Properties

Label 850.2.v.c.193.1
Level $850$
Weight $2$
Character 850.193
Analytic conductor $6.787$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 193.1
Character \(\chi\) \(=\) 850.193
Dual form 850.2.v.c.207.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.923880 - 0.382683i) q^{2} +(-2.33925 - 1.56304i) q^{3} +(0.707107 - 0.707107i) q^{4} +(-2.75933 - 0.548865i) q^{6} +(1.27851 + 0.254312i) q^{7} +(0.382683 - 0.923880i) q^{8} +(1.88095 + 4.54102i) q^{9} +O(q^{10})\) \(q+(0.923880 - 0.382683i) q^{2} +(-2.33925 - 1.56304i) q^{3} +(0.707107 - 0.707107i) q^{4} +(-2.75933 - 0.548865i) q^{6} +(1.27851 + 0.254312i) q^{7} +(0.382683 - 0.923880i) q^{8} +(1.88095 + 4.54102i) q^{9} +(1.14054 - 5.73386i) q^{11} +(-2.75933 + 0.548865i) q^{12} +5.33794 q^{13} +(1.27851 - 0.254312i) q^{14} -1.00000i q^{16} +(-3.93717 + 1.22423i) q^{17} +(3.47555 + 3.47555i) q^{18} +(0.311731 - 0.752584i) q^{19} +(-2.59326 - 2.59326i) q^{21} +(-1.14054 - 5.73386i) q^{22} +(-3.88994 - 5.82170i) q^{23} +(-2.33925 + 1.56304i) q^{24} +(4.93161 - 2.04274i) q^{26} +(1.05117 - 5.28458i) q^{27} +(1.08387 - 0.724218i) q^{28} +(1.17050 - 1.75178i) q^{29} +(0.301321 + 1.51484i) q^{31} +(-0.382683 - 0.923880i) q^{32} +(-11.6302 + 11.6302i) q^{33} +(-3.16897 + 2.63773i) q^{34} +(4.54102 + 1.88095i) q^{36} +(-3.87014 + 5.79208i) q^{37} -0.814591i q^{38} +(-12.4868 - 8.34339i) q^{39} +(-4.40455 - 6.59188i) q^{41} +(-3.38825 - 1.40346i) q^{42} +(1.31384 + 0.544211i) q^{43} +(-3.24797 - 4.86093i) q^{44} +(-5.82170 - 3.88994i) q^{46} -0.109944i q^{47} +(-1.56304 + 2.33925i) q^{48} +(-4.89724 - 2.02850i) q^{49} +(11.1235 + 3.29016i) q^{51} +(3.77449 - 3.77449i) q^{52} +(-0.379151 - 0.915351i) q^{53} +(-1.05117 - 5.28458i) q^{54} +(0.724218 - 1.08387i) q^{56} +(-1.90553 + 1.27324i) q^{57} +(0.411026 - 2.06637i) q^{58} +(5.08359 - 2.10569i) q^{59} +(-4.82682 + 3.22518i) q^{61} +(0.858089 + 1.28422i) q^{62} +(1.24998 + 6.28410i) q^{63} +(-0.707107 - 0.707107i) q^{64} +(-6.29423 + 15.1956i) q^{66} +(-4.12405 - 4.12405i) q^{67} +(-1.91834 + 3.64966i) q^{68} +19.6985i q^{69} +(-5.38952 + 1.07204i) q^{71} +4.91517 q^{72} +(8.02579 - 1.59643i) q^{73} +(-1.35901 + 6.83222i) q^{74} +(-0.311731 - 0.752584i) q^{76} +(2.91637 - 7.04075i) q^{77} +(-14.7291 - 2.92981i) q^{78} +(5.01247 + 0.997043i) q^{79} +(-0.292298 + 0.292298i) q^{81} +(-6.59188 - 4.40455i) q^{82} +(2.38399 - 0.987480i) q^{83} -3.66742 q^{84} +1.42209 q^{86} +(-5.47620 + 2.26832i) q^{87} +(-4.86093 - 3.24797i) q^{88} +(-0.779290 + 0.779290i) q^{89} +(6.82461 + 1.35750i) q^{91} +(-6.86717 - 1.36596i) q^{92} +(1.66289 - 4.01457i) q^{93} +(-0.0420738 - 0.101575i) q^{94} +(-0.548865 + 2.75933i) q^{96} +(14.7649 - 2.93692i) q^{97} -5.30073 q^{98} +(28.1829 - 5.60592i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q+O(q^{10}) \) Copy content Toggle raw display \( 32 q - 16 q^{18} + 8 q^{26} - 24 q^{27} + 8 q^{28} - 8 q^{29} - 16 q^{31} - 64 q^{33} + 24 q^{34} + 32 q^{37} - 32 q^{39} + 16 q^{41} + 24 q^{42} + 16 q^{43} - 16 q^{44} - 16 q^{49} + 32 q^{51} + 16 q^{52} - 16 q^{53} + 24 q^{54} + 8 q^{56} + 24 q^{57} + 16 q^{58} - 64 q^{59} - 24 q^{61} + 40 q^{62} + 24 q^{63} - 16 q^{67} + 8 q^{71} + 16 q^{72} - 32 q^{73} + 8 q^{74} - 24 q^{77} - 32 q^{78} + 72 q^{79} + 48 q^{81} - 48 q^{82} - 16 q^{83} - 64 q^{86} - 40 q^{87} - 32 q^{88} + 16 q^{89} + 48 q^{91} - 24 q^{92} + 8 q^{93} + 8 q^{94} + 48 q^{97} - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.923880 0.382683i 0.653281 0.270598i
\(3\) −2.33925 1.56304i −1.35057 0.902419i −0.351141 0.936323i \(-0.614206\pi\)
−0.999425 + 0.0339033i \(0.989206\pi\)
\(4\) 0.707107 0.707107i 0.353553 0.353553i
\(5\) 0 0
\(6\) −2.75933 0.548865i −1.12649 0.224073i
\(7\) 1.27851 + 0.254312i 0.483232 + 0.0961208i 0.430694 0.902498i \(-0.358269\pi\)
0.0525381 + 0.998619i \(0.483269\pi\)
\(8\) 0.382683 0.923880i 0.135299 0.326641i
\(9\) 1.88095 + 4.54102i 0.626984 + 1.51367i
\(10\) 0 0
\(11\) 1.14054 5.73386i 0.343884 1.72882i −0.291450 0.956586i \(-0.594138\pi\)
0.635335 0.772237i \(-0.280862\pi\)
\(12\) −2.75933 + 0.548865i −0.796551 + 0.158444i
\(13\) 5.33794 1.48048 0.740239 0.672344i \(-0.234712\pi\)
0.740239 + 0.672344i \(0.234712\pi\)
\(14\) 1.27851 0.254312i 0.341696 0.0679677i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) −3.93717 + 1.22423i −0.954903 + 0.296919i
\(18\) 3.47555 + 3.47555i 0.819195 + 0.819195i
\(19\) 0.311731 0.752584i 0.0715159 0.172655i −0.884080 0.467336i \(-0.845214\pi\)
0.955595 + 0.294682i \(0.0952137\pi\)
\(20\) 0 0
\(21\) −2.59326 2.59326i −0.565895 0.565895i
\(22\) −1.14054 5.73386i −0.243163 1.22246i
\(23\) −3.88994 5.82170i −0.811108 1.21391i −0.973839 0.227239i \(-0.927030\pi\)
0.162731 0.986670i \(-0.447970\pi\)
\(24\) −2.33925 + 1.56304i −0.477497 + 0.319053i
\(25\) 0 0
\(26\) 4.93161 2.04274i 0.967168 0.400614i
\(27\) 1.05117 5.28458i 0.202298 1.01702i
\(28\) 1.08387 0.724218i 0.204832 0.136864i
\(29\) 1.17050 1.75178i 0.217357 0.325298i −0.706727 0.707486i \(-0.749829\pi\)
0.924085 + 0.382188i \(0.124829\pi\)
\(30\) 0 0
\(31\) 0.301321 + 1.51484i 0.0541188 + 0.272074i 0.998365 0.0571677i \(-0.0182070\pi\)
−0.944246 + 0.329241i \(0.893207\pi\)
\(32\) −0.382683 0.923880i −0.0676495 0.163320i
\(33\) −11.6302 + 11.6302i −2.02456 + 2.02456i
\(34\) −3.16897 + 2.63773i −0.543475 + 0.452366i
\(35\) 0 0
\(36\) 4.54102 + 1.88095i 0.756837 + 0.313492i
\(37\) −3.87014 + 5.79208i −0.636248 + 0.952212i 0.363539 + 0.931579i \(0.381568\pi\)
−0.999787 + 0.0206333i \(0.993432\pi\)
\(38\) 0.814591i 0.132144i
\(39\) −12.4868 8.34339i −1.99948 1.33601i
\(40\) 0 0
\(41\) −4.40455 6.59188i −0.687876 1.02948i −0.996920 0.0784311i \(-0.975009\pi\)
0.309044 0.951048i \(-0.399991\pi\)
\(42\) −3.38825 1.40346i −0.522819 0.216559i
\(43\) 1.31384 + 0.544211i 0.200359 + 0.0829914i 0.480607 0.876936i \(-0.340417\pi\)
−0.280248 + 0.959928i \(0.590417\pi\)
\(44\) −3.24797 4.86093i −0.489650 0.732813i
\(45\) 0 0
\(46\) −5.82170 3.88994i −0.858363 0.573540i
\(47\) 0.109944i 0.0160370i −0.999968 0.00801850i \(-0.997448\pi\)
0.999968 0.00801850i \(-0.00255240\pi\)
\(48\) −1.56304 + 2.33925i −0.225605 + 0.337642i
\(49\) −4.89724 2.02850i −0.699606 0.289786i
\(50\) 0 0
\(51\) 11.1235 + 3.29016i 1.55760 + 0.460715i
\(52\) 3.77449 3.77449i 0.523428 0.523428i
\(53\) −0.379151 0.915351i −0.0520804 0.125733i 0.895698 0.444663i \(-0.146677\pi\)
−0.947778 + 0.318930i \(0.896677\pi\)
\(54\) −1.05117 5.28458i −0.143046 0.719141i
\(55\) 0 0
\(56\) 0.724218 1.08387i 0.0967778 0.144838i
\(57\) −1.90553 + 1.27324i −0.252394 + 0.168644i
\(58\) 0.411026 2.06637i 0.0539704 0.271328i
\(59\) 5.08359 2.10569i 0.661827 0.274138i −0.0263799 0.999652i \(-0.508398\pi\)
0.688207 + 0.725514i \(0.258398\pi\)
\(60\) 0 0
\(61\) −4.82682 + 3.22518i −0.618011 + 0.412942i −0.824785 0.565447i \(-0.808704\pi\)
0.206774 + 0.978389i \(0.433704\pi\)
\(62\) 0.858089 + 1.28422i 0.108977 + 0.163096i
\(63\) 1.24998 + 6.28410i 0.157483 + 0.791722i
\(64\) −0.707107 0.707107i −0.0883883 0.0883883i
\(65\) 0 0
\(66\) −6.29423 + 15.1956i −0.774766 + 1.87045i
\(67\) −4.12405 4.12405i −0.503833 0.503833i 0.408794 0.912627i \(-0.365950\pi\)
−0.912627 + 0.408794i \(0.865950\pi\)
\(68\) −1.91834 + 3.64966i −0.232633 + 0.442586i
\(69\) 19.6985i 2.37142i
\(70\) 0 0
\(71\) −5.38952 + 1.07204i −0.639618 + 0.127228i −0.504237 0.863566i \(-0.668226\pi\)
−0.135382 + 0.990794i \(0.543226\pi\)
\(72\) 4.91517 0.579258
\(73\) 8.02579 1.59643i 0.939348 0.186848i 0.298407 0.954439i \(-0.403545\pi\)
0.640940 + 0.767591i \(0.278545\pi\)
\(74\) −1.35901 + 6.83222i −0.157982 + 0.794230i
\(75\) 0 0
\(76\) −0.311731 0.752584i −0.0357580 0.0863273i
\(77\) 2.91637 7.04075i 0.332352 0.802368i
\(78\) −14.7291 2.92981i −1.66775 0.331736i
\(79\) 5.01247 + 0.997043i 0.563947 + 0.112176i 0.468828 0.883290i \(-0.344677\pi\)
0.0951198 + 0.995466i \(0.469677\pi\)
\(80\) 0 0
\(81\) −0.292298 + 0.292298i −0.0324776 + 0.0324776i
\(82\) −6.59188 4.40455i −0.727952 0.486402i
\(83\) 2.38399 0.987480i 0.261677 0.108390i −0.247988 0.968763i \(-0.579769\pi\)
0.509665 + 0.860373i \(0.329769\pi\)
\(84\) −3.66742 −0.400148
\(85\) 0 0
\(86\) 1.42209 0.153348
\(87\) −5.47620 + 2.26832i −0.587110 + 0.243189i
\(88\) −4.86093 3.24797i −0.518177 0.346235i
\(89\) −0.779290 + 0.779290i −0.0826045 + 0.0826045i −0.747202 0.664597i \(-0.768603\pi\)
0.664597 + 0.747202i \(0.268603\pi\)
\(90\) 0 0
\(91\) 6.82461 + 1.35750i 0.715414 + 0.142305i
\(92\) −6.86717 1.36596i −0.715952 0.142412i
\(93\) 1.66289 4.01457i 0.172434 0.416291i
\(94\) −0.0420738 0.101575i −0.00433958 0.0104767i
\(95\) 0 0
\(96\) −0.548865 + 2.75933i −0.0560183 + 0.281623i
\(97\) 14.7649 2.93692i 1.49915 0.298199i 0.623758 0.781617i \(-0.285605\pi\)
0.875389 + 0.483418i \(0.160605\pi\)
\(98\) −5.30073 −0.535455
\(99\) 28.1829 5.60592i 2.83249 0.563416i
\(100\) 0 0
\(101\) 6.75581i 0.672228i 0.941821 + 0.336114i \(0.109113\pi\)
−0.941821 + 0.336114i \(0.890887\pi\)
\(102\) 11.5359 1.21708i 1.14222 0.120508i
\(103\) 4.75400 + 4.75400i 0.468426 + 0.468426i 0.901404 0.432978i \(-0.142537\pi\)
−0.432978 + 0.901404i \(0.642537\pi\)
\(104\) 2.04274 4.93161i 0.200307 0.483584i
\(105\) 0 0
\(106\) −0.700579 0.700579i −0.0680463 0.0680463i
\(107\) −3.26275 16.4030i −0.315422 1.58573i −0.735033 0.678031i \(-0.762834\pi\)
0.419611 0.907704i \(-0.362166\pi\)
\(108\) −2.99348 4.48005i −0.288047 0.431093i
\(109\) 2.02154 1.35075i 0.193628 0.129378i −0.454977 0.890503i \(-0.650353\pi\)
0.648605 + 0.761125i \(0.275353\pi\)
\(110\) 0 0
\(111\) 18.1065 7.49994i 1.71859 0.711863i
\(112\) 0.254312 1.27851i 0.0240302 0.120808i
\(113\) 9.40688 6.28548i 0.884925 0.591288i −0.0279127 0.999610i \(-0.508886\pi\)
0.912838 + 0.408322i \(0.133886\pi\)
\(114\) −1.27324 + 1.90553i −0.119249 + 0.178469i
\(115\) 0 0
\(116\) −0.411026 2.06637i −0.0381628 0.191858i
\(117\) 10.0404 + 24.2397i 0.928236 + 2.24096i
\(118\) 3.89081 3.89081i 0.358178 0.358178i
\(119\) −5.34504 + 0.563921i −0.489979 + 0.0516945i
\(120\) 0 0
\(121\) −21.4136 8.86981i −1.94669 0.806347i
\(122\) −3.22518 + 4.82682i −0.291994 + 0.437000i
\(123\) 22.3045i 2.01113i
\(124\) 1.28422 + 0.858089i 0.115326 + 0.0770587i
\(125\) 0 0
\(126\) 3.55966 + 5.32740i 0.317119 + 0.474603i
\(127\) 3.29207 + 1.36362i 0.292124 + 0.121002i 0.523933 0.851760i \(-0.324464\pi\)
−0.231809 + 0.972761i \(0.574464\pi\)
\(128\) −0.923880 0.382683i −0.0816602 0.0338248i
\(129\) −2.22278 3.32663i −0.195705 0.292893i
\(130\) 0 0
\(131\) 9.80467 + 6.55127i 0.856638 + 0.572387i 0.904503 0.426467i \(-0.140242\pi\)
−0.0478655 + 0.998854i \(0.515242\pi\)
\(132\) 16.4476i 1.43158i
\(133\) 0.589942 0.882911i 0.0511545 0.0765581i
\(134\) −5.38834 2.23192i −0.465481 0.192809i
\(135\) 0 0
\(136\) −0.375650 + 4.10596i −0.0322117 + 0.352083i
\(137\) −9.59397 + 9.59397i −0.819668 + 0.819668i −0.986060 0.166391i \(-0.946788\pi\)
0.166391 + 0.986060i \(0.446788\pi\)
\(138\) 7.53830 + 18.1991i 0.641703 + 1.54921i
\(139\) −2.01112 10.1106i −0.170581 0.857570i −0.967381 0.253326i \(-0.918475\pi\)
0.796800 0.604244i \(-0.206525\pi\)
\(140\) 0 0
\(141\) −0.171847 + 0.257187i −0.0144721 + 0.0216590i
\(142\) −4.56901 + 3.05292i −0.383423 + 0.256195i
\(143\) 6.08810 30.6070i 0.509113 2.55948i
\(144\) 4.54102 1.88095i 0.378419 0.156746i
\(145\) 0 0
\(146\) 6.80394 4.54625i 0.563098 0.376250i
\(147\) 8.28524 + 12.3997i 0.683355 + 1.02271i
\(148\) 1.35901 + 6.83222i 0.111710 + 0.561605i
\(149\) 13.6274 + 13.6274i 1.11640 + 1.11640i 0.992265 + 0.124139i \(0.0396170\pi\)
0.124139 + 0.992265i \(0.460383\pi\)
\(150\) 0 0
\(151\) 3.26423 7.88055i 0.265639 0.641310i −0.733629 0.679550i \(-0.762175\pi\)
0.999269 + 0.0382398i \(0.0121751\pi\)
\(152\) −0.576003 0.576003i −0.0467200 0.0467200i
\(153\) −12.9649 15.5760i −1.04815 1.25925i
\(154\) 7.62085i 0.614106i
\(155\) 0 0
\(156\) −14.7291 + 2.92981i −1.17928 + 0.234572i
\(157\) 0.880010 0.0702324 0.0351162 0.999383i \(-0.488820\pi\)
0.0351162 + 0.999383i \(0.488820\pi\)
\(158\) 5.01247 0.997043i 0.398771 0.0793205i
\(159\) −0.543799 + 2.73386i −0.0431260 + 0.216809i
\(160\) 0 0
\(161\) −3.49280 8.43237i −0.275271 0.664564i
\(162\) −0.158191 + 0.381906i −0.0124286 + 0.0300054i
\(163\) −6.68221 1.32917i −0.523391 0.104109i −0.0736779 0.997282i \(-0.523474\pi\)
−0.449713 + 0.893173i \(0.648474\pi\)
\(164\) −7.77565 1.54667i −0.607177 0.120775i
\(165\) 0 0
\(166\) 1.82463 1.82463i 0.141618 0.141618i
\(167\) 11.1600 + 7.45689i 0.863589 + 0.577032i 0.906575 0.422044i \(-0.138687\pi\)
−0.0429863 + 0.999076i \(0.513687\pi\)
\(168\) −3.38825 + 1.40346i −0.261409 + 0.108279i
\(169\) 15.4936 1.19181
\(170\) 0 0
\(171\) 4.00385 0.306182
\(172\) 1.31384 0.544211i 0.100180 0.0414957i
\(173\) 19.6568 + 13.1343i 1.49448 + 0.998580i 0.990895 + 0.134635i \(0.0429861\pi\)
0.503585 + 0.863945i \(0.332014\pi\)
\(174\) −4.19130 + 4.19130i −0.317742 + 0.317742i
\(175\) 0 0
\(176\) −5.73386 1.14054i −0.432206 0.0859711i
\(177\) −15.1831 3.02010i −1.14123 0.227005i
\(178\) −0.421748 + 1.01819i −0.0316114 + 0.0763166i
\(179\) 9.49226 + 22.9163i 0.709485 + 1.71285i 0.701284 + 0.712882i \(0.252610\pi\)
0.00820077 + 0.999966i \(0.497390\pi\)
\(180\) 0 0
\(181\) −1.10723 + 5.56640i −0.0822995 + 0.413747i 0.917570 + 0.397575i \(0.130148\pi\)
−0.999869 + 0.0161726i \(0.994852\pi\)
\(182\) 6.82461 1.35750i 0.505874 0.100625i
\(183\) 16.3322 1.20731
\(184\) −6.86717 + 1.36596i −0.506254 + 0.100700i
\(185\) 0 0
\(186\) 4.34534i 0.318616i
\(187\) 2.52907 + 23.9714i 0.184944 + 1.75296i
\(188\) −0.0777423 0.0777423i −0.00566994 0.00566994i
\(189\) 2.68786 6.48908i 0.195513 0.472011i
\(190\) 0 0
\(191\) −0.202904 0.202904i −0.0146816 0.0146816i 0.699728 0.714409i \(-0.253305\pi\)
−0.714409 + 0.699728i \(0.753305\pi\)
\(192\) 0.548865 + 2.75933i 0.0396109 + 0.199138i
\(193\) −13.6206 20.3846i −0.980429 1.46732i −0.881479 0.472223i \(-0.843452\pi\)
−0.0989501 0.995092i \(-0.531548\pi\)
\(194\) 12.5171 8.36364i 0.898673 0.600474i
\(195\) 0 0
\(196\) −4.89724 + 2.02850i −0.349803 + 0.144893i
\(197\) −0.490864 + 2.46774i −0.0349726 + 0.175819i −0.994324 0.106396i \(-0.966069\pi\)
0.959351 + 0.282215i \(0.0910690\pi\)
\(198\) 23.8923 15.9643i 1.69795 1.13453i
\(199\) −7.18214 + 10.7488i −0.509128 + 0.761964i −0.993614 0.112835i \(-0.964007\pi\)
0.484485 + 0.874799i \(0.339007\pi\)
\(200\) 0 0
\(201\) 3.20114 + 16.0932i 0.225791 + 1.13513i
\(202\) 2.58533 + 6.24155i 0.181904 + 0.439154i
\(203\) 1.94200 1.94200i 0.136302 0.136302i
\(204\) 10.1920 5.53902i 0.713584 0.387809i
\(205\) 0 0
\(206\) 6.21141 + 2.57285i 0.432769 + 0.179259i
\(207\) 19.1197 28.6146i 1.32891 1.98886i
\(208\) 5.33794i 0.370119i
\(209\) −3.95967 2.64577i −0.273896 0.183012i
\(210\) 0 0
\(211\) 7.92328 + 11.8580i 0.545461 + 0.816340i 0.997119 0.0758509i \(-0.0241673\pi\)
−0.451658 + 0.892191i \(0.649167\pi\)
\(212\) −0.915351 0.379151i −0.0628666 0.0260402i
\(213\) 14.2831 + 5.91624i 0.978660 + 0.405374i
\(214\) −9.29153 13.9058i −0.635156 0.950578i
\(215\) 0 0
\(216\) −4.48005 2.99348i −0.304829 0.203680i
\(217\) 2.01337i 0.136677i
\(218\) 1.35075 2.02154i 0.0914842 0.136916i
\(219\) −21.2696 8.81016i −1.43727 0.595335i
\(220\) 0 0
\(221\) −21.0163 + 6.53485i −1.41371 + 0.439581i
\(222\) 13.8581 13.8581i 0.930094 0.930094i
\(223\) 5.22346 + 12.6106i 0.349789 + 0.844465i 0.996644 + 0.0818526i \(0.0260837\pi\)
−0.646856 + 0.762613i \(0.723916\pi\)
\(224\) −0.254312 1.27851i −0.0169919 0.0854241i
\(225\) 0 0
\(226\) 6.28548 9.40688i 0.418104 0.625737i
\(227\) 6.55814 4.38201i 0.435279 0.290844i −0.318561 0.947902i \(-0.603199\pi\)
0.753840 + 0.657058i \(0.228199\pi\)
\(228\) −0.447101 + 2.24773i −0.0296100 + 0.148859i
\(229\) −9.79199 + 4.05598i −0.647073 + 0.268026i −0.681987 0.731364i \(-0.738884\pi\)
0.0349144 + 0.999390i \(0.488884\pi\)
\(230\) 0 0
\(231\) −17.8271 + 11.9117i −1.17294 + 0.783730i
\(232\) −1.17050 1.75178i −0.0768474 0.115010i
\(233\) −0.465778 2.34162i −0.0305141 0.153405i 0.962524 0.271195i \(-0.0874189\pi\)
−0.993038 + 0.117790i \(0.962419\pi\)
\(234\) 18.5523 + 18.5523i 1.21280 + 1.21280i
\(235\) 0 0
\(236\) 2.10569 5.08359i 0.137069 0.330914i
\(237\) −10.1670 10.1670i −0.660418 0.660418i
\(238\) −4.72237 + 2.56645i −0.306106 + 0.166359i
\(239\) 10.4783i 0.677786i −0.940825 0.338893i \(-0.889947\pi\)
0.940825 0.338893i \(-0.110053\pi\)
\(240\) 0 0
\(241\) 6.35785 1.26466i 0.409545 0.0814636i 0.0139818 0.999902i \(-0.495549\pi\)
0.395564 + 0.918439i \(0.370549\pi\)
\(242\) −23.1779 −1.48993
\(243\) −14.7131 + 2.92662i −0.943847 + 0.187743i
\(244\) −1.13253 + 5.69362i −0.0725029 + 0.364497i
\(245\) 0 0
\(246\) 8.53557 + 20.6067i 0.544208 + 1.31384i
\(247\) 1.66400 4.01725i 0.105878 0.255611i
\(248\) 1.51484 + 0.301321i 0.0961926 + 0.0191339i
\(249\) −7.12021 1.41630i −0.451225 0.0897542i
\(250\) 0 0
\(251\) 15.4336 15.4336i 0.974160 0.974160i −0.0255144 0.999674i \(-0.508122\pi\)
0.999674 + 0.0255144i \(0.00812236\pi\)
\(252\) 5.32740 + 3.55966i 0.335595 + 0.224237i
\(253\) −37.8174 + 15.6645i −2.37756 + 0.984818i
\(254\) 3.56331 0.223582
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) −8.96619 + 3.71392i −0.559296 + 0.231668i −0.644379 0.764706i \(-0.722884\pi\)
0.0850837 + 0.996374i \(0.472884\pi\)
\(258\) −3.32663 2.22278i −0.207107 0.138384i
\(259\) −6.42102 + 6.42102i −0.398983 + 0.398983i
\(260\) 0 0
\(261\) 10.1566 + 2.02026i 0.628675 + 0.125051i
\(262\) 11.5654 + 2.30050i 0.714512 + 0.142125i
\(263\) 6.13000 14.7991i 0.377992 0.912553i −0.614350 0.789033i \(-0.710582\pi\)
0.992342 0.123520i \(-0.0394182\pi\)
\(264\) 6.29423 + 15.1956i 0.387383 + 0.935226i
\(265\) 0 0
\(266\) 0.207160 1.04146i 0.0127018 0.0638563i
\(267\) 3.04101 0.604895i 0.186107 0.0370189i
\(268\) −5.83229 −0.356264
\(269\) −16.1671 + 3.21583i −0.985724 + 0.196073i −0.661531 0.749918i \(-0.730093\pi\)
−0.324194 + 0.945991i \(0.605093\pi\)
\(270\) 0 0
\(271\) 5.17301i 0.314238i 0.987580 + 0.157119i \(0.0502206\pi\)
−0.987580 + 0.157119i \(0.949779\pi\)
\(272\) 1.22423 + 3.93717i 0.0742297 + 0.238726i
\(273\) −13.8426 13.8426i −0.837795 0.837795i
\(274\) −5.19222 + 12.5351i −0.313673 + 0.757275i
\(275\) 0 0
\(276\) 13.9290 + 13.9290i 0.838425 + 0.838425i
\(277\) 4.03287 + 20.2746i 0.242312 + 1.21818i 0.889886 + 0.456182i \(0.150783\pi\)
−0.647575 + 0.762002i \(0.724217\pi\)
\(278\) −5.72719 8.57135i −0.343494 0.514076i
\(279\) −6.31216 + 4.21765i −0.377899 + 0.252504i
\(280\) 0 0
\(281\) −1.20815 + 0.500433i −0.0720724 + 0.0298534i −0.418428 0.908250i \(-0.637419\pi\)
0.346356 + 0.938103i \(0.387419\pi\)
\(282\) −0.0603445 + 0.303372i −0.00359347 + 0.0180656i
\(283\) −3.79127 + 2.53325i −0.225368 + 0.150586i −0.663128 0.748506i \(-0.730772\pi\)
0.437761 + 0.899091i \(0.355772\pi\)
\(284\) −3.05292 + 4.56901i −0.181157 + 0.271121i
\(285\) 0 0
\(286\) −6.08810 30.6070i −0.359997 1.80983i
\(287\) −3.95488 9.54792i −0.233449 0.563596i
\(288\) 3.47555 3.47555i 0.204799 0.204799i
\(289\) 14.0025 9.63997i 0.823679 0.567057i
\(290\) 0 0
\(291\) −39.1293 16.2079i −2.29380 0.950122i
\(292\) 4.54625 6.80394i 0.266049 0.398170i
\(293\) 31.2813i 1.82747i 0.406310 + 0.913735i \(0.366815\pi\)
−0.406310 + 0.913735i \(0.633185\pi\)
\(294\) 12.3997 + 8.28524i 0.723167 + 0.483205i
\(295\) 0 0
\(296\) 3.87014 + 5.79208i 0.224948 + 0.336658i
\(297\) −29.1022 12.0545i −1.68868 0.699474i
\(298\) 17.8051 + 7.37512i 1.03142 + 0.427229i
\(299\) −20.7642 31.0759i −1.20083 1.79716i
\(300\) 0 0
\(301\) 1.54136 + 1.02991i 0.0888426 + 0.0593628i
\(302\) 8.52985i 0.490838i
\(303\) 10.5596 15.8035i 0.606631 0.907888i
\(304\) −0.752584 0.311731i −0.0431637 0.0178790i
\(305\) 0 0
\(306\) −17.9387 9.42895i −1.02549 0.539017i
\(307\) 12.1175 12.1175i 0.691579 0.691579i −0.271000 0.962579i \(-0.587354\pi\)
0.962579 + 0.271000i \(0.0873543\pi\)
\(308\) −2.91637 7.04075i −0.166176 0.401184i
\(309\) −3.69012 18.5515i −0.209924 1.05536i
\(310\) 0 0
\(311\) −3.04967 + 4.56416i −0.172931 + 0.258810i −0.907804 0.419396i \(-0.862242\pi\)
0.734872 + 0.678205i \(0.237242\pi\)
\(312\) −12.4868 + 8.34339i −0.706924 + 0.472351i
\(313\) −1.25044 + 6.28639i −0.0706791 + 0.355328i −0.999899 0.0141989i \(-0.995480\pi\)
0.929220 + 0.369527i \(0.120480\pi\)
\(314\) 0.813023 0.336765i 0.0458815 0.0190048i
\(315\) 0 0
\(316\) 4.24937 2.83934i 0.239046 0.159725i
\(317\) −10.7218 16.0464i −0.602199 0.901254i 0.397669 0.917529i \(-0.369819\pi\)
−0.999868 + 0.0162752i \(0.994819\pi\)
\(318\) 0.543799 + 2.73386i 0.0304947 + 0.153307i
\(319\) −8.70947 8.70947i −0.487637 0.487637i
\(320\) 0 0
\(321\) −18.0060 + 43.4704i −1.00500 + 2.42628i
\(322\) −6.45386 6.45386i −0.359659 0.359659i
\(323\) −0.306001 + 3.34468i −0.0170263 + 0.186103i
\(324\) 0.413372i 0.0229651i
\(325\) 0 0
\(326\) −6.68221 + 1.32917i −0.370093 + 0.0736161i
\(327\) −6.84014 −0.378261
\(328\) −7.77565 + 1.54667i −0.429339 + 0.0854008i
\(329\) 0.0279601 0.140565i 0.00154149 0.00774959i
\(330\) 0 0
\(331\) −5.53455 13.3616i −0.304207 0.734420i −0.999871 0.0160529i \(-0.994890\pi\)
0.695665 0.718367i \(-0.255110\pi\)
\(332\) 0.987480 2.38399i 0.0541950 0.130838i
\(333\) −33.5815 6.67978i −1.84026 0.366050i
\(334\) 13.1642 + 2.61851i 0.720310 + 0.143279i
\(335\) 0 0
\(336\) −2.59326 + 2.59326i −0.141474 + 0.141474i
\(337\) 7.15312 + 4.77956i 0.389655 + 0.260359i 0.734931 0.678142i \(-0.237215\pi\)
−0.345276 + 0.938501i \(0.612215\pi\)
\(338\) 14.3142 5.92913i 0.778590 0.322502i
\(339\) −31.8295 −1.72874
\(340\) 0 0
\(341\) 9.02956 0.488978
\(342\) 3.69908 1.53221i 0.200023 0.0828523i
\(343\) −13.3324 8.90842i −0.719881 0.481009i
\(344\) 1.00557 1.00557i 0.0542168 0.0542168i
\(345\) 0 0
\(346\) 23.1868 + 4.61214i 1.24653 + 0.247950i
\(347\) −33.4249 6.64863i −1.79434 0.356917i −0.818350 0.574720i \(-0.805111\pi\)
−0.975993 + 0.217802i \(0.930111\pi\)
\(348\) −2.26832 + 5.47620i −0.121595 + 0.293555i
\(349\) 2.62113 + 6.32796i 0.140306 + 0.338728i 0.978376 0.206834i \(-0.0663161\pi\)
−0.838070 + 0.545562i \(0.816316\pi\)
\(350\) 0 0
\(351\) 5.61108 28.2088i 0.299497 1.50567i
\(352\) −5.73386 + 1.14054i −0.305616 + 0.0607907i
\(353\) 23.7210 1.26254 0.631270 0.775563i \(-0.282534\pi\)
0.631270 + 0.775563i \(0.282534\pi\)
\(354\) −15.1831 + 3.02010i −0.806971 + 0.160516i
\(355\) 0 0
\(356\) 1.10208i 0.0584102i
\(357\) 13.3848 + 7.03535i 0.708400 + 0.372350i
\(358\) 17.5394 + 17.5394i 0.926987 + 0.926987i
\(359\) 10.0001 24.1423i 0.527783 1.27418i −0.405189 0.914233i \(-0.632794\pi\)
0.932972 0.359948i \(-0.117206\pi\)
\(360\) 0 0
\(361\) 12.9658 + 12.9658i 0.682412 + 0.682412i
\(362\) 1.10723 + 5.56640i 0.0581945 + 0.292564i
\(363\) 36.2280 + 54.2190i 1.90147 + 2.84576i
\(364\) 5.78563 3.86583i 0.303249 0.202625i
\(365\) 0 0
\(366\) 15.0890 6.25006i 0.788714 0.326696i
\(367\) −2.97569 + 14.9598i −0.155330 + 0.780894i 0.822052 + 0.569412i \(0.192829\pi\)
−0.977382 + 0.211482i \(0.932171\pi\)
\(368\) −5.82170 + 3.88994i −0.303477 + 0.202777i
\(369\) 21.6491 32.4002i 1.12701 1.68669i
\(370\) 0 0
\(371\) −0.251964 1.26671i −0.0130813 0.0657643i
\(372\) −1.66289 4.01457i −0.0862168 0.208146i
\(373\) 3.61554 3.61554i 0.187206 0.187206i −0.607281 0.794487i \(-0.707740\pi\)
0.794487 + 0.607281i \(0.207740\pi\)
\(374\) 11.5100 + 21.1789i 0.595169 + 1.09513i
\(375\) 0 0
\(376\) −0.101575 0.0420738i −0.00523834 0.00216979i
\(377\) 6.24808 9.35091i 0.321792 0.481596i
\(378\) 7.02373i 0.361261i
\(379\) 20.5807 + 13.7516i 1.05716 + 0.706372i 0.957437 0.288643i \(-0.0932042\pi\)
0.0997236 + 0.995015i \(0.468204\pi\)
\(380\) 0 0
\(381\) −5.56959 8.33548i −0.285339 0.427039i
\(382\) −0.265107 0.109811i −0.0135641 0.00561842i
\(383\) −15.5006 6.42058i −0.792046 0.328076i −0.0502803 0.998735i \(-0.516011\pi\)
−0.741766 + 0.670659i \(0.766011\pi\)
\(384\) 1.56304 + 2.33925i 0.0797634 + 0.119374i
\(385\) 0 0
\(386\) −20.3846 13.6206i −1.03755 0.693268i
\(387\) 6.98982i 0.355313i
\(388\) 8.36364 12.5171i 0.424599 0.635458i
\(389\) 10.3937 + 4.30522i 0.526983 + 0.218283i 0.630281 0.776367i \(-0.282940\pi\)
−0.103298 + 0.994650i \(0.532940\pi\)
\(390\) 0 0
\(391\) 22.4424 + 18.1588i 1.13496 + 0.918332i
\(392\) −3.74819 + 3.74819i −0.189312 + 0.189312i
\(393\) −12.6957 30.6501i −0.640413 1.54609i
\(394\) 0.490864 + 2.46774i 0.0247294 + 0.124323i
\(395\) 0 0
\(396\) 15.9643 23.8923i 0.802237 1.20063i
\(397\) 31.0249 20.7302i 1.55710 1.04042i 0.583508 0.812107i \(-0.301680\pi\)
0.973588 0.228311i \(-0.0733204\pi\)
\(398\) −2.52203 + 12.6791i −0.126418 + 0.635546i
\(399\) −2.76004 + 1.14325i −0.138175 + 0.0572339i
\(400\) 0 0
\(401\) −3.29578 + 2.20217i −0.164583 + 0.109971i −0.635134 0.772402i \(-0.719055\pi\)
0.470551 + 0.882373i \(0.344055\pi\)
\(402\) 9.11608 + 13.6432i 0.454669 + 0.680460i
\(403\) 1.60843 + 8.08613i 0.0801217 + 0.402799i
\(404\) 4.77708 + 4.77708i 0.237668 + 0.237668i
\(405\) 0 0
\(406\) 1.05100 2.53735i 0.0521604 0.125926i
\(407\) 28.7969 + 28.7969i 1.42741 + 1.42741i
\(408\) 7.29650 9.01770i 0.361230 0.446443i
\(409\) 0.304764i 0.0150696i −0.999972 0.00753480i \(-0.997602\pi\)
0.999972 0.00753480i \(-0.00239842\pi\)
\(410\) 0 0
\(411\) 37.4384 7.44696i 1.84670 0.367332i
\(412\) 6.72318 0.331227
\(413\) 7.03493 1.39933i 0.346166 0.0688568i
\(414\) 6.71394 33.7533i 0.329972 1.65888i
\(415\) 0 0
\(416\) −2.04274 4.93161i −0.100154 0.241792i
\(417\) −11.0987 + 26.7947i −0.543506 + 1.31214i
\(418\) −4.67075 0.929070i −0.228454 0.0454423i
\(419\) 35.8559 + 7.13218i 1.75168 + 0.348430i 0.963641 0.267201i \(-0.0860988\pi\)
0.788035 + 0.615631i \(0.211099\pi\)
\(420\) 0 0
\(421\) 15.7246 15.7246i 0.766371 0.766371i −0.211095 0.977466i \(-0.567703\pi\)
0.977466 + 0.211095i \(0.0677029\pi\)
\(422\) 11.8580 + 7.92328i 0.577240 + 0.385699i
\(423\) 0.499259 0.206800i 0.0242748 0.0100550i
\(424\) −0.990769 −0.0481160
\(425\) 0 0
\(426\) 15.4599 0.749034
\(427\) −6.99134 + 2.89591i −0.338335 + 0.140143i
\(428\) −13.9058 9.29153i −0.672160 0.449123i
\(429\) −62.0814 + 62.0814i −2.99732 + 2.99732i
\(430\) 0 0
\(431\) −34.8166 6.92546i −1.67706 0.333588i −0.737336 0.675526i \(-0.763916\pi\)
−0.939722 + 0.341939i \(0.888916\pi\)
\(432\) −5.28458 1.05117i −0.254255 0.0505744i
\(433\) 1.80184 4.35002i 0.0865907 0.209048i −0.874652 0.484751i \(-0.838910\pi\)
0.961243 + 0.275702i \(0.0889104\pi\)
\(434\) 0.770484 + 1.86011i 0.0369844 + 0.0892883i
\(435\) 0 0
\(436\) 0.474319 2.38457i 0.0227158 0.114200i
\(437\) −5.59393 + 1.11270i −0.267594 + 0.0532278i
\(438\) −23.0220 −1.10004
\(439\) 16.6816 3.31818i 0.796170 0.158368i 0.219787 0.975548i \(-0.429464\pi\)
0.576383 + 0.817180i \(0.304464\pi\)
\(440\) 0 0
\(441\) 26.0540i 1.24067i
\(442\) −16.9158 + 14.0800i −0.804602 + 0.669718i
\(443\) −8.08098 8.08098i −0.383939 0.383939i 0.488580 0.872519i \(-0.337515\pi\)
−0.872519 + 0.488580i \(0.837515\pi\)
\(444\) 7.49994 18.1065i 0.355931 0.859295i
\(445\) 0 0
\(446\) 9.65170 + 9.65170i 0.457021 + 0.457021i
\(447\) −10.5778 53.1782i −0.500313 2.51524i
\(448\) −0.724218 1.08387i −0.0342161 0.0512080i
\(449\) −9.49028 + 6.34120i −0.447874 + 0.299260i −0.758978 0.651116i \(-0.774301\pi\)
0.311104 + 0.950376i \(0.399301\pi\)
\(450\) 0 0
\(451\) −42.8205 + 17.7368i −2.01634 + 0.835194i
\(452\) 2.20717 11.0962i 0.103816 0.521920i
\(453\) −19.9534 + 13.3325i −0.937494 + 0.626414i
\(454\) 4.38201 6.55814i 0.205658 0.307789i
\(455\) 0 0
\(456\) 0.447101 + 2.24773i 0.0209374 + 0.105260i
\(457\) −3.07536 7.42458i −0.143859 0.347307i 0.835483 0.549516i \(-0.185188\pi\)
−0.979342 + 0.202209i \(0.935188\pi\)
\(458\) −7.49447 + 7.49447i −0.350193 + 0.350193i
\(459\) 2.33090 + 22.0932i 0.108797 + 1.03122i
\(460\) 0 0
\(461\) 32.2280 + 13.3493i 1.50101 + 0.621737i 0.973679 0.227924i \(-0.0731939\pi\)
0.527328 + 0.849662i \(0.323194\pi\)
\(462\) −11.9117 + 17.8271i −0.554181 + 0.829390i
\(463\) 39.0872i 1.81654i 0.418386 + 0.908269i \(0.362596\pi\)
−0.418386 + 0.908269i \(0.637404\pi\)
\(464\) −1.75178 1.17050i −0.0813245 0.0543393i
\(465\) 0 0
\(466\) −1.32642 1.98513i −0.0614454 0.0919595i
\(467\) −15.5971 6.46053i −0.721748 0.298958i −0.00859198 0.999963i \(-0.502735\pi\)
−0.713156 + 0.701005i \(0.752735\pi\)
\(468\) 24.2397 + 10.0404i 1.12048 + 0.464118i
\(469\) −4.22385 6.32144i −0.195039 0.291897i
\(470\) 0 0
\(471\) −2.05856 1.37549i −0.0948535 0.0633791i
\(472\) 5.50244i 0.253270i
\(473\) 4.61891 6.91269i 0.212378 0.317846i
\(474\) −13.2838 5.50235i −0.610147 0.252731i
\(475\) 0 0
\(476\) −3.38077 + 4.17827i −0.154957 + 0.191511i
\(477\) 3.44347 3.44347i 0.157665 0.157665i
\(478\) −4.00988 9.68071i −0.183408 0.442785i
\(479\) 1.23929 + 6.23034i 0.0566247 + 0.284672i 0.998714 0.0506892i \(-0.0161418\pi\)
−0.942090 + 0.335361i \(0.891142\pi\)
\(480\) 0 0
\(481\) −20.6586 + 30.9178i −0.941950 + 1.40973i
\(482\) 5.38993 3.60143i 0.245504 0.164041i
\(483\) −5.00957 + 25.1848i −0.227943 + 1.14595i
\(484\) −21.4136 + 8.86981i −0.973346 + 0.403173i
\(485\) 0 0
\(486\) −12.4732 + 8.33431i −0.565795 + 0.378052i
\(487\) 15.0153 + 22.4720i 0.680407 + 1.01830i 0.997552 + 0.0699246i \(0.0222759\pi\)
−0.317145 + 0.948377i \(0.602724\pi\)
\(488\) 1.13253 + 5.69362i 0.0512673 + 0.257738i
\(489\) 13.5538 + 13.5538i 0.612924 + 0.612924i
\(490\) 0 0
\(491\) −0.0788074 + 0.190258i −0.00355653 + 0.00858621i −0.925648 0.378386i \(-0.876479\pi\)
0.922091 + 0.386972i \(0.126479\pi\)
\(492\) 15.7717 + 15.7717i 0.711042 + 0.711042i
\(493\) −2.46389 + 8.33002i −0.110968 + 0.375165i
\(494\) 4.34824i 0.195636i
\(495\) 0 0
\(496\) 1.51484 0.301321i 0.0680184 0.0135297i
\(497\) −7.16319 −0.321313
\(498\) −7.12021 + 1.41630i −0.319064 + 0.0634658i
\(499\) 4.34370 21.8373i 0.194451 0.977570i −0.753086 0.657923i \(-0.771435\pi\)
0.947536 0.319648i \(-0.103565\pi\)
\(500\) 0 0
\(501\) −14.4507 34.8871i −0.645609 1.55864i
\(502\) 8.35260 20.1650i 0.372795 0.900007i
\(503\) −1.59744 0.317750i −0.0712262 0.0141678i 0.159349 0.987222i \(-0.449061\pi\)
−0.230575 + 0.973055i \(0.574061\pi\)
\(504\) 6.28410 + 1.24998i 0.279916 + 0.0556787i
\(505\) 0 0
\(506\) −28.9442 + 28.9442i −1.28673 + 1.28673i
\(507\) −36.2433 24.2170i −1.60962 1.07552i
\(508\) 3.29207 1.36362i 0.146062 0.0605009i
\(509\) 35.1547 1.55820 0.779102 0.626897i \(-0.215675\pi\)
0.779102 + 0.626897i \(0.215675\pi\)
\(510\) 0 0
\(511\) 10.6671 0.471883
\(512\) −0.923880 + 0.382683i −0.0408301 + 0.0169124i
\(513\) −3.64941 2.43846i −0.161126 0.107661i
\(514\) −6.86243 + 6.86243i −0.302689 + 0.302689i
\(515\) 0 0
\(516\) −3.92402 0.780537i −0.172746 0.0343612i
\(517\) −0.630404 0.125395i −0.0277251 0.00551487i
\(518\) −3.47503 + 8.38946i −0.152684 + 0.368612i
\(519\) −25.4529 61.4487i −1.11726 2.69730i
\(520\) 0 0
\(521\) 6.77862 34.0784i 0.296977 1.49300i −0.487653 0.873038i \(-0.662147\pi\)
0.784629 0.619965i \(-0.212853\pi\)
\(522\) 10.1566 2.02026i 0.444540 0.0884246i
\(523\) 0.224643 0.00982294 0.00491147 0.999988i \(-0.498437\pi\)
0.00491147 + 0.999988i \(0.498437\pi\)
\(524\) 11.5654 2.30050i 0.505237 0.100498i
\(525\) 0 0
\(526\) 16.0185i 0.698438i
\(527\) −3.04086 5.59530i −0.132462 0.243735i
\(528\) 11.6302 + 11.6302i 0.506140 + 0.506140i
\(529\) −9.95889 + 24.0429i −0.432995 + 1.04534i
\(530\) 0 0
\(531\) 19.1240 + 19.1240i 0.829911 + 0.829911i
\(532\) −0.207160 1.04146i −0.00898153 0.0451532i
\(533\) −23.5112 35.1871i −1.01838 1.52412i
\(534\) 2.57804 1.72259i 0.111563 0.0745439i
\(535\) 0 0
\(536\) −5.38834 + 2.23192i −0.232741 + 0.0964043i
\(537\) 13.6143 68.4438i 0.587501 2.95357i
\(538\) −13.7058 + 9.15792i −0.590899 + 0.394826i
\(539\) −17.2166 + 25.7665i −0.741572 + 1.10984i
\(540\) 0 0
\(541\) 6.22565 + 31.2985i 0.267662 + 1.34563i 0.847457 + 0.530864i \(0.178132\pi\)
−0.579796 + 0.814762i \(0.696868\pi\)
\(542\) 1.97962 + 4.77923i 0.0850321 + 0.205286i
\(543\) 11.2906 11.2906i 0.484525 0.484525i
\(544\) 2.63773 + 3.16897i 0.113092 + 0.135869i
\(545\) 0 0
\(546\) −18.0863 7.49159i −0.774022 0.320610i
\(547\) 3.82638 5.72658i 0.163604 0.244851i −0.740605 0.671940i \(-0.765461\pi\)
0.904209 + 0.427090i \(0.140461\pi\)
\(548\) 13.5679i 0.579593i
\(549\) −23.7246 15.8523i −1.01254 0.676559i
\(550\) 0 0
\(551\) −0.953483 1.42699i −0.0406197 0.0607917i
\(552\) 18.1991 + 7.53830i 0.774604 + 0.320851i
\(553\) 6.15494 + 2.54946i 0.261735 + 0.108414i
\(554\) 11.4847 + 17.1880i 0.487936 + 0.730248i
\(555\) 0 0
\(556\) −8.57135 5.72719i −0.363506 0.242887i
\(557\) 33.2286i 1.40794i −0.710228 0.703971i \(-0.751408\pi\)
0.710228 0.703971i \(-0.248592\pi\)
\(558\) −4.21765 + 6.31216i −0.178548 + 0.267215i
\(559\) 7.01321 + 2.90496i 0.296627 + 0.122867i
\(560\) 0 0
\(561\) 31.5521 60.0281i 1.33213 2.53439i
\(562\) −0.924680 + 0.924680i −0.0390053 + 0.0390053i
\(563\) −8.49755 20.5149i −0.358129 0.864600i −0.995563 0.0940950i \(-0.970004\pi\)
0.637434 0.770505i \(-0.279996\pi\)
\(564\) 0.0603445 + 0.303372i 0.00254096 + 0.0127743i
\(565\) 0 0
\(566\) −2.53325 + 3.79127i −0.106480 + 0.159359i
\(567\) −0.448041 + 0.299372i −0.0188160 + 0.0125724i
\(568\) −1.07204 + 5.38952i −0.0449819 + 0.226139i
\(569\) 13.2905 5.50510i 0.557166 0.230786i −0.0862883 0.996270i \(-0.527501\pi\)
0.643454 + 0.765484i \(0.277501\pi\)
\(570\) 0 0
\(571\) 17.4454 11.6566i 0.730068 0.487816i −0.134133 0.990963i \(-0.542825\pi\)
0.864200 + 0.503148i \(0.167825\pi\)
\(572\) −17.3375 25.9473i −0.724915 1.08491i
\(573\) 0.157497 + 0.791791i 0.00657953 + 0.0330775i
\(574\) −7.30766 7.30766i −0.305016 0.305016i
\(575\) 0 0
\(576\) 1.88095 4.54102i 0.0783731 0.189209i
\(577\) −13.0297 13.0297i −0.542435 0.542435i 0.381807 0.924242i \(-0.375302\pi\)
−0.924242 + 0.381807i \(0.875302\pi\)
\(578\) 9.24760 14.2647i 0.384650 0.593334i
\(579\) 68.9741i 2.86646i
\(580\) 0 0
\(581\) 3.29908 0.656228i 0.136869 0.0272249i
\(582\) −42.3532 −1.75560
\(583\) −5.68093 + 1.13001i −0.235280 + 0.0468001i
\(584\) 1.59643 8.02579i 0.0660607 0.332110i
\(585\) 0 0
\(586\) 11.9708 + 28.9001i 0.494510 + 1.19385i
\(587\) −8.94250 + 21.5891i −0.369096 + 0.891077i 0.624803 + 0.780783i \(0.285179\pi\)
−0.993899 + 0.110295i \(0.964821\pi\)
\(588\) 14.6265 + 2.90939i 0.603186 + 0.119981i
\(589\) 1.23398 + 0.245453i 0.0508452 + 0.0101137i
\(590\) 0 0
\(591\) 5.00542 5.00542i 0.205895 0.205895i
\(592\) 5.79208 + 3.87014i 0.238053 + 0.159062i
\(593\) 25.7677 10.6733i 1.05815 0.438301i 0.215357 0.976535i \(-0.430908\pi\)
0.842795 + 0.538234i \(0.180908\pi\)
\(594\) −31.4999 −1.29246
\(595\) 0 0
\(596\) 19.2721 0.789417
\(597\) 33.6016 13.9182i 1.37522 0.569636i
\(598\) −31.0759 20.7642i −1.27079 0.849113i
\(599\) 6.03820 6.03820i 0.246714 0.246714i −0.572907 0.819621i \(-0.694184\pi\)
0.819621 + 0.572907i \(0.194184\pi\)
\(600\) 0 0
\(601\) −1.21570 0.241819i −0.0495896 0.00986398i 0.170233 0.985404i \(-0.445548\pi\)
−0.219823 + 0.975540i \(0.570548\pi\)
\(602\) 1.81816 + 0.361655i 0.0741027 + 0.0147399i
\(603\) 10.9703 26.4846i 0.446744 1.07854i
\(604\) −3.26423 7.88055i −0.132820 0.320655i
\(605\) 0 0
\(606\) 3.70803 18.6415i 0.150628 0.757260i
\(607\) −35.7149 + 7.10414i −1.44962 + 0.288348i −0.856243 0.516574i \(-0.827207\pi\)
−0.593381 + 0.804922i \(0.702207\pi\)
\(608\) −0.814591 −0.0330360
\(609\) −7.57824 + 1.50741i −0.307086 + 0.0610832i
\(610\) 0 0
\(611\) 0.586875i 0.0237424i
\(612\) −20.1815 1.84638i −0.815788 0.0746355i
\(613\) 1.67709 + 1.67709i 0.0677372 + 0.0677372i 0.740164 0.672427i \(-0.234748\pi\)
−0.672427 + 0.740164i \(0.734748\pi\)
\(614\) 6.55792 15.8322i 0.264656 0.638936i
\(615\) 0 0
\(616\) −5.38876 5.38876i −0.217119 0.217119i
\(617\) 1.85351 + 9.31821i 0.0746194 + 0.375137i 0.999992 0.00392093i \(-0.00124807\pi\)
−0.925373 + 0.379058i \(0.876248\pi\)
\(618\) −10.5086 15.7272i −0.422717 0.632640i
\(619\) −33.6978 + 22.5162i −1.35443 + 0.905001i −0.999553 0.0299118i \(-0.990477\pi\)
−0.354877 + 0.934913i \(0.615477\pi\)
\(620\) 0 0
\(621\) −34.8543 + 14.4371i −1.39865 + 0.579341i
\(622\) −1.07090 + 5.38379i −0.0429393 + 0.215870i
\(623\) −1.19451 + 0.798148i −0.0478571 + 0.0319771i
\(624\) −8.34339 + 12.4868i −0.334003 + 0.499871i
\(625\) 0 0
\(626\) 1.25044 + 6.28639i 0.0499777 + 0.251255i
\(627\) 5.12723 + 12.3782i 0.204762 + 0.494338i
\(628\) 0.622261 0.622261i 0.0248309 0.0248309i
\(629\) 8.14658 27.5423i 0.324825 1.09818i
\(630\) 0 0
\(631\) −12.6410 5.23609i −0.503232 0.208446i 0.116602 0.993179i \(-0.462800\pi\)
−0.619834 + 0.784733i \(0.712800\pi\)
\(632\) 2.83934 4.24937i 0.112943 0.169031i
\(633\) 40.1233i 1.59476i
\(634\) −16.0464 10.7218i −0.637283 0.425819i
\(635\) 0 0
\(636\) 1.54861 + 2.31766i 0.0614063 + 0.0919010i
\(637\) −26.1412 10.8280i −1.03575 0.429022i
\(638\) −11.3795 4.71353i −0.450518 0.186611i
\(639\) −15.0056 22.4575i −0.593613 0.888404i
\(640\) 0 0
\(641\) −28.3365 18.9339i −1.11923 0.747843i −0.148711 0.988881i \(-0.547512\pi\)
−0.970516 + 0.241038i \(0.922512\pi\)
\(642\) 47.0520i 1.85700i
\(643\) −6.38975 + 9.56293i −0.251987 + 0.377125i −0.935800 0.352532i \(-0.885321\pi\)
0.683813 + 0.729658i \(0.260321\pi\)
\(644\) −8.43237 3.49280i −0.332282 0.137636i
\(645\) 0 0
\(646\) 0.997245 + 3.20718i 0.0392361 + 0.126185i
\(647\) −22.0524 + 22.0524i −0.866968 + 0.866968i −0.992136 0.125168i \(-0.960053\pi\)
0.125168 + 0.992136i \(0.460053\pi\)
\(648\) 0.158191 + 0.381906i 0.00621432 + 0.0150027i
\(649\) −6.27573 31.5502i −0.246344 1.23845i
\(650\) 0 0
\(651\) 3.14697 4.70978i 0.123340 0.184591i
\(652\) −5.66490 + 3.78517i −0.221855 + 0.148239i
\(653\) −9.02163 + 45.3548i −0.353044 + 1.77487i 0.241088 + 0.970503i \(0.422496\pi\)
−0.594132 + 0.804368i \(0.702504\pi\)
\(654\) −6.31947 + 2.61761i −0.247111 + 0.102357i
\(655\) 0 0
\(656\) −6.59188 + 4.40455i −0.257370 + 0.171969i
\(657\) 22.3456 + 33.4425i 0.871783 + 1.30472i
\(658\) −0.0279601 0.140565i −0.00109000 0.00547979i
\(659\) −26.4734 26.4734i −1.03126 1.03126i −0.999495 0.0317611i \(-0.989888\pi\)
−0.0317611 0.999495i \(-0.510112\pi\)
\(660\) 0 0
\(661\) −3.99375 + 9.64176i −0.155339 + 0.375021i −0.982320 0.187208i \(-0.940056\pi\)
0.826981 + 0.562229i \(0.190056\pi\)
\(662\) −10.2265 10.2265i −0.397465 0.397465i
\(663\) 59.3767 + 17.5627i 2.30600 + 0.682077i
\(664\) 2.58041i 0.100139i
\(665\) 0 0
\(666\) −33.5815 + 6.67978i −1.30126 + 0.258836i
\(667\) −14.7516 −0.571182
\(668\) 13.1642 2.61851i 0.509336 0.101313i
\(669\) 7.49177 37.6637i 0.289649 1.45616i
\(670\) 0 0
\(671\) 12.9876 + 31.3547i 0.501379 + 1.21044i
\(672\) −1.40346 + 3.38825i −0.0541397 + 0.130705i
\(673\) 9.10724 + 1.81154i 0.351058 + 0.0698299i 0.367470 0.930035i \(-0.380224\pi\)
−0.0164114 + 0.999865i \(0.505224\pi\)
\(674\) 8.43768 + 1.67836i 0.325007 + 0.0646480i
\(675\) 0 0
\(676\) 10.9556 10.9556i 0.421370 0.421370i
\(677\) 31.7217 + 21.1958i 1.21916 + 0.814619i 0.987414 0.158157i \(-0.0505551\pi\)
0.231749 + 0.972776i \(0.425555\pi\)
\(678\) −29.4066 + 12.1806i −1.12935 + 0.467794i
\(679\) 19.6240 0.753099
\(680\) 0 0
\(681\) −22.1904 −0.850336
\(682\) 8.34222 3.45546i 0.319440 0.132316i
\(683\) 22.6804 + 15.1546i 0.867842 + 0.579874i 0.907836 0.419326i \(-0.137734\pi\)
−0.0399935 + 0.999200i \(0.512734\pi\)
\(684\) 2.83115 2.83115i 0.108252 0.108252i
\(685\) 0 0
\(686\) −15.7266 3.12822i −0.600445 0.119436i
\(687\) 29.2455 + 5.81730i 1.11579 + 0.221944i
\(688\) 0.544211 1.31384i 0.0207479 0.0500898i
\(689\) −2.02388 4.88609i −0.0771038 0.186145i
\(690\) 0 0
\(691\) −5.53015 + 27.8020i −0.210377 + 1.05764i 0.720821 + 0.693122i \(0.243765\pi\)
−0.931198 + 0.364515i \(0.881235\pi\)
\(692\) 23.1868 4.61214i 0.881430 0.175327i
\(693\) 37.4578 1.42290
\(694\) −33.4249 + 6.64863i −1.26879 + 0.252378i
\(695\) 0 0
\(696\) 5.92740i 0.224677i
\(697\) 25.4114 + 20.5612i 0.962526 + 0.778809i
\(698\) 4.84321 + 4.84321i 0.183318 + 0.183318i
\(699\) −2.57047 + 6.20567i −0.0972242 + 0.234720i
\(700\) 0 0
\(701\) −2.93942 2.93942i −0.111020 0.111020i 0.649414 0.760435i \(-0.275014\pi\)
−0.760435 + 0.649414i \(0.775014\pi\)
\(702\) −5.61108 28.2088i −0.211776 1.06467i
\(703\) 3.15259 + 4.71818i 0.118902 + 0.177949i
\(704\) −4.86093 + 3.24797i −0.183203 + 0.122412i
\(705\) 0 0
\(706\) 21.9153 9.07762i 0.824794 0.341641i
\(707\) −1.71808 + 8.63737i −0.0646151 + 0.324842i
\(708\) −12.8716 + 8.60051i −0.483744 + 0.323227i
\(709\) −9.66796 + 14.4691i −0.363088 + 0.543399i −0.967369 0.253372i \(-0.918460\pi\)
0.604281 + 0.796771i \(0.293460\pi\)
\(710\) 0 0
\(711\) 4.90063 + 24.6371i 0.183788 + 0.923965i
\(712\) 0.421748 + 1.01819i 0.0158057 + 0.0381583i
\(713\) 7.64684 7.64684i 0.286377 0.286377i
\(714\) 15.0583 + 1.37767i 0.563542 + 0.0515578i
\(715\) 0 0
\(716\) 22.9163 + 9.49226i 0.856424 + 0.354742i
\(717\) −16.3780 + 24.5114i −0.611647 + 0.915395i
\(718\) 26.1314i 0.975216i
\(719\) −7.89793 5.27723i −0.294543 0.196807i 0.399515 0.916727i \(-0.369179\pi\)
−0.694058 + 0.719919i \(0.744179\pi\)
\(720\) 0 0
\(721\) 4.86905 + 7.28705i 0.181333 + 0.271384i
\(722\) 16.9407 + 7.01705i 0.630466 + 0.261148i
\(723\) −16.8493 6.97921i −0.626632 0.259560i
\(724\) 3.15311 + 4.71897i 0.117185 + 0.175379i
\(725\) 0 0
\(726\) 54.2190 + 36.2280i 2.01225 + 1.34455i
\(727\) 11.5433i 0.428116i 0.976821 + 0.214058i \(0.0686681\pi\)
−0.976821 + 0.214058i \(0.931332\pi\)
\(728\) 3.86583 5.78563i 0.143277 0.214430i
\(729\) 40.1378 + 16.6256i 1.48658 + 0.615764i
\(730\) 0 0
\(731\) −5.83905 0.534208i −0.215965 0.0197584i
\(732\) 11.5486 11.5486i 0.426849 0.426849i
\(733\) −1.12997 2.72799i −0.0417363 0.100760i 0.901637 0.432494i \(-0.142366\pi\)
−0.943373 + 0.331734i \(0.892366\pi\)
\(734\) 2.97569 + 14.9598i 0.109835 + 0.552176i
\(735\) 0 0
\(736\) −3.88994 + 5.82170i −0.143385 + 0.214591i
\(737\) −28.3504 + 18.9431i −1.04430 + 0.697778i
\(738\) 7.60216 38.2186i 0.279839 1.40685i
\(739\) 9.10333 3.77072i 0.334871 0.138708i −0.208911 0.977935i \(-0.566992\pi\)
0.543782 + 0.839226i \(0.316992\pi\)
\(740\) 0 0
\(741\) −10.1716 + 6.79645i −0.373663 + 0.249674i
\(742\) −0.717533 1.07386i −0.0263415 0.0394228i
\(743\) −0.496966 2.49842i −0.0182319 0.0916580i 0.970598 0.240706i \(-0.0773790\pi\)
−0.988830 + 0.149048i \(0.952379\pi\)
\(744\) −3.07262 3.07262i −0.112648 0.112648i
\(745\) 0 0
\(746\) 1.95672 4.72394i 0.0716406 0.172956i
\(747\) 8.96834 + 8.96834i 0.328134 + 0.328134i
\(748\) 18.7387 + 15.1620i 0.685154 + 0.554379i
\(749\) 21.8011i 0.796596i
\(750\) 0 0
\(751\) −28.9085 + 5.75025i −1.05489 + 0.209830i −0.691921 0.721973i \(-0.743235\pi\)
−0.362964 + 0.931803i \(0.618235\pi\)
\(752\) −0.109944 −0.00400925
\(753\) −60.2263 + 11.9798i −2.19477 + 0.436567i
\(754\) 2.19403 11.0302i 0.0799020 0.401694i
\(755\) 0 0
\(756\) −2.68786 6.48908i −0.0977566 0.236005i
\(757\) 3.97997 9.60850i 0.144655 0.349227i −0.834901 0.550400i \(-0.814475\pi\)
0.979556 + 0.201173i \(0.0644753\pi\)
\(758\) 24.2766 + 4.82892i 0.881766 + 0.175394i
\(759\) 112.949 + 22.4669i 4.09977 + 0.815495i
\(760\) 0 0
\(761\) −0.842952 + 0.842952i −0.0305570 + 0.0305570i −0.722220 0.691663i \(-0.756878\pi\)
0.691663 + 0.722220i \(0.256878\pi\)
\(762\) −8.33548 5.56959i −0.301962 0.201765i
\(763\) 2.92807 1.21285i 0.106003 0.0439080i
\(764\) −0.286950 −0.0103815
\(765\) 0 0
\(766\) −16.7778 −0.606206
\(767\) 27.1359 11.2401i 0.979820 0.405855i
\(768\) 2.33925 + 1.56304i 0.0844104 + 0.0564012i
\(769\) −5.06321 + 5.06321i −0.182584 + 0.182584i −0.792481 0.609897i \(-0.791211\pi\)
0.609897 + 0.792481i \(0.291211\pi\)
\(770\) 0 0
\(771\) 26.7791 + 5.32670i 0.964427 + 0.191837i
\(772\) −24.0453 4.78290i −0.865408 0.172140i
\(773\) 0.443463 1.07061i 0.0159502 0.0385073i −0.915704 0.401854i \(-0.868366\pi\)
0.931654 + 0.363347i \(0.118366\pi\)
\(774\) 2.67489 + 6.45775i 0.0961469 + 0.232119i
\(775\) 0 0
\(776\) 2.93692 14.7649i 0.105429 0.530029i
\(777\) 25.0566 4.98407i 0.898902 0.178803i
\(778\) 11.2501 0.403335
\(779\) −6.33398 + 1.25991i −0.226938 + 0.0451409i
\(780\) 0 0
\(781\) 32.1254i 1.14954i
\(782\) 27.6832 + 8.18824i 0.989948 + 0.292811i
\(783\) −8.02705 8.02705i −0.286863 0.286863i
\(784\) −2.02850 + 4.89724i −0.0724465 + 0.174901i
\(785\) 0 0
\(786\) −23.4586 23.4586i −0.836740 0.836740i
\(787\) 7.24294 + 36.4127i 0.258183 + 1.29797i 0.864453 + 0.502714i \(0.167665\pi\)
−0.606270 + 0.795259i \(0.707335\pi\)
\(788\) 1.39786 + 2.09205i 0.0497968 + 0.0745261i
\(789\) −37.4712 + 25.0374i −1.33401 + 0.891356i
\(790\) 0 0
\(791\) 13.6253 5.64377i 0.484459 0.200669i
\(792\) 5.60592 28.1829i 0.199198 1.00143i
\(793\) −25.7653 + 17.2158i −0.914951 + 0.611351i
\(794\) 20.7302 31.0249i 0.735687 1.10103i
\(795\) 0 0
\(796\) 2.52203 + 12.6791i 0.0893911 + 0.449399i
\(797\) 0.0157219 + 0.0379559i 0.000556897 + 0.00134447i 0.924158 0.382011i \(-0.124768\pi\)
−0.923601 + 0.383356i \(0.874768\pi\)
\(798\) −2.11245 + 2.11245i −0.0747797 + 0.0747797i
\(799\) 0.134597 + 0.432868i 0.00476169 + 0.0153138i
\(800\) 0 0
\(801\) −5.00458 2.07296i −0.176828 0.0732446i
\(802\) −2.20217 + 3.29578i −0.0777614 + 0.116378i
\(803\) 47.8395i 1.68822i
\(804\) 13.6432 + 9.11608i 0.481158 + 0.321500i
\(805\) 0 0
\(806\) 4.58043 + 6.85509i 0.161339 + 0.241460i
\(807\) 42.8453 + 17.7471i 1.50823 + 0.624727i
\(808\) 6.24155 + 2.58533i 0.219577 + 0.0909518i
\(809\) 21.2673 + 31.8287i 0.747717 + 1.11904i 0.988904 + 0.148559i \(0.0474635\pi\)
−0.241186 + 0.970479i \(0.577537\pi\)
\(810\) 0 0
\(811\) −3.94173 2.63378i −0.138413 0.0924845i 0.484436 0.874827i \(-0.339025\pi\)
−0.622849 + 0.782342i \(0.714025\pi\)
\(812\) 2.74641i 0.0963799i
\(813\) 8.08560 12.1009i 0.283574 0.424399i
\(814\) 37.6250 + 15.5848i 1.31876 + 0.546246i
\(815\) 0 0
\(816\) 3.29016 11.1235i 0.115179 0.389401i
\(817\) 0.819129 0.819129i 0.0286577 0.0286577i
\(818\) −0.116628 0.281565i −0.00407780 0.00984469i
\(819\) 6.67234 + 33.5441i 0.233150 + 1.17213i
\(820\) 0 0
\(821\) 24.1132 36.0879i 0.841555 1.25948i −0.122151 0.992512i \(-0.538979\pi\)
0.963706 0.266965i \(-0.0860208\pi\)
\(822\) 31.7388 21.2072i 1.10702 0.739685i
\(823\) 6.32657 31.8058i 0.220531 1.10868i −0.698837 0.715281i \(-0.746299\pi\)
0.919367 0.393401i \(-0.128701\pi\)
\(824\) 6.21141 2.57285i 0.216385 0.0896294i
\(825\) 0 0
\(826\) 5.96393 3.98497i 0.207512 0.138655i
\(827\) 24.8130 + 37.1352i 0.862832 + 1.29132i 0.955311 + 0.295604i \(0.0955209\pi\)
−0.0924789 + 0.995715i \(0.529479\pi\)
\(828\) −6.71394 33.7533i −0.233326 1.17301i
\(829\) 24.9924 + 24.9924i 0.868024 + 0.868024i 0.992253 0.124230i \(-0.0396460\pi\)
−0.124230 + 0.992253i \(0.539646\pi\)
\(830\) 0 0
\(831\) 22.2561 53.7309i 0.772055 1.86390i
\(832\) −3.77449 3.77449i −0.130857 0.130857i
\(833\) 21.7646 + 1.99122i 0.754098 + 0.0689917i
\(834\) 29.0023i 1.00427i
\(835\) 0 0
\(836\) −4.67075 + 0.929070i −0.161541 + 0.0321326i
\(837\) 8.32205 0.287652
\(838\) 35.8559 7.13218i 1.23862 0.246377i
\(839\) −9.26094 + 46.5579i −0.319723 + 1.60736i 0.402314 + 0.915502i \(0.368206\pi\)
−0.722037 + 0.691855i \(0.756794\pi\)
\(840\) 0 0
\(841\) 9.39915 + 22.6916i 0.324109 + 0.782468i
\(842\) 8.51010 20.5452i 0.293277 0.708034i
\(843\) 3.60837 + 0.717749i 0.124279 + 0.0247206i
\(844\) 13.9875 + 2.78229i 0.481470 + 0.0957702i
\(845\) 0 0
\(846\) 0.382116 0.382116i 0.0131374 0.0131374i
\(847\) −25.1219 16.7859i −0.863197 0.576770i
\(848\) −0.915351 + 0.379151i −0.0314333 + 0.0130201i
\(849\) 12.8283 0.440265
\(850\) 0 0
\(851\) 48.7744 1.67196
\(852\) 14.2831 5.91624i 0.489330 0.202687i
\(853\) 16.1374 + 10.7826i 0.552533 + 0.369191i 0.800273 0.599636i \(-0.204688\pi\)
−0.247740 + 0.968827i \(0.579688\pi\)
\(854\) −5.35094 + 5.35094i −0.183106 + 0.183106i
\(855\) 0 0
\(856\) −16.4030 3.26275i −0.560642 0.111519i
\(857\) −12.8130 2.54865i −0.437682 0.0870604i −0.0286691 0.999589i \(-0.509127\pi\)
−0.409013 + 0.912529i \(0.634127\pi\)
\(858\) −33.5982 + 81.1133i −1.14702 + 2.76916i
\(859\) −8.74774 21.1189i −0.298469 0.720568i −0.999969 0.00789846i \(-0.997486\pi\)
0.701500 0.712670i \(-0.252514\pi\)
\(860\) 0 0
\(861\) −5.67230 + 28.5166i −0.193312 + 0.971843i
\(862\) −34.8166 + 6.92546i −1.18586 + 0.235882i
\(863\) −48.9670 −1.66686 −0.833429 0.552627i \(-0.813625\pi\)
−0.833429 + 0.552627i \(0.813625\pi\)
\(864\) −5.28458 + 1.05117i −0.179785 + 0.0357615i
\(865\) 0 0
\(866\) 4.70842i 0.159999i
\(867\) −47.8230 + 0.663809i −1.62416 + 0.0225441i
\(868\) 1.42367 + 1.42367i 0.0483225 + 0.0483225i
\(869\) 11.4338 27.6036i 0.387865 0.936390i
\(870\) 0 0
\(871\) −22.0139 22.0139i −0.745914 0.745914i
\(872\) −0.474319 2.38457i −0.0160625 0.0807516i
\(873\) 41.1087 + 61.5235i 1.39132 + 2.08226i
\(874\) −4.74231 + 3.16871i −0.160411 + 0.107183i
\(875\) 0 0
\(876\) −21.2696 + 8.81016i −0.718633 + 0.297668i
\(877\) 1.88944 9.49886i 0.0638019 0.320754i −0.935683 0.352841i \(-0.885216\pi\)
0.999485 + 0.0320876i \(0.0102156\pi\)
\(878\) 14.1420 9.44938i 0.477269 0.318901i
\(879\) 48.8937 73.1747i 1.64915 2.46812i
\(880\) 0 0
\(881\) −3.65125 18.3561i −0.123014 0.618431i −0.992273 0.124075i \(-0.960404\pi\)
0.869259 0.494356i \(-0.164596\pi\)
\(882\) −9.97043 24.0708i −0.335722 0.810505i
\(883\) 19.9922 19.9922i 0.672793 0.672793i −0.285566 0.958359i \(-0.592182\pi\)
0.958359 + 0.285566i \(0.0921817\pi\)
\(884\) −10.2400 + 19.4816i −0.344407 + 0.655238i
\(885\) 0 0
\(886\) −10.5583 4.37340i −0.354713 0.146927i
\(887\) 29.6178 44.3262i 0.994469 1.48833i 0.126341 0.991987i \(-0.459677\pi\)
0.868128 0.496340i \(-0.165323\pi\)
\(888\) 19.5983i 0.657676i
\(889\) 3.86217 + 2.58062i 0.129533 + 0.0865511i
\(890\) 0 0
\(891\) 1.34262 + 2.00937i 0.0449795 + 0.0673165i
\(892\) 12.6106 + 5.22346i 0.422233 + 0.174894i
\(893\) −0.0827422 0.0342730i −0.00276886 0.00114690i
\(894\) −30.1230 45.0823i −1.00746 1.50778i
\(895\) 0 0
\(896\) −1.08387 0.724218i −0.0362095 0.0241944i
\(897\) 105.150i 3.51084i
\(898\) −6.34120 + 9.49028i −0.211609 + 0.316695i
\(899\) 3.00637 + 1.24528i 0.100268 + 0.0415324i
\(900\) 0 0
\(901\) 2.61338 + 3.13972i 0.0870642 + 0.104599i
\(902\) −32.7734 + 32.7734i −1.09123 + 1.09123i
\(903\) −1.99585 4.81841i −0.0664178 0.160347i
\(904\) −2.20717 11.0962i −0.0734093 0.369053i
\(905\) 0 0
\(906\) −13.3325 + 19.9534i −0.442941 + 0.662909i
\(907\) 28.6777 19.1618i 0.952226 0.636257i 0.0206435 0.999787i \(-0.493428\pi\)
0.931583 + 0.363530i \(0.118428\pi\)
\(908\) 1.53876 7.73585i 0.0510654 0.256723i
\(909\) −30.6783 + 12.7074i −1.01753 + 0.421476i
\(910\) 0 0
\(911\) −16.3825 + 10.9464i −0.542777 + 0.362672i −0.796532 0.604597i \(-0.793334\pi\)
0.253755 + 0.967269i \(0.418334\pi\)
\(912\) 1.27324 + 1.90553i 0.0421610 + 0.0630985i
\(913\) −2.94305 14.7957i −0.0974007 0.489666i
\(914\) −5.68253 5.68253i −0.187961 0.187961i
\(915\) 0 0
\(916\) −4.05598 + 9.79199i −0.134013 + 0.323537i
\(917\) 10.8693 + 10.8693i 0.358936 + 0.358936i
\(918\) 10.6082 + 19.5194i 0.350121 + 0.644237i
\(919\) 7.48557i 0.246926i 0.992349 + 0.123463i \(0.0394001\pi\)
−0.992349 + 0.123463i \(0.960600\pi\)
\(920\) 0 0
\(921\) −47.2857 + 9.40572i −1.55812 + 0.309929i
\(922\) 34.8833 1.14882
\(923\) −28.7689 + 5.72249i −0.946941 + 0.188358i
\(924\) −4.18282 + 21.0285i −0.137605 + 0.691786i
\(925\) 0 0
\(926\) 14.9580 + 36.1119i 0.491552 + 1.18671i
\(927\) −12.6460 + 30.5301i −0.415349 + 1.00274i
\(928\) −2.06637 0.411026i −0.0678319 0.0134926i
\(929\) −23.3245 4.63954i −0.765253 0.152218i −0.202995 0.979180i \(-0.565067\pi\)
−0.562258 + 0.826962i \(0.690067\pi\)
\(930\) 0 0
\(931\) −3.05324 + 3.05324i −0.100066 + 0.100066i
\(932\) −1.98513 1.32642i −0.0650252 0.0434484i
\(933\) 14.2679 5.90995i 0.467110 0.193483i
\(934\) −16.8822 −0.552402
\(935\) 0 0
\(936\) 26.2369 0.857579
\(937\) 27.2845 11.3016i 0.891345 0.369207i 0.110459 0.993881i \(-0.464768\pi\)
0.780886 + 0.624674i \(0.214768\pi\)
\(938\) −6.32144 4.22385i −0.206402 0.137914i
\(939\) 12.7510 12.7510i 0.416112 0.416112i
\(940\) 0 0
\(941\) 1.26326 + 0.251277i 0.0411810 + 0.00819140i 0.215638 0.976473i \(-0.430817\pi\)
−0.174457 + 0.984665i \(0.555817\pi\)
\(942\) −2.42824 0.483007i −0.0791163 0.0157372i
\(943\) −21.2425 + 51.2840i −0.691752 + 1.67004i
\(944\) −2.10569 5.08359i −0.0685345 0.165457i
\(945\) 0 0
\(946\) 1.62195 8.15407i 0.0527340 0.265112i
\(947\) −36.8415 + 7.32823i −1.19719 + 0.238136i −0.753136 0.657865i \(-0.771460\pi\)
−0.444052 + 0.896001i \(0.646460\pi\)
\(948\) −14.3783 −0.466986
\(949\) 42.8412 8.52164i 1.39068 0.276624i
\(950\) 0 0
\(951\) 54.2951i 1.76064i
\(952\) −1.52447 + 5.15398i −0.0494082 + 0.167041i
\(953\) −25.9594 25.9594i −0.840908 0.840908i 0.148069 0.988977i \(-0.452694\pi\)
−0.988977 + 0.148069i \(0.952694\pi\)
\(954\) 1.86359 4.49910i 0.0603360 0.145664i
\(955\) 0 0
\(956\) −7.40929 7.40929i −0.239634 0.239634i
\(957\) 6.76041 + 33.9869i 0.218533 + 1.09864i
\(958\) 3.52921 + 5.28183i 0.114023 + 0.170648i
\(959\) −14.7059 + 9.82614i −0.474877 + 0.317303i
\(960\) 0 0
\(961\) 26.4363 10.9503i 0.852784 0.353235i
\(962\) −7.25433 + 36.4700i −0.233889 + 1.17584i
\(963\) 68.3492 45.6695i 2.20252 1.47168i
\(964\) 3.60143 5.38993i 0.115994 0.173598i
\(965\) 0 0
\(966\) 5.00957 + 25.1848i 0.161180 + 0.810307i
\(967\) −9.00902 21.7497i −0.289711 0.699423i 0.710279 0.703920i \(-0.248569\pi\)
−0.999990 + 0.00449664i \(0.998569\pi\)
\(968\) −16.3893 + 16.3893i −0.526771 + 0.526771i
\(969\) 5.94366 7.34574i 0.190938 0.235979i
\(970\) 0 0
\(971\) −16.1076 6.67199i −0.516918 0.214114i 0.108945 0.994048i \(-0.465253\pi\)
−0.625862 + 0.779933i \(0.715253\pi\)
\(972\) −8.33431 + 12.4732i −0.267323 + 0.400078i
\(973\) 13.4380i 0.430801i
\(974\) 22.4720 + 15.0153i 0.720048 + 0.481121i
\(975\) 0 0
\(976\) 3.22518 + 4.82682i 0.103235 + 0.154503i
\(977\) 11.9048 + 4.93111i 0.380867 + 0.157760i 0.564899 0.825160i \(-0.308915\pi\)
−0.184032 + 0.982920i \(0.558915\pi\)
\(978\) 17.7089 + 7.33526i 0.566268 + 0.234556i
\(979\) 3.57953 + 5.35714i 0.114402 + 0.171215i
\(980\) 0 0
\(981\) 9.93619 + 6.63915i 0.317238 + 0.211972i
\(982\) 0.205934i 0.00657160i
\(983\) −18.1782 + 27.2056i −0.579795 + 0.867724i −0.999197 0.0400767i \(-0.987240\pi\)
0.419402 + 0.907801i \(0.362240\pi\)
\(984\) 20.6067 + 8.53557i 0.656918 + 0.272104i
\(985\) 0 0
\(986\) 0.911426 + 8.63883i 0.0290257 + 0.275116i
\(987\) −0.285114 + 0.285114i −0.00907526 + 0.00907526i
\(988\) −1.66400 4.01725i −0.0529388 0.127806i
\(989\) −1.94253 9.76574i −0.0617688 0.310533i
\(990\) 0 0
\(991\) 2.85767 4.27680i 0.0907767 0.135857i −0.783302 0.621642i \(-0.786466\pi\)
0.874079 + 0.485785i \(0.161466\pi\)
\(992\) 1.28422 0.858089i 0.0407741 0.0272444i
\(993\) −7.93796 + 39.9068i −0.251903 + 1.26640i
\(994\) −6.61793 + 2.74124i −0.209908 + 0.0869467i
\(995\) 0 0
\(996\) −6.03622 + 4.03327i −0.191265 + 0.127799i
\(997\) −28.9665 43.3514i −0.917378 1.37295i −0.927828 0.373007i \(-0.878327\pi\)
0.0104506 0.999945i \(-0.496673\pi\)
\(998\) −4.34370 21.8373i −0.137498 0.691247i
\(999\) 26.5406 + 26.5406i 0.839706 + 0.839706i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.c.193.1 32
5.2 odd 4 850.2.s.c.57.1 32
5.3 odd 4 170.2.o.a.57.4 yes 32
5.4 even 2 170.2.r.a.23.4 yes 32
17.3 odd 16 850.2.s.c.343.1 32
85.3 even 16 170.2.r.a.37.4 yes 32
85.37 even 16 inner 850.2.v.c.207.1 32
85.54 odd 16 170.2.o.a.3.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.o.a.3.4 32 85.54 odd 16
170.2.o.a.57.4 yes 32 5.3 odd 4
170.2.r.a.23.4 yes 32 5.4 even 2
170.2.r.a.37.4 yes 32 85.3 even 16
850.2.s.c.57.1 32 5.2 odd 4
850.2.s.c.343.1 32 17.3 odd 16
850.2.v.c.193.1 32 1.1 even 1 trivial
850.2.v.c.207.1 32 85.37 even 16 inner