Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [170,2,Mod(3,170)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(170, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([12, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("170.3");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 170 = 2 \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 170.o (of order \(16\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.35745683436\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −0.382683 | + | 0.923880i | −0.800867 | − | 1.19858i | −0.707107 | − | 0.707107i | −0.598768 | + | 2.15441i | 1.41382 | − | 0.281227i | 0.660909 | + | 3.32261i | 0.923880 | − | 0.382683i | 0.352840 | − | 0.851831i | −1.76128 | − | 1.37765i |
3.2 | −0.382683 | + | 0.923880i | −0.572498 | − | 0.856804i | −0.707107 | − | 0.707107i | −1.01937 | − | 1.99020i | 1.01067 | − | 0.201035i | 0.326988 | + | 1.64388i | 0.923880 | − | 0.382683i | 0.741692 | − | 1.79060i | 2.22880 | − | 0.180163i |
3.3 | −0.382683 | + | 0.923880i | −0.189672 | − | 0.283864i | −0.707107 | − | 0.707107i | 1.79797 | − | 1.32941i | 0.334840 | − | 0.0666039i | −0.701012 | − | 3.52423i | 0.923880 | − | 0.382683i | 1.10345 | − | 2.66396i | 0.540159 | + | 2.16985i |
3.4 | −0.382683 | + | 0.923880i | 1.56304 | + | 2.33925i | −0.707107 | − | 0.707107i | −2.19349 | − | 0.434263i | −2.75933 | + | 0.548865i | 0.254312 | + | 1.27851i | 0.923880 | − | 0.382683i | −1.88095 | + | 4.54102i | 1.24062 | − | 1.86034i |
7.1 | −0.923880 | + | 0.382683i | −0.518138 | − | 2.60485i | 0.707107 | − | 0.707107i | 0.404835 | − | 2.19912i | 1.47553 | + | 2.20829i | −1.33574 | + | 0.892510i | −0.382683 | + | 0.923880i | −3.74516 | + | 1.55130i | 0.467546 | + | 2.18664i |
7.2 | −0.923880 | + | 0.382683i | −0.241738 | − | 1.21530i | 0.707107 | − | 0.707107i | 1.17123 | + | 1.90479i | 0.688411 | + | 1.03028i | −0.590918 | + | 0.394839i | −0.382683 | + | 0.923880i | 1.35312 | − | 0.560483i | −1.81101 | − | 1.31159i |
7.3 | −0.923880 | + | 0.382683i | 0.268393 | + | 1.34931i | 0.707107 | − | 0.707107i | −2.19088 | + | 0.447284i | −0.764320 | − | 1.14389i | −3.27846 | + | 2.19060i | −0.382683 | + | 0.923880i | 1.02305 | − | 0.423761i | 1.85294 | − | 1.25165i |
7.4 | −0.923880 | + | 0.382683i | 0.491482 | + | 2.47085i | 0.707107 | − | 0.707107i | 0.780722 | + | 2.09535i | −1.39962 | − | 2.09468i | 3.89855 | − | 2.60493i | −0.382683 | + | 0.923880i | −3.09190 | + | 1.28071i | −1.52315 | − | 1.63708i |
27.1 | 0.923880 | − | 0.382683i | −3.22346 | + | 0.641185i | 0.707107 | − | 0.707107i | 2.10251 | + | 0.761213i | −2.73271 | + | 1.82594i | 1.37046 | + | 2.05104i | 0.382683 | − | 0.923880i | 7.20792 | − | 2.98562i | 2.23377 | − | 0.101327i |
27.2 | 0.923880 | − | 0.382683i | 0.0811867 | − | 0.0161490i | 0.707107 | − | 0.707107i | 1.07264 | − | 1.96200i | 0.0688268 | − | 0.0459886i | 0.143301 | + | 0.214466i | 0.382683 | − | 0.923880i | −2.76531 | + | 1.14543i | 0.240162 | − | 2.22313i |
27.3 | 0.923880 | − | 0.382683i | 0.917782 | − | 0.182558i | 0.707107 | − | 0.707107i | 0.304091 | + | 2.21529i | 0.778058 | − | 0.519882i | 1.08548 | + | 1.62454i | 0.382683 | − | 0.923880i | −1.96264 | + | 0.812953i | 1.12870 | + | 1.93029i |
27.4 | 0.923880 | − | 0.382683i | 2.22449 | − | 0.442478i | 0.707107 | − | 0.707107i | −2.23094 | + | 0.151404i | 1.88583 | − | 1.26007i | −1.29268 | − | 1.93464i | 0.382683 | − | 0.923880i | 1.98092 | − | 0.820524i | −2.00318 | + | 0.993622i |
57.1 | −0.382683 | − | 0.923880i | −0.800867 | + | 1.19858i | −0.707107 | + | 0.707107i | −0.598768 | − | 2.15441i | 1.41382 | + | 0.281227i | 0.660909 | − | 3.32261i | 0.923880 | + | 0.382683i | 0.352840 | + | 0.851831i | −1.76128 | + | 1.37765i |
57.2 | −0.382683 | − | 0.923880i | −0.572498 | + | 0.856804i | −0.707107 | + | 0.707107i | −1.01937 | + | 1.99020i | 1.01067 | + | 0.201035i | 0.326988 | − | 1.64388i | 0.923880 | + | 0.382683i | 0.741692 | + | 1.79060i | 2.22880 | + | 0.180163i |
57.3 | −0.382683 | − | 0.923880i | −0.189672 | + | 0.283864i | −0.707107 | + | 0.707107i | 1.79797 | + | 1.32941i | 0.334840 | + | 0.0666039i | −0.701012 | + | 3.52423i | 0.923880 | + | 0.382683i | 1.10345 | + | 2.66396i | 0.540159 | − | 2.16985i |
57.4 | −0.382683 | − | 0.923880i | 1.56304 | − | 2.33925i | −0.707107 | + | 0.707107i | −2.19349 | + | 0.434263i | −2.75933 | − | 0.548865i | 0.254312 | − | 1.27851i | 0.923880 | + | 0.382683i | −1.88095 | − | 4.54102i | 1.24062 | + | 1.86034i |
63.1 | 0.923880 | + | 0.382683i | −3.22346 | − | 0.641185i | 0.707107 | + | 0.707107i | 2.10251 | − | 0.761213i | −2.73271 | − | 1.82594i | 1.37046 | − | 2.05104i | 0.382683 | + | 0.923880i | 7.20792 | + | 2.98562i | 2.23377 | + | 0.101327i |
63.2 | 0.923880 | + | 0.382683i | 0.0811867 | + | 0.0161490i | 0.707107 | + | 0.707107i | 1.07264 | + | 1.96200i | 0.0688268 | + | 0.0459886i | 0.143301 | − | 0.214466i | 0.382683 | + | 0.923880i | −2.76531 | − | 1.14543i | 0.240162 | + | 2.22313i |
63.3 | 0.923880 | + | 0.382683i | 0.917782 | + | 0.182558i | 0.707107 | + | 0.707107i | 0.304091 | − | 2.21529i | 0.778058 | + | 0.519882i | 1.08548 | − | 1.62454i | 0.382683 | + | 0.923880i | −1.96264 | − | 0.812953i | 1.12870 | − | 1.93029i |
63.4 | 0.923880 | + | 0.382683i | 2.22449 | + | 0.442478i | 0.707107 | + | 0.707107i | −2.23094 | − | 0.151404i | 1.88583 | + | 1.26007i | −1.29268 | + | 1.93464i | 0.382683 | + | 0.923880i | 1.98092 | + | 0.820524i | −2.00318 | − | 0.993622i |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
85.o | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 170.2.o.a | ✓ | 32 |
5.b | even | 2 | 1 | 850.2.s.c | 32 | ||
5.c | odd | 4 | 1 | 170.2.r.a | yes | 32 | |
5.c | odd | 4 | 1 | 850.2.v.c | 32 | ||
17.e | odd | 16 | 1 | 170.2.r.a | yes | 32 | |
85.o | even | 16 | 1 | inner | 170.2.o.a | ✓ | 32 |
85.p | odd | 16 | 1 | 850.2.v.c | 32 | ||
85.r | even | 16 | 1 | 850.2.s.c | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
170.2.o.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
170.2.o.a | ✓ | 32 | 85.o | even | 16 | 1 | inner |
170.2.r.a | yes | 32 | 5.c | odd | 4 | 1 | |
170.2.r.a | yes | 32 | 17.e | odd | 16 | 1 | |
850.2.s.c | 32 | 5.b | even | 2 | 1 | ||
850.2.s.c | 32 | 85.r | even | 16 | 1 | ||
850.2.v.c | 32 | 5.c | odd | 4 | 1 | ||
850.2.v.c | 32 | 85.p | odd | 16 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{32} + 24 T_{3}^{29} - 48 T_{3}^{28} + 72 T_{3}^{27} + 72 T_{3}^{26} - 1336 T_{3}^{25} + \cdots + 3844 \) acting on \(S_{2}^{\mathrm{new}}(170, [\chi])\).