Properties

Label 850.2.v.a.607.3
Level $850$
Weight $2$
Character 850.607
Analytic conductor $6.787$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(3\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 607.3
Character \(\chi\) \(=\) 850.607
Dual form 850.2.v.a.843.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.382683 + 0.923880i) q^{2} +(0.437319 - 2.19855i) q^{3} +(-0.707107 - 0.707107i) q^{4} +(1.86384 + 1.24538i) q^{6} +(1.94597 + 1.30026i) q^{7} +(0.923880 - 0.382683i) q^{8} +(-1.87075 - 0.774889i) q^{9} +(2.08242 - 3.11656i) q^{11} +(-1.86384 + 1.24538i) q^{12} +1.83794 q^{13} +(-1.94597 + 1.30026i) q^{14} +1.00000i q^{16} +(-2.84065 + 2.98843i) q^{17} +(1.43181 - 1.43181i) q^{18} +(6.19346 - 2.56542i) q^{19} +(3.70970 - 3.70970i) q^{21} +(2.08242 + 3.11656i) q^{22} +(-5.00678 + 0.995910i) q^{23} +(-0.437319 - 2.19855i) q^{24} +(-0.703348 + 1.69803i) q^{26} +(1.21439 - 1.81746i) q^{27} +(-0.456590 - 2.29543i) q^{28} +(0.598780 + 0.119105i) q^{29} +(2.46039 + 3.68223i) q^{31} +(-0.923880 - 0.382683i) q^{32} +(-5.94124 - 5.94124i) q^{33} +(-1.67388 - 3.76804i) q^{34} +(0.774889 + 1.87075i) q^{36} +(-1.64915 - 0.328036i) q^{37} +6.70375i q^{38} +(0.803765 - 4.04080i) q^{39} +(3.38971 - 0.674255i) q^{41} +(2.00768 + 4.84696i) q^{42} +(0.926479 + 2.23672i) q^{43} +(-3.67624 + 0.731249i) q^{44} +(0.995910 - 5.00678i) q^{46} -10.6121i q^{47} +(2.19855 + 0.437319i) q^{48} +(-0.582639 - 1.40662i) q^{49} +(5.32794 + 7.55222i) q^{51} +(-1.29962 - 1.29962i) q^{52} +(1.76897 + 0.732730i) q^{53} +(1.21439 + 1.81746i) q^{54} +(2.29543 + 0.456590i) q^{56} +(-2.93168 - 14.7386i) q^{57} +(-0.339182 + 0.507621i) q^{58} +(4.86169 - 11.7372i) q^{59} +(-1.29314 - 6.50106i) q^{61} +(-4.34349 + 0.863974i) q^{62} +(-2.63287 - 3.94037i) q^{63} +(0.707107 - 0.707107i) q^{64} +(7.76261 - 3.21538i) q^{66} +(0.983164 - 0.983164i) q^{67} +(4.12178 - 0.104492i) q^{68} +11.4432i q^{69} +(7.07898 - 4.73002i) q^{71} -2.02488 q^{72} +(-3.82200 + 2.55378i) q^{73} +(0.934169 - 1.39808i) q^{74} +(-6.19346 - 2.56542i) q^{76} +(8.10467 - 3.35707i) q^{77} +(3.42563 + 2.28893i) q^{78} +(-4.28663 - 2.86424i) q^{79} +(-7.76014 - 7.76014i) q^{81} +(-0.674255 + 3.38971i) q^{82} +(-5.34887 + 12.9133i) q^{83} -5.24631 q^{84} -2.42101 q^{86} +(0.523716 - 1.26436i) q^{87} +(0.731249 - 3.67624i) q^{88} +(-11.0963 - 11.0963i) q^{89} +(3.57658 + 2.38979i) q^{91} +(4.24454 + 2.83611i) q^{92} +(9.17156 - 3.79898i) q^{93} +(9.80427 + 4.06106i) q^{94} +(-1.24538 + 1.86384i) q^{96} +(9.35564 - 6.25124i) q^{97} +1.52251 q^{98} +(-6.31067 + 4.21666i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9} - 32 q^{13} - 16 q^{18} + 48 q^{27} + 16 q^{29} + 16 q^{31} - 8 q^{33} - 16 q^{34} + 16 q^{37} + 32 q^{39} + 48 q^{41} - 48 q^{42} + 16 q^{43} - 16 q^{44} + 32 q^{46} + 8 q^{48} + 16 q^{49}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.382683 + 0.923880i −0.270598 + 0.653281i
\(3\) 0.437319 2.19855i 0.252486 1.26934i −0.621511 0.783405i \(-0.713481\pi\)
0.873998 0.485930i \(-0.161519\pi\)
\(4\) −0.707107 0.707107i −0.353553 0.353553i
\(5\) 0 0
\(6\) 1.86384 + 1.24538i 0.760911 + 0.508424i
\(7\) 1.94597 + 1.30026i 0.735509 + 0.491452i 0.866029 0.499994i \(-0.166665\pi\)
−0.130519 + 0.991446i \(0.541665\pi\)
\(8\) 0.923880 0.382683i 0.326641 0.135299i
\(9\) −1.87075 0.774889i −0.623583 0.258296i
\(10\) 0 0
\(11\) 2.08242 3.11656i 0.627873 0.939679i −0.372061 0.928208i \(-0.621349\pi\)
0.999934 0.0114704i \(-0.00365123\pi\)
\(12\) −1.86384 + 1.24538i −0.538045 + 0.359510i
\(13\) 1.83794 0.509752 0.254876 0.966974i \(-0.417965\pi\)
0.254876 + 0.966974i \(0.417965\pi\)
\(14\) −1.94597 + 1.30026i −0.520084 + 0.347509i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) −2.84065 + 2.98843i −0.688960 + 0.724800i
\(18\) 1.43181 1.43181i 0.337481 0.337481i
\(19\) 6.19346 2.56542i 1.42088 0.588547i 0.465797 0.884892i \(-0.345768\pi\)
0.955081 + 0.296345i \(0.0957678\pi\)
\(20\) 0 0
\(21\) 3.70970 3.70970i 0.809523 0.809523i
\(22\) 2.08242 + 3.11656i 0.443973 + 0.664453i
\(23\) −5.00678 + 0.995910i −1.04398 + 0.207661i −0.687157 0.726509i \(-0.741142\pi\)
−0.356828 + 0.934170i \(0.616142\pi\)
\(24\) −0.437319 2.19855i −0.0892674 0.448778i
\(25\) 0 0
\(26\) −0.703348 + 1.69803i −0.137938 + 0.333011i
\(27\) 1.21439 1.81746i 0.233710 0.349771i
\(28\) −0.456590 2.29543i −0.0862874 0.433796i
\(29\) 0.598780 + 0.119105i 0.111191 + 0.0221172i 0.250372 0.968150i \(-0.419447\pi\)
−0.139181 + 0.990267i \(0.544447\pi\)
\(30\) 0 0
\(31\) 2.46039 + 3.68223i 0.441899 + 0.661349i 0.983836 0.179070i \(-0.0573090\pi\)
−0.541937 + 0.840419i \(0.682309\pi\)
\(32\) −0.923880 0.382683i −0.163320 0.0676495i
\(33\) −5.94124 5.94124i −1.03424 1.03424i
\(34\) −1.67388 3.76804i −0.287067 0.646214i
\(35\) 0 0
\(36\) 0.774889 + 1.87075i 0.129148 + 0.311791i
\(37\) −1.64915 0.328036i −0.271119 0.0539289i 0.0576586 0.998336i \(-0.481637\pi\)
−0.328777 + 0.944408i \(0.606637\pi\)
\(38\) 6.70375i 1.08749i
\(39\) 0.803765 4.04080i 0.128705 0.647046i
\(40\) 0 0
\(41\) 3.38971 0.674255i 0.529384 0.105301i 0.0768405 0.997043i \(-0.475517\pi\)
0.452543 + 0.891742i \(0.350517\pi\)
\(42\) 2.00768 + 4.84696i 0.309791 + 0.747902i
\(43\) 0.926479 + 2.23672i 0.141287 + 0.341096i 0.978645 0.205558i \(-0.0659010\pi\)
−0.837358 + 0.546655i \(0.815901\pi\)
\(44\) −3.67624 + 0.731249i −0.554213 + 0.110240i
\(45\) 0 0
\(46\) 0.995910 5.00678i 0.146839 0.738209i
\(47\) 10.6121i 1.54793i −0.633229 0.773965i \(-0.718271\pi\)
0.633229 0.773965i \(-0.281729\pi\)
\(48\) 2.19855 + 0.437319i 0.317334 + 0.0631216i
\(49\) −0.582639 1.40662i −0.0832342 0.200945i
\(50\) 0 0
\(51\) 5.32794 + 7.55222i 0.746061 + 1.05752i
\(52\) −1.29962 1.29962i −0.180224 0.180224i
\(53\) 1.76897 + 0.732730i 0.242986 + 0.100648i 0.500853 0.865532i \(-0.333020\pi\)
−0.257867 + 0.966180i \(0.583020\pi\)
\(54\) 1.21439 + 1.81746i 0.165258 + 0.247326i
\(55\) 0 0
\(56\) 2.29543 + 0.456590i 0.306740 + 0.0610144i
\(57\) −2.93168 14.7386i −0.388311 1.95217i
\(58\) −0.339182 + 0.507621i −0.0445367 + 0.0666539i
\(59\) 4.86169 11.7372i 0.632938 1.52805i −0.202973 0.979184i \(-0.565061\pi\)
0.835912 0.548864i \(-0.184939\pi\)
\(60\) 0 0
\(61\) −1.29314 6.50106i −0.165570 0.832375i −0.970888 0.239533i \(-0.923006\pi\)
0.805318 0.592842i \(-0.201994\pi\)
\(62\) −4.34349 + 0.863974i −0.551624 + 0.109725i
\(63\) −2.63287 3.94037i −0.331711 0.496440i
\(64\) 0.707107 0.707107i 0.0883883 0.0883883i
\(65\) 0 0
\(66\) 7.76261 3.21538i 0.955511 0.395786i
\(67\) 0.983164 0.983164i 0.120113 0.120113i −0.644495 0.764608i \(-0.722933\pi\)
0.764608 + 0.644495i \(0.222933\pi\)
\(68\) 4.12178 0.104492i 0.499839 0.0126715i
\(69\) 11.4432i 1.37760i
\(70\) 0 0
\(71\) 7.07898 4.73002i 0.840120 0.561350i −0.0593975 0.998234i \(-0.518918\pi\)
0.899518 + 0.436884i \(0.143918\pi\)
\(72\) −2.02488 −0.238635
\(73\) −3.82200 + 2.55378i −0.447331 + 0.298897i −0.758758 0.651373i \(-0.774193\pi\)
0.311426 + 0.950270i \(0.399193\pi\)
\(74\) 0.934169 1.39808i 0.108595 0.162524i
\(75\) 0 0
\(76\) −6.19346 2.56542i −0.710439 0.294273i
\(77\) 8.10467 3.35707i 0.923613 0.382573i
\(78\) 3.42563 + 2.28893i 0.387876 + 0.259170i
\(79\) −4.28663 2.86424i −0.482284 0.322252i 0.290551 0.956860i \(-0.406162\pi\)
−0.772834 + 0.634608i \(0.781162\pi\)
\(80\) 0 0
\(81\) −7.76014 7.76014i −0.862238 0.862238i
\(82\) −0.674255 + 3.38971i −0.0744590 + 0.374331i
\(83\) −5.34887 + 12.9133i −0.587114 + 1.41742i 0.299135 + 0.954211i \(0.403302\pi\)
−0.886249 + 0.463208i \(0.846698\pi\)
\(84\) −5.24631 −0.572419
\(85\) 0 0
\(86\) −2.42101 −0.261064
\(87\) 0.523716 1.26436i 0.0561483 0.135554i
\(88\) 0.731249 3.67624i 0.0779514 0.391888i
\(89\) −11.0963 11.0963i −1.17620 1.17620i −0.980704 0.195500i \(-0.937367\pi\)
−0.195500 0.980704i \(-0.562633\pi\)
\(90\) 0 0
\(91\) 3.57658 + 2.38979i 0.374927 + 0.250518i
\(92\) 4.24454 + 2.83611i 0.442524 + 0.295685i
\(93\) 9.17156 3.79898i 0.951046 0.393936i
\(94\) 9.80427 + 4.06106i 1.01123 + 0.418867i
\(95\) 0 0
\(96\) −1.24538 + 1.86384i −0.127106 + 0.190228i
\(97\) 9.35564 6.25124i 0.949921 0.634717i 0.0189540 0.999820i \(-0.493966\pi\)
0.930967 + 0.365103i \(0.118966\pi\)
\(98\) 1.52251 0.153797
\(99\) −6.31067 + 4.21666i −0.634247 + 0.423790i
\(100\) 0 0
\(101\) 16.4108i 1.63294i 0.577389 + 0.816469i \(0.304072\pi\)
−0.577389 + 0.816469i \(0.695928\pi\)
\(102\) −9.01626 + 2.03227i −0.892743 + 0.201224i
\(103\) −11.2381 + 11.2381i −1.10733 + 1.10733i −0.113825 + 0.993501i \(0.536310\pi\)
−0.993501 + 0.113825i \(0.963690\pi\)
\(104\) 1.69803 0.703348i 0.166506 0.0689689i
\(105\) 0 0
\(106\) −1.35391 + 1.35391i −0.131503 + 0.131503i
\(107\) −0.445180 0.666259i −0.0430372 0.0644097i 0.809327 0.587358i \(-0.199832\pi\)
−0.852364 + 0.522948i \(0.824832\pi\)
\(108\) −2.14385 + 0.426437i −0.206292 + 0.0410340i
\(109\) 2.71439 + 13.6462i 0.259991 + 1.30707i 0.861320 + 0.508063i \(0.169638\pi\)
−0.601328 + 0.799002i \(0.705362\pi\)
\(110\) 0 0
\(111\) −1.44241 + 3.48229i −0.136908 + 0.330524i
\(112\) −1.30026 + 1.94597i −0.122863 + 0.183877i
\(113\) 0.0285995 + 0.143780i 0.00269042 + 0.0135256i 0.982107 0.188323i \(-0.0603051\pi\)
−0.979417 + 0.201849i \(0.935305\pi\)
\(114\) 14.7386 + 2.93168i 1.38039 + 0.274577i
\(115\) 0 0
\(116\) −0.339182 0.507621i −0.0314922 0.0471314i
\(117\) −3.43832 1.42420i −0.317872 0.131667i
\(118\) 8.98323 + 8.98323i 0.826974 + 0.826974i
\(119\) −9.41357 + 2.12182i −0.862940 + 0.194507i
\(120\) 0 0
\(121\) −1.16697 2.81731i −0.106088 0.256119i
\(122\) 6.50106 + 1.29314i 0.588578 + 0.117075i
\(123\) 7.74732i 0.698552i
\(124\) 0.863974 4.34349i 0.0775871 0.390057i
\(125\) 0 0
\(126\) 4.64799 0.924542i 0.414075 0.0823647i
\(127\) 8.16676 + 19.7163i 0.724683 + 1.74954i 0.659547 + 0.751664i \(0.270748\pi\)
0.0651365 + 0.997876i \(0.479252\pi\)
\(128\) 0.382683 + 0.923880i 0.0338248 + 0.0816602i
\(129\) 5.32271 1.05875i 0.468639 0.0932180i
\(130\) 0 0
\(131\) −2.51893 + 12.6635i −0.220080 + 1.10642i 0.699837 + 0.714302i \(0.253256\pi\)
−0.919917 + 0.392113i \(0.871744\pi\)
\(132\) 8.40219i 0.731317i
\(133\) 15.3880 + 3.06087i 1.33431 + 0.265411i
\(134\) 0.532085 + 1.28457i 0.0459651 + 0.110970i
\(135\) 0 0
\(136\) −1.48080 + 3.84802i −0.126978 + 0.329965i
\(137\) 1.52157 + 1.52157i 0.129997 + 0.129997i 0.769111 0.639115i \(-0.220699\pi\)
−0.639115 + 0.769111i \(0.720699\pi\)
\(138\) −10.5721 4.37912i −0.899959 0.372775i
\(139\) 10.8206 + 16.1941i 0.917788 + 1.37357i 0.927584 + 0.373614i \(0.121882\pi\)
−0.00979673 + 0.999952i \(0.503118\pi\)
\(140\) 0 0
\(141\) −23.3312 4.64086i −1.96484 0.390831i
\(142\) 1.66096 + 8.35023i 0.139385 + 0.700735i
\(143\) 3.82736 5.72804i 0.320060 0.479003i
\(144\) 0.774889 1.87075i 0.0645741 0.155896i
\(145\) 0 0
\(146\) −0.896768 4.50836i −0.0742170 0.373114i
\(147\) −3.34732 + 0.665823i −0.276082 + 0.0549161i
\(148\) 0.934169 + 1.39808i 0.0767882 + 0.114922i
\(149\) −13.4649 + 13.4649i −1.10308 + 1.10308i −0.109047 + 0.994037i \(0.534780\pi\)
−0.994037 + 0.109047i \(0.965220\pi\)
\(150\) 0 0
\(151\) −5.17302 + 2.14274i −0.420975 + 0.174373i −0.583107 0.812396i \(-0.698163\pi\)
0.162132 + 0.986769i \(0.448163\pi\)
\(152\) 4.74027 4.74027i 0.384487 0.384487i
\(153\) 7.62985 3.38940i 0.616836 0.274017i
\(154\) 8.77244i 0.706903i
\(155\) 0 0
\(156\) −3.42563 + 2.28893i −0.274270 + 0.183261i
\(157\) 2.43885 0.194642 0.0973209 0.995253i \(-0.468973\pi\)
0.0973209 + 0.995253i \(0.468973\pi\)
\(158\) 4.28663 2.86424i 0.341026 0.227866i
\(159\) 2.38455 3.56873i 0.189107 0.283019i
\(160\) 0 0
\(161\) −11.0380 4.57209i −0.869916 0.360331i
\(162\) 10.1391 4.19976i 0.796604 0.329964i
\(163\) −5.99898 4.00839i −0.469876 0.313961i 0.297993 0.954568i \(-0.403683\pi\)
−0.767869 + 0.640607i \(0.778683\pi\)
\(164\) −2.87366 1.92012i −0.224395 0.149936i
\(165\) 0 0
\(166\) −9.88341 9.88341i −0.767102 0.767102i
\(167\) −3.00246 + 15.0944i −0.232337 + 1.16804i 0.671779 + 0.740752i \(0.265531\pi\)
−0.904116 + 0.427287i \(0.859469\pi\)
\(168\) 2.00768 4.84696i 0.154896 0.373951i
\(169\) −9.62199 −0.740153
\(170\) 0 0
\(171\) −13.5743 −1.03805
\(172\) 0.926479 2.23672i 0.0706434 0.170548i
\(173\) 0.592427 2.97833i 0.0450414 0.226438i −0.951708 0.307005i \(-0.900673\pi\)
0.996749 + 0.0805670i \(0.0256731\pi\)
\(174\) 0.967701 + 0.967701i 0.0733612 + 0.0733612i
\(175\) 0 0
\(176\) 3.11656 + 2.08242i 0.234920 + 0.156968i
\(177\) −23.6787 15.8216i −1.77980 1.18922i
\(178\) 14.4980 6.00527i 1.08667 0.450114i
\(179\) −12.6642 5.24569i −0.946568 0.392081i −0.144628 0.989486i \(-0.546199\pi\)
−0.801940 + 0.597405i \(0.796199\pi\)
\(180\) 0 0
\(181\) 5.41668 8.10663i 0.402618 0.602561i −0.573656 0.819096i \(-0.694476\pi\)
0.976275 + 0.216535i \(0.0694755\pi\)
\(182\) −3.57658 + 2.38979i −0.265114 + 0.177143i
\(183\) −14.8584 −1.09837
\(184\) −4.24454 + 2.83611i −0.312912 + 0.209081i
\(185\) 0 0
\(186\) 9.92722i 0.727899i
\(187\) 3.39818 + 15.0762i 0.248500 + 1.10248i
\(188\) −7.50387 + 7.50387i −0.547276 + 0.547276i
\(189\) 4.72635 1.95772i 0.343791 0.142403i
\(190\) 0 0
\(191\) −13.0447 + 13.0447i −0.943881 + 0.943881i −0.998507 0.0546255i \(-0.982603\pi\)
0.0546255 + 0.998507i \(0.482603\pi\)
\(192\) −1.24538 1.86384i −0.0898776 0.134511i
\(193\) 20.4235 4.06249i 1.47012 0.292424i 0.605899 0.795542i \(-0.292814\pi\)
0.864218 + 0.503117i \(0.167814\pi\)
\(194\) 2.19514 + 11.0357i 0.157602 + 0.792319i
\(195\) 0 0
\(196\) −0.582639 + 1.40662i −0.0416171 + 0.100473i
\(197\) 2.35217 3.52027i 0.167585 0.250809i −0.738166 0.674619i \(-0.764308\pi\)
0.905751 + 0.423811i \(0.139308\pi\)
\(198\) −1.48069 7.44395i −0.105228 0.529018i
\(199\) 25.8402 + 5.13993i 1.83176 + 0.364360i 0.985671 0.168681i \(-0.0539508\pi\)
0.846089 + 0.533041i \(0.178951\pi\)
\(200\) 0 0
\(201\) −1.73158 2.59150i −0.122136 0.182790i
\(202\) −15.1616 6.28015i −1.06677 0.441870i
\(203\) 1.01034 + 1.01034i 0.0709122 + 0.0709122i
\(204\) 1.57280 9.10765i 0.110118 0.637663i
\(205\) 0 0
\(206\) −6.08203 14.6833i −0.423755 1.02304i
\(207\) 10.1381 + 2.01660i 0.704649 + 0.140163i
\(208\) 1.83794i 0.127438i
\(209\) 4.90211 24.6446i 0.339086 1.70470i
\(210\) 0 0
\(211\) 21.7949 4.33527i 1.50042 0.298452i 0.624545 0.780989i \(-0.285284\pi\)
0.875876 + 0.482536i \(0.160284\pi\)
\(212\) −0.732730 1.76897i −0.0503241 0.121493i
\(213\) −7.30343 17.6320i −0.500423 1.20813i
\(214\) 0.785906 0.156326i 0.0537234 0.0106863i
\(215\) 0 0
\(216\) 0.426437 2.14385i 0.0290154 0.145870i
\(217\) 10.3647i 0.703600i
\(218\) −13.6462 2.71439i −0.924235 0.183842i
\(219\) 3.94318 + 9.51969i 0.266456 + 0.643281i
\(220\) 0 0
\(221\) −5.22094 + 5.49254i −0.351198 + 0.369468i
\(222\) −2.66523 2.66523i −0.178878 0.178878i
\(223\) −11.8905 4.92520i −0.796246 0.329816i −0.0527941 0.998605i \(-0.516813\pi\)
−0.743452 + 0.668790i \(0.766813\pi\)
\(224\) −1.30026 1.94597i −0.0868772 0.130021i
\(225\) 0 0
\(226\) −0.143780 0.0285995i −0.00956408 0.00190241i
\(227\) −4.99137 25.0933i −0.331289 1.66550i −0.683780 0.729688i \(-0.739665\pi\)
0.352491 0.935815i \(-0.385335\pi\)
\(228\) −8.34872 + 12.4947i −0.552908 + 0.827485i
\(229\) 4.78226 11.5454i 0.316021 0.762942i −0.683437 0.730010i \(-0.739515\pi\)
0.999458 0.0329322i \(-0.0104845\pi\)
\(230\) 0 0
\(231\) −3.83636 19.2867i −0.252414 1.26897i
\(232\) 0.598780 0.119105i 0.0393118 0.00781961i
\(233\) −3.93433 5.88814i −0.257747 0.385745i 0.679917 0.733289i \(-0.262016\pi\)
−0.937664 + 0.347544i \(0.887016\pi\)
\(234\) 2.63157 2.63157i 0.172031 0.172031i
\(235\) 0 0
\(236\) −11.7372 + 4.86169i −0.764024 + 0.316469i
\(237\) −8.17180 + 8.17180i −0.530815 + 0.530815i
\(238\) 1.64211 9.50899i 0.106442 0.616376i
\(239\) 19.6102i 1.26848i 0.773137 + 0.634239i \(0.218687\pi\)
−0.773137 + 0.634239i \(0.781313\pi\)
\(240\) 0 0
\(241\) −3.93961 + 2.63236i −0.253772 + 0.169565i −0.675949 0.736948i \(-0.736266\pi\)
0.422177 + 0.906513i \(0.361266\pi\)
\(242\) 3.04943 0.196025
\(243\) −15.0023 + 10.0242i −0.962401 + 0.643056i
\(244\) −3.68255 + 5.51133i −0.235751 + 0.352827i
\(245\) 0 0
\(246\) 7.15759 + 2.96477i 0.456351 + 0.189027i
\(247\) 11.3832 4.71507i 0.724295 0.300013i
\(248\) 3.68223 + 2.46039i 0.233822 + 0.156235i
\(249\) 26.0514 + 17.4070i 1.65094 + 1.10312i
\(250\) 0 0
\(251\) 1.58594 + 1.58594i 0.100104 + 0.100104i 0.755385 0.655281i \(-0.227450\pi\)
−0.655281 + 0.755385i \(0.727450\pi\)
\(252\) −0.924542 + 4.64799i −0.0582407 + 0.292796i
\(253\) −7.32240 + 17.6778i −0.460355 + 1.11140i
\(254\) −21.3408 −1.33904
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) 2.51235 6.06534i 0.156716 0.378345i −0.825947 0.563748i \(-0.809359\pi\)
0.982663 + 0.185403i \(0.0593589\pi\)
\(258\) −1.05875 + 5.32271i −0.0659151 + 0.331378i
\(259\) −2.78267 2.78267i −0.172907 0.172907i
\(260\) 0 0
\(261\) −1.02787 0.686803i −0.0636238 0.0425120i
\(262\) −10.7356 7.17330i −0.663248 0.443168i
\(263\) −4.74347 + 1.96481i −0.292495 + 0.121155i −0.524106 0.851653i \(-0.675600\pi\)
0.231611 + 0.972808i \(0.425600\pi\)
\(264\) −7.76261 3.21538i −0.477756 0.197893i
\(265\) 0 0
\(266\) −8.71662 + 13.0453i −0.534450 + 0.799861i
\(267\) −29.2484 + 19.5432i −1.78997 + 1.19602i
\(268\) −1.39040 −0.0849325
\(269\) −22.7608 + 15.2083i −1.38775 + 0.927266i −0.387767 + 0.921757i \(0.626754\pi\)
−0.999985 + 0.00550888i \(0.998246\pi\)
\(270\) 0 0
\(271\) 17.4427i 1.05957i 0.848132 + 0.529785i \(0.177727\pi\)
−0.848132 + 0.529785i \(0.822273\pi\)
\(272\) −2.98843 2.84065i −0.181200 0.172240i
\(273\) 6.81819 6.81819i 0.412656 0.412656i
\(274\) −1.98803 + 0.823469i −0.120101 + 0.0497476i
\(275\) 0 0
\(276\) 8.09156 8.09156i 0.487055 0.487055i
\(277\) −12.6377 18.9137i −0.759327 1.13641i −0.986692 0.162603i \(-0.948011\pi\)
0.227365 0.973810i \(-0.426989\pi\)
\(278\) −19.1022 + 3.79967i −1.14568 + 0.227889i
\(279\) −1.74945 8.79506i −0.104737 0.526546i
\(280\) 0 0
\(281\) −3.35617 + 8.10250i −0.200212 + 0.483355i −0.991815 0.127681i \(-0.959247\pi\)
0.791603 + 0.611035i \(0.209247\pi\)
\(282\) 13.2161 19.7792i 0.787005 1.17784i
\(283\) 4.18603 + 21.0446i 0.248834 + 1.25097i 0.879869 + 0.475216i \(0.157630\pi\)
−0.631035 + 0.775754i \(0.717370\pi\)
\(284\) −8.35023 1.66096i −0.495495 0.0985600i
\(285\) 0 0
\(286\) 3.82736 + 5.72804i 0.226316 + 0.338706i
\(287\) 7.47300 + 3.09542i 0.441117 + 0.182717i
\(288\) 1.43181 + 1.43181i 0.0843701 + 0.0843701i
\(289\) −0.861383 16.9782i −0.0506696 0.998715i
\(290\) 0 0
\(291\) −9.65227 23.3026i −0.565826 1.36603i
\(292\) 4.50836 + 0.896768i 0.263832 + 0.0524794i
\(293\) 30.1287i 1.76014i −0.474847 0.880068i \(-0.657497\pi\)
0.474847 0.880068i \(-0.342503\pi\)
\(294\) 0.665823 3.34732i 0.0388316 0.195219i
\(295\) 0 0
\(296\) −1.64915 + 0.328036i −0.0958549 + 0.0190667i
\(297\) −3.13537 7.56945i −0.181933 0.439224i
\(298\) −7.28713 17.5927i −0.422132 1.01912i
\(299\) −9.20213 + 1.83042i −0.532173 + 0.105856i
\(300\) 0 0
\(301\) −1.10541 + 5.55726i −0.0637146 + 0.320315i
\(302\) 5.59924i 0.322200i
\(303\) 36.0801 + 7.17677i 2.07275 + 0.412295i
\(304\) 2.56542 + 6.19346i 0.147137 + 0.355219i
\(305\) 0 0
\(306\) 0.211583 + 8.34613i 0.0120954 + 0.477116i
\(307\) 3.26677 + 3.26677i 0.186445 + 0.186445i 0.794157 0.607713i \(-0.207913\pi\)
−0.607713 + 0.794157i \(0.707913\pi\)
\(308\) −8.10467 3.35707i −0.461807 0.191287i
\(309\) 19.7930 + 29.6223i 1.12598 + 1.68515i
\(310\) 0 0
\(311\) 21.3083 + 4.23849i 1.20828 + 0.240343i 0.757827 0.652455i \(-0.226261\pi\)
0.450457 + 0.892798i \(0.351261\pi\)
\(312\) −0.803765 4.04080i −0.0455042 0.228765i
\(313\) −11.6411 + 17.4221i −0.657993 + 0.984757i 0.341007 + 0.940061i \(0.389232\pi\)
−0.999001 + 0.0446961i \(0.985768\pi\)
\(314\) −0.933309 + 2.25321i −0.0526697 + 0.127156i
\(315\) 0 0
\(316\) 1.00579 + 5.05643i 0.0565799 + 0.284446i
\(317\) 5.61256 1.11641i 0.315233 0.0627037i −0.0349384 0.999389i \(-0.511123\pi\)
0.350171 + 0.936686i \(0.386123\pi\)
\(318\) 2.38455 + 3.56873i 0.133719 + 0.200124i
\(319\) 1.61811 1.61811i 0.0905967 0.0905967i
\(320\) 0 0
\(321\) −1.65949 + 0.687384i −0.0926238 + 0.0383660i
\(322\) 8.44812 8.44812i 0.470795 0.470795i
\(323\) −9.92692 + 25.7962i −0.552349 + 1.43534i
\(324\) 10.9745i 0.609694i
\(325\) 0 0
\(326\) 5.99898 4.00839i 0.332253 0.222004i
\(327\) 31.1889 1.72475
\(328\) 2.87366 1.92012i 0.158671 0.106021i
\(329\) 13.7984 20.6508i 0.760732 1.13852i
\(330\) 0 0
\(331\) −27.3797 11.3411i −1.50493 0.623361i −0.530423 0.847733i \(-0.677967\pi\)
−0.974503 + 0.224372i \(0.927967\pi\)
\(332\) 12.9133 5.34887i 0.708710 0.293557i
\(333\) 2.83095 + 1.89158i 0.155135 + 0.103658i
\(334\) −12.7964 8.55028i −0.700188 0.467851i
\(335\) 0 0
\(336\) 3.70970 + 3.70970i 0.202381 + 0.202381i
\(337\) −6.41803 + 32.2656i −0.349612 + 1.75762i 0.260662 + 0.965430i \(0.416059\pi\)
−0.610275 + 0.792190i \(0.708941\pi\)
\(338\) 3.68218 8.88956i 0.200284 0.483528i
\(339\) 0.328614 0.0178479
\(340\) 0 0
\(341\) 16.5995 0.898912
\(342\) 5.19467 12.5410i 0.280895 0.678142i
\(343\) 3.89129 19.5629i 0.210110 1.05629i
\(344\) 1.71191 + 1.71191i 0.0923000 + 0.0923000i
\(345\) 0 0
\(346\) 2.52491 + 1.68709i 0.135740 + 0.0906985i
\(347\) −16.3048 10.8945i −0.875290 0.584850i 0.0347382 0.999396i \(-0.488940\pi\)
−0.910028 + 0.414546i \(0.863940\pi\)
\(348\) −1.26436 + 0.523716i −0.0677770 + 0.0280741i
\(349\) 8.38547 + 3.47337i 0.448864 + 0.185925i 0.595652 0.803242i \(-0.296894\pi\)
−0.146788 + 0.989168i \(0.546894\pi\)
\(350\) 0 0
\(351\) 2.23197 3.34038i 0.119134 0.178297i
\(352\) −3.11656 + 2.08242i −0.166113 + 0.110993i
\(353\) 30.7498 1.63665 0.818323 0.574759i \(-0.194904\pi\)
0.818323 + 0.574759i \(0.194904\pi\)
\(354\) 23.6787 15.8216i 1.25851 0.840907i
\(355\) 0 0
\(356\) 15.6925i 0.831702i
\(357\) 0.548195 + 21.6241i 0.0290136 + 1.14447i
\(358\) 9.69278 9.69278i 0.512279 0.512279i
\(359\) −14.0992 + 5.84010i −0.744129 + 0.308228i −0.722344 0.691534i \(-0.756935\pi\)
−0.0217856 + 0.999763i \(0.506935\pi\)
\(360\) 0 0
\(361\) 18.3426 18.3426i 0.965399 0.965399i
\(362\) 5.41668 + 8.10663i 0.284694 + 0.426075i
\(363\) −6.70433 + 1.33357i −0.351886 + 0.0699945i
\(364\) −0.839184 4.21886i −0.0439852 0.221128i
\(365\) 0 0
\(366\) 5.68608 13.7274i 0.297216 0.717543i
\(367\) −18.3527 + 27.4667i −0.958003 + 1.43375i −0.0577767 + 0.998330i \(0.518401\pi\)
−0.900226 + 0.435423i \(0.856599\pi\)
\(368\) −0.995910 5.00678i −0.0519154 0.260996i
\(369\) −6.86377 1.36529i −0.357313 0.0710741i
\(370\) 0 0
\(371\) 2.48963 + 3.72599i 0.129255 + 0.193444i
\(372\) −9.17156 3.79898i −0.475523 0.196968i
\(373\) −2.61742 2.61742i −0.135525 0.135525i 0.636090 0.771615i \(-0.280551\pi\)
−0.771615 + 0.636090i \(0.780551\pi\)
\(374\) −15.2290 2.62991i −0.787475 0.135989i
\(375\) 0 0
\(376\) −4.06106 9.80427i −0.209433 0.505617i
\(377\) 1.10052 + 0.218907i 0.0566796 + 0.0112743i
\(378\) 5.11576i 0.263126i
\(379\) 1.01649 5.11024i 0.0522136 0.262495i −0.945857 0.324583i \(-0.894776\pi\)
0.998071 + 0.0620880i \(0.0197759\pi\)
\(380\) 0 0
\(381\) 46.9188 9.33274i 2.40373 0.478131i
\(382\) −7.05974 17.0437i −0.361208 0.872033i
\(383\) −0.781961 1.88782i −0.0399564 0.0964632i 0.902642 0.430393i \(-0.141625\pi\)
−0.942598 + 0.333930i \(0.891625\pi\)
\(384\) 2.19855 0.437319i 0.112194 0.0223169i
\(385\) 0 0
\(386\) −4.06249 + 20.4235i −0.206775 + 1.03953i
\(387\) 4.90226i 0.249196i
\(388\) −11.0357 2.19514i −0.560254 0.111441i
\(389\) −1.19281 2.87969i −0.0604777 0.146006i 0.890752 0.454490i \(-0.150178\pi\)
−0.951230 + 0.308484i \(0.900178\pi\)
\(390\) 0 0
\(391\) 11.2463 17.7914i 0.568750 0.899750i
\(392\) −1.07658 1.07658i −0.0543753 0.0543753i
\(393\) 26.7398 + 11.0760i 1.34885 + 0.558710i
\(394\) 2.35217 + 3.52027i 0.118500 + 0.177348i
\(395\) 0 0
\(396\) 7.44395 + 1.48069i 0.374072 + 0.0744076i
\(397\) 1.62321 + 8.16045i 0.0814668 + 0.409561i 0.999902 + 0.0139900i \(0.00445331\pi\)
−0.918435 + 0.395571i \(0.870547\pi\)
\(398\) −14.6373 + 21.9062i −0.733700 + 1.09806i
\(399\) 13.4590 32.4928i 0.673791 1.62668i
\(400\) 0 0
\(401\) 3.90028 + 19.6080i 0.194771 + 0.979178i 0.947234 + 0.320544i \(0.103866\pi\)
−0.752463 + 0.658635i \(0.771134\pi\)
\(402\) 3.05688 0.608051i 0.152463 0.0303268i
\(403\) 4.52204 + 6.76771i 0.225259 + 0.337124i
\(404\) 11.6042 11.6042i 0.577331 0.577331i
\(405\) 0 0
\(406\) −1.32008 + 0.546794i −0.0655144 + 0.0271369i
\(407\) −4.45657 + 4.45657i −0.220904 + 0.220904i
\(408\) 7.81249 + 4.93843i 0.386776 + 0.244489i
\(409\) 30.7813i 1.52203i −0.648731 0.761017i \(-0.724700\pi\)
0.648731 0.761017i \(-0.275300\pi\)
\(410\) 0 0
\(411\) 4.01067 2.67985i 0.197832 0.132187i
\(412\) 15.8931 0.782997
\(413\) 24.7221 16.5188i 1.21649 0.812835i
\(414\) −5.74279 + 8.59470i −0.282243 + 0.422406i
\(415\) 0 0
\(416\) −1.69803 0.703348i −0.0832529 0.0344845i
\(417\) 40.3356 16.7076i 1.97524 0.818173i
\(418\) 20.8927 + 13.9600i 1.02189 + 0.682808i
\(419\) −12.4734 8.33444i −0.609364 0.407164i 0.212244 0.977217i \(-0.431923\pi\)
−0.821608 + 0.570053i \(0.806923\pi\)
\(420\) 0 0
\(421\) 9.43644 + 9.43644i 0.459904 + 0.459904i 0.898624 0.438720i \(-0.144568\pi\)
−0.438720 + 0.898624i \(0.644568\pi\)
\(422\) −4.33527 + 21.7949i −0.211038 + 1.06096i
\(423\) −8.22318 + 19.8525i −0.399825 + 0.965262i
\(424\) 1.91472 0.0929868
\(425\) 0 0
\(426\) 19.0848 0.924661
\(427\) 5.93664 14.3323i 0.287294 0.693589i
\(428\) −0.156326 + 0.785906i −0.00755632 + 0.0379882i
\(429\) −10.9196 10.9196i −0.527205 0.527205i
\(430\) 0 0
\(431\) −0.709006 0.473743i −0.0341516 0.0228194i 0.538377 0.842704i \(-0.319038\pi\)
−0.572529 + 0.819885i \(0.694038\pi\)
\(432\) 1.81746 + 1.21439i 0.0874428 + 0.0584274i
\(433\) 8.69207 3.60038i 0.417714 0.173023i −0.163919 0.986474i \(-0.552414\pi\)
0.581634 + 0.813451i \(0.302414\pi\)
\(434\) −9.57571 3.96639i −0.459649 0.190393i
\(435\) 0 0
\(436\) 7.72993 11.5687i 0.370197 0.554038i
\(437\) −28.4544 + 19.0126i −1.36116 + 0.909496i
\(438\) −10.3040 −0.492346
\(439\) −21.0410 + 14.0592i −1.00423 + 0.671007i −0.944944 0.327233i \(-0.893884\pi\)
−0.0592901 + 0.998241i \(0.518884\pi\)
\(440\) 0 0
\(441\) 3.08290i 0.146805i
\(442\) −3.07648 6.92542i −0.146333 0.329409i
\(443\) 15.8653 15.8653i 0.753785 0.753785i −0.221398 0.975184i \(-0.571062\pi\)
0.975184 + 0.221398i \(0.0710620\pi\)
\(444\) 3.48229 1.44241i 0.165262 0.0684538i
\(445\) 0 0
\(446\) 9.10058 9.10058i 0.430925 0.430925i
\(447\) 23.7147 + 35.4916i 1.12167 + 1.67870i
\(448\) 2.29543 0.456590i 0.108449 0.0215719i
\(449\) −4.30949 21.6653i −0.203378 1.02245i −0.938701 0.344732i \(-0.887970\pi\)
0.735324 0.677716i \(-0.237030\pi\)
\(450\) 0 0
\(451\) 4.95744 11.9683i 0.233437 0.563566i
\(452\) 0.0814446 0.121890i 0.00383083 0.00573325i
\(453\) 2.44866 + 12.3102i 0.115048 + 0.578385i
\(454\) 25.0933 + 4.99137i 1.17769 + 0.234257i
\(455\) 0 0
\(456\) −8.34872 12.4947i −0.390965 0.585120i
\(457\) −12.0290 4.98260i −0.562695 0.233076i 0.0831596 0.996536i \(-0.473499\pi\)
−0.645855 + 0.763460i \(0.723499\pi\)
\(458\) 8.83647 + 8.83647i 0.412901 + 0.412901i
\(459\) 1.98170 + 8.79191i 0.0924976 + 0.410371i
\(460\) 0 0
\(461\) −1.87457 4.52561i −0.0873073 0.210779i 0.874195 0.485575i \(-0.161390\pi\)
−0.961503 + 0.274796i \(0.911390\pi\)
\(462\) 19.2867 + 3.83636i 0.897297 + 0.178483i
\(463\) 5.65812i 0.262955i −0.991319 0.131478i \(-0.958028\pi\)
0.991319 0.131478i \(-0.0419722\pi\)
\(464\) −0.119105 + 0.598780i −0.00552930 + 0.0277977i
\(465\) 0 0
\(466\) 6.94554 1.38155i 0.321746 0.0639992i
\(467\) 10.5662 + 25.5090i 0.488944 + 1.18042i 0.955252 + 0.295793i \(0.0955839\pi\)
−0.466308 + 0.884622i \(0.654416\pi\)
\(468\) 1.42420 + 3.43832i 0.0658335 + 0.158936i
\(469\) 3.19158 0.634845i 0.147373 0.0293144i
\(470\) 0 0
\(471\) 1.06656 5.36195i 0.0491444 0.247066i
\(472\) 12.7042i 0.584759i
\(473\) 8.90019 + 1.77036i 0.409231 + 0.0814011i
\(474\) −4.42255 10.6770i −0.203134 0.490409i
\(475\) 0 0
\(476\) 8.15675 + 5.15604i 0.373864 + 0.236327i
\(477\) −2.74151 2.74151i −0.125525 0.125525i
\(478\) −18.1175 7.50450i −0.828673 0.343248i
\(479\) 1.20322 + 1.80075i 0.0549767 + 0.0822784i 0.857940 0.513751i \(-0.171744\pi\)
−0.802963 + 0.596029i \(0.796744\pi\)
\(480\) 0 0
\(481\) −3.03103 0.602910i −0.138203 0.0274903i
\(482\) −0.924362 4.64708i −0.0421035 0.211669i
\(483\) −14.8791 + 22.2682i −0.677023 + 1.01324i
\(484\) −1.16697 + 2.81731i −0.0530439 + 0.128059i
\(485\) 0 0
\(486\) −3.52005 17.6965i −0.159673 0.802728i
\(487\) 34.1092 6.78474i 1.54564 0.307446i 0.652695 0.757620i \(-0.273638\pi\)
0.892941 + 0.450174i \(0.148638\pi\)
\(488\) −3.68255 5.51133i −0.166701 0.249486i
\(489\) −11.4361 + 11.4361i −0.517159 + 0.517159i
\(490\) 0 0
\(491\) 1.19271 0.494037i 0.0538263 0.0222956i −0.355608 0.934635i \(-0.615726\pi\)
0.409434 + 0.912340i \(0.365726\pi\)
\(492\) −5.47818 + 5.47818i −0.246976 + 0.246976i
\(493\) −2.05686 + 1.45107i −0.0926364 + 0.0653531i
\(494\) 12.3211i 0.554351i
\(495\) 0 0
\(496\) −3.68223 + 2.46039i −0.165337 + 0.110475i
\(497\) 19.9258 0.893793
\(498\) −26.0514 + 17.4070i −1.16739 + 0.780026i
\(499\) 6.25854 9.36656i 0.280171 0.419305i −0.664519 0.747272i \(-0.731363\pi\)
0.944689 + 0.327967i \(0.106363\pi\)
\(500\) 0 0
\(501\) 31.8728 + 13.2021i 1.42397 + 0.589828i
\(502\) −2.07213 + 0.858306i −0.0924839 + 0.0383081i
\(503\) −2.04917 1.36921i −0.0913680 0.0610501i 0.509047 0.860739i \(-0.329998\pi\)
−0.600415 + 0.799689i \(0.704998\pi\)
\(504\) −3.94037 2.63287i −0.175518 0.117277i
\(505\) 0 0
\(506\) −13.5300 13.5300i −0.601483 0.601483i
\(507\) −4.20788 + 21.1545i −0.186879 + 0.939502i
\(508\) 8.16676 19.7163i 0.362342 0.874770i
\(509\) 0.909764 0.0403246 0.0201623 0.999797i \(-0.493582\pi\)
0.0201623 + 0.999797i \(0.493582\pi\)
\(510\) 0 0
\(511\) −10.7581 −0.475910
\(512\) 0.382683 0.923880i 0.0169124 0.0408301i
\(513\) 2.85873 14.3718i 0.126216 0.634531i
\(514\) 4.64221 + 4.64221i 0.204759 + 0.204759i
\(515\) 0 0
\(516\) −4.51238 3.01507i −0.198646 0.132731i
\(517\) −33.0732 22.0988i −1.45456 0.971904i
\(518\) 3.63574 1.50597i 0.159745 0.0661686i
\(519\) −6.28894 2.60496i −0.276054 0.114345i
\(520\) 0 0
\(521\) −11.4721 + 17.1692i −0.502603 + 0.752198i −0.992848 0.119386i \(-0.961907\pi\)
0.490245 + 0.871585i \(0.336907\pi\)
\(522\) 1.02787 0.686803i 0.0449888 0.0300606i
\(523\) −36.0415 −1.57599 −0.787993 0.615684i \(-0.788880\pi\)
−0.787993 + 0.615684i \(0.788880\pi\)
\(524\) 10.7356 7.17330i 0.468987 0.313367i
\(525\) 0 0
\(526\) 5.13429i 0.223866i
\(527\) −17.9932 3.10725i −0.783796 0.135354i
\(528\) 5.94124 5.94124i 0.258559 0.258559i
\(529\) 2.82674 1.17087i 0.122902 0.0509075i
\(530\) 0 0
\(531\) −18.1900 + 18.1900i −0.789379 + 0.789379i
\(532\) −8.71662 13.0453i −0.377913 0.565587i
\(533\) 6.23007 1.23924i 0.269854 0.0536774i
\(534\) −6.86264 34.5008i −0.296976 1.49300i
\(535\) 0 0
\(536\) 0.532085 1.28457i 0.0229826 0.0554848i
\(537\) −17.0712 + 25.5489i −0.736678 + 1.10252i
\(538\) −5.34044 26.8482i −0.230243 1.15751i
\(539\) −5.59710 1.11333i −0.241084 0.0479546i
\(540\) 0 0
\(541\) 23.7268 + 35.5096i 1.02009 + 1.52668i 0.839677 + 0.543086i \(0.182744\pi\)
0.180416 + 0.983590i \(0.442256\pi\)
\(542\) −16.1150 6.67504i −0.692197 0.286717i
\(543\) −15.4540 15.4540i −0.663196 0.663196i
\(544\) 3.76804 1.67388i 0.161553 0.0717668i
\(545\) 0 0
\(546\) 3.68998 + 8.90840i 0.157917 + 0.381244i
\(547\) 16.4468 + 3.27148i 0.703216 + 0.139878i 0.533731 0.845655i \(-0.320790\pi\)
0.169485 + 0.985533i \(0.445790\pi\)
\(548\) 2.15183i 0.0919216i
\(549\) −2.61846 + 13.1639i −0.111753 + 0.561821i
\(550\) 0 0
\(551\) 4.01407 0.798449i 0.171005 0.0340151i
\(552\) 4.37912 + 10.5721i 0.186388 + 0.449980i
\(553\) −4.61743 11.1475i −0.196353 0.474038i
\(554\) 22.3102 4.43778i 0.947870 0.188543i
\(555\) 0 0
\(556\) 3.79967 19.1022i 0.161142 0.810116i
\(557\) 27.0952i 1.14806i −0.818835 0.574029i \(-0.805379\pi\)
0.818835 0.574029i \(-0.194621\pi\)
\(558\) 8.79506 + 1.74945i 0.372325 + 0.0740600i
\(559\) 1.70281 + 4.11095i 0.0720212 + 0.173874i
\(560\) 0 0
\(561\) 34.6320 0.877958i 1.46216 0.0370674i
\(562\) −6.20139 6.20139i −0.261590 0.261590i
\(563\) −14.8543 6.15287i −0.626036 0.259313i 0.0470317 0.998893i \(-0.485024\pi\)
−0.673068 + 0.739581i \(0.735024\pi\)
\(564\) 13.2161 + 19.7792i 0.556497 + 0.832856i
\(565\) 0 0
\(566\) −21.0446 4.18603i −0.884570 0.175952i
\(567\) −5.01085 25.1912i −0.210436 1.05793i
\(568\) 4.73002 7.07898i 0.198467 0.297027i
\(569\) −8.22349 + 19.8533i −0.344747 + 0.832292i 0.652476 + 0.757810i \(0.273730\pi\)
−0.997222 + 0.0744822i \(0.976270\pi\)
\(570\) 0 0
\(571\) 0.517900 + 2.60366i 0.0216735 + 0.108960i 0.990108 0.140309i \(-0.0448097\pi\)
−0.968434 + 0.249269i \(0.919810\pi\)
\(572\) −6.75669 + 1.34399i −0.282511 + 0.0561950i
\(573\) 22.9748 + 34.3842i 0.959785 + 1.43642i
\(574\) −5.71958 + 5.71958i −0.238731 + 0.238731i
\(575\) 0 0
\(576\) −1.87075 + 0.774889i −0.0779478 + 0.0322871i
\(577\) −13.7472 + 13.7472i −0.572302 + 0.572302i −0.932771 0.360469i \(-0.882617\pi\)
0.360469 + 0.932771i \(0.382617\pi\)
\(578\) 16.0154 + 5.70145i 0.666153 + 0.237149i
\(579\) 46.6788i 1.93990i
\(580\) 0 0
\(581\) −27.1994 + 18.1741i −1.12842 + 0.753987i
\(582\) 25.2226 1.04551
\(583\) 5.96733 3.98724i 0.247141 0.165135i
\(584\) −2.55378 + 3.82200i −0.105676 + 0.158155i
\(585\) 0 0
\(586\) 27.8353 + 11.5297i 1.14986 + 0.476289i
\(587\) −34.6515 + 14.3531i −1.43022 + 0.592416i −0.957406 0.288746i \(-0.906762\pi\)
−0.472814 + 0.881162i \(0.656762\pi\)
\(588\) 2.83772 + 1.89610i 0.117026 + 0.0781940i
\(589\) 24.6848 + 16.4938i 1.01712 + 0.679617i
\(590\) 0 0
\(591\) −6.71084 6.71084i −0.276047 0.276047i
\(592\) 0.328036 1.64915i 0.0134822 0.0677797i
\(593\) −12.9310 + 31.2183i −0.531014 + 1.28198i 0.399838 + 0.916586i \(0.369066\pi\)
−0.930852 + 0.365396i \(0.880934\pi\)
\(594\) 8.19311 0.336168
\(595\) 0 0
\(596\) 19.0422 0.779998
\(597\) 22.6008 54.5632i 0.924989 2.23312i
\(598\) 1.83042 9.20213i 0.0748514 0.376303i
\(599\) −9.94392 9.94392i −0.406297 0.406297i 0.474148 0.880445i \(-0.342756\pi\)
−0.880445 + 0.474148i \(0.842756\pi\)
\(600\) 0 0
\(601\) −11.0793 7.40292i −0.451932 0.301972i 0.308694 0.951161i \(-0.400108\pi\)
−0.760626 + 0.649190i \(0.775108\pi\)
\(602\) −4.71122 3.14793i −0.192015 0.128300i
\(603\) −2.60110 + 1.07741i −0.105925 + 0.0438755i
\(604\) 5.17302 + 2.14274i 0.210487 + 0.0871867i
\(605\) 0 0
\(606\) −20.4377 + 30.5872i −0.830226 + 1.24252i
\(607\) 30.4622 20.3542i 1.23642 0.826152i 0.246693 0.969094i \(-0.420656\pi\)
0.989731 + 0.142942i \(0.0456561\pi\)
\(608\) −6.70375 −0.271873
\(609\) 2.66314 1.77945i 0.107916 0.0721070i
\(610\) 0 0
\(611\) 19.5043i 0.789060i
\(612\) −7.79178 2.99845i −0.314964 0.121205i
\(613\) −14.5991 + 14.5991i −0.589652 + 0.589652i −0.937537 0.347885i \(-0.886900\pi\)
0.347885 + 0.937537i \(0.386900\pi\)
\(614\) −4.26824 + 1.76796i −0.172252 + 0.0713493i
\(615\) 0 0
\(616\) 6.20305 6.20305i 0.249928 0.249928i
\(617\) −12.4489 18.6311i −0.501174 0.750060i 0.491501 0.870877i \(-0.336449\pi\)
−0.992675 + 0.120817i \(0.961449\pi\)
\(618\) −34.9418 + 6.95036i −1.40557 + 0.279585i
\(619\) 6.26244 + 31.4834i 0.251709 + 1.26543i 0.875264 + 0.483646i \(0.160688\pi\)
−0.623555 + 0.781780i \(0.714312\pi\)
\(620\) 0 0
\(621\) −4.27015 + 10.3091i −0.171355 + 0.413688i
\(622\) −12.0702 + 18.0643i −0.483971 + 0.724314i
\(623\) −7.16505 36.0211i −0.287062 1.44316i
\(624\) 4.04080 + 0.803765i 0.161761 + 0.0321764i
\(625\) 0 0
\(626\) −11.6411 17.4221i −0.465272 0.696328i
\(627\) −52.0386 21.5551i −2.07822 0.860828i
\(628\) −1.72453 1.72453i −0.0688163 0.0688163i
\(629\) 5.66498 3.99653i 0.225877 0.159352i
\(630\) 0 0
\(631\) −10.6606 25.7369i −0.424390 1.02457i −0.981037 0.193819i \(-0.937912\pi\)
0.556647 0.830749i \(-0.312088\pi\)
\(632\) −5.05643 1.00579i −0.201134 0.0400080i
\(633\) 49.8131i 1.97989i
\(634\) −1.11641 + 5.61256i −0.0443382 + 0.222903i
\(635\) 0 0
\(636\) −4.20960 + 0.837342i −0.166922 + 0.0332028i
\(637\) −1.07085 2.58527i −0.0424288 0.102432i
\(638\) 0.875714 + 2.11416i 0.0346699 + 0.0837004i
\(639\) −16.9082 + 3.36326i −0.668879 + 0.133048i
\(640\) 0 0
\(641\) −3.83093 + 19.2594i −0.151313 + 0.760700i 0.828376 + 0.560173i \(0.189265\pi\)
−0.979688 + 0.200527i \(0.935735\pi\)
\(642\) 1.79622i 0.0708912i
\(643\) 9.58258 + 1.90609i 0.377900 + 0.0751690i 0.380386 0.924828i \(-0.375791\pi\)
−0.00248571 + 0.999997i \(0.500791\pi\)
\(644\) 4.57209 + 11.0380i 0.180166 + 0.434958i
\(645\) 0 0
\(646\) −20.0337 19.0430i −0.788214 0.749238i
\(647\) 3.93429 + 3.93429i 0.154673 + 0.154673i 0.780201 0.625528i \(-0.215117\pi\)
−0.625528 + 0.780201i \(0.715117\pi\)
\(648\) −10.1391 4.19976i −0.398302 0.164982i
\(649\) −26.4555 39.5935i −1.03847 1.55418i
\(650\) 0 0
\(651\) 22.7873 + 4.53267i 0.893104 + 0.177649i
\(652\) 1.40756 + 7.07627i 0.0551242 + 0.277128i
\(653\) 1.42563 2.13360i 0.0557891 0.0834942i −0.802526 0.596617i \(-0.796511\pi\)
0.858315 + 0.513122i \(0.171511\pi\)
\(654\) −11.9355 + 28.8148i −0.466714 + 1.12675i
\(655\) 0 0
\(656\) 0.674255 + 3.38971i 0.0263252 + 0.132346i
\(657\) 9.12889 1.81585i 0.356152 0.0708431i
\(658\) 13.7984 + 20.6508i 0.537919 + 0.805053i
\(659\) −20.6837 + 20.6837i −0.805724 + 0.805724i −0.983984 0.178259i \(-0.942953\pi\)
0.178259 + 0.983984i \(0.442953\pi\)
\(660\) 0 0
\(661\) 20.8000 8.61565i 0.809027 0.335110i 0.0604611 0.998171i \(-0.480743\pi\)
0.748566 + 0.663061i \(0.230743\pi\)
\(662\) 20.9555 20.9555i 0.814460 0.814460i
\(663\) 9.79242 + 13.8805i 0.380306 + 0.539074i
\(664\) 13.9773i 0.542423i
\(665\) 0 0
\(666\) −2.83095 + 1.89158i −0.109697 + 0.0732973i
\(667\) −3.11657 −0.120674
\(668\) 12.7964 8.55028i 0.495108 0.330820i
\(669\) −16.0283 + 23.9880i −0.619688 + 0.927429i
\(670\) 0 0
\(671\) −22.9538 9.50778i −0.886122 0.367044i
\(672\) −4.84696 + 2.00768i −0.186975 + 0.0774478i
\(673\) −24.0812 16.0905i −0.928260 0.620244i −0.00317165 0.999995i \(-0.501010\pi\)
−0.925089 + 0.379751i \(0.876010\pi\)
\(674\) −27.3535 18.2770i −1.05362 0.704004i
\(675\) 0 0
\(676\) 6.80377 + 6.80377i 0.261684 + 0.261684i
\(677\) −2.97809 + 14.9719i −0.114457 + 0.575416i 0.880409 + 0.474216i \(0.157268\pi\)
−0.994866 + 0.101200i \(0.967732\pi\)
\(678\) −0.125755 + 0.303600i −0.00482960 + 0.0116597i
\(679\) 26.3341 1.01061
\(680\) 0 0
\(681\) −57.3518 −2.19773
\(682\) −6.35234 + 15.3359i −0.243244 + 0.587242i
\(683\) 2.38725 12.0015i 0.0913457 0.459226i −0.907856 0.419282i \(-0.862282\pi\)
0.999202 0.0399442i \(-0.0127180\pi\)
\(684\) 9.59849 + 9.59849i 0.367008 + 0.367008i
\(685\) 0 0
\(686\) 16.5846 + 11.0815i 0.633203 + 0.423092i
\(687\) −23.2918 15.5631i −0.888638 0.593769i
\(688\) −2.23672 + 0.926479i −0.0852741 + 0.0353217i
\(689\) 3.25125 + 1.34671i 0.123863 + 0.0513056i
\(690\) 0 0
\(691\) 2.95856 4.42779i 0.112549 0.168441i −0.770919 0.636933i \(-0.780203\pi\)
0.883468 + 0.468492i \(0.155203\pi\)
\(692\) −2.52491 + 1.68709i −0.0959826 + 0.0641335i
\(693\) −17.7632 −0.674767
\(694\) 16.3048 10.8945i 0.618923 0.413551i
\(695\) 0 0
\(696\) 1.36854i 0.0518742i
\(697\) −7.61403 + 12.0452i −0.288402 + 0.456245i
\(698\) −6.41796 + 6.41796i −0.242923 + 0.242923i
\(699\) −14.6659 + 6.07483i −0.554717 + 0.229771i
\(700\) 0 0
\(701\) 20.0755 20.0755i 0.758242 0.758242i −0.217760 0.976002i \(-0.569875\pi\)
0.976002 + 0.217760i \(0.0698750\pi\)
\(702\) 2.23197 + 3.34038i 0.0842404 + 0.126075i
\(703\) −11.0555 + 2.19908i −0.416966 + 0.0829397i
\(704\) −0.731249 3.67624i −0.0275600 0.138553i
\(705\) 0 0
\(706\) −11.7674 + 28.4091i −0.442873 + 1.06919i
\(707\) −21.3383 + 31.9351i −0.802510 + 1.20104i
\(708\) 5.55580 + 27.9309i 0.208800 + 1.04971i
\(709\) 4.13454 + 0.822411i 0.155276 + 0.0308863i 0.272116 0.962264i \(-0.412277\pi\)
−0.116840 + 0.993151i \(0.537277\pi\)
\(710\) 0 0
\(711\) 5.79974 + 8.67993i 0.217507 + 0.325523i
\(712\) −14.4980 6.00527i −0.543335 0.225057i
\(713\) −15.9858 15.9858i −0.598672 0.598672i
\(714\) −20.1879 7.76873i −0.755512 0.290738i
\(715\) 0 0
\(716\) 5.24569 + 12.6642i 0.196041 + 0.473284i
\(717\) 43.1141 + 8.57592i 1.61012 + 0.320274i
\(718\) 15.2609i 0.569532i
\(719\) −4.31495 + 21.6927i −0.160921 + 0.809003i 0.813026 + 0.582227i \(0.197818\pi\)
−0.973947 + 0.226776i \(0.927182\pi\)
\(720\) 0 0
\(721\) −36.4816 + 7.25664i −1.35865 + 0.270251i
\(722\) 9.92693 + 23.9657i 0.369442 + 0.891913i
\(723\) 4.06452 + 9.81262i 0.151161 + 0.364935i
\(724\) −9.56242 + 1.90208i −0.355385 + 0.0706904i
\(725\) 0 0
\(726\) 1.33357 6.70433i 0.0494936 0.248821i
\(727\) 13.9898i 0.518853i −0.965763 0.259427i \(-0.916466\pi\)
0.965763 0.259427i \(-0.0835335\pi\)
\(728\) 4.21886 + 0.839184i 0.156361 + 0.0311022i
\(729\) 2.87875 + 6.94991i 0.106620 + 0.257404i
\(730\) 0 0
\(731\) −9.31607 3.58503i −0.344567 0.132597i
\(732\) 10.5065 + 10.5065i 0.388332 + 0.388332i
\(733\) −33.9907 14.0794i −1.25548 0.520035i −0.346958 0.937881i \(-0.612785\pi\)
−0.908518 + 0.417845i \(0.862785\pi\)
\(734\) −18.3527 27.4667i −0.677410 1.01382i
\(735\) 0 0
\(736\) 5.00678 + 0.995910i 0.184552 + 0.0367097i
\(737\) −1.01673 5.11145i −0.0374518 0.188283i
\(738\) 3.88801 5.81882i 0.143120 0.214194i
\(739\) −9.20457 + 22.2218i −0.338596 + 0.817442i 0.659255 + 0.751919i \(0.270872\pi\)
−0.997851 + 0.0655233i \(0.979128\pi\)
\(740\) 0 0
\(741\) −5.38824 27.0885i −0.197942 0.995122i
\(742\) −4.39510 + 0.874240i −0.161349 + 0.0320944i
\(743\) 3.30617 + 4.94803i 0.121292 + 0.181526i 0.887147 0.461487i \(-0.152684\pi\)
−0.765855 + 0.643013i \(0.777684\pi\)
\(744\) 7.01961 7.01961i 0.257351 0.257351i
\(745\) 0 0
\(746\) 3.41982 1.41654i 0.125209 0.0518631i
\(747\) 20.0128 20.0128i 0.732229 0.732229i
\(748\) 8.25763 13.0634i 0.301929 0.477645i
\(749\) 1.87537i 0.0685246i
\(750\) 0 0
\(751\) −11.7286 + 7.83680i −0.427983 + 0.285969i −0.750847 0.660476i \(-0.770354\pi\)
0.322864 + 0.946445i \(0.395354\pi\)
\(752\) 10.6121 0.386982
\(753\) 4.18034 2.79322i 0.152340 0.101790i
\(754\) −0.623394 + 0.932975i −0.0227027 + 0.0339770i
\(755\) 0 0
\(756\) −4.72635 1.95772i −0.171896 0.0712015i
\(757\) 29.1438 12.0718i 1.05925 0.438755i 0.216064 0.976379i \(-0.430678\pi\)
0.843185 + 0.537624i \(0.180678\pi\)
\(758\) 4.33225 + 2.89472i 0.157354 + 0.105141i
\(759\) 35.6634 + 23.8295i 1.29450 + 0.864957i
\(760\) 0 0
\(761\) −8.41792 8.41792i −0.305149 0.305149i 0.537875 0.843024i \(-0.319227\pi\)
−0.843024 + 0.537875i \(0.819227\pi\)
\(762\) −9.33274 + 46.9188i −0.338089 + 1.69969i
\(763\) −12.4614 + 30.0845i −0.451133 + 1.08913i
\(764\) 18.4480 0.667425
\(765\) 0 0
\(766\) 2.04336 0.0738297
\(767\) 8.93548 21.5722i 0.322641 0.778925i
\(768\) −0.437319 + 2.19855i −0.0157804 + 0.0793334i
\(769\) −7.10275 7.10275i −0.256132 0.256132i 0.567347 0.823479i \(-0.307970\pi\)
−0.823479 + 0.567347i \(0.807970\pi\)
\(770\) 0 0
\(771\) −12.2363 8.17601i −0.440678 0.294452i
\(772\) −17.3142 11.5690i −0.623152 0.416377i
\(773\) −1.12415 + 0.465637i −0.0404328 + 0.0167478i −0.402808 0.915284i \(-0.631966\pi\)
0.362375 + 0.932032i \(0.381966\pi\)
\(774\) 4.52909 + 1.87601i 0.162795 + 0.0674319i
\(775\) 0 0
\(776\) 6.25124 9.35564i 0.224406 0.335848i
\(777\) −7.33477 + 4.90094i −0.263133 + 0.175820i
\(778\) 3.11695 0.111748
\(779\) 19.2643 12.8720i 0.690215 0.461187i
\(780\) 0 0
\(781\) 31.9120i 1.14190i
\(782\) 12.1333 + 17.1987i 0.433888 + 0.615025i
\(783\) 0.943622 0.943622i 0.0337223 0.0337223i
\(784\) 1.40662 0.582639i 0.0502363 0.0208085i
\(785\) 0 0
\(786\) −20.4658 + 20.4658i −0.729990 + 0.729990i
\(787\) 3.54648 + 5.30768i 0.126418 + 0.189198i 0.889280 0.457364i \(-0.151206\pi\)
−0.762862 + 0.646562i \(0.776206\pi\)
\(788\) −4.15244 + 0.825971i −0.147924 + 0.0294240i
\(789\) 2.24532 + 11.2880i 0.0799357 + 0.401864i
\(790\) 0 0
\(791\) −0.131297 + 0.316978i −0.00466837 + 0.0112705i
\(792\) −4.21666 + 6.31067i −0.149832 + 0.224240i
\(793\) −2.37671 11.9485i −0.0843995 0.424305i
\(794\) −8.16045 1.62321i −0.289603 0.0576057i
\(795\) 0 0
\(796\) −14.6373 21.9062i −0.518804 0.776446i
\(797\) 3.16463 + 1.31083i 0.112097 + 0.0464320i 0.438027 0.898962i \(-0.355677\pi\)
−0.325930 + 0.945394i \(0.605677\pi\)
\(798\) 24.8689 + 24.8689i 0.880350 + 0.880350i
\(799\) 31.7134 + 30.1452i 1.12194 + 1.06646i
\(800\) 0 0
\(801\) 12.1600 + 29.3568i 0.429651 + 1.03727i
\(802\) −19.6080 3.90028i −0.692384 0.137724i
\(803\) 17.2295i 0.608017i
\(804\) −0.608051 + 3.05688i −0.0214443 + 0.107808i
\(805\) 0 0
\(806\) −7.98306 + 1.58793i −0.281191 + 0.0559324i
\(807\) 23.4825 + 56.6918i 0.826623 + 1.99564i
\(808\) 6.28015 + 15.1616i 0.220935 + 0.533384i
\(809\) 27.1193 5.39436i 0.953464 0.189656i 0.306239 0.951955i \(-0.400929\pi\)
0.647225 + 0.762299i \(0.275929\pi\)
\(810\) 0 0
\(811\) −7.20886 + 36.2414i −0.253137 + 1.27261i 0.619794 + 0.784764i \(0.287216\pi\)
−0.872932 + 0.487843i \(0.837784\pi\)
\(812\) 1.42884i 0.0501425i
\(813\) 38.3487 + 7.62804i 1.34495 + 0.267527i
\(814\) −2.41188 5.82279i −0.0845363 0.204089i
\(815\) 0 0
\(816\) −7.55222 + 5.32794i −0.264381 + 0.186515i
\(817\) 11.4762 + 11.4762i 0.401502 + 0.401502i
\(818\) 28.4382 + 11.7795i 0.994317 + 0.411860i
\(819\) −4.83905 7.24215i −0.169090 0.253061i
\(820\) 0 0
\(821\) −14.0812 2.80092i −0.491436 0.0977528i −0.0568496 0.998383i \(-0.518106\pi\)
−0.434587 + 0.900630i \(0.643106\pi\)
\(822\) 0.941037 + 4.73091i 0.0328224 + 0.165009i
\(823\) 26.8104 40.1247i 0.934553 1.39866i 0.0175205 0.999847i \(-0.494423\pi\)
0.917033 0.398812i \(-0.130577\pi\)
\(824\) −6.08203 + 14.6833i −0.211878 + 0.511518i
\(825\) 0 0
\(826\) 5.80062 + 29.1617i 0.201829 + 1.01466i
\(827\) 23.6452 4.70333i 0.822225 0.163551i 0.233988 0.972239i \(-0.424822\pi\)
0.588237 + 0.808689i \(0.299822\pi\)
\(828\) −5.74279 8.59470i −0.199576 0.298686i
\(829\) 16.0770 16.0770i 0.558377 0.558377i −0.370468 0.928845i \(-0.620803\pi\)
0.928845 + 0.370468i \(0.120803\pi\)
\(830\) 0 0
\(831\) −47.1094 + 19.5134i −1.63421 + 0.676911i
\(832\) 1.29962 1.29962i 0.0450561 0.0450561i
\(833\) 5.85864 + 2.25453i 0.202990 + 0.0781149i
\(834\) 43.6590i 1.51179i
\(835\) 0 0
\(836\) −20.8927 + 13.9600i −0.722588 + 0.482818i
\(837\) 9.68020 0.334597
\(838\) 12.4734 8.33444i 0.430885 0.287908i
\(839\) 12.5864 18.8368i 0.434530 0.650320i −0.547988 0.836486i \(-0.684606\pi\)
0.982518 + 0.186166i \(0.0596062\pi\)
\(840\) 0 0
\(841\) −26.4482 10.9552i −0.912005 0.377765i
\(842\) −12.3293 + 5.10697i −0.424896 + 0.175998i
\(843\) 16.3461 + 10.9221i 0.562988 + 0.376177i
\(844\) −18.4768 12.3458i −0.635998 0.424960i
\(845\) 0 0
\(846\) −15.1945 15.1945i −0.522396 0.522396i
\(847\) 1.39234 6.99977i 0.0478414 0.240515i
\(848\) −0.732730 + 1.76897i −0.0251620 + 0.0607465i
\(849\) 48.0983 1.65073
\(850\) 0 0
\(851\) 8.58362 0.294243
\(852\) −7.30343 + 17.6320i −0.250211 + 0.604064i
\(853\) −7.76738 + 39.0492i −0.265950 + 1.33702i 0.584684 + 0.811261i \(0.301219\pi\)
−0.850634 + 0.525759i \(0.823781\pi\)
\(854\) 10.9695 + 10.9695i 0.375368 + 0.375368i
\(855\) 0 0
\(856\) −0.666259 0.445180i −0.0227723 0.0152159i
\(857\) −10.1407 6.77577i −0.346398 0.231456i 0.370184 0.928958i \(-0.379295\pi\)
−0.716582 + 0.697502i \(0.754295\pi\)
\(858\) 14.2672 5.90966i 0.487074 0.201752i
\(859\) 28.2759 + 11.7123i 0.964762 + 0.399617i 0.808760 0.588139i \(-0.200139\pi\)
0.156002 + 0.987757i \(0.450139\pi\)
\(860\) 0 0
\(861\) 10.0735 15.0761i 0.343305 0.513792i
\(862\) 0.709006 0.473743i 0.0241488 0.0161357i
\(863\) 32.7720 1.11557 0.557785 0.829985i \(-0.311651\pi\)
0.557785 + 0.829985i \(0.311651\pi\)
\(864\) −1.81746 + 1.21439i −0.0618314 + 0.0413144i
\(865\) 0 0
\(866\) 9.40823i 0.319705i
\(867\) −37.7041 5.53108i −1.28050 0.187845i
\(868\) 7.32893 7.32893i 0.248760 0.248760i
\(869\) −17.8531 + 7.39501i −0.605626 + 0.250859i
\(870\) 0 0
\(871\) 1.80699 1.80699i 0.0612276 0.0612276i
\(872\) 7.72993 + 11.5687i 0.261768 + 0.391764i
\(873\) −22.3461 + 4.44491i −0.756299 + 0.150437i
\(874\) −6.67633 33.5642i −0.225830 1.13533i
\(875\) 0 0
\(876\) 3.94318 9.51969i 0.133228 0.321640i
\(877\) 24.0243 35.9550i 0.811244 1.21411i −0.162554 0.986700i \(-0.551973\pi\)
0.973798 0.227413i \(-0.0730267\pi\)
\(878\) −4.93692 24.8196i −0.166613 0.837621i
\(879\) −66.2395 13.1759i −2.23420 0.444411i
\(880\) 0 0
\(881\) −15.1740 22.7095i −0.511225 0.765103i 0.482626 0.875827i \(-0.339683\pi\)
−0.993851 + 0.110724i \(0.964683\pi\)
\(882\) −2.84823 1.17978i −0.0959049 0.0397251i
\(883\) −4.46322 4.46322i −0.150199 0.150199i 0.628008 0.778207i \(-0.283871\pi\)
−0.778207 + 0.628008i \(0.783871\pi\)
\(884\) 7.57557 0.192049i 0.254794 0.00645930i
\(885\) 0 0
\(886\) 8.58626 + 20.7291i 0.288461 + 0.696407i
\(887\) 32.0754 + 6.38020i 1.07699 + 0.214226i 0.701549 0.712621i \(-0.252492\pi\)
0.375439 + 0.926847i \(0.377492\pi\)
\(888\) 3.76920i 0.126486i
\(889\) −9.74399 + 48.9864i −0.326803 + 1.64295i
\(890\) 0 0
\(891\) −40.3448 + 8.02509i −1.35160 + 0.268851i
\(892\) 4.92520 + 11.8905i 0.164908 + 0.398123i
\(893\) −27.2244 65.7255i −0.911029 2.19942i
\(894\) −41.8652 + 8.32751i −1.40018 + 0.278514i
\(895\) 0 0
\(896\) −0.456590 + 2.29543i −0.0152536 + 0.0766851i
\(897\) 21.0319i 0.702233i
\(898\) 21.6653 + 4.30949i 0.722980 + 0.143810i
\(899\) 1.03466 + 2.49789i 0.0345079 + 0.0833093i
\(900\) 0 0
\(901\) −7.21473 + 3.20499i −0.240357 + 0.106774i
\(902\) 9.16016 + 9.16016i 0.305000 + 0.305000i
\(903\) 11.7345 + 4.86059i 0.390500 + 0.161750i
\(904\) 0.0814446 + 0.121890i 0.00270881 + 0.00405402i
\(905\) 0 0
\(906\) −12.3102 2.44866i −0.408980 0.0813511i
\(907\) −9.55754 48.0490i −0.317353 1.59544i −0.729274 0.684221i \(-0.760142\pi\)
0.411922 0.911219i \(-0.364858\pi\)
\(908\) −14.2142 + 21.2731i −0.471716 + 0.705973i
\(909\) 12.7166 30.7005i 0.421782 1.01827i
\(910\) 0 0
\(911\) 3.36353 + 16.9096i 0.111439 + 0.560241i 0.995651 + 0.0931564i \(0.0296957\pi\)
−0.884213 + 0.467085i \(0.845304\pi\)
\(912\) 14.7386 2.93168i 0.488042 0.0970777i
\(913\) 29.1065 + 43.5610i 0.963285 + 1.44166i
\(914\) 9.20664 9.20664i 0.304528 0.304528i
\(915\) 0 0
\(916\) −11.5454 + 4.78226i −0.381471 + 0.158010i
\(917\) −21.3676 + 21.3676i −0.705620 + 0.705620i
\(918\) −8.88102 1.53367i −0.293117 0.0506186i
\(919\) 34.3332i 1.13255i −0.824217 0.566274i \(-0.808385\pi\)
0.824217 0.566274i \(-0.191615\pi\)
\(920\) 0 0
\(921\) 8.61080 5.75355i 0.283735 0.189586i
\(922\) 4.89848 0.161323
\(923\) 13.0107 8.69348i 0.428253 0.286149i
\(924\) −10.9250 + 16.3504i −0.359407 + 0.537890i
\(925\) 0 0
\(926\) 5.22742 + 2.16527i 0.171784 + 0.0711552i
\(927\) 29.7320 12.3154i 0.976527 0.404491i
\(928\) −0.507621 0.339182i −0.0166635 0.0111342i
\(929\) 9.78051 + 6.53513i 0.320888 + 0.214411i 0.705573 0.708637i \(-0.250690\pi\)
−0.384685 + 0.923048i \(0.625690\pi\)
\(930\) 0 0
\(931\) −7.21711 7.21711i −0.236531 0.236531i
\(932\) −1.38155 + 6.94554i −0.0452543 + 0.227509i
\(933\) 18.6371 44.9939i 0.610151 1.47303i
\(934\) −27.6107 −0.903451
\(935\) 0 0
\(936\) −3.72161 −0.121645
\(937\) 8.46339 20.4324i 0.276487 0.667498i −0.723246 0.690590i \(-0.757351\pi\)
0.999733 + 0.0230916i \(0.00735093\pi\)
\(938\) −0.634845 + 3.19158i −0.0207284 + 0.104209i
\(939\) 33.2126 + 33.2126i 1.08385 + 1.08385i
\(940\) 0 0
\(941\) −6.14772 4.10778i −0.200410 0.133910i 0.451316 0.892364i \(-0.350955\pi\)
−0.651726 + 0.758455i \(0.725955\pi\)
\(942\) 4.54564 + 3.03730i 0.148105 + 0.0989606i
\(943\) −16.3000 + 6.75169i −0.530802 + 0.219865i
\(944\) 11.7372 + 4.86169i 0.382012 + 0.158235i
\(945\) 0 0
\(946\) −5.04155 + 7.54522i −0.163915 + 0.245316i
\(947\) −6.90636 + 4.61468i −0.224427 + 0.149957i −0.662701 0.748884i \(-0.730590\pi\)
0.438274 + 0.898841i \(0.355590\pi\)
\(948\) 11.5567 0.375343
\(949\) −7.02459 + 4.69368i −0.228028 + 0.152363i
\(950\) 0 0
\(951\) 12.8277i 0.415968i
\(952\) −7.88502 + 5.56272i −0.255555 + 0.180289i
\(953\) −18.9533 + 18.9533i −0.613958 + 0.613958i −0.943975 0.330017i \(-0.892946\pi\)
0.330017 + 0.943975i \(0.392946\pi\)
\(954\) 3.58195 1.48369i 0.115970 0.0480363i
\(955\) 0 0
\(956\) 13.8665 13.8665i 0.448475 0.448475i
\(957\) −2.84987 4.26513i −0.0921231 0.137872i
\(958\) −2.12413 + 0.422516i −0.0686275 + 0.0136509i
\(959\) 0.982504 + 4.93938i 0.0317267 + 0.159501i
\(960\) 0 0
\(961\) 4.35786 10.5208i 0.140576 0.339381i
\(962\) 1.71694 2.56959i 0.0553564 0.0828468i
\(963\) 0.316543 + 1.59137i 0.0102004 + 0.0512811i
\(964\) 4.64708 + 0.924362i 0.149672 + 0.0297717i
\(965\) 0 0
\(966\) −14.8791 22.2682i −0.478728 0.716466i
\(967\) −2.71453 1.12440i −0.0872936 0.0361582i 0.338609 0.940927i \(-0.390043\pi\)
−0.425903 + 0.904769i \(0.640043\pi\)
\(968\) −2.15627 2.15627i −0.0693052 0.0693052i
\(969\) 52.3730 + 33.1060i 1.68246 + 1.06352i
\(970\) 0 0
\(971\) 21.5927 + 52.1293i 0.692941 + 1.67291i 0.738769 + 0.673959i \(0.235408\pi\)
−0.0458273 + 0.998949i \(0.514592\pi\)
\(972\) 17.6965 + 3.52005i 0.567615 + 0.112906i
\(973\) 45.5828i 1.46132i
\(974\) −6.78474 + 34.1092i −0.217397 + 1.09293i
\(975\) 0 0
\(976\) 6.50106 1.29314i 0.208094 0.0413924i
\(977\) −0.198220 0.478546i −0.00634163 0.0153100i 0.920677 0.390325i \(-0.127637\pi\)
−0.927019 + 0.375015i \(0.877637\pi\)
\(978\) −6.18918 14.9420i −0.197908 0.477793i
\(979\) −57.6894 + 11.4751i −1.84376 + 0.366747i
\(980\) 0 0
\(981\) 5.49632 27.6319i 0.175484 0.882218i
\(982\) 1.29098i 0.0411969i
\(983\) 18.9985 + 3.77904i 0.605958 + 0.120533i 0.488527 0.872549i \(-0.337534\pi\)
0.117431 + 0.993081i \(0.462534\pi\)
\(984\) −2.96477 7.15759i −0.0945135 0.228176i
\(985\) 0 0
\(986\) −0.553491 2.45559i −0.0176268 0.0782021i
\(987\) −39.3676 39.3676i −1.25308 1.25308i
\(988\) −11.3832 4.71507i −0.362147 0.150006i
\(989\) −6.86624 10.2761i −0.218334 0.326760i
\(990\) 0 0
\(991\) 17.3723 + 3.45556i 0.551848 + 0.109769i 0.463135 0.886288i \(-0.346725\pi\)
0.0887133 + 0.996057i \(0.471725\pi\)
\(992\) −0.863974 4.34349i −0.0274312 0.137906i
\(993\) −36.9076 + 55.2361i −1.17123 + 1.75287i
\(994\) −7.62526 + 18.4090i −0.241859 + 0.583898i
\(995\) 0 0
\(996\) −6.11253 30.7297i −0.193683 0.973709i
\(997\) −39.3912 + 7.83540i −1.24753 + 0.248150i −0.774317 0.632798i \(-0.781907\pi\)
−0.473215 + 0.880947i \(0.656907\pi\)
\(998\) 6.25854 + 9.36656i 0.198110 + 0.296493i
\(999\) −2.59891 + 2.59891i −0.0822258 + 0.0822258i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.a.607.3 yes 24
5.2 odd 4 850.2.s.a.743.1 yes 24
5.3 odd 4 850.2.s.b.743.3 yes 24
5.4 even 2 850.2.v.b.607.1 yes 24
17.10 odd 16 850.2.s.b.707.3 yes 24
85.27 even 16 850.2.v.b.843.1 yes 24
85.44 odd 16 850.2.s.a.707.1 24
85.78 even 16 inner 850.2.v.a.843.3 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
850.2.s.a.707.1 24 85.44 odd 16
850.2.s.a.743.1 yes 24 5.2 odd 4
850.2.s.b.707.3 yes 24 17.10 odd 16
850.2.s.b.743.3 yes 24 5.3 odd 4
850.2.v.a.607.3 yes 24 1.1 even 1 trivial
850.2.v.a.843.3 yes 24 85.78 even 16 inner
850.2.v.b.607.1 yes 24 5.4 even 2
850.2.v.b.843.1 yes 24 85.27 even 16