Properties

Label 850.2.v.c.193.3
Level $850$
Weight $2$
Character 850.193
Analytic conductor $6.787$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 193.3
Character \(\chi\) \(=\) 850.193
Dual form 850.2.v.c.207.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.923880 - 0.382683i) q^{2} +(0.856804 + 0.572498i) q^{3} +(0.707107 - 0.707107i) q^{4} +(1.01067 + 0.201035i) q^{6} +(1.64388 + 0.326988i) q^{7} +(0.382683 - 0.923880i) q^{8} +(-0.741692 - 1.79060i) q^{9} +(-1.12842 + 5.67293i) q^{11} +(1.01067 - 0.201035i) q^{12} +4.62429 q^{13} +(1.64388 - 0.326988i) q^{14} -1.00000i q^{16} +(3.82690 + 1.53454i) q^{17} +(-1.37047 - 1.37047i) q^{18} +(-0.932809 + 2.25200i) q^{19} +(1.22128 + 1.22128i) q^{21} +(1.12842 + 5.67293i) q^{22} +(-1.85758 - 2.78006i) q^{23} +(0.856804 - 0.572498i) q^{24} +(4.27229 - 1.76964i) q^{26} +(0.992735 - 4.99082i) q^{27} +(1.39361 - 0.931182i) q^{28} +(3.70873 - 5.55051i) q^{29} +(-0.914558 - 4.59779i) q^{31} +(-0.382683 - 0.923880i) q^{32} +(-4.21457 + 4.21457i) q^{33} +(4.12284 - 0.0467655i) q^{34} +(-1.79060 - 0.741692i) q^{36} +(0.910181 - 1.36218i) q^{37} +2.43755i q^{38} +(3.96211 + 2.64740i) q^{39} +(6.23402 + 9.32987i) q^{41} +(1.59568 + 0.660953i) q^{42} +(-9.87239 - 4.08928i) q^{43} +(3.21346 + 4.80928i) q^{44} +(-2.78006 - 1.85758i) q^{46} +2.54171i q^{47} +(0.572498 - 0.856804i) q^{48} +(-3.87174 - 1.60373i) q^{49} +(2.40039 + 3.50569i) q^{51} +(3.26987 - 3.26987i) q^{52} +(1.76263 + 4.25536i) q^{53} +(-0.992735 - 4.99082i) q^{54} +(0.931182 - 1.39361i) q^{56} +(-2.08850 + 1.39549i) q^{57} +(1.30233 - 6.54728i) q^{58} +(-9.68021 + 4.00967i) q^{59} +(3.66782 - 2.45076i) q^{61} +(-2.60444 - 3.89782i) q^{62} +(-0.633746 - 3.18606i) q^{63} +(-0.707107 - 0.707107i) q^{64} +(-2.28091 + 5.50661i) q^{66} +(1.91399 + 1.91399i) q^{67} +(3.79111 - 1.62095i) q^{68} -3.44543i q^{69} +(-8.05408 + 1.60206i) q^{71} -1.93813 q^{72} +(5.37374 - 1.06890i) q^{73} +(0.319613 - 1.60680i) q^{74} +(0.932809 + 2.25200i) q^{76} +(-3.70996 + 8.95664i) q^{77} +(4.67362 + 0.929642i) q^{78} +(-4.50408 - 0.895917i) q^{79} +(-0.403592 + 0.403592i) q^{81} +(9.32987 + 6.23402i) q^{82} +(5.66048 - 2.34465i) q^{83} +1.72715 q^{84} -10.6858 q^{86} +(6.35531 - 2.63246i) q^{87} +(4.80928 + 3.21346i) q^{88} +(-10.2485 + 10.2485i) q^{89} +(7.60177 + 1.51209i) q^{91} +(-3.27931 - 0.652295i) q^{92} +(1.84863 - 4.46299i) q^{93} +(0.972672 + 2.34824i) q^{94} +(0.201035 - 1.01067i) q^{96} +(-9.36520 + 1.86285i) q^{97} -4.19074 q^{98} +(10.9949 - 2.18702i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{18} + 8 q^{26} - 24 q^{27} + 8 q^{28} - 8 q^{29} - 16 q^{31} - 64 q^{33} + 24 q^{34} + 32 q^{37} - 32 q^{39} + 16 q^{41} + 24 q^{42} + 16 q^{43} - 16 q^{44} - 16 q^{49} + 32 q^{51} + 16 q^{52}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.923880 0.382683i 0.653281 0.270598i
\(3\) 0.856804 + 0.572498i 0.494676 + 0.330532i 0.777758 0.628564i \(-0.216357\pi\)
−0.283082 + 0.959096i \(0.591357\pi\)
\(4\) 0.707107 0.707107i 0.353553 0.353553i
\(5\) 0 0
\(6\) 1.01067 + 0.201035i 0.412604 + 0.0820720i
\(7\) 1.64388 + 0.326988i 0.621328 + 0.123590i 0.495709 0.868489i \(-0.334908\pi\)
0.125619 + 0.992079i \(0.459908\pi\)
\(8\) 0.382683 0.923880i 0.135299 0.326641i
\(9\) −0.741692 1.79060i −0.247231 0.596867i
\(10\) 0 0
\(11\) −1.12842 + 5.67293i −0.340230 + 1.71045i 0.310017 + 0.950731i \(0.399665\pi\)
−0.650247 + 0.759723i \(0.725335\pi\)
\(12\) 1.01067 0.201035i 0.291755 0.0580337i
\(13\) 4.62429 1.28255 0.641274 0.767312i \(-0.278406\pi\)
0.641274 + 0.767312i \(0.278406\pi\)
\(14\) 1.64388 0.326988i 0.439345 0.0873912i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) 3.82690 + 1.53454i 0.928161 + 0.372180i
\(18\) −1.37047 1.37047i −0.323022 0.323022i
\(19\) −0.932809 + 2.25200i −0.214001 + 0.516644i −0.994031 0.109098i \(-0.965204\pi\)
0.780030 + 0.625742i \(0.215204\pi\)
\(20\) 0 0
\(21\) 1.22128 + 1.22128i 0.266505 + 0.266505i
\(22\) 1.12842 + 5.67293i 0.240579 + 1.20947i
\(23\) −1.85758 2.78006i −0.387332 0.579684i 0.585650 0.810564i \(-0.300839\pi\)
−0.972982 + 0.230881i \(0.925839\pi\)
\(24\) 0.856804 0.572498i 0.174894 0.116861i
\(25\) 0 0
\(26\) 4.27229 1.76964i 0.837864 0.347055i
\(27\) 0.992735 4.99082i 0.191052 0.960483i
\(28\) 1.39361 0.931182i 0.263368 0.175977i
\(29\) 3.70873 5.55051i 0.688695 1.03070i −0.308151 0.951337i \(-0.599710\pi\)
0.996845 0.0793667i \(-0.0252898\pi\)
\(30\) 0 0
\(31\) −0.914558 4.59779i −0.164260 0.825788i −0.971769 0.235934i \(-0.924185\pi\)
0.807510 0.589854i \(-0.200815\pi\)
\(32\) −0.382683 0.923880i −0.0676495 0.163320i
\(33\) −4.21457 + 4.21457i −0.733663 + 0.733663i
\(34\) 4.12284 0.0467655i 0.707061 0.00802021i
\(35\) 0 0
\(36\) −1.79060 0.741692i −0.298434 0.123615i
\(37\) 0.910181 1.36218i 0.149633 0.223941i −0.749079 0.662480i \(-0.769504\pi\)
0.898712 + 0.438539i \(0.144504\pi\)
\(38\) 2.43755i 0.395422i
\(39\) 3.96211 + 2.64740i 0.634445 + 0.423923i
\(40\) 0 0
\(41\) 6.23402 + 9.32987i 0.973591 + 1.45708i 0.887508 + 0.460793i \(0.152435\pi\)
0.0860830 + 0.996288i \(0.472565\pi\)
\(42\) 1.59568 + 0.660953i 0.246219 + 0.101987i
\(43\) −9.87239 4.08928i −1.50553 0.623609i −0.530897 0.847436i \(-0.678145\pi\)
−0.974629 + 0.223827i \(0.928145\pi\)
\(44\) 3.21346 + 4.80928i 0.484447 + 0.725026i
\(45\) 0 0
\(46\) −2.78006 1.85758i −0.409898 0.273885i
\(47\) 2.54171i 0.370747i 0.982668 + 0.185374i \(0.0593495\pi\)
−0.982668 + 0.185374i \(0.940650\pi\)
\(48\) 0.572498 0.856804i 0.0826329 0.123669i
\(49\) −3.87174 1.60373i −0.553106 0.229104i
\(50\) 0 0
\(51\) 2.40039 + 3.50569i 0.336121 + 0.490895i
\(52\) 3.26987 3.26987i 0.453449 0.453449i
\(53\) 1.76263 + 4.25536i 0.242116 + 0.584519i 0.997493 0.0707718i \(-0.0225462\pi\)
−0.755377 + 0.655290i \(0.772546\pi\)
\(54\) −0.992735 4.99082i −0.135094 0.679164i
\(55\) 0 0
\(56\) 0.931182 1.39361i 0.124434 0.186229i
\(57\) −2.08850 + 1.39549i −0.276628 + 0.184837i
\(58\) 1.30233 6.54728i 0.171005 0.859699i
\(59\) −9.68021 + 4.00967i −1.26026 + 0.522015i −0.909988 0.414635i \(-0.863909\pi\)
−0.350268 + 0.936650i \(0.613909\pi\)
\(60\) 0 0
\(61\) 3.66782 2.45076i 0.469616 0.313788i −0.298148 0.954520i \(-0.596369\pi\)
0.767765 + 0.640732i \(0.221369\pi\)
\(62\) −2.60444 3.89782i −0.330764 0.495024i
\(63\) −0.633746 3.18606i −0.0798445 0.401405i
\(64\) −0.707107 0.707107i −0.0883883 0.0883883i
\(65\) 0 0
\(66\) −2.28091 + 5.50661i −0.280761 + 0.677816i
\(67\) 1.91399 + 1.91399i 0.233831 + 0.233831i 0.814290 0.580459i \(-0.197127\pi\)
−0.580459 + 0.814290i \(0.697127\pi\)
\(68\) 3.79111 1.62095i 0.459740 0.196569i
\(69\) 3.44543i 0.414781i
\(70\) 0 0
\(71\) −8.05408 + 1.60206i −0.955843 + 0.190129i −0.648283 0.761400i \(-0.724513\pi\)
−0.307560 + 0.951529i \(0.599513\pi\)
\(72\) −1.93813 −0.228411
\(73\) 5.37374 1.06890i 0.628949 0.125106i 0.129684 0.991555i \(-0.458604\pi\)
0.499264 + 0.866450i \(0.333604\pi\)
\(74\) 0.319613 1.60680i 0.0371543 0.186787i
\(75\) 0 0
\(76\) 0.932809 + 2.25200i 0.107001 + 0.258322i
\(77\) −3.70996 + 8.95664i −0.422789 + 1.02070i
\(78\) 4.67362 + 0.929642i 0.529184 + 0.105261i
\(79\) −4.50408 0.895917i −0.506749 0.100799i −0.0649064 0.997891i \(-0.520675\pi\)
−0.441842 + 0.897093i \(0.645675\pi\)
\(80\) 0 0
\(81\) −0.403592 + 0.403592i −0.0448435 + 0.0448435i
\(82\) 9.32987 + 6.23402i 1.03031 + 0.688432i
\(83\) 5.66048 2.34465i 0.621318 0.257358i −0.0497411 0.998762i \(-0.515840\pi\)
0.671059 + 0.741404i \(0.265840\pi\)
\(84\) 1.72715 0.188448
\(85\) 0 0
\(86\) −10.6858 −1.15228
\(87\) 6.35531 2.63246i 0.681361 0.282229i
\(88\) 4.80928 + 3.21346i 0.512671 + 0.342556i
\(89\) −10.2485 + 10.2485i −1.08634 + 1.08634i −0.0904408 + 0.995902i \(0.528828\pi\)
−0.995902 + 0.0904408i \(0.971172\pi\)
\(90\) 0 0
\(91\) 7.60177 + 1.51209i 0.796882 + 0.158510i
\(92\) −3.27931 0.652295i −0.341892 0.0680065i
\(93\) 1.84863 4.46299i 0.191694 0.462790i
\(94\) 0.972672 + 2.34824i 0.100323 + 0.242202i
\(95\) 0 0
\(96\) 0.201035 1.01067i 0.0205180 0.103151i
\(97\) −9.36520 + 1.86285i −0.950892 + 0.189144i −0.646081 0.763269i \(-0.723593\pi\)
−0.304811 + 0.952413i \(0.598593\pi\)
\(98\) −4.19074 −0.423329
\(99\) 10.9949 2.18702i 1.10503 0.219804i
\(100\) 0 0
\(101\) 8.75461i 0.871116i −0.900161 0.435558i \(-0.856551\pi\)
0.900161 0.435558i \(-0.143449\pi\)
\(102\) 3.55924 + 2.32025i 0.352417 + 0.229739i
\(103\) −6.22956 6.22956i −0.613817 0.613817i 0.330122 0.943938i \(-0.392910\pi\)
−0.943938 + 0.330122i \(0.892910\pi\)
\(104\) 1.76964 4.27229i 0.173527 0.418932i
\(105\) 0 0
\(106\) 3.25691 + 3.25691i 0.316339 + 0.316339i
\(107\) −2.54866 12.8130i −0.246388 1.23868i −0.883693 0.468066i \(-0.844951\pi\)
0.637305 0.770612i \(-0.280049\pi\)
\(108\) −2.82707 4.23101i −0.272035 0.407129i
\(109\) −7.92144 + 5.29294i −0.758737 + 0.506972i −0.873740 0.486394i \(-0.838312\pi\)
0.115003 + 0.993365i \(0.463312\pi\)
\(110\) 0 0
\(111\) 1.55969 0.646046i 0.148040 0.0613200i
\(112\) 0.326988 1.64388i 0.0308974 0.155332i
\(113\) 5.75578 3.84589i 0.541458 0.361791i −0.254566 0.967055i \(-0.581933\pi\)
0.796024 + 0.605264i \(0.206933\pi\)
\(114\) −1.39549 + 2.08850i −0.130700 + 0.195606i
\(115\) 0 0
\(116\) −1.30233 6.54728i −0.120919 0.607899i
\(117\) −3.42980 8.28026i −0.317085 0.765511i
\(118\) −7.40891 + 7.40891i −0.682045 + 0.682045i
\(119\) 5.78919 + 3.77394i 0.530694 + 0.345957i
\(120\) 0 0
\(121\) −20.7462 8.59335i −1.88602 0.781214i
\(122\) 2.45076 3.66782i 0.221881 0.332069i
\(123\) 11.5628i 1.04259i
\(124\) −3.89782 2.60444i −0.350035 0.233886i
\(125\) 0 0
\(126\) −1.80476 2.70101i −0.160780 0.240625i
\(127\) −12.7690 5.28908i −1.13306 0.469330i −0.264242 0.964457i \(-0.585122\pi\)
−0.868821 + 0.495127i \(0.835122\pi\)
\(128\) −0.923880 0.382683i −0.0816602 0.0338248i
\(129\) −6.11760 9.15563i −0.538624 0.806108i
\(130\) 0 0
\(131\) −0.0869490 0.0580974i −0.00759677 0.00507600i 0.551766 0.833999i \(-0.313954\pi\)
−0.559363 + 0.828923i \(0.688954\pi\)
\(132\) 5.96031i 0.518778i
\(133\) −2.26980 + 3.39700i −0.196817 + 0.294557i
\(134\) 2.50074 + 1.03584i 0.216031 + 0.0894831i
\(135\) 0 0
\(136\) 2.88222 2.94836i 0.247148 0.252819i
\(137\) −4.08626 + 4.08626i −0.349112 + 0.349112i −0.859779 0.510666i \(-0.829399\pi\)
0.510666 + 0.859779i \(0.329399\pi\)
\(138\) −1.31851 3.18316i −0.112239 0.270969i
\(139\) −0.320189 1.60970i −0.0271581 0.136533i 0.964828 0.262884i \(-0.0846735\pi\)
−0.991986 + 0.126351i \(0.959674\pi\)
\(140\) 0 0
\(141\) −1.45513 + 2.17775i −0.122544 + 0.183400i
\(142\) −6.82792 + 4.56227i −0.572986 + 0.382857i
\(143\) −5.21813 + 26.2333i −0.436362 + 2.19374i
\(144\) −1.79060 + 0.741692i −0.149217 + 0.0618076i
\(145\) 0 0
\(146\) 4.55564 3.04398i 0.377027 0.251922i
\(147\) −2.39919 3.59064i −0.197882 0.296151i
\(148\) −0.319613 1.60680i −0.0262720 0.132078i
\(149\) 7.67572 + 7.67572i 0.628820 + 0.628820i 0.947771 0.318951i \(-0.103331\pi\)
−0.318951 + 0.947771i \(0.603331\pi\)
\(150\) 0 0
\(151\) −3.20221 + 7.73081i −0.260592 + 0.629124i −0.998975 0.0452566i \(-0.985589\pi\)
0.738384 + 0.674381i \(0.235589\pi\)
\(152\) 1.72361 + 1.72361i 0.139803 + 0.139803i
\(153\) −0.0906377 7.99062i −0.00732763 0.646003i
\(154\) 9.69459i 0.781213i
\(155\) 0 0
\(156\) 4.67362 0.929642i 0.374189 0.0744309i
\(157\) 5.11593 0.408296 0.204148 0.978940i \(-0.434558\pi\)
0.204148 + 0.978940i \(0.434558\pi\)
\(158\) −4.50408 + 0.895917i −0.358325 + 0.0712754i
\(159\) −0.925959 + 4.65511i −0.0734333 + 0.369174i
\(160\) 0 0
\(161\) −2.14459 5.17749i −0.169017 0.408044i
\(162\) −0.218422 + 0.527318i −0.0171609 + 0.0414300i
\(163\) −9.81857 1.95303i −0.769050 0.152973i −0.205053 0.978751i \(-0.565737\pi\)
−0.563996 + 0.825777i \(0.690737\pi\)
\(164\) 11.0053 + 2.18910i 0.859372 + 0.170940i
\(165\) 0 0
\(166\) 4.33234 4.33234i 0.336255 0.336255i
\(167\) 10.5435 + 7.04496i 0.815883 + 0.545156i 0.892049 0.451939i \(-0.149268\pi\)
−0.0761654 + 0.997095i \(0.524268\pi\)
\(168\) 1.59568 0.660953i 0.123109 0.0509936i
\(169\) 8.38405 0.644927
\(170\) 0 0
\(171\) 4.72429 0.361276
\(172\) −9.87239 + 4.08928i −0.752763 + 0.311805i
\(173\) 5.91996 + 3.95559i 0.450086 + 0.300738i 0.759877 0.650067i \(-0.225259\pi\)
−0.309791 + 0.950805i \(0.600259\pi\)
\(174\) 4.86415 4.86415i 0.368750 0.368750i
\(175\) 0 0
\(176\) 5.67293 + 1.12842i 0.427613 + 0.0850576i
\(177\) −10.5896 2.10640i −0.795960 0.158326i
\(178\) −5.54647 + 13.3904i −0.415725 + 1.00365i
\(179\) −3.11798 7.52747i −0.233049 0.562629i 0.763484 0.645826i \(-0.223487\pi\)
−0.996533 + 0.0831969i \(0.973487\pi\)
\(180\) 0 0
\(181\) 2.60085 13.0754i 0.193320 0.971883i −0.755279 0.655403i \(-0.772499\pi\)
0.948599 0.316480i \(-0.102501\pi\)
\(182\) 7.60177 1.51209i 0.563481 0.112083i
\(183\) 4.54566 0.336025
\(184\) −3.27931 + 0.652295i −0.241754 + 0.0480879i
\(185\) 0 0
\(186\) 4.83071i 0.354204i
\(187\) −13.0237 + 19.9782i −0.952385 + 1.46095i
\(188\) 1.79726 + 1.79726i 0.131079 + 0.131079i
\(189\) 3.26387 7.87968i 0.237412 0.573163i
\(190\) 0 0
\(191\) −12.4734 12.4734i −0.902546 0.902546i 0.0931101 0.995656i \(-0.470319\pi\)
−0.995656 + 0.0931101i \(0.970319\pi\)
\(192\) −0.201035 1.01067i −0.0145084 0.0729387i
\(193\) 1.75845 + 2.63170i 0.126576 + 0.189434i 0.889345 0.457237i \(-0.151161\pi\)
−0.762769 + 0.646671i \(0.776161\pi\)
\(194\) −7.93943 + 5.30496i −0.570018 + 0.380874i
\(195\) 0 0
\(196\) −3.87174 + 1.60373i −0.276553 + 0.114552i
\(197\) 3.91682 19.6912i 0.279062 1.40294i −0.545947 0.837820i \(-0.683830\pi\)
0.825009 0.565120i \(-0.191170\pi\)
\(198\) 9.32103 6.22811i 0.662417 0.442613i
\(199\) −3.18389 + 4.76502i −0.225700 + 0.337783i −0.926986 0.375097i \(-0.877610\pi\)
0.701286 + 0.712880i \(0.252610\pi\)
\(200\) 0 0
\(201\) 0.544157 + 2.73566i 0.0383819 + 0.192959i
\(202\) −3.35024 8.08820i −0.235722 0.569084i
\(203\) 7.91166 7.91166i 0.555289 0.555289i
\(204\) 4.17623 + 0.781569i 0.292394 + 0.0547208i
\(205\) 0 0
\(206\) −8.13931 3.37141i −0.567093 0.234897i
\(207\) −3.60024 + 5.38814i −0.250234 + 0.374501i
\(208\) 4.62429i 0.320637i
\(209\) −11.7229 7.83296i −0.810887 0.541817i
\(210\) 0 0
\(211\) 10.6946 + 16.0056i 0.736246 + 1.10187i 0.990869 + 0.134830i \(0.0430488\pi\)
−0.254622 + 0.967041i \(0.581951\pi\)
\(212\) 4.25536 + 1.76263i 0.292259 + 0.121058i
\(213\) −7.81793 3.23829i −0.535676 0.221884i
\(214\) −7.25797 10.8623i −0.496145 0.742533i
\(215\) 0 0
\(216\) −4.23101 2.82707i −0.287884 0.192358i
\(217\) 7.85727i 0.533386i
\(218\) −5.29294 + 7.92144i −0.358483 + 0.536508i
\(219\) 5.21618 + 2.16061i 0.352477 + 0.146001i
\(220\) 0 0
\(221\) 17.6967 + 7.09614i 1.19041 + 0.477338i
\(222\) 1.19374 1.19374i 0.0801184 0.0801184i
\(223\) 1.65180 + 3.98779i 0.110612 + 0.267042i 0.969486 0.245145i \(-0.0788355\pi\)
−0.858874 + 0.512187i \(0.828836\pi\)
\(224\) −0.326988 1.64388i −0.0218478 0.109836i
\(225\) 0 0
\(226\) 3.84589 5.75578i 0.255825 0.382869i
\(227\) 16.3559 10.9287i 1.08558 0.725362i 0.121934 0.992538i \(-0.461091\pi\)
0.963648 + 0.267176i \(0.0860905\pi\)
\(228\) −0.490031 + 2.46355i −0.0324531 + 0.163153i
\(229\) 4.35060 1.80208i 0.287496 0.119085i −0.234275 0.972170i \(-0.575272\pi\)
0.521771 + 0.853086i \(0.325272\pi\)
\(230\) 0 0
\(231\) −8.30636 + 5.55013i −0.546518 + 0.365172i
\(232\) −3.70873 5.55051i −0.243490 0.364409i
\(233\) 0.995617 + 5.00530i 0.0652250 + 0.327908i 0.999597 0.0283910i \(-0.00903836\pi\)
−0.934372 + 0.356299i \(0.884038\pi\)
\(234\) −6.33744 6.33744i −0.414291 0.414291i
\(235\) 0 0
\(236\) −4.00967 + 9.68021i −0.261007 + 0.630128i
\(237\) −3.34620 3.34620i −0.217359 0.217359i
\(238\) 6.79274 + 1.27124i 0.440308 + 0.0824024i
\(239\) 2.61897i 0.169407i −0.996406 0.0847037i \(-0.973006\pi\)
0.996406 0.0847037i \(-0.0269944\pi\)
\(240\) 0 0
\(241\) 3.94028 0.783771i 0.253816 0.0504871i −0.0665423 0.997784i \(-0.521197\pi\)
0.320358 + 0.947296i \(0.396197\pi\)
\(242\) −22.4555 −1.44349
\(243\) −15.5493 + 3.09295i −0.997488 + 0.198413i
\(244\) 0.860592 4.32649i 0.0550938 0.276975i
\(245\) 0 0
\(246\) 4.42490 + 10.6827i 0.282122 + 0.681102i
\(247\) −4.31358 + 10.4139i −0.274466 + 0.662621i
\(248\) −4.59779 0.914558i −0.291960 0.0580745i
\(249\) 6.19222 + 1.23171i 0.392416 + 0.0780564i
\(250\) 0 0
\(251\) −7.61296 + 7.61296i −0.480526 + 0.480526i −0.905300 0.424774i \(-0.860354\pi\)
0.424774 + 0.905300i \(0.360354\pi\)
\(252\) −2.70101 1.80476i −0.170148 0.113689i
\(253\) 17.8672 7.40086i 1.12330 0.465288i
\(254\) −13.8210 −0.867208
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) −0.611539 + 0.253308i −0.0381467 + 0.0158009i −0.401675 0.915782i \(-0.631572\pi\)
0.363528 + 0.931583i \(0.381572\pi\)
\(258\) −9.15563 6.11760i −0.570005 0.380865i
\(259\) 1.94164 1.94164i 0.120648 0.120648i
\(260\) 0 0
\(261\) −12.6895 2.52410i −0.785460 0.156238i
\(262\) −0.102563 0.0204011i −0.00633638 0.00126038i
\(263\) −9.86725 + 23.8217i −0.608441 + 1.46891i 0.256255 + 0.966609i \(0.417511\pi\)
−0.864695 + 0.502297i \(0.832489\pi\)
\(264\) 2.28091 + 5.50661i 0.140380 + 0.338908i
\(265\) 0 0
\(266\) −0.797048 + 4.00703i −0.0488702 + 0.245687i
\(267\) −14.6482 + 2.91372i −0.896458 + 0.178317i
\(268\) 2.70679 0.165343
\(269\) −27.1342 + 5.39732i −1.65440 + 0.329081i −0.932017 0.362414i \(-0.881953\pi\)
−0.722382 + 0.691494i \(0.756953\pi\)
\(270\) 0 0
\(271\) 1.15983i 0.0704548i −0.999379 0.0352274i \(-0.988784\pi\)
0.999379 0.0352274i \(-0.0112155\pi\)
\(272\) 1.53454 3.82690i 0.0930450 0.232040i
\(273\) 5.64756 + 5.64756i 0.341806 + 0.341806i
\(274\) −2.21147 + 5.33895i −0.133600 + 0.322538i
\(275\) 0 0
\(276\) −2.43629 2.43629i −0.146647 0.146647i
\(277\) −4.28548 21.5445i −0.257489 1.29449i −0.865641 0.500665i \(-0.833089\pi\)
0.608152 0.793821i \(-0.291911\pi\)
\(278\) −0.911821 1.36464i −0.0546874 0.0818455i
\(279\) −7.55450 + 5.04776i −0.452276 + 0.302201i
\(280\) 0 0
\(281\) 29.3623 12.1623i 1.75161 0.725539i 0.753963 0.656916i \(-0.228140\pi\)
0.997643 0.0686226i \(-0.0218604\pi\)
\(282\) −0.510972 + 2.56883i −0.0304280 + 0.152972i
\(283\) 15.9849 10.6808i 0.950205 0.634907i 0.0191622 0.999816i \(-0.493900\pi\)
0.931043 + 0.364910i \(0.118900\pi\)
\(284\) −4.56227 + 6.82792i −0.270721 + 0.405162i
\(285\) 0 0
\(286\) 5.21813 + 26.2333i 0.308554 + 1.55121i
\(287\) 7.19722 + 17.3756i 0.424838 + 1.02565i
\(288\) −1.37047 + 1.37047i −0.0807556 + 0.0807556i
\(289\) 12.2904 + 11.7451i 0.722964 + 0.690885i
\(290\) 0 0
\(291\) −9.09061 3.76546i −0.532901 0.220735i
\(292\) 3.04398 4.55564i 0.178135 0.266598i
\(293\) 0.480564i 0.0280748i −0.999901 0.0140374i \(-0.995532\pi\)
0.999901 0.0140374i \(-0.00446840\pi\)
\(294\) −3.59064 2.39919i −0.209411 0.139924i
\(295\) 0 0
\(296\) −0.910181 1.36218i −0.0529032 0.0791753i
\(297\) 27.1924 + 11.2634i 1.57786 + 0.653571i
\(298\) 10.0288 + 4.15407i 0.580954 + 0.240639i
\(299\) −8.58999 12.8558i −0.496772 0.743472i
\(300\) 0 0
\(301\) −14.8919 9.95043i −0.858353 0.573533i
\(302\) 8.36777i 0.481511i
\(303\) 5.01199 7.50098i 0.287932 0.430920i
\(304\) 2.25200 + 0.932809i 0.129161 + 0.0535003i
\(305\) 0 0
\(306\) −3.14162 7.34768i −0.179594 0.420039i
\(307\) −10.5614 + 10.5614i −0.602772 + 0.602772i −0.941047 0.338275i \(-0.890156\pi\)
0.338275 + 0.941047i \(0.390156\pi\)
\(308\) 3.70996 + 8.95664i 0.211395 + 0.510352i
\(309\) −1.77110 8.90392i −0.100754 0.506526i
\(310\) 0 0
\(311\) −8.98927 + 13.4534i −0.509735 + 0.762872i −0.993683 0.112225i \(-0.964202\pi\)
0.483948 + 0.875097i \(0.339202\pi\)
\(312\) 3.96211 2.64740i 0.224310 0.149879i
\(313\) 0.858633 4.31664i 0.0485328 0.243991i −0.948902 0.315571i \(-0.897804\pi\)
0.997435 + 0.0715797i \(0.0228040\pi\)
\(314\) 4.72650 1.95778i 0.266732 0.110484i
\(315\) 0 0
\(316\) −3.81838 + 2.55136i −0.214800 + 0.143525i
\(317\) 17.8387 + 26.6975i 1.00192 + 1.49948i 0.860448 + 0.509539i \(0.170184\pi\)
0.141473 + 0.989942i \(0.454816\pi\)
\(318\) 0.925959 + 4.65511i 0.0519252 + 0.261046i
\(319\) 27.3027 + 27.3027i 1.52866 + 1.52866i
\(320\) 0 0
\(321\) 5.15170 12.4373i 0.287540 0.694183i
\(322\) −3.96268 3.96268i −0.220832 0.220832i
\(323\) −7.02555 + 7.18676i −0.390912 + 0.399882i
\(324\) 0.570765i 0.0317092i
\(325\) 0 0
\(326\) −9.81857 + 1.95303i −0.543800 + 0.108169i
\(327\) −9.81732 −0.542899
\(328\) 11.0053 2.18910i 0.607668 0.120873i
\(329\) −0.831109 + 4.17827i −0.0458205 + 0.230355i
\(330\) 0 0
\(331\) −0.705646 1.70358i −0.0387858 0.0936372i 0.903300 0.429010i \(-0.141138\pi\)
−0.942085 + 0.335373i \(0.891138\pi\)
\(332\) 2.34465 5.66048i 0.128679 0.310659i
\(333\) −3.11420 0.619453i −0.170657 0.0339458i
\(334\) 12.4369 + 2.47386i 0.680519 + 0.135364i
\(335\) 0 0
\(336\) 1.22128 1.22128i 0.0666263 0.0666263i
\(337\) −10.4252 6.96587i −0.567895 0.379455i 0.238223 0.971211i \(-0.423435\pi\)
−0.806118 + 0.591755i \(0.798435\pi\)
\(338\) 7.74585 3.20844i 0.421319 0.174516i
\(339\) 7.13334 0.387430
\(340\) 0 0
\(341\) 27.1150 1.46836
\(342\) 4.36468 1.80791i 0.236015 0.0977605i
\(343\) −15.5956 10.4206i −0.842081 0.562661i
\(344\) −7.55600 + 7.55600i −0.407392 + 0.407392i
\(345\) 0 0
\(346\) 6.98306 + 1.38902i 0.375412 + 0.0746741i
\(347\) 18.0345 + 3.58728i 0.968142 + 0.192575i 0.653744 0.756716i \(-0.273197\pi\)
0.314398 + 0.949291i \(0.398197\pi\)
\(348\) 2.63246 6.35531i 0.141114 0.340680i
\(349\) 0.302687 + 0.730751i 0.0162025 + 0.0391162i 0.931774 0.363040i \(-0.118261\pi\)
−0.915571 + 0.402156i \(0.868261\pi\)
\(350\) 0 0
\(351\) 4.59070 23.0790i 0.245033 1.23186i
\(352\) 5.67293 1.12842i 0.302368 0.0601448i
\(353\) −22.0327 −1.17268 −0.586341 0.810064i \(-0.699432\pi\)
−0.586341 + 0.810064i \(0.699432\pi\)
\(354\) −10.5896 + 2.10640i −0.562829 + 0.111954i
\(355\) 0 0
\(356\) 14.4936i 0.768160i
\(357\) 2.79962 + 6.54783i 0.148172 + 0.346548i
\(358\) −5.76127 5.76127i −0.304493 0.304493i
\(359\) 10.0104 24.1672i 0.528328 1.27550i −0.404289 0.914631i \(-0.632481\pi\)
0.932618 0.360866i \(-0.117519\pi\)
\(360\) 0 0
\(361\) 9.23366 + 9.23366i 0.485982 + 0.485982i
\(362\) −2.60085 13.0754i −0.136698 0.687225i
\(363\) −12.8557 19.2400i −0.674751 1.00984i
\(364\) 6.44447 4.30606i 0.337782 0.225699i
\(365\) 0 0
\(366\) 4.19964 1.73955i 0.219519 0.0909276i
\(367\) 3.20087 16.0919i 0.167084 0.839988i −0.802768 0.596292i \(-0.796640\pi\)
0.969852 0.243696i \(-0.0783599\pi\)
\(368\) −2.78006 + 1.85758i −0.144921 + 0.0968331i
\(369\) 12.0824 18.0825i 0.628983 0.941339i
\(370\) 0 0
\(371\) 1.50610 + 7.57165i 0.0781926 + 0.393101i
\(372\) −1.84863 4.46299i −0.0958470 0.231395i
\(373\) −0.608572 + 0.608572i −0.0315107 + 0.0315107i −0.722687 0.691176i \(-0.757093\pi\)
0.691176 + 0.722687i \(0.257093\pi\)
\(374\) −4.38698 + 23.4414i −0.226846 + 1.21212i
\(375\) 0 0
\(376\) 2.34824 + 0.972672i 0.121101 + 0.0501617i
\(377\) 17.1503 25.6672i 0.883283 1.32193i
\(378\) 8.52891i 0.438680i
\(379\) −18.3579 12.2664i −0.942984 0.630082i −0.0138811 0.999904i \(-0.504419\pi\)
−0.929103 + 0.369822i \(0.879419\pi\)
\(380\) 0 0
\(381\) −7.91251 11.8419i −0.405370 0.606679i
\(382\) −16.2973 6.75057i −0.833844 0.345389i
\(383\) 27.9938 + 11.5954i 1.43041 + 0.592497i 0.957454 0.288587i \(-0.0931854\pi\)
0.472960 + 0.881084i \(0.343185\pi\)
\(384\) −0.572498 0.856804i −0.0292152 0.0437236i
\(385\) 0 0
\(386\) 2.63170 + 1.75845i 0.133950 + 0.0895026i
\(387\) 20.7105i 1.05277i
\(388\) −5.30496 + 7.93943i −0.269318 + 0.403064i
\(389\) 28.5851 + 11.8403i 1.44932 + 0.600329i 0.962039 0.272914i \(-0.0879873\pi\)
0.487285 + 0.873243i \(0.337987\pi\)
\(390\) 0 0
\(391\) −2.84267 13.4896i −0.143760 0.682197i
\(392\) −2.96330 + 2.96330i −0.149669 + 0.149669i
\(393\) −0.0412375 0.0995562i −0.00208016 0.00502195i
\(394\) −3.91682 19.6912i −0.197327 0.992028i
\(395\) 0 0
\(396\) 6.22811 9.32103i 0.312975 0.468399i
\(397\) 9.10159 6.08149i 0.456796 0.305221i −0.305801 0.952095i \(-0.598924\pi\)
0.762597 + 0.646874i \(0.223924\pi\)
\(398\) −1.11803 + 5.62073i −0.0560419 + 0.281742i
\(399\) −3.88955 + 1.61110i −0.194721 + 0.0806560i
\(400\) 0 0
\(401\) −12.1334 + 8.10725i −0.605911 + 0.404857i −0.820335 0.571884i \(-0.806213\pi\)
0.214423 + 0.976741i \(0.431213\pi\)
\(402\) 1.54963 + 2.31918i 0.0772884 + 0.115670i
\(403\) −4.22918 21.2615i −0.210671 1.05911i
\(404\) −6.19044 6.19044i −0.307986 0.307986i
\(405\) 0 0
\(406\) 4.28176 10.3371i 0.212500 0.513021i
\(407\) 6.70051 + 6.70051i 0.332132 + 0.332132i
\(408\) 4.15742 0.876098i 0.205823 0.0433733i
\(409\) 2.35457i 0.116426i −0.998304 0.0582130i \(-0.981460\pi\)
0.998304 0.0582130i \(-0.0185403\pi\)
\(410\) 0 0
\(411\) −5.84049 + 1.16175i −0.288090 + 0.0573047i
\(412\) −8.80993 −0.434034
\(413\) −17.2242 + 3.42611i −0.847547 + 0.168588i
\(414\) −1.26424 + 6.35574i −0.0621338 + 0.312368i
\(415\) 0 0
\(416\) −1.76964 4.27229i −0.0867637 0.209466i
\(417\) 0.647210 1.56250i 0.0316940 0.0765161i
\(418\) −13.8280 2.75057i −0.676352 0.134535i
\(419\) 26.7980 + 5.33045i 1.30917 + 0.260409i 0.799866 0.600179i \(-0.204904\pi\)
0.509301 + 0.860589i \(0.329904\pi\)
\(420\) 0 0
\(421\) 7.28333 7.28333i 0.354968 0.354968i −0.506986 0.861954i \(-0.669241\pi\)
0.861954 + 0.506986i \(0.169241\pi\)
\(422\) 16.0056 + 10.6946i 0.779140 + 0.520605i
\(423\) 4.55120 1.88517i 0.221287 0.0916600i
\(424\) 4.60597 0.223686
\(425\) 0 0
\(426\) −8.46207 −0.409989
\(427\) 6.83082 2.82942i 0.330567 0.136925i
\(428\) −10.8623 7.25797i −0.525050 0.350827i
\(429\) −19.4894 + 19.4894i −0.940958 + 0.940958i
\(430\) 0 0
\(431\) 16.9262 + 3.36683i 0.815307 + 0.162175i 0.585094 0.810966i \(-0.301058\pi\)
0.230213 + 0.973140i \(0.426058\pi\)
\(432\) −4.99082 0.992735i −0.240121 0.0477630i
\(433\) 9.81392 23.6929i 0.471627 1.13861i −0.491817 0.870699i \(-0.663667\pi\)
0.963444 0.267910i \(-0.0863329\pi\)
\(434\) −3.00685 7.25917i −0.144333 0.348451i
\(435\) 0 0
\(436\) −1.85863 + 9.34398i −0.0890124 + 0.447495i
\(437\) 7.99347 1.59000i 0.382380 0.0760601i
\(438\) 5.64596 0.269774
\(439\) 34.5319 6.86883i 1.64812 0.327831i 0.718268 0.695767i \(-0.244935\pi\)
0.929851 + 0.367936i \(0.119935\pi\)
\(440\) 0 0
\(441\) 8.12222i 0.386772i
\(442\) 19.0652 0.216257i 0.906839 0.0102863i
\(443\) −8.29543 8.29543i −0.394128 0.394128i 0.482028 0.876156i \(-0.339900\pi\)
−0.876156 + 0.482028i \(0.839900\pi\)
\(444\) 0.646046 1.55969i 0.0306600 0.0740198i
\(445\) 0 0
\(446\) 3.05212 + 3.05212i 0.144522 + 0.144522i
\(447\) 2.18225 + 10.9709i 0.103217 + 0.518907i
\(448\) −0.931182 1.39361i −0.0439942 0.0658420i
\(449\) −2.92263 + 1.95284i −0.137928 + 0.0921603i −0.622620 0.782525i \(-0.713932\pi\)
0.484692 + 0.874685i \(0.338932\pi\)
\(450\) 0 0
\(451\) −59.9623 + 24.8372i −2.82352 + 1.16954i
\(452\) 1.35050 6.78941i 0.0635220 0.319347i
\(453\) −7.16953 + 4.79053i −0.336854 + 0.225079i
\(454\) 10.9287 16.3559i 0.512909 0.767622i
\(455\) 0 0
\(456\) 0.490031 + 2.46355i 0.0229478 + 0.115366i
\(457\) 13.2146 + 31.9028i 0.618152 + 1.49235i 0.853847 + 0.520524i \(0.174263\pi\)
−0.235695 + 0.971827i \(0.575737\pi\)
\(458\) 3.32980 3.32980i 0.155591 0.155591i
\(459\) 11.4577 17.5760i 0.534800 0.820377i
\(460\) 0 0
\(461\) −0.00945111 0.00391478i −0.000440182 0.000182329i 0.382463 0.923971i \(-0.375076\pi\)
−0.382904 + 0.923788i \(0.625076\pi\)
\(462\) −5.55013 + 8.30636i −0.258216 + 0.386447i
\(463\) 14.9029i 0.692597i 0.938124 + 0.346298i \(0.112562\pi\)
−0.938124 + 0.346298i \(0.887438\pi\)
\(464\) −5.55051 3.70873i −0.257676 0.172174i
\(465\) 0 0
\(466\) 2.83528 + 4.24329i 0.131342 + 0.196567i
\(467\) −7.51619 3.11331i −0.347808 0.144067i 0.201939 0.979398i \(-0.435276\pi\)
−0.549747 + 0.835331i \(0.685276\pi\)
\(468\) −8.28026 3.42980i −0.382755 0.158542i
\(469\) 2.52051 + 3.77221i 0.116386 + 0.174184i
\(470\) 0 0
\(471\) 4.38335 + 2.92886i 0.201974 + 0.134955i
\(472\) 10.4778i 0.482279i
\(473\) 34.3384 51.3910i 1.57888 2.36296i
\(474\) −4.37202 1.81095i −0.200814 0.0831797i
\(475\) 0 0
\(476\) 6.76216 1.42500i 0.309943 0.0653145i
\(477\) 6.31233 6.31233i 0.289022 0.289022i
\(478\) −1.00224 2.41962i −0.0458413 0.110671i
\(479\) 6.31687 + 31.7570i 0.288625 + 1.45102i 0.804296 + 0.594229i \(0.202543\pi\)
−0.515671 + 0.856787i \(0.672457\pi\)
\(480\) 0 0
\(481\) 4.20894 6.29913i 0.191911 0.287215i
\(482\) 3.34041 2.23199i 0.152151 0.101664i
\(483\) 1.12661 5.66387i 0.0512627 0.257715i
\(484\) −20.7462 + 8.59335i −0.943008 + 0.390607i
\(485\) 0 0
\(486\) −13.1821 + 8.80797i −0.597951 + 0.399538i
\(487\) 13.4875 + 20.1855i 0.611177 + 0.914691i 0.999978 0.00663048i \(-0.00211056\pi\)
−0.388801 + 0.921322i \(0.627111\pi\)
\(488\) −0.860592 4.32649i −0.0389572 0.195851i
\(489\) −7.29448 7.29448i −0.329868 0.329868i
\(490\) 0 0
\(491\) −8.98813 + 21.6993i −0.405629 + 0.979274i 0.580645 + 0.814157i \(0.302800\pi\)
−0.986274 + 0.165118i \(0.947200\pi\)
\(492\) 8.17616 + 8.17616i 0.368610 + 0.368610i
\(493\) 22.7104 15.5501i 1.02283 0.700341i
\(494\) 11.2719i 0.507148i
\(495\) 0 0
\(496\) −4.59779 + 0.914558i −0.206447 + 0.0410649i
\(497\) −13.7638 −0.617390
\(498\) 6.19222 1.23171i 0.277480 0.0551942i
\(499\) 2.34595 11.7939i 0.105019 0.527967i −0.892081 0.451875i \(-0.850755\pi\)
0.997101 0.0760929i \(-0.0242445\pi\)
\(500\) 0 0
\(501\) 5.00051 + 12.0723i 0.223406 + 0.539351i
\(502\) −4.12011 + 9.94682i −0.183889 + 0.443948i
\(503\) 22.9711 + 4.56923i 1.02423 + 0.203732i 0.678499 0.734601i \(-0.262631\pi\)
0.345731 + 0.938334i \(0.387631\pi\)
\(504\) −3.18606 0.633746i −0.141918 0.0282293i
\(505\) 0 0
\(506\) 13.6750 13.6750i 0.607928 0.607928i
\(507\) 7.18349 + 4.79985i 0.319030 + 0.213169i
\(508\) −12.7690 + 5.28908i −0.566531 + 0.234665i
\(509\) −34.4909 −1.52878 −0.764392 0.644752i \(-0.776961\pi\)
−0.764392 + 0.644752i \(0.776961\pi\)
\(510\) 0 0
\(511\) 9.18329 0.406245
\(512\) −0.923880 + 0.382683i −0.0408301 + 0.0169124i
\(513\) 10.3133 + 6.89112i 0.455343 + 0.304250i
\(514\) −0.468052 + 0.468052i −0.0206449 + 0.0206449i
\(515\) 0 0
\(516\) −10.7998 2.14821i −0.475435 0.0945699i
\(517\) −14.4190 2.86811i −0.634146 0.126139i
\(518\) 1.05081 2.53688i 0.0461700 0.111464i
\(519\) 2.80767 + 6.77832i 0.123243 + 0.297535i
\(520\) 0 0
\(521\) 6.54790 32.9185i 0.286869 1.44219i −0.521369 0.853331i \(-0.674578\pi\)
0.808238 0.588856i \(-0.200422\pi\)
\(522\) −12.6895 + 2.52410i −0.555404 + 0.110477i
\(523\) 18.1579 0.793991 0.396996 0.917820i \(-0.370053\pi\)
0.396996 + 0.917820i \(0.370053\pi\)
\(524\) −0.102563 + 0.0204011i −0.00448050 + 0.000891227i
\(525\) 0 0
\(526\) 25.7844i 1.12425i
\(527\) 3.55556 18.9987i 0.154883 0.827598i
\(528\) 4.21457 + 4.21457i 0.183416 + 0.183416i
\(529\) 4.52356 10.9208i 0.196677 0.474819i
\(530\) 0 0
\(531\) 14.3595 + 14.3595i 0.623147 + 0.623147i
\(532\) 0.797048 + 4.00703i 0.0345564 + 0.173727i
\(533\) 28.8279 + 43.1440i 1.24868 + 1.86878i
\(534\) −12.4182 + 8.29757i −0.537387 + 0.359071i
\(535\) 0 0
\(536\) 2.50074 1.03584i 0.108016 0.0447416i
\(537\) 1.63796 8.23460i 0.0706833 0.355349i
\(538\) −23.0032 + 15.3703i −0.991740 + 0.662659i
\(539\) 13.4668 20.1545i 0.580055 0.868114i
\(540\) 0 0
\(541\) 1.43320 + 7.20520i 0.0616182 + 0.309776i 0.999287 0.0377544i \(-0.0120205\pi\)
−0.937669 + 0.347530i \(0.887020\pi\)
\(542\) −0.443848 1.07154i −0.0190649 0.0460268i
\(543\) 9.71403 9.71403i 0.416869 0.416869i
\(544\) −0.0467655 4.12284i −0.00200505 0.176765i
\(545\) 0 0
\(546\) 7.37889 + 3.05644i 0.315787 + 0.130803i
\(547\) 16.2036 24.2504i 0.692815 1.03687i −0.303643 0.952786i \(-0.598203\pi\)
0.996459 0.0840855i \(-0.0267969\pi\)
\(548\) 5.77884i 0.246860i
\(549\) −7.10873 4.74990i −0.303393 0.202721i
\(550\) 0 0
\(551\) 9.04021 + 13.5296i 0.385126 + 0.576382i
\(552\) −3.18316 1.31851i −0.135484 0.0561195i
\(553\) −7.11121 2.94556i −0.302399 0.125258i
\(554\) −12.2040 18.2646i −0.518498 0.775988i
\(555\) 0 0
\(556\) −1.36464 0.911821i −0.0578735 0.0386698i
\(557\) 7.32927i 0.310551i 0.987871 + 0.155275i \(0.0496265\pi\)
−0.987871 + 0.155275i \(0.950373\pi\)
\(558\) −5.04776 + 7.55450i −0.213689 + 0.319808i
\(559\) −45.6528 18.9100i −1.93091 0.799808i
\(560\) 0 0
\(561\) −22.5962 + 9.66135i −0.954012 + 0.407903i
\(562\) 22.4729 22.4729i 0.947962 0.947962i
\(563\) −11.8556 28.6219i −0.499653 1.20627i −0.949671 0.313249i \(-0.898583\pi\)
0.450018 0.893019i \(-0.351417\pi\)
\(564\) 0.510972 + 2.56883i 0.0215158 + 0.108167i
\(565\) 0 0
\(566\) 10.6808 15.9849i 0.448947 0.671897i
\(567\) −0.795425 + 0.531486i −0.0334047 + 0.0223203i
\(568\) −1.60206 + 8.05408i −0.0672208 + 0.337942i
\(569\) 25.5509 10.5835i 1.07115 0.443684i 0.223752 0.974646i \(-0.428169\pi\)
0.847396 + 0.530962i \(0.178169\pi\)
\(570\) 0 0
\(571\) 19.2218 12.8436i 0.804406 0.537487i −0.0840429 0.996462i \(-0.526783\pi\)
0.888449 + 0.458975i \(0.151783\pi\)
\(572\) 14.8600 + 22.2395i 0.621326 + 0.929881i
\(573\) −3.54627 17.8283i −0.148147 0.744788i
\(574\) 13.2987 + 13.2987i 0.555078 + 0.555078i
\(575\) 0 0
\(576\) −0.741692 + 1.79060i −0.0309038 + 0.0746084i
\(577\) −24.6305 24.6305i −1.02538 1.02538i −0.999669 0.0257102i \(-0.991815\pi\)
−0.0257102 0.999669i \(-0.508185\pi\)
\(578\) 15.8495 + 6.14768i 0.659251 + 0.255710i
\(579\) 3.26156i 0.135546i
\(580\) 0 0
\(581\) 10.0718 2.00341i 0.417849 0.0831153i
\(582\) −9.83961 −0.407865
\(583\) −26.1294 + 5.19745i −1.08217 + 0.215256i
\(584\) 1.06890 5.37374i 0.0442315 0.222367i
\(585\) 0 0
\(586\) −0.183904 0.443983i −0.00759700 0.0183408i
\(587\) 4.24371 10.2452i 0.175157 0.422866i −0.811782 0.583960i \(-0.801502\pi\)
0.986939 + 0.161095i \(0.0515024\pi\)
\(588\) −4.23545 0.842484i −0.174667 0.0347434i
\(589\) 11.2073 + 2.22928i 0.461791 + 0.0918558i
\(590\) 0 0
\(591\) 14.6291 14.6291i 0.601761 0.601761i
\(592\) −1.36218 0.910181i −0.0559854 0.0374082i
\(593\) −42.6843 + 17.6804i −1.75283 + 0.726048i −0.755338 + 0.655336i \(0.772527\pi\)
−0.997497 + 0.0707122i \(0.977473\pi\)
\(594\) 29.4328 1.20764
\(595\) 0 0
\(596\) 10.8551 0.444643
\(597\) −5.45593 + 2.25992i −0.223296 + 0.0924923i
\(598\) −12.8558 8.58999i −0.525714 0.351271i
\(599\) −29.0498 + 29.0498i −1.18694 + 1.18694i −0.209035 + 0.977908i \(0.567032\pi\)
−0.977908 + 0.209035i \(0.932968\pi\)
\(600\) 0 0
\(601\) −13.6083 2.70685i −0.555093 0.110415i −0.0904304 0.995903i \(-0.528824\pi\)
−0.464662 + 0.885488i \(0.653824\pi\)
\(602\) −17.5662 3.49413i −0.715943 0.142410i
\(603\) 2.00760 4.84678i 0.0817558 0.197376i
\(604\) 3.20221 + 7.73081i 0.130296 + 0.314562i
\(605\) 0 0
\(606\) 1.75998 8.84801i 0.0714942 0.359426i
\(607\) 25.1950 5.01159i 1.02263 0.203414i 0.344835 0.938663i \(-0.387935\pi\)
0.677797 + 0.735249i \(0.262935\pi\)
\(608\) 2.43755 0.0988556
\(609\) 11.3081 2.24933i 0.458229 0.0911474i
\(610\) 0 0
\(611\) 11.7536i 0.475501i
\(612\) −5.71431 5.58613i −0.230987 0.225806i
\(613\) 14.4308 + 14.4308i 0.582856 + 0.582856i 0.935687 0.352831i \(-0.114781\pi\)
−0.352831 + 0.935687i \(0.614781\pi\)
\(614\) −5.71580 + 13.7992i −0.230671 + 0.556889i
\(615\) 0 0
\(616\) 6.85511 + 6.85511i 0.276200 + 0.276200i
\(617\) 3.04210 + 15.2937i 0.122470 + 0.615699i 0.992454 + 0.122619i \(0.0391292\pi\)
−0.869984 + 0.493081i \(0.835871\pi\)
\(618\) −5.04366 7.54838i −0.202886 0.303640i
\(619\) −10.5371 + 7.04064i −0.423520 + 0.282987i −0.749010 0.662558i \(-0.769471\pi\)
0.325490 + 0.945545i \(0.394471\pi\)
\(620\) 0 0
\(621\) −15.7189 + 6.51097i −0.630777 + 0.261276i
\(622\) −3.15661 + 15.8694i −0.126569 + 0.636303i
\(623\) −20.1985 + 13.4962i −0.809236 + 0.540714i
\(624\) 2.64740 3.96211i 0.105981 0.158611i
\(625\) 0 0
\(626\) −0.858633 4.31664i −0.0343179 0.172528i
\(627\) −5.55983 13.4226i −0.222038 0.536048i
\(628\) 3.61751 3.61751i 0.144354 0.144354i
\(629\) 5.57350 3.81624i 0.222230 0.152163i
\(630\) 0 0
\(631\) 14.5366 + 6.02127i 0.578694 + 0.239703i 0.652778 0.757549i \(-0.273603\pi\)
−0.0740843 + 0.997252i \(0.523603\pi\)
\(632\) −2.55136 + 3.81838i −0.101488 + 0.151887i
\(633\) 19.8363i 0.788422i
\(634\) 26.6975 + 17.8387i 1.06029 + 0.708465i
\(635\) 0 0
\(636\) 2.63691 + 3.94641i 0.104560 + 0.156485i
\(637\) −17.9041 7.41610i −0.709384 0.293837i
\(638\) 35.6727 + 14.7761i 1.41230 + 0.584992i
\(639\) 8.84229 + 13.2334i 0.349795 + 0.523506i
\(640\) 0 0
\(641\) −16.6671 11.1366i −0.658310 0.439869i 0.181029 0.983478i \(-0.442057\pi\)
−0.839338 + 0.543609i \(0.817057\pi\)
\(642\) 13.4620i 0.531305i
\(643\) −16.1042 + 24.1017i −0.635089 + 0.950477i 0.364724 + 0.931116i \(0.381163\pi\)
−0.999813 + 0.0193615i \(0.993837\pi\)
\(644\) −5.17749 2.14459i −0.204022 0.0845086i
\(645\) 0 0
\(646\) −3.74051 + 9.32826i −0.147168 + 0.367015i
\(647\) −0.105698 + 0.105698i −0.00415541 + 0.00415541i −0.709181 0.705026i \(-0.750935\pi\)
0.705026 + 0.709181i \(0.250935\pi\)
\(648\) 0.218422 + 0.527318i 0.00858044 + 0.0207150i
\(649\) −11.8233 59.4398i −0.464105 2.33321i
\(650\) 0 0
\(651\) 4.49827 6.73213i 0.176301 0.263853i
\(652\) −8.32378 + 5.56177i −0.325984 + 0.217816i
\(653\) −6.59498 + 33.1552i −0.258082 + 1.29746i 0.606545 + 0.795049i \(0.292555\pi\)
−0.864627 + 0.502415i \(0.832445\pi\)
\(654\) −9.07002 + 3.75692i −0.354666 + 0.146907i
\(655\) 0 0
\(656\) 9.32987 6.23402i 0.364270 0.243398i
\(657\) −5.89964 8.82943i −0.230167 0.344469i
\(658\) 0.831109 + 4.17827i 0.0324000 + 0.162886i
\(659\) 33.1839 + 33.1839i 1.29266 + 1.29266i 0.933134 + 0.359529i \(0.117063\pi\)
0.359529 + 0.933134i \(0.382937\pi\)
\(660\) 0 0
\(661\) 5.69800 13.7562i 0.221626 0.535054i −0.773485 0.633815i \(-0.781488\pi\)
0.995111 + 0.0987614i \(0.0314881\pi\)
\(662\) −1.30386 1.30386i −0.0506761 0.0506761i
\(663\) 11.1001 + 16.2113i 0.431091 + 0.629596i
\(664\) 6.12686i 0.237768i
\(665\) 0 0
\(666\) −3.11420 + 0.619453i −0.120673 + 0.0240033i
\(667\) −22.3201 −0.864236
\(668\) 12.4369 2.47386i 0.481200 0.0957166i
\(669\) −0.867735 + 4.36240i −0.0335486 + 0.168660i
\(670\) 0 0
\(671\) 9.76417 + 23.5728i 0.376941 + 0.910017i
\(672\) 0.660953 1.59568i 0.0254968 0.0615547i
\(673\) −21.2609 4.22906i −0.819547 0.163018i −0.232527 0.972590i \(-0.574699\pi\)
−0.587021 + 0.809572i \(0.699699\pi\)
\(674\) −12.2973 2.44609i −0.473675 0.0942198i
\(675\) 0 0
\(676\) 5.92842 5.92842i 0.228016 0.228016i
\(677\) −14.5209 9.70254i −0.558083 0.372899i 0.244308 0.969698i \(-0.421439\pi\)
−0.802391 + 0.596799i \(0.796439\pi\)
\(678\) 6.59034 2.72981i 0.253101 0.104838i
\(679\) −16.0044 −0.614192
\(680\) 0 0
\(681\) 20.2705 0.776766
\(682\) 25.0510 10.3765i 0.959252 0.397335i
\(683\) −3.92593 2.62322i −0.150222 0.100375i 0.478188 0.878258i \(-0.341294\pi\)
−0.628410 + 0.777883i \(0.716294\pi\)
\(684\) 3.34058 3.34058i 0.127730 0.127730i
\(685\) 0 0
\(686\) −18.3962 3.65924i −0.702371 0.139710i
\(687\) 4.75929 + 0.946682i 0.181578 + 0.0361182i
\(688\) −4.08928 + 9.87239i −0.155902 + 0.376381i
\(689\) 8.15090 + 19.6780i 0.310525 + 0.749673i
\(690\) 0 0
\(691\) 4.41342 22.1878i 0.167894 0.844062i −0.801394 0.598136i \(-0.795908\pi\)
0.969289 0.245926i \(-0.0790919\pi\)
\(692\) 6.98306 1.38902i 0.265456 0.0528025i
\(693\) 18.7894 0.713751
\(694\) 18.0345 3.58728i 0.684580 0.136171i
\(695\) 0 0
\(696\) 6.87894i 0.260746i
\(697\) 9.53997 + 45.2709i 0.361352 + 1.71476i
\(698\) 0.559293 + 0.559293i 0.0211695 + 0.0211695i
\(699\) −2.01248 + 4.85855i −0.0761189 + 0.183767i
\(700\) 0 0
\(701\) 34.8429 + 34.8429i 1.31600 + 1.31600i 0.916916 + 0.399081i \(0.130671\pi\)
0.399081 + 0.916916i \(0.369329\pi\)
\(702\) −4.59070 23.0790i −0.173265 0.871060i
\(703\) 2.21861 + 3.32038i 0.0836765 + 0.125231i
\(704\) 4.80928 3.21346i 0.181257 0.121112i
\(705\) 0 0
\(706\) −20.3556 + 8.43155i −0.766092 + 0.317326i
\(707\) 2.86265 14.3915i 0.107661 0.541249i
\(708\) −8.97740 + 5.99851i −0.337391 + 0.225438i
\(709\) −2.53326 + 3.79130i −0.0951387 + 0.142385i −0.875986 0.482337i \(-0.839788\pi\)
0.780847 + 0.624723i \(0.214788\pi\)
\(710\) 0 0
\(711\) 1.73641 + 8.72951i 0.0651204 + 0.327382i
\(712\) 5.54647 + 13.3904i 0.207863 + 0.501825i
\(713\) −11.0833 + 11.0833i −0.415073 + 0.415073i
\(714\) 5.09226 + 4.97803i 0.190573 + 0.186298i
\(715\) 0 0
\(716\) −7.52747 3.11798i −0.281315 0.116524i
\(717\) 1.49936 2.24395i 0.0559945 0.0838017i
\(718\) 26.1584i 0.976223i
\(719\) 22.7552 + 15.2046i 0.848627 + 0.567034i 0.902096 0.431535i \(-0.142028\pi\)
−0.0534694 + 0.998569i \(0.517028\pi\)
\(720\) 0 0
\(721\) −8.20365 12.2776i −0.305520 0.457243i
\(722\) 12.0644 + 4.99722i 0.448989 + 0.185977i
\(723\) 3.82475 + 1.58426i 0.142244 + 0.0589194i
\(724\) −7.40659 11.0848i −0.275264 0.411962i
\(725\) 0 0
\(726\) −19.2400 12.8557i −0.714062 0.477121i
\(727\) 44.6488i 1.65593i 0.560777 + 0.827967i \(0.310502\pi\)
−0.560777 + 0.827967i \(0.689498\pi\)
\(728\) 4.30606 6.44447i 0.159593 0.238848i
\(729\) −13.5115 5.59663i −0.500424 0.207282i
\(730\) 0 0
\(731\) −31.5056 30.7988i −1.16527 1.13914i
\(732\) 3.21426 3.21426i 0.118803 0.118803i
\(733\) −9.02065 21.7778i −0.333185 0.804381i −0.998336 0.0576712i \(-0.981632\pi\)
0.665150 0.746710i \(-0.268368\pi\)
\(734\) −3.20087 16.0919i −0.118146 0.593961i
\(735\) 0 0
\(736\) −1.85758 + 2.78006i −0.0684713 + 0.102475i
\(737\) −13.0177 + 8.69814i −0.479513 + 0.320400i
\(738\) 4.24276 21.3298i 0.156178 0.785161i
\(739\) −25.2821 + 10.4722i −0.930017 + 0.385226i −0.795685 0.605711i \(-0.792889\pi\)
−0.134332 + 0.990936i \(0.542889\pi\)
\(740\) 0 0
\(741\) −9.65782 + 6.45315i −0.354789 + 0.237062i
\(742\) 4.28900 + 6.41894i 0.157454 + 0.235647i
\(743\) 3.46972 + 17.4435i 0.127292 + 0.639939i 0.990770 + 0.135553i \(0.0432811\pi\)
−0.863478 + 0.504386i \(0.831719\pi\)
\(744\) −3.41582 3.41582i −0.125230 0.125230i
\(745\) 0 0
\(746\) −0.329357 + 0.795138i −0.0120586 + 0.0291121i
\(747\) −8.39666 8.39666i −0.307218 0.307218i
\(748\) 4.91758 + 23.3358i 0.179805 + 0.853242i
\(749\) 21.8964i 0.800076i
\(750\) 0 0
\(751\) −17.2734 + 3.43589i −0.630314 + 0.125377i −0.499901 0.866082i \(-0.666630\pi\)
−0.130413 + 0.991460i \(0.541630\pi\)
\(752\) 2.54171 0.0926868
\(753\) −10.8812 + 2.16441i −0.396534 + 0.0788754i
\(754\) 6.02237 30.2765i 0.219322 1.10260i
\(755\) 0 0
\(756\) −3.26387 7.87968i −0.118706 0.286581i
\(757\) 0.217531 0.525165i 0.00790628 0.0190875i −0.919877 0.392207i \(-0.871712\pi\)
0.927783 + 0.373119i \(0.121712\pi\)
\(758\) −21.6547 4.30738i −0.786533 0.156451i
\(759\) 19.5457 + 3.88788i 0.709464 + 0.141121i
\(760\) 0 0
\(761\) −6.97045 + 6.97045i −0.252679 + 0.252679i −0.822068 0.569389i \(-0.807180\pi\)
0.569389 + 0.822068i \(0.307180\pi\)
\(762\) −11.8419 7.91251i −0.428987 0.286640i
\(763\) −14.7526 + 6.11073i −0.534080 + 0.221223i
\(764\) −17.6401 −0.638196
\(765\) 0 0
\(766\) 30.3002 1.09479
\(767\) −44.7641 + 18.5419i −1.61634 + 0.669509i
\(768\) −0.856804 0.572498i −0.0309172 0.0206582i
\(769\) −36.4693 + 36.4693i −1.31512 + 1.31512i −0.397525 + 0.917591i \(0.630131\pi\)
−0.917591 + 0.397525i \(0.869869\pi\)
\(770\) 0 0
\(771\) −0.668987 0.133070i −0.0240930 0.00479239i
\(772\) 3.10430 + 0.617484i 0.111726 + 0.0222238i
\(773\) −1.92767 + 4.65381i −0.0693336 + 0.167386i −0.954748 0.297417i \(-0.903875\pi\)
0.885414 + 0.464803i \(0.153875\pi\)
\(774\) 7.92557 + 19.1340i 0.284879 + 0.687758i
\(775\) 0 0
\(776\) −1.86285 + 9.36520i −0.0668726 + 0.336191i
\(777\) 2.77519 0.552021i 0.0995596 0.0198036i
\(778\) 30.9403 1.10926
\(779\) −26.8260 + 5.33603i −0.961142 + 0.191183i
\(780\) 0 0
\(781\) 47.4980i 1.69961i
\(782\) −7.78852 11.3749i −0.278517 0.406765i
\(783\) −24.0198 24.0198i −0.858398 0.858398i
\(784\) −1.60373 + 3.87174i −0.0572760 + 0.138276i
\(785\) 0 0
\(786\) −0.0761970 0.0761970i −0.00271786 0.00271786i
\(787\) 1.02127 + 5.13427i 0.0364043 + 0.183017i 0.994709 0.102731i \(-0.0327580\pi\)
−0.958305 + 0.285748i \(0.907758\pi\)
\(788\) −11.1542 16.6934i −0.397351 0.594677i
\(789\) −22.0921 + 14.7615i −0.786501 + 0.525523i
\(790\) 0 0
\(791\) 10.7194 4.44011i 0.381137 0.157872i
\(792\) 2.18702 10.9949i 0.0777125 0.390687i
\(793\) 16.9611 11.3330i 0.602305 0.402447i
\(794\) 6.08149 9.10159i 0.215824 0.323003i
\(795\) 0 0
\(796\) 1.11803 + 5.62073i 0.0396276 + 0.199221i
\(797\) −8.71279 21.0345i −0.308623 0.745081i −0.999750 0.0223483i \(-0.992886\pi\)
0.691128 0.722733i \(-0.257114\pi\)
\(798\) −2.97693 + 2.97693i −0.105382 + 0.105382i
\(799\) −3.90035 + 9.72690i −0.137985 + 0.344113i
\(800\) 0 0
\(801\) 25.9523 + 10.7498i 0.916980 + 0.379825i
\(802\) −8.10725 + 12.1334i −0.286277 + 0.428444i
\(803\) 31.6910i 1.11835i
\(804\) 2.31918 + 1.54963i 0.0817913 + 0.0546512i
\(805\) 0 0
\(806\) −12.0437 18.0247i −0.424221 0.634892i
\(807\) −26.3386 10.9098i −0.927163 0.384043i
\(808\) −8.08820 3.35024i −0.284542 0.117861i
\(809\) −10.5409 15.7756i −0.370598 0.554640i 0.598560 0.801078i \(-0.295740\pi\)
−0.969159 + 0.246438i \(0.920740\pi\)
\(810\) 0 0
\(811\) −38.9732 26.0410i −1.36853 0.914424i −0.368647 0.929569i \(-0.620179\pi\)
−0.999885 + 0.0151451i \(0.995179\pi\)
\(812\) 11.1888i 0.392649i
\(813\) 0.664001 0.993748i 0.0232875 0.0348523i
\(814\) 8.75464 + 3.62629i 0.306850 + 0.127101i
\(815\) 0 0
\(816\) 3.50569 2.40039i 0.122724 0.0840303i
\(817\) 18.4181 18.4181i 0.644368 0.644368i
\(818\) −0.901056 2.17534i −0.0315047 0.0760590i
\(819\) −2.93063 14.7332i −0.102404 0.514821i
\(820\) 0 0
\(821\) −15.3189 + 22.9263i −0.534632 + 0.800133i −0.996211 0.0869661i \(-0.972283\pi\)
0.461580 + 0.887099i \(0.347283\pi\)
\(822\) −4.95133 + 3.30837i −0.172697 + 0.115393i
\(823\) 2.89100 14.5340i 0.100774 0.506624i −0.897122 0.441783i \(-0.854346\pi\)
0.997896 0.0648408i \(-0.0206540\pi\)
\(824\) −8.13931 + 3.37141i −0.283546 + 0.117449i
\(825\) 0 0
\(826\) −14.6020 + 9.75672i −0.508067 + 0.339480i
\(827\) −5.34655 8.00167i −0.185918 0.278245i 0.726789 0.686861i \(-0.241012\pi\)
−0.912707 + 0.408615i \(0.866012\pi\)
\(828\) 1.26424 + 6.35574i 0.0439352 + 0.220877i
\(829\) −17.9667 17.9667i −0.624011 0.624011i 0.322544 0.946555i \(-0.395462\pi\)
−0.946555 + 0.322544i \(0.895462\pi\)
\(830\) 0 0
\(831\) 8.66239 20.9129i 0.300495 0.725459i
\(832\) −3.26987 3.26987i −0.113362 0.113362i
\(833\) −12.3558 12.0786i −0.428103 0.418500i
\(834\) 1.69124i 0.0585629i
\(835\) 0 0
\(836\) −13.8280 + 2.75057i −0.478253 + 0.0951304i
\(837\) −23.8547 −0.824538
\(838\) 26.7980 5.33045i 0.925720 0.184137i
\(839\) −1.70308 + 8.56197i −0.0587969 + 0.295592i −0.998984 0.0450665i \(-0.985650\pi\)
0.940187 + 0.340659i \(0.110650\pi\)
\(840\) 0 0
\(841\) −5.95566 14.3782i −0.205368 0.495801i
\(842\) 3.94171 9.51613i 0.135840 0.327947i
\(843\) 32.1206 + 6.38918i 1.10629 + 0.220055i
\(844\) 18.8799 + 3.75544i 0.649873 + 0.129268i
\(845\) 0 0
\(846\) 3.48334 3.48334i 0.119760 0.119760i
\(847\) −31.2943 20.9102i −1.07528 0.718482i
\(848\) 4.25536 1.76263i 0.146130 0.0605289i
\(849\) 19.8107 0.679900
\(850\) 0 0
\(851\) −5.47769 −0.187773
\(852\) −7.81793 + 3.23829i −0.267838 + 0.110942i
\(853\) −1.58234 1.05729i −0.0541784 0.0362009i 0.528186 0.849129i \(-0.322872\pi\)
−0.582365 + 0.812928i \(0.697872\pi\)
\(854\) 5.22808 5.22808i 0.178901 0.178901i
\(855\) 0 0
\(856\) −12.8130 2.54866i −0.437939 0.0871114i
\(857\) −26.3520 5.24173i −0.900166 0.179054i −0.276748 0.960943i \(-0.589257\pi\)
−0.623418 + 0.781888i \(0.714257\pi\)
\(858\) −10.5476 + 25.4641i −0.360089 + 0.869331i
\(859\) −3.39558 8.19765i −0.115856 0.279700i 0.855306 0.518124i \(-0.173369\pi\)
−0.971161 + 0.238424i \(0.923369\pi\)
\(860\) 0 0
\(861\) −3.78090 + 19.0079i −0.128853 + 0.647787i
\(862\) 16.9262 3.36683i 0.576509 0.114675i
\(863\) 25.2274 0.858750 0.429375 0.903126i \(-0.358734\pi\)
0.429375 + 0.903126i \(0.358734\pi\)
\(864\) −4.99082 + 0.992735i −0.169791 + 0.0337735i
\(865\) 0 0
\(866\) 25.6450i 0.871453i
\(867\) 3.80643 + 17.0994i 0.129273 + 0.580727i
\(868\) −5.55593 5.55593i −0.188580 0.188580i
\(869\) 10.1650 24.5404i 0.344823 0.832476i
\(870\) 0 0
\(871\) 8.85083 + 8.85083i 0.299899 + 0.299899i
\(872\) 1.85863 + 9.34398i 0.0629413 + 0.316427i
\(873\) 10.2817 + 15.3877i 0.347984 + 0.520794i
\(874\) 6.77654 4.52794i 0.229220 0.153160i
\(875\) 0 0
\(876\) 5.21618 2.16061i 0.176239 0.0730004i
\(877\) −0.972782 + 4.89051i −0.0328485 + 0.165141i −0.993728 0.111827i \(-0.964330\pi\)
0.960879 + 0.276968i \(0.0893296\pi\)
\(878\) 29.2748 19.5608i 0.987975 0.660144i
\(879\) 0.275122 0.411749i 0.00927963 0.0138879i
\(880\) 0 0
\(881\) −3.49273 17.5592i −0.117673 0.591583i −0.993955 0.109785i \(-0.964984\pi\)
0.876282 0.481798i \(-0.160016\pi\)
\(882\) 3.10824 + 7.50395i 0.104660 + 0.252671i
\(883\) 11.6480 11.6480i 0.391987 0.391987i −0.483408 0.875395i \(-0.660601\pi\)
0.875395 + 0.483408i \(0.160601\pi\)
\(884\) 17.5312 7.49573i 0.589638 0.252109i
\(885\) 0 0
\(886\) −10.8385 4.48945i −0.364126 0.150826i
\(887\) −9.14546 + 13.6871i −0.307074 + 0.459569i −0.952625 0.304149i \(-0.901628\pi\)
0.645550 + 0.763718i \(0.276628\pi\)
\(888\) 1.68820i 0.0566523i
\(889\) −19.2612 12.8699i −0.645999 0.431642i
\(890\) 0 0
\(891\) −1.83413 2.74497i −0.0614457 0.0919599i
\(892\) 3.98779 + 1.65180i 0.133521 + 0.0553062i
\(893\) −5.72394 2.37093i −0.191544 0.0793403i
\(894\) 6.21453 + 9.30070i 0.207845 + 0.311062i
\(895\) 0 0
\(896\) −1.39361 0.931182i −0.0465573 0.0311086i
\(897\) 15.9327i 0.531976i
\(898\) −1.95284 + 2.92263i −0.0651672 + 0.0975295i
\(899\) −28.9120 11.9757i −0.964268 0.399413i
\(900\) 0 0
\(901\) 0.215400 + 18.9897i 0.00717602 + 0.632638i
\(902\) −45.8932 + 45.8932i −1.52808 + 1.52808i
\(903\) −7.06281 17.0511i −0.235036 0.567426i
\(904\) −1.35050 6.78941i −0.0449169 0.225812i
\(905\) 0 0
\(906\) −4.79053 + 7.16953i −0.159155 + 0.238192i
\(907\) 36.8877 24.6476i 1.22484 0.818409i 0.236639 0.971598i \(-0.423954\pi\)
0.988197 + 0.153189i \(0.0489542\pi\)
\(908\) 3.83764 19.2931i 0.127357 0.640265i
\(909\) −15.6760 + 6.49322i −0.519941 + 0.215367i
\(910\) 0 0
\(911\) −18.3469 + 12.2590i −0.607860 + 0.406159i −0.821054 0.570851i \(-0.806613\pi\)
0.213194 + 0.977010i \(0.431613\pi\)
\(912\) 1.39549 + 2.08850i 0.0462093 + 0.0691571i
\(913\) 6.91365 + 34.7573i 0.228808 + 1.15030i
\(914\) 24.4174 + 24.4174i 0.807655 + 0.807655i
\(915\) 0 0
\(916\) 1.80208 4.35060i 0.0595423 0.143748i
\(917\) −0.123936 0.123936i −0.00409274 0.00409274i
\(918\) 3.85949 20.6228i 0.127382 0.680653i
\(919\) 51.7535i 1.70719i 0.520937 + 0.853595i \(0.325583\pi\)
−0.520937 + 0.853595i \(0.674417\pi\)
\(920\) 0 0
\(921\) −15.0954 + 3.00267i −0.497412 + 0.0989414i
\(922\) −0.0102298 −0.000336901
\(923\) −37.2444 + 7.40837i −1.22591 + 0.243849i
\(924\) −1.94895 + 9.79802i −0.0641157 + 0.322331i
\(925\) 0 0
\(926\) 5.70309 + 13.7685i 0.187415 + 0.452461i
\(927\) −6.53425 + 15.7751i −0.214613 + 0.518121i
\(928\) −6.54728 1.30233i −0.214925 0.0427512i
\(929\) 29.4582 + 5.85961i 0.966493 + 0.192247i 0.653013 0.757347i \(-0.273505\pi\)
0.313481 + 0.949595i \(0.398505\pi\)
\(930\) 0 0
\(931\) 7.22319 7.22319i 0.236731 0.236731i
\(932\) 4.24329 + 2.83528i 0.138994 + 0.0928726i
\(933\) −15.4041 + 6.38058i −0.504307 + 0.208891i
\(934\) −8.13547 −0.266201
\(935\) 0 0
\(936\) −8.96249 −0.292948
\(937\) 10.4831 4.34223i 0.342467 0.141854i −0.204820 0.978800i \(-0.565661\pi\)
0.547286 + 0.836945i \(0.315661\pi\)
\(938\) 3.77221 + 2.52051i 0.123167 + 0.0822976i
\(939\) 3.20695 3.20695i 0.104655 0.104655i
\(940\) 0 0
\(941\) 5.10737 + 1.01592i 0.166495 + 0.0331180i 0.277634 0.960687i \(-0.410450\pi\)
−0.111139 + 0.993805i \(0.535450\pi\)
\(942\) 5.17051 + 1.02848i 0.168464 + 0.0335096i
\(943\) 14.3575 34.6620i 0.467543 1.12875i
\(944\) 4.00967 + 9.68021i 0.130504 + 0.315064i
\(945\) 0 0
\(946\) 12.0580 60.6198i 0.392041 1.97092i
\(947\) 42.2326 8.40059i 1.37238 0.272983i 0.546795 0.837266i \(-0.315848\pi\)
0.825581 + 0.564284i \(0.190848\pi\)
\(948\) −4.73224 −0.153696
\(949\) 24.8497 4.94292i 0.806656 0.160454i
\(950\) 0 0
\(951\) 33.0871i 1.07292i
\(952\) 5.70210 3.90429i 0.184806 0.126539i
\(953\) 24.6485 + 24.6485i 0.798443 + 0.798443i 0.982850 0.184407i \(-0.0590366\pi\)
−0.184407 + 0.982850i \(0.559037\pi\)
\(954\) 3.41621 8.24746i 0.110604 0.267021i
\(955\) 0 0
\(956\) −1.85189 1.85189i −0.0598945 0.0598945i
\(957\) 7.76231 + 39.0238i 0.250920 + 1.26146i
\(958\) 17.9889 + 26.9223i 0.581195 + 0.869820i
\(959\) −8.05347 + 5.38115i −0.260060 + 0.173767i
\(960\) 0 0
\(961\) 8.33696 3.45328i 0.268934 0.111396i
\(962\) 1.47798 7.43033i 0.0476521 0.239563i
\(963\) −21.0526 + 14.0669i −0.678412 + 0.453300i
\(964\) 2.23199 3.34041i 0.0718876 0.107587i
\(965\) 0 0
\(966\) −1.12661 5.66387i −0.0362482 0.182232i
\(967\) −16.5968 40.0683i −0.533718 1.28851i −0.929045 0.369968i \(-0.879369\pi\)
0.395327 0.918540i \(-0.370631\pi\)
\(968\) −15.8784 + 15.8784i −0.510352 + 0.510352i
\(969\) −10.1339 + 2.13553i −0.325548 + 0.0686031i
\(970\) 0 0
\(971\) −38.6703 16.0178i −1.24099 0.514034i −0.336965 0.941517i \(-0.609400\pi\)
−0.904023 + 0.427483i \(0.859400\pi\)
\(972\) −8.80797 + 13.1821i −0.282516 + 0.422815i
\(973\) 2.75085i 0.0881881i
\(974\) 20.1855 + 13.4875i 0.646784 + 0.432168i
\(975\) 0 0
\(976\) −2.45076 3.66782i −0.0784469 0.117404i
\(977\) −22.8793 9.47693i −0.731975 0.303194i −0.0146115 0.999893i \(-0.504651\pi\)
−0.717363 + 0.696699i \(0.754651\pi\)
\(978\) −9.53069 3.94774i −0.304758 0.126235i
\(979\) −46.5747 69.7039i −1.48853 2.22775i
\(980\) 0 0
\(981\) 15.3528 + 10.2584i 0.490178 + 0.327526i
\(982\) 23.4871i 0.749504i
\(983\) 14.5707 21.8065i 0.464732 0.695521i −0.522885 0.852403i \(-0.675144\pi\)
0.987617 + 0.156882i \(0.0501444\pi\)
\(984\) 10.6827 + 4.42490i 0.340551 + 0.141061i
\(985\) 0 0
\(986\) 15.0309 23.0573i 0.478683 0.734295i
\(987\) −3.10415 + 3.10415i −0.0988061 + 0.0988061i
\(988\) 4.31358 + 10.4139i 0.137233 + 0.331310i
\(989\) 6.97030 + 35.0421i 0.221643 + 1.11427i
\(990\) 0 0
\(991\) 2.70814 4.05303i 0.0860271 0.128749i −0.785960 0.618277i \(-0.787831\pi\)
0.871987 + 0.489528i \(0.162831\pi\)
\(992\) −3.89782 + 2.60444i −0.123756 + 0.0826911i
\(993\) 0.370696 1.86361i 0.0117637 0.0591400i
\(994\) −12.7161 + 5.26717i −0.403329 + 0.167064i
\(995\) 0 0
\(996\) 5.24951 3.50761i 0.166337 0.111143i
\(997\) 14.6581 + 21.9375i 0.464228 + 0.694767i 0.987539 0.157375i \(-0.0503033\pi\)
−0.523311 + 0.852142i \(0.675303\pi\)
\(998\) −2.34595 11.7939i −0.0742598 0.373329i
\(999\) −5.89484 5.89484i −0.186504 0.186504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.c.193.3 32
5.2 odd 4 850.2.s.c.57.3 32
5.3 odd 4 170.2.o.a.57.2 yes 32
5.4 even 2 170.2.r.a.23.2 yes 32
17.3 odd 16 850.2.s.c.343.3 32
85.3 even 16 170.2.r.a.37.2 yes 32
85.37 even 16 inner 850.2.v.c.207.3 32
85.54 odd 16 170.2.o.a.3.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.o.a.3.2 32 85.54 odd 16
170.2.o.a.57.2 yes 32 5.3 odd 4
170.2.r.a.23.2 yes 32 5.4 even 2
170.2.r.a.37.2 yes 32 85.3 even 16
850.2.s.c.57.3 32 5.2 odd 4
850.2.s.c.343.3 32 17.3 odd 16
850.2.v.c.193.3 32 1.1 even 1 trivial
850.2.v.c.207.3 32 85.37 even 16 inner