | 850.2.v.a | yes | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
850.2.s.a | ✓ | 24 | 5.c | odd | 4 | 1 | |
850.2.s.a | ✓ | 24 | 85.p | odd | 16 | 1 | |
850.2.s.b | yes | 24 | 5.c | odd | 4 | 1 | |
850.2.s.b | yes | 24 | 17.e | odd | 16 | 1 | |
850.2.v.a | yes | 24 | 1.a | even | 1 | 1 | trivial |
850.2.v.a | yes | 24 | 85.r | even | 16 | 1 | inner |
850.2.v.b | yes | 24 | 5.b | even | 2 | 1 | |
850.2.v.b | yes | 24 | 85.o | even | 16 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} - 4 T_{3}^{22} - 16 T_{3}^{21} + 58 T_{3}^{20} + 56 T_{3}^{19} - 356 T_{3}^{18} + 200 T_{3}^{17} + \cdots + 2 \) acting on \(S_{2}^{\mathrm{new}}(850, [\chi])\).