Properties

Label 850.2.v.a.143.1
Level $850$
Weight $2$
Character 850.143
Analytic conductor $6.787$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(3\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 143.1
Character \(\chi\) \(=\) 850.143
Dual form 850.2.v.a.107.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.382683 + 0.923880i) q^{2} +(-2.42161 + 0.481688i) q^{3} +(-0.707107 + 0.707107i) q^{4} +(-1.37173 - 2.05294i) q^{6} +(1.11717 + 1.67197i) q^{7} +(-0.923880 - 0.382683i) q^{8} +(2.86054 - 1.18487i) q^{9} +(-0.137062 + 0.0915821i) q^{11} +(1.37173 - 2.05294i) q^{12} -5.44277 q^{13} +(-1.11717 + 1.67197i) q^{14} -1.00000i q^{16} +(-3.49559 + 2.18651i) q^{17} +(2.18936 + 2.18936i) q^{18} +(2.58575 + 1.07105i) q^{19} +(-3.51072 - 3.51072i) q^{21} +(-0.137062 - 0.0915821i) q^{22} +(0.0404931 - 0.203573i) q^{23} +(2.42161 + 0.481688i) q^{24} +(-2.08286 - 5.02846i) q^{26} +(-0.197542 + 0.131993i) q^{27} +(-1.97222 - 0.392299i) q^{28} +(-1.22686 - 6.16787i) q^{29} +(-6.37814 - 4.26174i) q^{31} +(0.923880 - 0.382683i) q^{32} +(0.287798 - 0.287798i) q^{33} +(-3.35778 - 2.39276i) q^{34} +(-1.18487 + 2.86054i) q^{36} +(0.949883 + 4.77539i) q^{37} +2.79879i q^{38} +(13.1803 - 2.62172i) q^{39} +(0.215622 - 1.08401i) q^{41} +(1.89999 - 4.58698i) q^{42} +(3.03073 - 7.31684i) q^{43} +(0.0321594 - 0.161676i) q^{44} +(0.203573 - 0.0404931i) q^{46} -4.35668i q^{47} +(0.481688 + 2.42161i) q^{48} +(1.13139 - 2.73141i) q^{49} +(7.41174 - 6.97867i) q^{51} +(3.84862 - 3.84862i) q^{52} +(0.874556 - 0.362253i) q^{53} +(-0.197542 - 0.131993i) q^{54} +(-0.392299 - 1.97222i) q^{56} +(-6.77758 - 1.34815i) q^{57} +(5.22886 - 3.49382i) q^{58} +(-3.27940 - 7.91716i) q^{59} +(3.00717 + 0.598163i) q^{61} +(1.49652 - 7.52353i) q^{62} +(5.17678 + 3.45902i) q^{63} +(0.707107 + 0.707107i) q^{64} +(0.376026 + 0.155755i) q^{66} +(-10.0369 - 10.0369i) q^{67} +(0.925658 - 4.01785i) q^{68} +0.512479i q^{69} +(1.89344 - 2.83374i) q^{71} -3.09622 q^{72} +(-2.57706 + 3.85684i) q^{73} +(-4.04838 + 2.70504i) q^{74} +(-2.58575 + 1.07105i) q^{76} +(-0.306245 - 0.126851i) q^{77} +(7.46602 + 11.1737i) q^{78} +(9.16543 + 13.7170i) q^{79} +(-6.15329 + 6.15329i) q^{81} +(1.08401 - 0.215622i) q^{82} +(-6.62511 - 15.9944i) q^{83} +4.96491 q^{84} +7.91969 q^{86} +(5.94198 + 14.3452i) q^{87} +(0.161676 - 0.0321594i) q^{88} +(-11.5405 + 11.5405i) q^{89} +(-6.08051 - 9.10013i) q^{91} +(0.115315 + 0.172580i) q^{92} +(17.4982 + 7.24799i) q^{93} +(4.02504 - 1.66723i) q^{94} +(-2.05294 + 1.37173i) q^{96} +(-3.00953 + 4.50408i) q^{97} +2.95645 q^{98} +(-0.283559 + 0.424376i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9} - 32 q^{13} - 16 q^{18} + 48 q^{27} + 16 q^{29} + 16 q^{31} - 8 q^{33} - 16 q^{34} + 16 q^{37} + 32 q^{39} + 48 q^{41} - 48 q^{42} + 16 q^{43} - 16 q^{44} + 32 q^{46} + 8 q^{48} + 16 q^{49}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.382683 + 0.923880i 0.270598 + 0.653281i
\(3\) −2.42161 + 0.481688i −1.39812 + 0.278103i −0.835898 0.548885i \(-0.815053\pi\)
−0.562220 + 0.826988i \(0.690053\pi\)
\(4\) −0.707107 + 0.707107i −0.353553 + 0.353553i
\(5\) 0 0
\(6\) −1.37173 2.05294i −0.560007 0.838110i
\(7\) 1.11717 + 1.67197i 0.422252 + 0.631944i 0.980218 0.197919i \(-0.0634184\pi\)
−0.557967 + 0.829863i \(0.688418\pi\)
\(8\) −0.923880 0.382683i −0.326641 0.135299i
\(9\) 2.86054 1.18487i 0.953513 0.394958i
\(10\) 0 0
\(11\) −0.137062 + 0.0915821i −0.0413259 + 0.0276131i −0.576062 0.817406i \(-0.695411\pi\)
0.534736 + 0.845019i \(0.320411\pi\)
\(12\) 1.37173 2.05294i 0.395985 0.592634i
\(13\) −5.44277 −1.50955 −0.754776 0.655983i \(-0.772254\pi\)
−0.754776 + 0.655983i \(0.772254\pi\)
\(14\) −1.11717 + 1.67197i −0.298577 + 0.446852i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) −3.49559 + 2.18651i −0.847805 + 0.530307i
\(18\) 2.18936 + 2.18936i 0.516037 + 0.516037i
\(19\) 2.58575 + 1.07105i 0.593211 + 0.245716i 0.659031 0.752116i \(-0.270966\pi\)
−0.0658205 + 0.997831i \(0.520966\pi\)
\(20\) 0 0
\(21\) −3.51072 3.51072i −0.766103 0.766103i
\(22\) −0.137062 0.0915821i −0.0292218 0.0195254i
\(23\) 0.0404931 0.203573i 0.00844340 0.0424478i −0.976334 0.216269i \(-0.930611\pi\)
0.984777 + 0.173821i \(0.0556113\pi\)
\(24\) 2.42161 + 0.481688i 0.494309 + 0.0983242i
\(25\) 0 0
\(26\) −2.08286 5.02846i −0.408482 0.986162i
\(27\) −0.197542 + 0.131993i −0.0380170 + 0.0254022i
\(28\) −1.97222 0.392299i −0.372714 0.0741375i
\(29\) −1.22686 6.16787i −0.227823 1.14534i −0.910144 0.414292i \(-0.864029\pi\)
0.682321 0.731053i \(-0.260971\pi\)
\(30\) 0 0
\(31\) −6.37814 4.26174i −1.14555 0.765430i −0.170049 0.985436i \(-0.554393\pi\)
−0.975499 + 0.220005i \(0.929393\pi\)
\(32\) 0.923880 0.382683i 0.163320 0.0676495i
\(33\) 0.287798 0.287798i 0.0500991 0.0500991i
\(34\) −3.35778 2.39276i −0.575855 0.410355i
\(35\) 0 0
\(36\) −1.18487 + 2.86054i −0.197479 + 0.476756i
\(37\) 0.949883 + 4.77539i 0.156160 + 0.785069i 0.976888 + 0.213750i \(0.0685679\pi\)
−0.820728 + 0.571318i \(0.806432\pi\)
\(38\) 2.79879i 0.454024i
\(39\) 13.1803 2.62172i 2.11053 0.419811i
\(40\) 0 0
\(41\) 0.215622 1.08401i 0.0336745 0.169293i −0.960288 0.279009i \(-0.909994\pi\)
0.993963 + 0.109716i \(0.0349941\pi\)
\(42\) 1.89999 4.58698i 0.293175 0.707787i
\(43\) 3.03073 7.31684i 0.462183 1.11581i −0.505317 0.862934i \(-0.668624\pi\)
0.967499 0.252874i \(-0.0813757\pi\)
\(44\) 0.0321594 0.161676i 0.00484821 0.0243736i
\(45\) 0 0
\(46\) 0.203573 0.0404931i 0.0300151 0.00597038i
\(47\) 4.35668i 0.635487i −0.948177 0.317743i \(-0.897075\pi\)
0.948177 0.317743i \(-0.102925\pi\)
\(48\) 0.481688 + 2.42161i 0.0695257 + 0.349529i
\(49\) 1.13139 2.73141i 0.161626 0.390201i
\(50\) 0 0
\(51\) 7.41174 6.97867i 1.03785 0.977209i
\(52\) 3.84862 3.84862i 0.533707 0.533707i
\(53\) 0.874556 0.362253i 0.120130 0.0497593i −0.321809 0.946805i \(-0.604291\pi\)
0.441939 + 0.897045i \(0.354291\pi\)
\(54\) −0.197542 0.131993i −0.0268821 0.0179620i
\(55\) 0 0
\(56\) −0.392299 1.97222i −0.0524231 0.263549i
\(57\) −6.77758 1.34815i −0.897713 0.178566i
\(58\) 5.22886 3.49382i 0.686584 0.458760i
\(59\) −3.27940 7.91716i −0.426941 1.03073i −0.980252 0.197752i \(-0.936636\pi\)
0.553311 0.832975i \(-0.313364\pi\)
\(60\) 0 0
\(61\) 3.00717 + 0.598163i 0.385029 + 0.0765870i 0.383810 0.923412i \(-0.374612\pi\)
0.00121919 + 0.999999i \(0.499612\pi\)
\(62\) 1.49652 7.52353i 0.190059 0.955489i
\(63\) 5.17678 + 3.45902i 0.652213 + 0.435795i
\(64\) 0.707107 + 0.707107i 0.0883883 + 0.0883883i
\(65\) 0 0
\(66\) 0.376026 + 0.155755i 0.0462856 + 0.0191721i
\(67\) −10.0369 10.0369i −1.22621 1.22621i −0.965388 0.260818i \(-0.916008\pi\)
−0.260818 0.965388i \(-0.583992\pi\)
\(68\) 0.925658 4.01785i 0.112252 0.487236i
\(69\) 0.512479i 0.0616952i
\(70\) 0 0
\(71\) 1.89344 2.83374i 0.224710 0.336303i −0.701934 0.712242i \(-0.747680\pi\)
0.926644 + 0.375939i \(0.122680\pi\)
\(72\) −3.09622 −0.364893
\(73\) −2.57706 + 3.85684i −0.301622 + 0.451408i −0.951060 0.309005i \(-0.900004\pi\)
0.649439 + 0.760414i \(0.275004\pi\)
\(74\) −4.04838 + 2.70504i −0.470614 + 0.314454i
\(75\) 0 0
\(76\) −2.58575 + 1.07105i −0.296605 + 0.122858i
\(77\) −0.306245 0.126851i −0.0348998 0.0144560i
\(78\) 7.46602 + 11.1737i 0.845360 + 1.26517i
\(79\) 9.16543 + 13.7170i 1.03119 + 1.54329i 0.825285 + 0.564716i \(0.191014\pi\)
0.205906 + 0.978572i \(0.433986\pi\)
\(80\) 0 0
\(81\) −6.15329 + 6.15329i −0.683699 + 0.683699i
\(82\) 1.08401 0.215622i 0.119708 0.0238115i
\(83\) −6.62511 15.9944i −0.727201 1.75562i −0.651706 0.758472i \(-0.725946\pi\)
−0.0754950 0.997146i \(-0.524054\pi\)
\(84\) 4.96491 0.541717
\(85\) 0 0
\(86\) 7.91969 0.854002
\(87\) 5.94198 + 14.3452i 0.637047 + 1.53797i
\(88\) 0.161676 0.0321594i 0.0172347 0.00342820i
\(89\) −11.5405 + 11.5405i −1.22329 + 1.22329i −0.256835 + 0.966455i \(0.582680\pi\)
−0.966455 + 0.256835i \(0.917320\pi\)
\(90\) 0 0
\(91\) −6.08051 9.10013i −0.637411 0.953952i
\(92\) 0.115315 + 0.172580i 0.0120224 + 0.0179928i
\(93\) 17.4982 + 7.24799i 1.81448 + 0.751582i
\(94\) 4.02504 1.66723i 0.415152 0.171961i
\(95\) 0 0
\(96\) −2.05294 + 1.37173i −0.209528 + 0.140002i
\(97\) −3.00953 + 4.50408i −0.305571 + 0.457320i −0.952196 0.305489i \(-0.901180\pi\)
0.646624 + 0.762809i \(0.276180\pi\)
\(98\) 2.95645 0.298647
\(99\) −0.283559 + 0.424376i −0.0284987 + 0.0426514i
\(100\) 0 0
\(101\) 10.9761i 1.09216i 0.837733 + 0.546081i \(0.183881\pi\)
−0.837733 + 0.546081i \(0.816119\pi\)
\(102\) 9.28380 + 4.17694i 0.919233 + 0.413578i
\(103\) −4.34046 4.34046i −0.427678 0.427678i 0.460159 0.887837i \(-0.347793\pi\)
−0.887837 + 0.460159i \(0.847793\pi\)
\(104\) 5.02846 + 2.08286i 0.493081 + 0.204241i
\(105\) 0 0
\(106\) 0.669356 + 0.669356i 0.0650136 + 0.0650136i
\(107\) 12.1460 + 8.11573i 1.17420 + 0.784577i 0.980507 0.196484i \(-0.0629525\pi\)
0.193696 + 0.981062i \(0.437953\pi\)
\(108\) 0.0463499 0.233017i 0.00446002 0.0224221i
\(109\) −16.5795 3.29787i −1.58803 0.315879i −0.679492 0.733683i \(-0.737800\pi\)
−0.908537 + 0.417804i \(0.862800\pi\)
\(110\) 0 0
\(111\) −4.60050 11.1066i −0.436660 1.05419i
\(112\) 1.67197 1.11717i 0.157986 0.105563i
\(113\) −6.34981 1.26306i −0.597340 0.118818i −0.112845 0.993613i \(-0.535997\pi\)
−0.484495 + 0.874794i \(0.660997\pi\)
\(114\) −1.34815 6.77758i −0.126265 0.634779i
\(115\) 0 0
\(116\) 5.22886 + 3.49382i 0.485488 + 0.324393i
\(117\) −15.5692 + 6.44899i −1.43938 + 0.596209i
\(118\) 6.05953 6.05953i 0.557825 0.557825i
\(119\) −7.56096 3.40180i −0.693112 0.311843i
\(120\) 0 0
\(121\) −4.19912 + 10.1376i −0.381738 + 0.921597i
\(122\) 0.598163 + 3.00717i 0.0541552 + 0.272256i
\(123\) 2.72890i 0.246057i
\(124\) 7.52353 1.49652i 0.675633 0.134392i
\(125\) 0 0
\(126\) −1.21465 + 6.10643i −0.108209 + 0.544004i
\(127\) −3.26570 + 7.88410i −0.289784 + 0.699601i −0.999990 0.00439290i \(-0.998602\pi\)
0.710206 + 0.703994i \(0.248602\pi\)
\(128\) −0.382683 + 0.923880i −0.0338248 + 0.0816602i
\(129\) −3.81482 + 19.1784i −0.335876 + 1.68856i
\(130\) 0 0
\(131\) 1.48936 0.296253i 0.130126 0.0258837i −0.129597 0.991567i \(-0.541368\pi\)
0.259724 + 0.965683i \(0.416368\pi\)
\(132\) 0.407007i 0.0354254i
\(133\) 1.09796 + 5.51983i 0.0952054 + 0.478630i
\(134\) 5.43195 13.1139i 0.469249 1.13287i
\(135\) 0 0
\(136\) 4.06625 0.682370i 0.348678 0.0585128i
\(137\) 5.30209 5.30209i 0.452988 0.452988i −0.443357 0.896345i \(-0.646213\pi\)
0.896345 + 0.443357i \(0.146213\pi\)
\(138\) −0.473469 + 0.196117i −0.0403043 + 0.0166946i
\(139\) 1.25930 + 0.841435i 0.106812 + 0.0713696i 0.607829 0.794068i \(-0.292041\pi\)
−0.501017 + 0.865437i \(0.667041\pi\)
\(140\) 0 0
\(141\) 2.09856 + 10.5502i 0.176731 + 0.888485i
\(142\) 3.34262 + 0.664889i 0.280506 + 0.0557962i
\(143\) 0.745998 0.498460i 0.0623835 0.0416833i
\(144\) −1.18487 2.86054i −0.0987395 0.238378i
\(145\) 0 0
\(146\) −4.54945 0.904941i −0.376515 0.0748935i
\(147\) −1.42409 + 7.15938i −0.117457 + 0.590495i
\(148\) −4.04838 2.70504i −0.332775 0.222353i
\(149\) −14.8597 14.8597i −1.21736 1.21736i −0.968554 0.248802i \(-0.919963\pi\)
−0.248802 0.968554i \(-0.580037\pi\)
\(150\) 0 0
\(151\) 12.6528 + 5.24097i 1.02967 + 0.426504i 0.832594 0.553883i \(-0.186855\pi\)
0.197078 + 0.980388i \(0.436855\pi\)
\(152\) −1.97904 1.97904i −0.160522 0.160522i
\(153\) −7.40853 + 10.3964i −0.598944 + 0.840502i
\(154\) 0.331477i 0.0267112i
\(155\) 0 0
\(156\) −7.46602 + 11.1737i −0.597760 + 0.894611i
\(157\) −8.14465 −0.650014 −0.325007 0.945712i \(-0.605367\pi\)
−0.325007 + 0.945712i \(0.605367\pi\)
\(158\) −9.16543 + 13.7170i −0.729163 + 1.09127i
\(159\) −1.94334 + 1.29850i −0.154117 + 0.102978i
\(160\) 0 0
\(161\) 0.385604 0.159723i 0.0303899 0.0125879i
\(162\) −8.03966 3.33014i −0.631656 0.261640i
\(163\) −7.07524 10.5888i −0.554176 0.829382i 0.443587 0.896231i \(-0.353706\pi\)
−0.997763 + 0.0668486i \(0.978706\pi\)
\(164\) 0.614040 + 0.918975i 0.0479484 + 0.0717599i
\(165\) 0 0
\(166\) 12.2416 12.2416i 0.950134 0.950134i
\(167\) 8.79378 1.74919i 0.680483 0.135357i 0.157266 0.987556i \(-0.449732\pi\)
0.523217 + 0.852200i \(0.324732\pi\)
\(168\) 1.89999 + 4.58698i 0.146587 + 0.353893i
\(169\) 16.6237 1.27875
\(170\) 0 0
\(171\) 8.66568 0.662681
\(172\) 3.03073 + 7.31684i 0.231091 + 0.557904i
\(173\) −14.6510 + 2.91426i −1.11389 + 0.221567i −0.717531 0.696527i \(-0.754728\pi\)
−0.396363 + 0.918094i \(0.629728\pi\)
\(174\) −10.9793 + 10.9793i −0.832342 + 0.832342i
\(175\) 0 0
\(176\) 0.0915821 + 0.137062i 0.00690326 + 0.0103315i
\(177\) 11.7550 + 17.5926i 0.883562 + 1.32234i
\(178\) −15.0784 6.24567i −1.13017 0.468133i
\(179\) −16.8710 + 6.98820i −1.26100 + 0.522322i −0.910216 0.414135i \(-0.864084\pi\)
−0.350782 + 0.936457i \(0.614084\pi\)
\(180\) 0 0
\(181\) −12.9464 + 8.65048i −0.962296 + 0.642985i −0.934249 0.356621i \(-0.883929\pi\)
−0.0280465 + 0.999607i \(0.508929\pi\)
\(182\) 6.08051 9.10013i 0.450717 0.674546i
\(183\) −7.57033 −0.559615
\(184\) −0.115315 + 0.172580i −0.00850111 + 0.0127228i
\(185\) 0 0
\(186\) 18.9399i 1.38874i
\(187\) 0.278868 0.619822i 0.0203929 0.0453259i
\(188\) 3.08064 + 3.08064i 0.224678 + 0.224678i
\(189\) −0.441377 0.182824i −0.0321055 0.0132985i
\(190\) 0 0
\(191\) −1.58915 1.58915i −0.114987 0.114987i 0.647272 0.762259i \(-0.275910\pi\)
−0.762259 + 0.647272i \(0.775910\pi\)
\(192\) −2.05294 1.37173i −0.148158 0.0989963i
\(193\) 2.05947 10.3537i 0.148244 0.745274i −0.833116 0.553098i \(-0.813446\pi\)
0.981360 0.192176i \(-0.0615544\pi\)
\(194\) −5.31292 1.05681i −0.381446 0.0758743i
\(195\) 0 0
\(196\) 1.13139 + 2.73141i 0.0808132 + 0.195100i
\(197\) 13.1586 8.79230i 0.937512 0.626425i 0.00989197 0.999951i \(-0.496851\pi\)
0.927620 + 0.373526i \(0.121851\pi\)
\(198\) −0.500585 0.0995726i −0.0355750 0.00707632i
\(199\) 3.55447 + 17.8695i 0.251970 + 1.26674i 0.874840 + 0.484412i \(0.160966\pi\)
−0.622870 + 0.782325i \(0.714034\pi\)
\(200\) 0 0
\(201\) 29.1402 + 19.4709i 2.05539 + 1.37337i
\(202\) −10.1406 + 4.20037i −0.713489 + 0.295537i
\(203\) 8.94185 8.94185i 0.627595 0.627595i
\(204\) −0.306229 + 10.1756i −0.0214403 + 0.712432i
\(205\) 0 0
\(206\) 2.34904 5.67108i 0.163665 0.395123i
\(207\) −0.125376 0.630306i −0.00871421 0.0438093i
\(208\) 5.44277i 0.377388i
\(209\) −0.452498 + 0.0900074i −0.0312999 + 0.00622594i
\(210\) 0 0
\(211\) −3.81423 + 19.1754i −0.262583 + 1.32009i 0.594160 + 0.804347i \(0.297485\pi\)
−0.856742 + 0.515745i \(0.827515\pi\)
\(212\) −0.362253 + 0.874556i −0.0248796 + 0.0600648i
\(213\) −3.22020 + 7.77426i −0.220645 + 0.532683i
\(214\) −2.84987 + 14.3272i −0.194813 + 0.979390i
\(215\) 0 0
\(216\) 0.233017 0.0463499i 0.0158548 0.00315371i
\(217\) 15.4251i 1.04713i
\(218\) −3.29787 16.5795i −0.223360 1.12291i
\(219\) 4.38283 10.5811i 0.296164 0.715004i
\(220\) 0 0
\(221\) 19.0257 11.9007i 1.27981 0.800527i
\(222\) 8.50061 8.50061i 0.570524 0.570524i
\(223\) −17.6802 + 7.32337i −1.18395 + 0.490409i −0.885781 0.464103i \(-0.846377\pi\)
−0.298171 + 0.954512i \(0.596377\pi\)
\(224\) 1.67197 + 1.11717i 0.111713 + 0.0746442i
\(225\) 0 0
\(226\) −1.26306 6.34981i −0.0840173 0.422383i
\(227\) 2.03468 + 0.404722i 0.135046 + 0.0268624i 0.262151 0.965027i \(-0.415568\pi\)
−0.127104 + 0.991889i \(0.540568\pi\)
\(228\) 5.74576 3.83919i 0.380522 0.254257i
\(229\) −6.23740 15.0584i −0.412179 0.995088i −0.984552 0.175094i \(-0.943977\pi\)
0.572373 0.819993i \(-0.306023\pi\)
\(230\) 0 0
\(231\) 0.802708 + 0.159669i 0.0528143 + 0.0105054i
\(232\) −1.22686 + 6.16787i −0.0805476 + 0.404940i
\(233\) 21.0482 + 14.0640i 1.37891 + 0.921361i 0.999992 0.00406748i \(-0.00129472\pi\)
0.378922 + 0.925428i \(0.376295\pi\)
\(234\) −11.9162 11.9162i −0.778985 0.778985i
\(235\) 0 0
\(236\) 7.91716 + 3.27940i 0.515363 + 0.213471i
\(237\) −28.8025 28.8025i −1.87092 1.87092i
\(238\) 0.249400 8.28723i 0.0161662 0.537181i
\(239\) 23.8158i 1.54051i −0.637734 0.770257i \(-0.720128\pi\)
0.637734 0.770257i \(-0.279872\pi\)
\(240\) 0 0
\(241\) −7.85749 + 11.7596i −0.506146 + 0.757500i −0.993269 0.115833i \(-0.963046\pi\)
0.487123 + 0.873333i \(0.338046\pi\)
\(242\) −10.9728 −0.705360
\(243\) 12.3329 18.4575i 0.791155 1.18405i
\(244\) −2.54936 + 1.70343i −0.163206 + 0.109051i
\(245\) 0 0
\(246\) −2.52118 + 1.04431i −0.160744 + 0.0665825i
\(247\) −14.0736 5.82948i −0.895482 0.370921i
\(248\) 4.26174 + 6.37814i 0.270621 + 0.405012i
\(249\) 23.7478 + 35.5411i 1.50495 + 2.25232i
\(250\) 0 0
\(251\) 3.15891 3.15891i 0.199389 0.199389i −0.600349 0.799738i \(-0.704972\pi\)
0.799738 + 0.600349i \(0.204972\pi\)
\(252\) −6.10643 + 1.21465i −0.384669 + 0.0765154i
\(253\) 0.0130935 + 0.0316106i 0.000823183 + 0.00198734i
\(254\) −8.53369 −0.535451
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) −9.27582 22.3938i −0.578610 1.39689i −0.894061 0.447945i \(-0.852156\pi\)
0.315451 0.948942i \(-0.397844\pi\)
\(258\) −19.1784 + 3.81482i −1.19400 + 0.237501i
\(259\) −6.92310 + 6.92310i −0.430181 + 0.430181i
\(260\) 0 0
\(261\) −10.8176 16.1897i −0.669595 1.00212i
\(262\) 0.843657 + 1.26262i 0.0521213 + 0.0780050i
\(263\) 10.7512 + 4.45327i 0.662944 + 0.274601i 0.688677 0.725068i \(-0.258192\pi\)
−0.0257325 + 0.999669i \(0.508192\pi\)
\(264\) −0.376026 + 0.155755i −0.0231428 + 0.00958606i
\(265\) 0 0
\(266\) −4.67949 + 3.12673i −0.286918 + 0.191712i
\(267\) 22.3877 33.5055i 1.37010 2.05050i
\(268\) 14.1944 0.867058
\(269\) 10.0744 15.0774i 0.614248 0.919287i −0.385747 0.922605i \(-0.626056\pi\)
0.999994 + 0.00331782i \(0.00105610\pi\)
\(270\) 0 0
\(271\) 24.0357i 1.46007i 0.683412 + 0.730033i \(0.260495\pi\)
−0.683412 + 0.730033i \(0.739505\pi\)
\(272\) 2.18651 + 3.49559i 0.132577 + 0.211951i
\(273\) 19.1081 + 19.1081i 1.15647 + 1.15647i
\(274\) 6.92751 + 2.86947i 0.418506 + 0.173351i
\(275\) 0 0
\(276\) −0.362377 0.362377i −0.0218125 0.0218125i
\(277\) 13.8723 + 9.26918i 0.833507 + 0.556931i 0.897498 0.441019i \(-0.145383\pi\)
−0.0639911 + 0.997950i \(0.520383\pi\)
\(278\) −0.295473 + 1.48544i −0.0177213 + 0.0890909i
\(279\) −23.2945 4.63357i −1.39461 0.277405i
\(280\) 0 0
\(281\) −4.65282 11.2329i −0.277564 0.670098i 0.722203 0.691681i \(-0.243129\pi\)
−0.999767 + 0.0215827i \(0.993129\pi\)
\(282\) −8.94401 + 5.97620i −0.532608 + 0.355877i
\(283\) 0.583566 + 0.116078i 0.0346894 + 0.00690015i 0.212405 0.977182i \(-0.431871\pi\)
−0.177715 + 0.984082i \(0.556871\pi\)
\(284\) 0.664889 + 3.34262i 0.0394539 + 0.198348i
\(285\) 0 0
\(286\) 0.745998 + 0.498460i 0.0441118 + 0.0294746i
\(287\) 2.05331 0.850508i 0.121203 0.0502039i
\(288\) 2.18936 2.18936i 0.129009 0.129009i
\(289\) 7.43832 15.2863i 0.437548 0.899195i
\(290\) 0 0
\(291\) 5.11835 12.3568i 0.300043 0.724368i
\(292\) −0.904941 4.54945i −0.0529577 0.266236i
\(293\) 3.85089i 0.224972i 0.993653 + 0.112486i \(0.0358813\pi\)
−0.993653 + 0.112486i \(0.964119\pi\)
\(294\) −7.15938 + 1.42409i −0.417543 + 0.0830545i
\(295\) 0 0
\(296\) 0.949883 4.77539i 0.0552109 0.277564i
\(297\) 0.0149874 0.0361827i 0.000869654 0.00209953i
\(298\) 8.04203 19.4152i 0.465862 1.12469i
\(299\) −0.220395 + 1.10800i −0.0127457 + 0.0640772i
\(300\) 0 0
\(301\) 15.6194 3.10689i 0.900285 0.179078i
\(302\) 13.6953i 0.788077i
\(303\) −5.28705 26.5798i −0.303733 1.52697i
\(304\) 1.07105 2.58575i 0.0614290 0.148303i
\(305\) 0 0
\(306\) −12.4402 2.86604i −0.711158 0.163841i
\(307\) 3.91174 3.91174i 0.223255 0.223255i −0.586613 0.809868i \(-0.699539\pi\)
0.809868 + 0.586613i \(0.199539\pi\)
\(308\) 0.306245 0.126851i 0.0174499 0.00722799i
\(309\) 12.6017 + 8.42015i 0.716883 + 0.479006i
\(310\) 0 0
\(311\) 2.90984 + 14.6288i 0.165002 + 0.829521i 0.971272 + 0.237973i \(0.0764831\pi\)
−0.806270 + 0.591548i \(0.798517\pi\)
\(312\) −13.1803 2.62172i −0.746186 0.148426i
\(313\) −27.1152 + 18.1178i −1.53264 + 1.02408i −0.550745 + 0.834673i \(0.685657\pi\)
−0.981899 + 0.189407i \(0.939343\pi\)
\(314\) −3.11682 7.52468i −0.175893 0.424642i
\(315\) 0 0
\(316\) −16.1804 3.21847i −0.910216 0.181053i
\(317\) −3.71575 + 18.6804i −0.208698 + 1.04919i 0.724348 + 0.689435i \(0.242141\pi\)
−0.933045 + 0.359759i \(0.882859\pi\)
\(318\) −1.94334 1.29850i −0.108977 0.0728162i
\(319\) 0.733023 + 0.733023i 0.0410414 + 0.0410414i
\(320\) 0 0
\(321\) −33.3223 13.8025i −1.85987 0.770382i
\(322\) 0.295129 + 0.295129i 0.0164469 + 0.0164469i
\(323\) −11.3806 + 1.90981i −0.633232 + 0.106265i
\(324\) 8.70207i 0.483448i
\(325\) 0 0
\(326\) 7.07524 10.5888i 0.391861 0.586462i
\(327\) 41.7377 2.30810
\(328\) −0.614040 + 0.918975i −0.0339047 + 0.0507419i
\(329\) 7.28422 4.86716i 0.401592 0.268335i
\(330\) 0 0
\(331\) −12.7521 + 5.28209i −0.700919 + 0.290330i −0.704541 0.709663i \(-0.748847\pi\)
0.00362198 + 0.999993i \(0.498847\pi\)
\(332\) 15.9944 + 6.62511i 0.877809 + 0.363600i
\(333\) 8.37541 + 12.5347i 0.458969 + 0.686896i
\(334\) 4.98128 + 7.45501i 0.272563 + 0.407920i
\(335\) 0 0
\(336\) −3.51072 + 3.51072i −0.191526 + 0.191526i
\(337\) −33.4470 + 6.65302i −1.82197 + 0.362413i −0.983267 0.182170i \(-0.941688\pi\)
−0.838707 + 0.544583i \(0.816688\pi\)
\(338\) 6.36162 + 15.3583i 0.346026 + 0.835382i
\(339\) 15.9852 0.868196
\(340\) 0 0
\(341\) 1.26450 0.0684766
\(342\) 3.31621 + 8.00605i 0.179320 + 0.432918i
\(343\) 19.6363 3.90590i 1.06026 0.210899i
\(344\) −5.60007 + 5.60007i −0.301935 + 0.301935i
\(345\) 0 0
\(346\) −8.29911 12.4205i −0.446163 0.667730i
\(347\) −4.65341 6.96432i −0.249808 0.373864i 0.685280 0.728280i \(-0.259680\pi\)
−0.935088 + 0.354416i \(0.884680\pi\)
\(348\) −14.3452 5.94198i −0.768984 0.318524i
\(349\) −15.2490 + 6.31633i −0.816258 + 0.338105i −0.751448 0.659792i \(-0.770644\pi\)
−0.0648102 + 0.997898i \(0.520644\pi\)
\(350\) 0 0
\(351\) 1.07518 0.718410i 0.0573886 0.0383459i
\(352\) −0.0915821 + 0.137062i −0.00488134 + 0.00730545i
\(353\) 21.5989 1.14960 0.574798 0.818295i \(-0.305081\pi\)
0.574798 + 0.818295i \(0.305081\pi\)
\(354\) −11.7550 + 17.5926i −0.624773 + 0.935038i
\(355\) 0 0
\(356\) 16.3207i 0.864997i
\(357\) 19.9483 + 4.59581i 1.05578 + 0.243236i
\(358\) −12.9125 12.9125i −0.682447 0.682447i
\(359\) −3.06707 1.27042i −0.161874 0.0670504i 0.300275 0.953853i \(-0.402922\pi\)
−0.462149 + 0.886802i \(0.652922\pi\)
\(360\) 0 0
\(361\) −7.89610 7.89610i −0.415584 0.415584i
\(362\) −12.9464 8.65048i −0.680446 0.454659i
\(363\) 5.28548 26.5719i 0.277416 1.39466i
\(364\) 10.7343 + 2.13519i 0.562632 + 0.111914i
\(365\) 0 0
\(366\) −2.89704 6.99407i −0.151431 0.365586i
\(367\) 2.90883 1.94362i 0.151840 0.101456i −0.477330 0.878724i \(-0.658395\pi\)
0.629169 + 0.777268i \(0.283395\pi\)
\(368\) −0.203573 0.0404931i −0.0106120 0.00211085i
\(369\) −0.667614 3.35632i −0.0347546 0.174723i
\(370\) 0 0
\(371\) 1.58271 + 1.05753i 0.0821700 + 0.0549042i
\(372\) −17.4982 + 7.24799i −0.907239 + 0.375791i
\(373\) −6.73182 + 6.73182i −0.348561 + 0.348561i −0.859573 0.511013i \(-0.829271\pi\)
0.511013 + 0.859573i \(0.329271\pi\)
\(374\) 0.679360 + 0.0204450i 0.0351288 + 0.00105719i
\(375\) 0 0
\(376\) −1.66723 + 4.02504i −0.0859807 + 0.207576i
\(377\) 6.67754 + 33.5703i 0.343911 + 1.72896i
\(378\) 0.477743i 0.0245725i
\(379\) 37.4780 7.45485i 1.92512 0.382930i 0.925123 0.379667i \(-0.123962\pi\)
0.999995 0.00326228i \(-0.00103842\pi\)
\(380\) 0 0
\(381\) 4.11058 20.6653i 0.210591 1.05871i
\(382\) 0.860042 2.07633i 0.0440036 0.106234i
\(383\) −5.64204 + 13.6211i −0.288295 + 0.696005i −0.999979 0.00649445i \(-0.997933\pi\)
0.711684 + 0.702500i \(0.247933\pi\)
\(384\) 0.481688 2.42161i 0.0245811 0.123577i
\(385\) 0 0
\(386\) 10.3537 2.05947i 0.526988 0.104824i
\(387\) 24.5211i 1.24648i
\(388\) −1.05681 5.31292i −0.0536512 0.269723i
\(389\) 4.95501 11.9624i 0.251229 0.606520i −0.747075 0.664740i \(-0.768542\pi\)
0.998304 + 0.0582197i \(0.0185424\pi\)
\(390\) 0 0
\(391\) 0.303567 + 0.800145i 0.0153520 + 0.0404651i
\(392\) −2.09053 + 2.09053i −0.105588 + 0.105588i
\(393\) −3.46396 + 1.43482i −0.174734 + 0.0723770i
\(394\) 13.1586 + 8.79230i 0.662921 + 0.442950i
\(395\) 0 0
\(396\) −0.0995726 0.500585i −0.00500371 0.0251554i
\(397\) 5.88720 + 1.17104i 0.295470 + 0.0587727i 0.340600 0.940208i \(-0.389370\pi\)
−0.0451292 + 0.998981i \(0.514370\pi\)
\(398\) −15.1490 + 10.1223i −0.759353 + 0.507384i
\(399\) −5.31768 12.8380i −0.266217 0.642704i
\(400\) 0 0
\(401\) 11.1376 + 2.21541i 0.556185 + 0.110632i 0.465176 0.885218i \(-0.345991\pi\)
0.0910087 + 0.995850i \(0.470991\pi\)
\(402\) −6.83726 + 34.3732i −0.341011 + 1.71438i
\(403\) 34.7147 + 23.1956i 1.72926 + 1.15546i
\(404\) −7.76126 7.76126i −0.386137 0.386137i
\(405\) 0 0
\(406\) 11.6831 + 4.83929i 0.579822 + 0.240170i
\(407\) −0.567533 0.567533i −0.0281316 0.0281316i
\(408\) −9.51818 + 3.61110i −0.471220 + 0.178776i
\(409\) 13.9224i 0.688419i 0.938893 + 0.344210i \(0.111853\pi\)
−0.938893 + 0.344210i \(0.888147\pi\)
\(410\) 0 0
\(411\) −10.2856 + 15.3936i −0.507353 + 0.759308i
\(412\) 6.13834 0.302414
\(413\) 9.57358 14.3279i 0.471085 0.705029i
\(414\) 0.534348 0.357040i 0.0262618 0.0175475i
\(415\) 0 0
\(416\) −5.02846 + 2.08286i −0.246541 + 0.102120i
\(417\) −3.45484 1.43104i −0.169184 0.0700783i
\(418\) −0.256319 0.383609i −0.0125370 0.0187629i
\(419\) 5.61700 + 8.40644i 0.274409 + 0.410682i 0.942919 0.333021i \(-0.108068\pi\)
−0.668511 + 0.743702i \(0.733068\pi\)
\(420\) 0 0
\(421\) 10.9505 10.9505i 0.533695 0.533695i −0.387975 0.921670i \(-0.626825\pi\)
0.921670 + 0.387975i \(0.126825\pi\)
\(422\) −19.1754 + 3.81423i −0.933446 + 0.185674i
\(423\) −5.16211 12.4624i −0.250990 0.605945i
\(424\) −0.946613 −0.0459716
\(425\) 0 0
\(426\) −8.41480 −0.407698
\(427\) 2.35942 + 5.69614i 0.114180 + 0.275656i
\(428\) −14.3272 + 2.84987i −0.692533 + 0.137753i
\(429\) −1.56642 + 1.56642i −0.0756273 + 0.0756273i
\(430\) 0 0
\(431\) −12.8995 19.3054i −0.621345 0.929908i −0.999990 0.00436649i \(-0.998610\pi\)
0.378646 0.925542i \(-0.376390\pi\)
\(432\) 0.131993 + 0.197542i 0.00635054 + 0.00950425i
\(433\) 5.76227 + 2.38681i 0.276917 + 0.114703i 0.516820 0.856094i \(-0.327116\pi\)
−0.239903 + 0.970797i \(0.577116\pi\)
\(434\) 14.2510 5.90294i 0.684068 0.283350i
\(435\) 0 0
\(436\) 14.0554 9.39154i 0.673133 0.449773i
\(437\) 0.322742 0.483017i 0.0154388 0.0231058i
\(438\) 11.4529 0.547240
\(439\) −3.37527 + 5.05144i −0.161093 + 0.241092i −0.903231 0.429154i \(-0.858812\pi\)
0.742138 + 0.670247i \(0.233812\pi\)
\(440\) 0 0
\(441\) 9.15384i 0.435897i
\(442\) 18.2756 + 13.0232i 0.869282 + 0.619453i
\(443\) 7.64166 + 7.64166i 0.363066 + 0.363066i 0.864941 0.501874i \(-0.167356\pi\)
−0.501874 + 0.864941i \(0.667356\pi\)
\(444\) 11.1066 + 4.60050i 0.527095 + 0.218330i
\(445\) 0 0
\(446\) −13.5318 13.5318i −0.640750 0.640750i
\(447\) 43.1422 + 28.8267i 2.04056 + 1.36346i
\(448\) −0.392299 + 1.97222i −0.0185344 + 0.0931786i
\(449\) 9.62000 + 1.91354i 0.453996 + 0.0903054i 0.416791 0.909002i \(-0.363155\pi\)
0.0372048 + 0.999308i \(0.488155\pi\)
\(450\) 0 0
\(451\) 0.0697218 + 0.168323i 0.00328307 + 0.00792604i
\(452\) 5.38311 3.59688i 0.253200 0.169183i
\(453\) −33.1647 6.59688i −1.55822 0.309948i
\(454\) 0.404722 + 2.03468i 0.0189946 + 0.0954921i
\(455\) 0 0
\(456\) 5.74576 + 3.83919i 0.269070 + 0.179787i
\(457\) −13.5929 + 5.63037i −0.635850 + 0.263378i −0.677236 0.735766i \(-0.736822\pi\)
0.0413865 + 0.999143i \(0.486822\pi\)
\(458\) 11.5252 11.5252i 0.538537 0.538537i
\(459\) 0.401921 0.893324i 0.0187601 0.0416968i
\(460\) 0 0
\(461\) 14.3085 34.5437i 0.666411 1.60886i −0.121158 0.992633i \(-0.538661\pi\)
0.787569 0.616226i \(-0.211339\pi\)
\(462\) 0.159669 + 0.802708i 0.00742845 + 0.0373453i
\(463\) 21.8622i 1.01602i 0.861351 + 0.508010i \(0.169619\pi\)
−0.861351 + 0.508010i \(0.830381\pi\)
\(464\) −6.16787 + 1.22686i −0.286336 + 0.0569558i
\(465\) 0 0
\(466\) −4.93861 + 24.8281i −0.228777 + 1.15014i
\(467\) −6.22656 + 15.0322i −0.288131 + 0.695609i −0.999977 0.00672568i \(-0.997859\pi\)
0.711847 + 0.702335i \(0.247859\pi\)
\(468\) 6.44899 15.5692i 0.298105 0.719688i
\(469\) 5.56843 27.9944i 0.257126 1.29266i
\(470\) 0 0
\(471\) 19.7232 3.92319i 0.908796 0.180771i
\(472\) 8.56948i 0.394442i
\(473\) 0.254692 + 1.28042i 0.0117108 + 0.0588740i
\(474\) 15.5878 37.6322i 0.715970 1.72851i
\(475\) 0 0
\(476\) 7.75184 2.94097i 0.355305 0.134799i
\(477\) 2.07248 2.07248i 0.0948922 0.0948922i
\(478\) 22.0029 9.11390i 1.00639 0.416860i
\(479\) −31.2040 20.8499i −1.42575 0.952655i −0.998830 0.0483648i \(-0.984599\pi\)
−0.426919 0.904290i \(-0.640401\pi\)
\(480\) 0 0
\(481\) −5.16999 25.9913i −0.235731 1.18510i
\(482\) −13.8714 2.75918i −0.631823 0.125677i
\(483\) −0.856847 + 0.572527i −0.0389879 + 0.0260509i
\(484\) −4.19912 10.1376i −0.190869 0.460799i
\(485\) 0 0
\(486\) 21.7721 + 4.33074i 0.987602 + 0.196446i
\(487\) −4.25895 + 21.4112i −0.192992 + 0.970234i 0.755913 + 0.654672i \(0.227193\pi\)
−0.948905 + 0.315562i \(0.897807\pi\)
\(488\) −2.54936 1.70343i −0.115404 0.0771104i
\(489\) 22.2340 + 22.2340i 1.00546 + 1.00546i
\(490\) 0 0
\(491\) −18.4719 7.65130i −0.833624 0.345299i −0.0752879 0.997162i \(-0.523988\pi\)
−0.758336 + 0.651863i \(0.773988\pi\)
\(492\) −1.92962 1.92962i −0.0869942 0.0869942i
\(493\) 17.7747 + 18.8778i 0.800534 + 0.850213i
\(494\) 15.2332i 0.685373i
\(495\) 0 0
\(496\) −4.26174 + 6.37814i −0.191358 + 0.286387i
\(497\) 6.85322 0.307409
\(498\) −23.7478 + 35.5411i −1.06416 + 1.59263i
\(499\) −11.6751 + 7.80106i −0.522650 + 0.349223i −0.788742 0.614724i \(-0.789267\pi\)
0.266092 + 0.963948i \(0.414267\pi\)
\(500\) 0 0
\(501\) −20.4526 + 8.47172i −0.913753 + 0.378489i
\(502\) 4.12732 + 1.70959i 0.184211 + 0.0763028i
\(503\) −14.2657 21.3502i −0.636077 0.951957i −0.999791 0.0204461i \(-0.993491\pi\)
0.363714 0.931511i \(-0.381509\pi\)
\(504\) −3.45902 5.17678i −0.154077 0.230592i
\(505\) 0 0
\(506\) −0.0241937 + 0.0241937i −0.00107554 + 0.00107554i
\(507\) −40.2562 + 8.00745i −1.78784 + 0.355623i
\(508\) −3.26570 7.88410i −0.144892 0.349800i
\(509\) −41.1631 −1.82452 −0.912261 0.409609i \(-0.865665\pi\)
−0.912261 + 0.409609i \(0.865665\pi\)
\(510\) 0 0
\(511\) −9.32752 −0.412625
\(512\) −0.382683 0.923880i −0.0169124 0.0408301i
\(513\) −0.652166 + 0.129724i −0.0287938 + 0.00572745i
\(514\) 17.1395 17.1395i 0.755990 0.755990i
\(515\) 0 0
\(516\) −10.8637 16.2587i −0.478248 0.715748i
\(517\) 0.398994 + 0.597136i 0.0175477 + 0.0262620i
\(518\) −9.04547 3.74676i −0.397435 0.164623i
\(519\) 34.0752 14.1144i 1.49574 0.619554i
\(520\) 0 0
\(521\) −10.6546 + 7.11916i −0.466786 + 0.311896i −0.766627 0.642093i \(-0.778066\pi\)
0.299841 + 0.953989i \(0.403066\pi\)
\(522\) 10.8176 16.1897i 0.473475 0.708606i
\(523\) −7.84295 −0.342948 −0.171474 0.985189i \(-0.554853\pi\)
−0.171474 + 0.985189i \(0.554853\pi\)
\(524\) −0.843657 + 1.26262i −0.0368553 + 0.0551579i
\(525\) 0 0
\(526\) 11.6370i 0.507396i
\(527\) 31.6137 + 0.951401i 1.37711 + 0.0414437i
\(528\) −0.287798 0.287798i −0.0125248 0.0125248i
\(529\) 21.2094 + 8.78523i 0.922149 + 0.381967i
\(530\) 0 0
\(531\) −18.7617 18.7617i −0.814187 0.814187i
\(532\) −4.67949 3.12673i −0.202881 0.135561i
\(533\) −1.17358 + 5.89999i −0.0508334 + 0.255557i
\(534\) 39.5224 + 7.86150i 1.71030 + 0.340201i
\(535\) 0 0
\(536\) 5.43195 + 13.1139i 0.234624 + 0.566433i
\(537\) 37.4889 25.0493i 1.61776 1.08096i
\(538\) 17.7850 + 3.53766i 0.766767 + 0.152520i
\(539\) 0.0950776 + 0.477988i 0.00409528 + 0.0205884i
\(540\) 0 0
\(541\) −17.2632 11.5349i −0.742204 0.495925i 0.126063 0.992022i \(-0.459766\pi\)
−0.868267 + 0.496098i \(0.834766\pi\)
\(542\) −22.2061 + 9.19807i −0.953833 + 0.395091i
\(543\) 27.1842 27.1842i 1.16659 1.16659i
\(544\) −2.39276 + 3.35778i −0.102589 + 0.143964i
\(545\) 0 0
\(546\) −10.3412 + 24.9659i −0.442563 + 1.06844i
\(547\) −6.33596 31.8530i −0.270906 1.36194i −0.841301 0.540567i \(-0.818210\pi\)
0.570395 0.821371i \(-0.306790\pi\)
\(548\) 7.49829i 0.320311i
\(549\) 9.31087 1.85205i 0.397378 0.0790435i
\(550\) 0 0
\(551\) 3.43374 17.2626i 0.146282 0.735410i
\(552\) 0.196117 0.473469i 0.00834730 0.0201522i
\(553\) −12.6951 + 30.6486i −0.539849 + 1.30331i
\(554\) −3.25490 + 16.3635i −0.138288 + 0.695219i
\(555\) 0 0
\(556\) −1.48544 + 0.295473i −0.0629967 + 0.0125308i
\(557\) 25.6718i 1.08775i −0.839166 0.543875i \(-0.816956\pi\)
0.839166 0.543875i \(-0.183044\pi\)
\(558\) −4.63357 23.2945i −0.196155 0.986136i
\(559\) −16.4956 + 39.8239i −0.697689 + 1.68437i
\(560\) 0 0
\(561\) −0.376750 + 1.63530i −0.0159064 + 0.0690423i
\(562\) 8.59728 8.59728i 0.362654 0.362654i
\(563\) 5.64617 2.33872i 0.237958 0.0985653i −0.260518 0.965469i \(-0.583893\pi\)
0.498476 + 0.866904i \(0.333893\pi\)
\(564\) −8.94401 5.97620i −0.376611 0.251643i
\(565\) 0 0
\(566\) 0.116078 + 0.583566i 0.00487914 + 0.0245291i
\(567\) −17.1624 3.41381i −0.720753 0.143367i
\(568\) −2.83374 + 1.89344i −0.118901 + 0.0794471i
\(569\) −5.27812 12.7425i −0.221270 0.534194i 0.773793 0.633439i \(-0.218357\pi\)
−0.995063 + 0.0992449i \(0.968357\pi\)
\(570\) 0 0
\(571\) −9.46693 1.88309i −0.396179 0.0788048i −0.00701944 0.999975i \(-0.502234\pi\)
−0.389159 + 0.921171i \(0.627234\pi\)
\(572\) −0.175036 + 0.879965i −0.00731862 + 0.0367932i
\(573\) 4.61378 + 3.08283i 0.192743 + 0.128787i
\(574\) 1.57153 + 1.57153i 0.0655946 + 0.0655946i
\(575\) 0 0
\(576\) 2.86054 + 1.18487i 0.119189 + 0.0493697i
\(577\) −12.7416 12.7416i −0.530440 0.530440i 0.390263 0.920703i \(-0.372384\pi\)
−0.920703 + 0.390263i \(0.872384\pi\)
\(578\) 16.9692 + 1.02229i 0.705827 + 0.0425216i
\(579\) 26.0646i 1.08321i
\(580\) 0 0
\(581\) 19.3408 28.9455i 0.802391 1.20086i
\(582\) 13.3749 0.554407
\(583\) −0.0866928 + 0.129745i −0.00359045 + 0.00537349i
\(584\) 3.85684 2.57706i 0.159597 0.106639i
\(585\) 0 0
\(586\) −3.55776 + 1.47367i −0.146970 + 0.0608769i
\(587\) −32.9315 13.6407i −1.35923 0.563011i −0.420383 0.907347i \(-0.638104\pi\)
−0.938847 + 0.344335i \(0.888104\pi\)
\(588\) −4.05546 6.06943i −0.167244 0.250299i
\(589\) −11.9277 17.8511i −0.491473 0.735541i
\(590\) 0 0
\(591\) −27.6299 + 27.6299i −1.13654 + 1.13654i
\(592\) 4.77539 0.949883i 0.196267 0.0390400i
\(593\) −11.5991 28.0028i −0.476320 1.14994i −0.961323 0.275425i \(-0.911182\pi\)
0.485003 0.874512i \(-0.338818\pi\)
\(594\) 0.0391638 0.00160691
\(595\) 0 0
\(596\) 21.0148 0.860801
\(597\) −17.2151 41.5609i −0.704566 1.70097i
\(598\) −1.10800 + 0.220395i −0.0453094 + 0.00901260i
\(599\) −4.21720 + 4.21720i −0.172310 + 0.172310i −0.787994 0.615683i \(-0.788880\pi\)
0.615683 + 0.787994i \(0.288880\pi\)
\(600\) 0 0
\(601\) 3.08621 + 4.61884i 0.125889 + 0.188407i 0.889060 0.457790i \(-0.151359\pi\)
−0.763171 + 0.646196i \(0.776359\pi\)
\(602\) 8.84766 + 13.2415i 0.360604 + 0.539682i
\(603\) −40.6035 16.8185i −1.65350 0.684903i
\(604\) −12.6528 + 5.24097i −0.514836 + 0.213252i
\(605\) 0 0
\(606\) 22.5333 15.0563i 0.915352 0.611618i
\(607\) 26.4193 39.5393i 1.07233 1.60485i 0.318322 0.947983i \(-0.396881\pi\)
0.754005 0.656869i \(-0.228119\pi\)
\(608\) 2.79879 0.113506
\(609\) −17.3465 + 25.9609i −0.702916 + 1.05199i
\(610\) 0 0
\(611\) 23.7124i 0.959300i
\(612\) −2.11277 12.5900i −0.0854037 0.508921i
\(613\) 29.8715 + 29.8715i 1.20650 + 1.20650i 0.972154 + 0.234343i \(0.0752940\pi\)
0.234343 + 0.972154i \(0.424706\pi\)
\(614\) 5.11094 + 2.11702i 0.206261 + 0.0854360i
\(615\) 0 0
\(616\) 0.234389 + 0.234389i 0.00944382 + 0.00944382i
\(617\) −22.4565 15.0049i −0.904063 0.604076i 0.0142639 0.999898i \(-0.495460\pi\)
−0.918327 + 0.395823i \(0.870460\pi\)
\(618\) −2.95677 + 14.8647i −0.118939 + 0.597944i
\(619\) −14.8962 2.96304i −0.598729 0.119095i −0.113584 0.993528i \(-0.536233\pi\)
−0.485145 + 0.874434i \(0.661233\pi\)
\(620\) 0 0
\(621\) 0.0188712 + 0.0455590i 0.000757273 + 0.00182822i
\(622\) −12.4017 + 8.28653i −0.497262 + 0.332260i
\(623\) −32.1881 6.40260i −1.28959 0.256515i
\(624\) −2.62172 13.1803i −0.104953 0.527633i
\(625\) 0 0
\(626\) −27.1152 18.1178i −1.08374 0.724134i
\(627\) 1.05242 0.435926i 0.0420295 0.0174092i
\(628\) 5.75914 5.75914i 0.229815 0.229815i
\(629\) −13.7619 14.6159i −0.548721 0.582773i
\(630\) 0 0
\(631\) 1.73514 4.18901i 0.0690750 0.166762i −0.885572 0.464503i \(-0.846233\pi\)
0.954647 + 0.297741i \(0.0962331\pi\)
\(632\) −3.21847 16.1804i −0.128024 0.643620i
\(633\) 48.2727i 1.91867i
\(634\) −18.6804 + 3.71575i −0.741892 + 0.147571i
\(635\) 0 0
\(636\) 0.455972 2.29233i 0.0180805 0.0908967i
\(637\) −6.15787 + 14.8664i −0.243983 + 0.589028i
\(638\) −0.396709 + 0.957741i −0.0157059 + 0.0379173i
\(639\) 2.05864 10.3495i 0.0814387 0.409420i
\(640\) 0 0
\(641\) −16.8378 + 3.34924i −0.665052 + 0.132287i −0.516061 0.856552i \(-0.672602\pi\)
−0.148990 + 0.988839i \(0.547602\pi\)
\(642\) 36.0677i 1.42348i
\(643\) 2.62592 + 13.2014i 0.103556 + 0.520611i 0.997389 + 0.0722118i \(0.0230058\pi\)
−0.893833 + 0.448399i \(0.851994\pi\)
\(644\) −0.159723 + 0.385604i −0.00629395 + 0.0151949i
\(645\) 0 0
\(646\) −6.11960 9.78343i −0.240772 0.384924i
\(647\) 15.2155 15.2155i 0.598183 0.598183i −0.341646 0.939829i \(-0.610984\pi\)
0.939829 + 0.341646i \(0.110984\pi\)
\(648\) 8.03966 3.33014i 0.315828 0.130820i
\(649\) 1.17455 + 0.784811i 0.0461052 + 0.0308065i
\(650\) 0 0
\(651\) 7.43011 + 37.3537i 0.291209 + 1.46401i
\(652\) 12.4904 + 2.48449i 0.489162 + 0.0973003i
\(653\) −0.904045 + 0.604064i −0.0353780 + 0.0236388i −0.573134 0.819462i \(-0.694272\pi\)
0.537755 + 0.843101i \(0.319272\pi\)
\(654\) 15.9723 + 38.5606i 0.624567 + 1.50784i
\(655\) 0 0
\(656\) −1.08401 0.215622i −0.0423233 0.00841863i
\(657\) −2.80190 + 14.0861i −0.109313 + 0.549551i
\(658\) 7.28422 + 4.86716i 0.283968 + 0.189742i
\(659\) 26.3191 + 26.3191i 1.02525 + 1.02525i 0.999673 + 0.0255752i \(0.00814173\pi\)
0.0255752 + 0.999673i \(0.491858\pi\)
\(660\) 0 0
\(661\) 23.3798 + 9.68424i 0.909370 + 0.376673i 0.787815 0.615911i \(-0.211212\pi\)
0.121554 + 0.992585i \(0.461212\pi\)
\(662\) −9.76004 9.76004i −0.379335 0.379335i
\(663\) −40.3404 + 37.9833i −1.56669 + 1.47515i
\(664\) 17.3123i 0.671846i
\(665\) 0 0
\(666\) −8.37541 + 12.5347i −0.324540 + 0.485709i
\(667\) −1.30529 −0.0505410
\(668\) −4.98128 + 7.45501i −0.192731 + 0.288443i
\(669\) 39.2869 26.2507i 1.51892 1.01491i
\(670\) 0 0
\(671\) −0.466951 + 0.193417i −0.0180264 + 0.00746680i
\(672\) −4.58698 1.89999i −0.176947 0.0732937i
\(673\) 2.52990 + 3.78626i 0.0975204 + 0.145950i 0.877021 0.480452i \(-0.159527\pi\)
−0.779501 + 0.626401i \(0.784527\pi\)
\(674\) −18.9462 28.3550i −0.729780 1.09219i
\(675\) 0 0
\(676\) −11.7547 + 11.7547i −0.452105 + 0.452105i
\(677\) −37.0395 + 7.36762i −1.42354 + 0.283161i −0.845993 0.533194i \(-0.820992\pi\)
−0.577551 + 0.816355i \(0.695992\pi\)
\(678\) 6.11726 + 14.7684i 0.234932 + 0.567176i
\(679\) −10.8928 −0.418029
\(680\) 0 0
\(681\) −5.12214 −0.196281
\(682\) 0.483904 + 1.16825i 0.0185296 + 0.0447345i
\(683\) 45.8439 9.11892i 1.75417 0.348926i 0.789775 0.613397i \(-0.210197\pi\)
0.964394 + 0.264471i \(0.0851973\pi\)
\(684\) −6.12756 + 6.12756i −0.234293 + 0.234293i
\(685\) 0 0
\(686\) 11.1231 + 16.6469i 0.424681 + 0.635580i
\(687\) 22.3580 + 33.4611i 0.853011 + 1.27662i
\(688\) −7.31684 3.03073i −0.278952 0.115546i
\(689\) −4.76000 + 1.97166i −0.181342 + 0.0751142i
\(690\) 0 0
\(691\) 29.7443 19.8745i 1.13153 0.756061i 0.158638 0.987337i \(-0.449290\pi\)
0.972888 + 0.231275i \(0.0742899\pi\)
\(692\) 8.29911 12.4205i 0.315485 0.472157i
\(693\) −1.02633 −0.0389869
\(694\) 4.65341 6.96432i 0.176641 0.264362i
\(695\) 0 0
\(696\) 15.5271i 0.588555i
\(697\) 1.61647 + 4.26070i 0.0612280 + 0.161386i
\(698\) −11.6710 11.6710i −0.441756 0.441756i
\(699\) −57.7450 23.9188i −2.18412 0.904691i
\(700\) 0 0
\(701\) 30.0666 + 30.0666i 1.13560 + 1.13560i 0.989230 + 0.146368i \(0.0467585\pi\)
0.146368 + 0.989230i \(0.453242\pi\)
\(702\) 1.07518 + 0.718410i 0.0405799 + 0.0271146i
\(703\) −2.65853 + 13.3653i −0.100268 + 0.504082i
\(704\) −0.161676 0.0321594i −0.00609340 0.00121205i
\(705\) 0 0
\(706\) 8.26556 + 19.9548i 0.311078 + 0.751010i
\(707\) −18.3517 + 12.2622i −0.690185 + 0.461167i
\(708\) −20.7519 4.12782i −0.779905 0.155133i
\(709\) 6.59379 + 33.1492i 0.247635 + 1.24494i 0.881754 + 0.471709i \(0.156363\pi\)
−0.634119 + 0.773235i \(0.718637\pi\)
\(710\) 0 0
\(711\) 42.4710 + 28.3782i 1.59279 + 1.06427i
\(712\) 15.0784 6.24567i 0.565086 0.234066i
\(713\) −1.12584 + 1.12584i −0.0421632 + 0.0421632i
\(714\) 3.38791 + 20.1886i 0.126789 + 0.755538i
\(715\) 0 0
\(716\) 6.98820 16.8710i 0.261161 0.630499i
\(717\) 11.4718 + 57.6725i 0.428421 + 2.15382i
\(718\) 3.31978i 0.123893i
\(719\) −3.48652 + 0.693512i −0.130025 + 0.0258636i −0.259674 0.965696i \(-0.583615\pi\)
0.129649 + 0.991560i \(0.458615\pi\)
\(720\) 0 0
\(721\) 2.40806 12.1061i 0.0896809 0.450856i
\(722\) 4.27334 10.3167i 0.159037 0.383950i
\(723\) 13.3633 32.2620i 0.496988 1.19984i
\(724\) 3.03765 15.2713i 0.112893 0.567552i
\(725\) 0 0
\(726\) 26.5719 5.28548i 0.986176 0.196163i
\(727\) 4.30155i 0.159536i 0.996813 + 0.0797678i \(0.0254179\pi\)
−0.996813 + 0.0797678i \(0.974582\pi\)
\(728\) 2.13519 + 10.7343i 0.0791354 + 0.397841i
\(729\) −10.9843 + 26.5184i −0.406826 + 0.982165i
\(730\) 0 0
\(731\) 5.40416 + 32.2034i 0.199880 + 1.19109i
\(732\) 5.35303 5.35303i 0.197854 0.197854i
\(733\) −4.70359 + 1.94829i −0.173731 + 0.0719618i −0.467854 0.883806i \(-0.654973\pi\)
0.294123 + 0.955768i \(0.404973\pi\)
\(734\) 2.90883 + 1.94362i 0.107367 + 0.0717403i
\(735\) 0 0
\(736\) −0.0404931 0.203573i −0.00149260 0.00750378i
\(737\) 2.29489 + 0.456482i 0.0845333 + 0.0168147i
\(738\) 2.84535 1.90120i 0.104739 0.0699843i
\(739\) −7.13655 17.2291i −0.262522 0.633784i 0.736571 0.676360i \(-0.236444\pi\)
−0.999093 + 0.0425757i \(0.986444\pi\)
\(740\) 0 0
\(741\) 36.8888 + 7.33764i 1.35514 + 0.269555i
\(742\) −0.371355 + 1.86693i −0.0136329 + 0.0685371i
\(743\) −7.11960 4.75716i −0.261193 0.174523i 0.418078 0.908411i \(-0.362704\pi\)
−0.679271 + 0.733888i \(0.737704\pi\)
\(744\) −13.3925 13.3925i −0.490994 0.490994i
\(745\) 0 0
\(746\) −8.79555 3.64324i −0.322028 0.133388i
\(747\) −37.9028 37.9028i −1.38679 1.38679i
\(748\) 0.241091 + 0.635470i 0.00881516 + 0.0232351i
\(749\) 29.3745i 1.07332i
\(750\) 0 0
\(751\) 0.952209 1.42508i 0.0347466 0.0520020i −0.813690 0.581300i \(-0.802544\pi\)
0.848436 + 0.529298i \(0.177544\pi\)
\(752\) −4.35668 −0.158872
\(753\) −6.12805 + 9.17127i −0.223319 + 0.334220i
\(754\) −28.4595 + 19.0160i −1.03643 + 0.692523i
\(755\) 0 0
\(756\) 0.441377 0.182824i 0.0160527 0.00664926i
\(757\) 26.8469 + 11.1203i 0.975766 + 0.404176i 0.812856 0.582465i \(-0.197912\pi\)
0.162911 + 0.986641i \(0.447912\pi\)
\(758\) 21.2296 + 31.7723i 0.771094 + 1.15402i
\(759\) −0.0469339 0.0702415i −0.00170359 0.00254961i
\(760\) 0 0
\(761\) −8.96625 + 8.96625i −0.325026 + 0.325026i −0.850692 0.525665i \(-0.823816\pi\)
0.525665 + 0.850692i \(0.323816\pi\)
\(762\) 20.6653 4.11058i 0.748624 0.148911i
\(763\) −13.0082 31.4047i −0.470930 1.13693i
\(764\) 2.24740 0.0813080
\(765\) 0 0
\(766\) −14.7434 −0.532699
\(767\) 17.8490 + 43.0913i 0.644490 + 1.55594i
\(768\) 2.42161 0.481688i 0.0873824 0.0173814i
\(769\) 27.2036 27.2036i 0.980987 0.980987i −0.0188354 0.999823i \(-0.505996\pi\)
0.999823 + 0.0188354i \(0.00599584\pi\)
\(770\) 0 0
\(771\) 33.2493 + 49.7610i 1.19744 + 1.79210i
\(772\) 5.86489 + 8.77742i 0.211082 + 0.315906i
\(773\) 31.8409 + 13.1889i 1.14524 + 0.474373i 0.872934 0.487838i \(-0.162214\pi\)
0.272304 + 0.962211i \(0.412214\pi\)
\(774\) 22.6546 9.38383i 0.814302 0.337295i
\(775\) 0 0
\(776\) 4.50408 3.00953i 0.161687 0.108036i
\(777\) 13.4303 20.0998i 0.481809 0.721078i
\(778\) 12.9481 0.464210
\(779\) 1.71857 2.57202i 0.0615741 0.0921522i
\(780\) 0 0
\(781\) 0.561804i 0.0201029i
\(782\) −0.623068 + 0.586662i −0.0222809 + 0.0209790i
\(783\) 1.05648 + 1.05648i 0.0377554 + 0.0377554i
\(784\) −2.73141 1.13139i −0.0975502 0.0404066i
\(785\) 0 0
\(786\) −2.65120 2.65120i −0.0945651 0.0945651i
\(787\) 11.1164 + 7.42775i 0.396257 + 0.264771i 0.737696 0.675133i \(-0.235914\pi\)
−0.341438 + 0.939904i \(0.610914\pi\)
\(788\) −3.08744 + 15.5216i −0.109986 + 0.552935i
\(789\) −28.1802 5.60539i −1.00324 0.199557i
\(790\) 0 0
\(791\) −4.98205 12.0277i −0.177141 0.427657i
\(792\) 0.424376 0.283559i 0.0150795 0.0100758i
\(793\) −16.3673 3.25566i −0.581221 0.115612i
\(794\) 1.17104 + 5.88720i 0.0415586 + 0.208929i
\(795\) 0 0
\(796\) −15.1490 10.1223i −0.536944 0.358774i
\(797\) −21.9111 + 9.07586i −0.776130 + 0.321484i −0.735353 0.677685i \(-0.762983\pi\)
−0.0407774 + 0.999168i \(0.512983\pi\)
\(798\) 9.82579 9.82579i 0.347829 0.347829i
\(799\) 9.52593 + 15.2292i 0.337003 + 0.538769i
\(800\) 0 0
\(801\) −19.3380 + 46.6861i −0.683274 + 1.64957i
\(802\) 2.21541 + 11.1376i 0.0782287 + 0.393282i
\(803\) 0.764639i 0.0269835i
\(804\) −34.3732 + 6.83726i −1.21225 + 0.241131i
\(805\) 0 0
\(806\) −8.14522 + 40.9488i −0.286903 + 1.44236i
\(807\) −17.1337 + 41.3644i −0.603135 + 1.45610i
\(808\) 4.20037 10.1406i 0.147768 0.356744i
\(809\) 3.50946 17.6432i 0.123386 0.620303i −0.868762 0.495231i \(-0.835084\pi\)
0.992148 0.125073i \(-0.0399164\pi\)
\(810\) 0 0
\(811\) −28.5352 + 5.67600i −1.00201 + 0.199311i −0.668720 0.743514i \(-0.733158\pi\)
−0.333286 + 0.942826i \(0.608158\pi\)
\(812\) 12.6457i 0.443777i
\(813\) −11.5777 58.2051i −0.406048 2.04134i
\(814\) 0.307147 0.741518i 0.0107655 0.0259902i
\(815\) 0 0
\(816\) −6.97867 7.41174i −0.244302 0.259463i
\(817\) 15.6734 15.6734i 0.548344 0.548344i
\(818\) −12.8626 + 5.32788i −0.449732 + 0.186285i
\(819\) −28.1760 18.8266i −0.984550 0.657855i
\(820\) 0 0
\(821\) −5.66111 28.4603i −0.197574 0.993272i −0.944537 0.328406i \(-0.893489\pi\)
0.746962 0.664866i \(-0.231511\pi\)
\(822\) −18.1579 3.61184i −0.633331 0.125977i
\(823\) −11.7845 + 7.87417i −0.410783 + 0.274476i −0.743744 0.668464i \(-0.766952\pi\)
0.332962 + 0.942940i \(0.391952\pi\)
\(824\) 2.34904 + 5.67108i 0.0818327 + 0.197562i
\(825\) 0 0
\(826\) 16.9009 + 3.36180i 0.588057 + 0.116972i
\(827\) −5.13619 + 25.8214i −0.178603 + 0.897897i 0.782699 + 0.622400i \(0.213842\pi\)
−0.961302 + 0.275497i \(0.911158\pi\)
\(828\) 0.534348 + 0.357040i 0.0185699 + 0.0124080i
\(829\) 13.7669 + 13.7669i 0.478144 + 0.478144i 0.904538 0.426393i \(-0.140216\pi\)
−0.426393 + 0.904538i \(0.640216\pi\)
\(830\) 0 0
\(831\) −38.0582 15.7642i −1.32022 0.546855i
\(832\) −3.84862 3.84862i −0.133427 0.133427i
\(833\) 2.01739 + 12.0217i 0.0698986 + 0.416526i
\(834\) 3.73949i 0.129488i
\(835\) 0 0
\(836\) 0.256319 0.383609i 0.00886499 0.0132674i
\(837\) 1.82247 0.0629939
\(838\) −5.61700 + 8.40644i −0.194036 + 0.290396i
\(839\) 22.0867 14.7579i 0.762519 0.509499i −0.112462 0.993656i \(-0.535874\pi\)
0.874981 + 0.484157i \(0.160874\pi\)
\(840\) 0 0
\(841\) −9.74488 + 4.03646i −0.336030 + 0.139188i
\(842\) 14.3075 + 5.92637i 0.493070 + 0.204236i
\(843\) 16.6781 + 24.9605i 0.574423 + 0.859685i
\(844\) −10.8620 16.2562i −0.373886 0.559560i
\(845\) 0 0
\(846\) 9.53834 9.53834i 0.327935 0.327935i
\(847\) −21.6408 + 4.30463i −0.743587 + 0.147909i
\(848\) −0.362253 0.874556i −0.0124398 0.0300324i
\(849\) −1.46908 −0.0504188
\(850\) 0 0
\(851\) 1.01060 0.0346430
\(852\) −3.22020 7.77426i −0.110322 0.266342i
\(853\) −38.3300 + 7.62430i −1.31239 + 0.261051i −0.801191 0.598409i \(-0.795800\pi\)
−0.511202 + 0.859460i \(0.670800\pi\)
\(854\) −4.35964 + 4.35964i −0.149184 + 0.149184i
\(855\) 0 0
\(856\) −8.11573 12.1460i −0.277390 0.415143i
\(857\) 16.1026 + 24.0993i 0.550056 + 0.823217i 0.997468 0.0711109i \(-0.0226544\pi\)
−0.447413 + 0.894328i \(0.647654\pi\)
\(858\) −2.04662 0.847738i −0.0698705 0.0289413i
\(859\) 9.00118 3.72841i 0.307116 0.127212i −0.223802 0.974635i \(-0.571847\pi\)
0.530919 + 0.847423i \(0.321847\pi\)
\(860\) 0 0
\(861\) −4.56263 + 3.04865i −0.155494 + 0.103898i
\(862\) 12.8995 19.3054i 0.439357 0.657544i
\(863\) −4.39089 −0.149468 −0.0747338 0.997204i \(-0.523811\pi\)
−0.0747338 + 0.997204i \(0.523811\pi\)
\(864\) −0.131993 + 0.197542i −0.00449051 + 0.00672052i
\(865\) 0 0
\(866\) 6.23703i 0.211943i
\(867\) −10.6495 + 40.6005i −0.361675 + 1.37886i
\(868\) 10.9072 + 10.9072i 0.370215 + 0.370215i
\(869\) −2.51247 1.04070i −0.0852298 0.0353033i
\(870\) 0 0
\(871\) 54.6287 + 54.6287i 1.85102 + 1.85102i
\(872\) 14.0554 + 9.39154i 0.475977 + 0.318038i
\(873\) −3.27211 + 16.4500i −0.110744 + 0.556748i
\(874\) 0.569757 + 0.113332i 0.0192723 + 0.00383350i
\(875\) 0 0
\(876\) 4.38283 + 10.5811i 0.148082 + 0.357502i
\(877\) −9.58247 + 6.40280i −0.323577 + 0.216207i −0.706740 0.707474i \(-0.749835\pi\)
0.383163 + 0.923681i \(0.374835\pi\)
\(878\) −5.95858 1.18524i −0.201092 0.0399998i
\(879\) −1.85493 9.32536i −0.0625652 0.314537i
\(880\) 0 0
\(881\) 11.1892 + 7.47638i 0.376974 + 0.251886i 0.729594 0.683881i \(-0.239709\pi\)
−0.352620 + 0.935767i \(0.614709\pi\)
\(882\) 8.45704 3.50302i 0.284763 0.117953i
\(883\) −2.99595 + 2.99595i −0.100822 + 0.100822i −0.755718 0.654897i \(-0.772712\pi\)
0.654897 + 0.755718i \(0.272712\pi\)
\(884\) −5.03814 + 21.8682i −0.169451 + 0.735509i
\(885\) 0 0
\(886\) −4.13564 + 9.98431i −0.138939 + 0.335430i
\(887\) 5.86156 + 29.4681i 0.196812 + 0.989441i 0.945278 + 0.326267i \(0.105791\pi\)
−0.748465 + 0.663174i \(0.769209\pi\)
\(888\) 12.0217i 0.403421i
\(889\) −16.8303 + 3.34776i −0.564470 + 0.112280i
\(890\) 0 0
\(891\) 0.279853 1.40692i 0.00937543 0.0471335i
\(892\) 7.32337 17.6802i 0.245205 0.591976i
\(893\) 4.66622 11.2653i 0.156149 0.376978i
\(894\) −10.1226 + 50.8897i −0.338550 + 1.70201i
\(895\) 0 0
\(896\) −1.97222 + 0.392299i −0.0658872 + 0.0131058i
\(897\) 2.78930i 0.0931321i
\(898\) 1.91354 + 9.62000i 0.0638556 + 0.321024i
\(899\) −18.4607 + 44.5681i −0.615699 + 1.48643i
\(900\) 0 0
\(901\) −2.26502 + 3.17852i −0.0754587 + 0.105892i
\(902\) −0.128829 + 0.128829i −0.00428954 + 0.00428954i
\(903\) −36.3275 + 15.0473i −1.20890 + 0.500744i
\(904\) 5.38311 + 3.59688i 0.179040 + 0.119630i
\(905\) 0 0
\(906\) −6.59688 33.1647i −0.219167 1.10182i
\(907\) −37.5419 7.46755i −1.24656 0.247956i −0.472648 0.881251i \(-0.656702\pi\)
−0.773910 + 0.633296i \(0.781702\pi\)
\(908\) −1.72492 + 1.15255i −0.0572433 + 0.0382488i
\(909\) 13.0053 + 31.3975i 0.431358 + 1.04139i
\(910\) 0 0
\(911\) −12.9269 2.57131i −0.428286 0.0851914i −0.0237597 0.999718i \(-0.507564\pi\)
−0.404527 + 0.914526i \(0.632564\pi\)
\(912\) −1.34815 + 6.77758i −0.0446416 + 0.224428i
\(913\) 2.37286 + 1.58549i 0.0785302 + 0.0524722i
\(914\) −10.4036 10.4036i −0.344119 0.344119i
\(915\) 0 0
\(916\) 15.0584 + 6.23740i 0.497544 + 0.206089i
\(917\) 2.15920 + 2.15920i 0.0713031 + 0.0713031i
\(918\) 0.979132 + 0.0294666i 0.0323162 + 0.000972541i
\(919\) 16.4986i 0.544239i −0.962263 0.272120i \(-0.912275\pi\)
0.962263 0.272120i \(-0.0877246\pi\)
\(920\) 0 0
\(921\) −7.58848 + 11.3570i −0.250049 + 0.374225i
\(922\) 37.3898 1.23137
\(923\) −10.3056 + 15.4234i −0.339212 + 0.507666i
\(924\) −0.680503 + 0.454697i −0.0223869 + 0.0149584i
\(925\) 0 0
\(926\) −20.1980 + 8.36628i −0.663747 + 0.274933i
\(927\) −17.5589 7.27315i −0.576711 0.238882i
\(928\) −3.49382 5.22886i −0.114690 0.171646i
\(929\) −25.1870 37.6951i −0.826360 1.23673i −0.969025 0.246964i \(-0.920567\pi\)
0.142665 0.989771i \(-0.454433\pi\)
\(930\) 0 0
\(931\) 5.85095 5.85095i 0.191757 0.191757i
\(932\) −24.8281 + 4.93861i −0.813270 + 0.161769i
\(933\) −14.0930 34.0236i −0.461385 1.11388i
\(934\) −16.2708 −0.532396
\(935\) 0 0
\(936\) 16.8520 0.550826
\(937\) 19.3123 + 46.6240i 0.630905 + 1.52314i 0.838487 + 0.544922i \(0.183441\pi\)
−0.207581 + 0.978218i \(0.566559\pi\)
\(938\) 27.9944 5.56843i 0.914049 0.181816i
\(939\) 56.9354 56.9354i 1.85802 1.85802i
\(940\) 0 0
\(941\) 30.3739 + 45.4577i 0.990160 + 1.48188i 0.872374 + 0.488840i \(0.162580\pi\)
0.117786 + 0.993039i \(0.462420\pi\)
\(942\) 11.1723 + 16.7205i 0.364013 + 0.544784i
\(943\) −0.211943 0.0877895i −0.00690180 0.00285882i
\(944\) −7.91716 + 3.27940i −0.257682 + 0.106735i
\(945\) 0 0
\(946\) −1.08549 + 0.725302i −0.0352924 + 0.0235816i
\(947\) 0.588918 0.881378i 0.0191373 0.0286409i −0.821778 0.569808i \(-0.807017\pi\)
0.840915 + 0.541167i \(0.182017\pi\)
\(948\) 40.7328 1.32294
\(949\) 14.0263 20.9919i 0.455313 0.681425i
\(950\) 0 0
\(951\) 47.0264i 1.52494i
\(952\) 5.68360 + 6.03631i 0.184207 + 0.195638i
\(953\) −18.8018 18.8018i −0.609049 0.609049i 0.333648 0.942698i \(-0.391720\pi\)
−0.942698 + 0.333648i \(0.891720\pi\)
\(954\) 2.70782 + 1.12162i 0.0876690 + 0.0363137i
\(955\) 0 0
\(956\) 16.8403 + 16.8403i 0.544654 + 0.544654i
\(957\) −2.12819 1.42201i −0.0687945 0.0459670i
\(958\) 7.32150 36.8077i 0.236547 1.18920i
\(959\) 14.7883 + 2.94157i 0.477538 + 0.0949882i
\(960\) 0 0
\(961\) 10.6551 + 25.7236i 0.343712 + 0.829794i
\(962\) 22.0344 14.7229i 0.710417 0.474685i
\(963\) 44.3603 + 8.82382i 1.42949 + 0.284344i
\(964\) −2.75918 13.8714i −0.0888674 0.446766i
\(965\) 0 0
\(966\) −0.856847 0.572527i −0.0275686 0.0184208i
\(967\) 24.7844 10.2660i 0.797013 0.330134i 0.0532536 0.998581i \(-0.483041\pi\)
0.743759 + 0.668447i \(0.233041\pi\)
\(968\) 7.75896 7.75896i 0.249382 0.249382i
\(969\) 26.6394 10.1067i 0.855781 0.324674i
\(970\) 0 0
\(971\) 13.9908 33.7768i 0.448986 1.08395i −0.523717 0.851892i \(-0.675455\pi\)
0.972703 0.232055i \(-0.0745450\pi\)
\(972\) 4.33074 + 21.7721i 0.138908 + 0.698340i
\(973\) 3.04553i 0.0976352i
\(974\) −21.4112 + 4.25895i −0.686059 + 0.136466i
\(975\) 0 0
\(976\) 0.598163 3.00717i 0.0191467 0.0962572i
\(977\) 6.74211 16.2769i 0.215699 0.520744i −0.778581 0.627544i \(-0.784060\pi\)
0.994281 + 0.106800i \(0.0340604\pi\)
\(978\) −12.0330 + 29.0501i −0.384772 + 0.928921i
\(979\) 0.524864 2.63867i 0.0167747 0.0843323i
\(980\) 0 0
\(981\) −51.3339 + 10.2109i −1.63896 + 0.326010i
\(982\) 19.9938i 0.638028i
\(983\) 4.41995 + 22.2206i 0.140974 + 0.708726i 0.985018 + 0.172452i \(0.0551688\pi\)
−0.844044 + 0.536275i \(0.819831\pi\)
\(984\) 1.04431 2.52118i 0.0332912 0.0803722i
\(985\) 0 0
\(986\) −10.6387 + 23.6459i −0.338805 + 0.753040i
\(987\) −15.2951 + 15.2951i −0.486848 + 0.486848i
\(988\) 14.0736 5.82948i 0.447741 0.185460i
\(989\) −1.36678 0.913256i −0.0434612 0.0290398i
\(990\) 0 0
\(991\) −5.99310 30.1293i −0.190377 0.957090i −0.951304 0.308253i \(-0.900256\pi\)
0.760927 0.648837i \(-0.224744\pi\)
\(992\) −7.52353 1.49652i −0.238872 0.0475146i
\(993\) 28.3363 18.9337i 0.899226 0.600843i
\(994\) 2.62261 + 6.33155i 0.0831842 + 0.200824i
\(995\) 0 0
\(996\) −41.9236 8.33911i −1.32840 0.264235i
\(997\) 3.04388 15.3026i 0.0964008 0.484639i −0.902179 0.431362i \(-0.858033\pi\)
0.998580 0.0532774i \(-0.0169668\pi\)
\(998\) −11.6751 7.80106i −0.369569 0.246938i
\(999\) −0.817962 0.817962i −0.0258792 0.0258792i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.a.143.1 yes 24
5.2 odd 4 850.2.s.b.7.3 yes 24
5.3 odd 4 850.2.s.a.7.1 24
5.4 even 2 850.2.v.b.143.3 yes 24
17.5 odd 16 850.2.s.b.243.3 yes 24
85.22 even 16 inner 850.2.v.a.107.1 yes 24
85.39 odd 16 850.2.s.a.243.1 yes 24
85.73 even 16 850.2.v.b.107.3 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
850.2.s.a.7.1 24 5.3 odd 4
850.2.s.a.243.1 yes 24 85.39 odd 16
850.2.s.b.7.3 yes 24 5.2 odd 4
850.2.s.b.243.3 yes 24 17.5 odd 16
850.2.v.a.107.1 yes 24 85.22 even 16 inner
850.2.v.a.143.1 yes 24 1.1 even 1 trivial
850.2.v.b.107.3 yes 24 85.73 even 16
850.2.v.b.143.3 yes 24 5.4 even 2