Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [850,2,Mod(107,850)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(850, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([4, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("850.107");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 850 = 2 \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 850.v (of order \(16\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.78728417181\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{16})\) |
Twist minimal: | no (minimal twist has level 170) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
107.1 | −0.382683 | + | 0.923880i | −2.60485 | − | 0.518138i | −0.707107 | − | 0.707107i | 0 | 1.47553 | − | 2.20829i | −0.892510 | + | 1.33574i | 0.923880 | − | 0.382683i | 3.74516 | + | 1.55130i | 0 | ||||
107.2 | −0.382683 | + | 0.923880i | −1.21530 | − | 0.241738i | −0.707107 | − | 0.707107i | 0 | 0.688411 | − | 1.03028i | −0.394839 | + | 0.590918i | 0.923880 | − | 0.382683i | −1.35312 | − | 0.560483i | 0 | ||||
107.3 | −0.382683 | + | 0.923880i | 1.34931 | + | 0.268393i | −0.707107 | − | 0.707107i | 0 | −0.764320 | + | 1.14389i | −2.19060 | + | 3.27846i | 0.923880 | − | 0.382683i | −1.02305 | − | 0.423761i | 0 | ||||
107.4 | −0.382683 | + | 0.923880i | 2.47085 | + | 0.491482i | −0.707107 | − | 0.707107i | 0 | −1.39962 | + | 2.09468i | 2.60493 | − | 3.89855i | 0.923880 | − | 0.382683i | 3.09190 | + | 1.28071i | 0 | ||||
143.1 | −0.382683 | − | 0.923880i | −2.60485 | + | 0.518138i | −0.707107 | + | 0.707107i | 0 | 1.47553 | + | 2.20829i | −0.892510 | − | 1.33574i | 0.923880 | + | 0.382683i | 3.74516 | − | 1.55130i | 0 | ||||
143.2 | −0.382683 | − | 0.923880i | −1.21530 | + | 0.241738i | −0.707107 | + | 0.707107i | 0 | 0.688411 | + | 1.03028i | −0.394839 | − | 0.590918i | 0.923880 | + | 0.382683i | −1.35312 | + | 0.560483i | 0 | ||||
143.3 | −0.382683 | − | 0.923880i | 1.34931 | − | 0.268393i | −0.707107 | + | 0.707107i | 0 | −0.764320 | − | 1.14389i | −2.19060 | − | 3.27846i | 0.923880 | + | 0.382683i | −1.02305 | + | 0.423761i | 0 | ||||
143.4 | −0.382683 | − | 0.923880i | 2.47085 | − | 0.491482i | −0.707107 | + | 0.707107i | 0 | −1.39962 | − | 2.09468i | 2.60493 | + | 3.89855i | 0.923880 | + | 0.382683i | 3.09190 | − | 1.28071i | 0 | ||||
193.1 | 0.923880 | − | 0.382683i | −2.33925 | − | 1.56304i | 0.707107 | − | 0.707107i | 0 | −2.75933 | − | 0.548865i | 1.27851 | + | 0.254312i | 0.382683 | − | 0.923880i | 1.88095 | + | 4.54102i | 0 | ||||
193.2 | 0.923880 | − | 0.382683i | 0.283864 | + | 0.189672i | 0.707107 | − | 0.707107i | 0 | 0.334840 | + | 0.0666039i | −3.52423 | − | 0.701012i | 0.382683 | − | 0.923880i | −1.10345 | − | 2.66396i | 0 | ||||
193.3 | 0.923880 | − | 0.382683i | 0.856804 | + | 0.572498i | 0.707107 | − | 0.707107i | 0 | 1.01067 | + | 0.201035i | 1.64388 | + | 0.326988i | 0.382683 | − | 0.923880i | −0.741692 | − | 1.79060i | 0 | ||||
193.4 | 0.923880 | − | 0.382683i | 1.19858 | + | 0.800867i | 0.707107 | − | 0.707107i | 0 | 1.41382 | + | 0.281227i | 3.32261 | + | 0.660909i | 0.382683 | − | 0.923880i | −0.352840 | − | 0.851831i | 0 | ||||
207.1 | 0.923880 | + | 0.382683i | −2.33925 | + | 1.56304i | 0.707107 | + | 0.707107i | 0 | −2.75933 | + | 0.548865i | 1.27851 | − | 0.254312i | 0.382683 | + | 0.923880i | 1.88095 | − | 4.54102i | 0 | ||||
207.2 | 0.923880 | + | 0.382683i | 0.283864 | − | 0.189672i | 0.707107 | + | 0.707107i | 0 | 0.334840 | − | 0.0666039i | −3.52423 | + | 0.701012i | 0.382683 | + | 0.923880i | −1.10345 | + | 2.66396i | 0 | ||||
207.3 | 0.923880 | + | 0.382683i | 0.856804 | − | 0.572498i | 0.707107 | + | 0.707107i | 0 | 1.01067 | − | 0.201035i | 1.64388 | − | 0.326988i | 0.382683 | + | 0.923880i | −0.741692 | + | 1.79060i | 0 | ||||
207.4 | 0.923880 | + | 0.382683i | 1.19858 | − | 0.800867i | 0.707107 | + | 0.707107i | 0 | 1.41382 | − | 0.281227i | 3.32261 | − | 0.660909i | 0.382683 | + | 0.923880i | −0.352840 | + | 0.851831i | 0 | ||||
507.1 | −0.923880 | − | 0.382683i | −1.04249 | − | 1.56019i | 0.707107 | + | 0.707107i | 0 | 0.366072 | + | 1.84037i | 0.635763 | + | 3.19619i | −0.382683 | − | 0.923880i | −0.199368 | + | 0.481317i | 0 | ||||
507.2 | −0.923880 | − | 0.382683i | −0.776902 | − | 1.16272i | 0.707107 | + | 0.707107i | 0 | 0.272812 | + | 1.37152i | −0.749924 | − | 3.77012i | −0.382683 | − | 0.923880i | 0.399719 | − | 0.965007i | 0 | ||||
507.3 | −0.923880 | − | 0.382683i | 0.683024 | + | 1.02222i | 0.707107 | + | 0.707107i | 0 | −0.239846 | − | 1.20579i | −0.0311808 | − | 0.156756i | −0.382683 | − | 0.923880i | 0.569643 | − | 1.37524i | 0 | ||||
507.4 | −0.923880 | − | 0.382683i | 1.13636 | + | 1.70069i | 0.707107 | + | 0.707107i | 0 | −0.399038 | − | 2.00610i | 0.252993 | + | 1.27188i | −0.382683 | − | 0.923880i | −0.452969 | + | 1.09356i | 0 | ||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
85.r | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 850.2.v.c | 32 | |
5.b | even | 2 | 1 | 170.2.r.a | yes | 32 | |
5.c | odd | 4 | 1 | 170.2.o.a | ✓ | 32 | |
5.c | odd | 4 | 1 | 850.2.s.c | 32 | ||
17.e | odd | 16 | 1 | 850.2.s.c | 32 | ||
85.o | even | 16 | 1 | 170.2.r.a | yes | 32 | |
85.p | odd | 16 | 1 | 170.2.o.a | ✓ | 32 | |
85.r | even | 16 | 1 | inner | 850.2.v.c | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
170.2.o.a | ✓ | 32 | 5.c | odd | 4 | 1 | |
170.2.o.a | ✓ | 32 | 85.p | odd | 16 | 1 | |
170.2.r.a | yes | 32 | 5.b | even | 2 | 1 | |
170.2.r.a | yes | 32 | 85.o | even | 16 | 1 | |
850.2.s.c | 32 | 5.c | odd | 4 | 1 | ||
850.2.s.c | 32 | 17.e | odd | 16 | 1 | ||
850.2.v.c | 32 | 1.a | even | 1 | 1 | trivial | |
850.2.v.c | 32 | 85.r | even | 16 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{32} + 8 T_{3}^{29} - 48 T_{3}^{28} - 168 T_{3}^{27} + 248 T_{3}^{26} + 472 T_{3}^{25} + \cdots + 3844 \) acting on \(S_{2}^{\mathrm{new}}(850, [\chi])\).