Properties

Label 850.2.v.c.193.4
Level $850$
Weight $2$
Character 850.193
Analytic conductor $6.787$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 193.4
Character \(\chi\) \(=\) 850.193
Dual form 850.2.v.c.207.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.923880 - 0.382683i) q^{2} +(1.19858 + 0.800867i) q^{3} +(0.707107 - 0.707107i) q^{4} +(1.41382 + 0.281227i) q^{6} +(3.32261 + 0.660909i) q^{7} +(0.382683 - 0.923880i) q^{8} +(-0.352840 - 0.851831i) q^{9} +(0.778556 - 3.91407i) q^{11} +(1.41382 - 0.281227i) q^{12} -4.10923 q^{13} +(3.32261 - 0.660909i) q^{14} -1.00000i q^{16} +(3.10352 + 2.71444i) q^{17} +(-0.651963 - 0.651963i) q^{18} +(2.45357 - 5.92345i) q^{19} +(3.45312 + 3.45312i) q^{21} +(-0.778556 - 3.91407i) q^{22} +(1.82418 + 2.73008i) q^{23} +(1.19858 - 0.800867i) q^{24} +(-3.79643 + 1.57253i) q^{26} +(1.10298 - 5.54504i) q^{27} +(2.81678 - 1.88211i) q^{28} +(-4.93652 + 7.38803i) q^{29} +(2.05047 + 10.3084i) q^{31} +(-0.382683 - 0.923880i) q^{32} +(4.06781 - 4.06781i) q^{33} +(3.90605 + 1.32015i) q^{34} +(-0.851831 - 0.352840i) q^{36} +(-3.51957 + 5.26741i) q^{37} -6.41149i q^{38} +(-4.92525 - 3.29095i) q^{39} +(0.637150 + 0.953562i) q^{41} +(4.51172 + 1.86882i) q^{42} +(-4.26901 - 1.76828i) q^{43} +(-2.21714 - 3.31818i) q^{44} +(2.73008 + 1.82418i) q^{46} +0.236401i q^{47} +(0.800867 - 1.19858i) q^{48} +(4.13581 + 1.71311i) q^{49} +(1.54592 + 5.73898i) q^{51} +(-2.90567 + 2.90567i) q^{52} +(-0.352066 - 0.849962i) q^{53} +(-1.10298 - 5.54504i) q^{54} +(1.88211 - 2.81678i) q^{56} +(7.68469 - 5.13475i) q^{57} +(-1.73348 + 8.71477i) q^{58} +(-3.06957 + 1.27146i) q^{59} +(0.930398 - 0.621672i) q^{61} +(5.83924 + 8.73903i) q^{62} +(-0.609368 - 3.06350i) q^{63} +(-0.707107 - 0.707107i) q^{64} +(2.20148 - 5.31485i) q^{66} +(-6.65464 - 6.65464i) q^{67} +(4.11392 - 0.275124i) q^{68} +4.73315i q^{69} +(6.11118 - 1.21559i) q^{71} -0.922015 q^{72} +(-2.06953 + 0.411656i) q^{73} +(-1.23591 + 6.21333i) q^{74} +(-2.45357 - 5.92345i) q^{76} +(5.17368 - 12.4904i) q^{77} +(-5.80973 - 1.15563i) q^{78} +(-0.0457198 - 0.00909423i) q^{79} +(3.80695 - 3.80695i) q^{81} +(0.953562 + 0.637150i) q^{82} +(0.909194 - 0.376601i) q^{83} +4.88345 q^{84} -4.62074 q^{86} +(-11.8337 + 4.90166i) q^{87} +(-3.31818 - 2.21714i) q^{88} +(6.70937 - 6.70937i) q^{89} +(-13.6534 - 2.71583i) q^{91} +(3.22035 + 0.640567i) q^{92} +(-5.79800 + 13.9976i) q^{93} +(0.0904666 + 0.218406i) q^{94} +(0.281227 - 1.41382i) q^{96} +(-6.84757 + 1.36207i) q^{97} +4.47657 q^{98} +(-3.60883 + 0.717841i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{18} + 8 q^{26} - 24 q^{27} + 8 q^{28} - 8 q^{29} - 16 q^{31} - 64 q^{33} + 24 q^{34} + 32 q^{37} - 32 q^{39} + 16 q^{41} + 24 q^{42} + 16 q^{43} - 16 q^{44} - 16 q^{49} + 32 q^{51} + 16 q^{52}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.923880 0.382683i 0.653281 0.270598i
\(3\) 1.19858 + 0.800867i 0.692001 + 0.462381i 0.851183 0.524869i \(-0.175886\pi\)
−0.159182 + 0.987249i \(0.550886\pi\)
\(4\) 0.707107 0.707107i 0.353553 0.353553i
\(5\) 0 0
\(6\) 1.41382 + 0.281227i 0.577191 + 0.114810i
\(7\) 3.32261 + 0.660909i 1.25583 + 0.249800i 0.777782 0.628534i \(-0.216345\pi\)
0.478048 + 0.878334i \(0.341345\pi\)
\(8\) 0.382683 0.923880i 0.135299 0.326641i
\(9\) −0.352840 0.851831i −0.117613 0.283944i
\(10\) 0 0
\(11\) 0.778556 3.91407i 0.234743 1.18014i −0.666057 0.745901i \(-0.732019\pi\)
0.900800 0.434234i \(-0.142981\pi\)
\(12\) 1.41382 0.281227i 0.408136 0.0811832i
\(13\) −4.10923 −1.13970 −0.569848 0.821750i \(-0.692998\pi\)
−0.569848 + 0.821750i \(0.692998\pi\)
\(14\) 3.32261 0.660909i 0.888006 0.176635i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) 3.10352 + 2.71444i 0.752714 + 0.658348i
\(18\) −0.651963 0.651963i −0.153669 0.153669i
\(19\) 2.45357 5.92345i 0.562888 1.35893i −0.344559 0.938765i \(-0.611972\pi\)
0.907447 0.420167i \(-0.138028\pi\)
\(20\) 0 0
\(21\) 3.45312 + 3.45312i 0.753533 + 0.753533i
\(22\) −0.778556 3.91407i −0.165989 0.834482i
\(23\) 1.82418 + 2.73008i 0.380368 + 0.569261i 0.971418 0.237374i \(-0.0762866\pi\)
−0.591050 + 0.806635i \(0.701287\pi\)
\(24\) 1.19858 0.800867i 0.244659 0.163476i
\(25\) 0 0
\(26\) −3.79643 + 1.57253i −0.744542 + 0.308399i
\(27\) 1.10298 5.54504i 0.212268 1.06714i
\(28\) 2.81678 1.88211i 0.532321 0.355685i
\(29\) −4.93652 + 7.38803i −0.916689 + 1.37192i 0.0115476 + 0.999933i \(0.496324\pi\)
−0.928237 + 0.371989i \(0.878676\pi\)
\(30\) 0 0
\(31\) 2.05047 + 10.3084i 0.368275 + 1.85144i 0.508144 + 0.861272i \(0.330332\pi\)
−0.139869 + 0.990170i \(0.544668\pi\)
\(32\) −0.382683 0.923880i −0.0676495 0.163320i
\(33\) 4.06781 4.06781i 0.708114 0.708114i
\(34\) 3.90605 + 1.32015i 0.669882 + 0.226403i
\(35\) 0 0
\(36\) −0.851831 0.352840i −0.141972 0.0588067i
\(37\) −3.51957 + 5.26741i −0.578614 + 0.865957i −0.999146 0.0413208i \(-0.986843\pi\)
0.420532 + 0.907278i \(0.361843\pi\)
\(38\) 6.41149i 1.04008i
\(39\) −4.92525 3.29095i −0.788671 0.526973i
\(40\) 0 0
\(41\) 0.637150 + 0.953562i 0.0995060 + 0.148921i 0.877882 0.478877i \(-0.158956\pi\)
−0.778376 + 0.627799i \(0.783956\pi\)
\(42\) 4.51172 + 1.86882i 0.696174 + 0.288365i
\(43\) −4.26901 1.76828i −0.651017 0.269660i 0.0326358 0.999467i \(-0.489610\pi\)
−0.683653 + 0.729807i \(0.739610\pi\)
\(44\) −2.21714 3.31818i −0.334246 0.500235i
\(45\) 0 0
\(46\) 2.73008 + 1.82418i 0.402528 + 0.268961i
\(47\) 0.236401i 0.0344826i 0.999851 + 0.0172413i \(0.00548834\pi\)
−0.999851 + 0.0172413i \(0.994512\pi\)
\(48\) 0.800867 1.19858i 0.115595 0.173000i
\(49\) 4.13581 + 1.71311i 0.590830 + 0.244730i
\(50\) 0 0
\(51\) 1.54592 + 5.73898i 0.216472 + 0.803618i
\(52\) −2.90567 + 2.90567i −0.402943 + 0.402943i
\(53\) −0.352066 0.849962i −0.0483600 0.116751i 0.897853 0.440294i \(-0.145126\pi\)
−0.946213 + 0.323543i \(0.895126\pi\)
\(54\) −1.10298 5.54504i −0.150096 0.754584i
\(55\) 0 0
\(56\) 1.88211 2.81678i 0.251507 0.376408i
\(57\) 7.68469 5.13475i 1.01786 0.680114i
\(58\) −1.73348 + 8.71477i −0.227617 + 1.14431i
\(59\) −3.06957 + 1.27146i −0.399625 + 0.165530i −0.573439 0.819249i \(-0.694391\pi\)
0.173814 + 0.984779i \(0.444391\pi\)
\(60\) 0 0
\(61\) 0.930398 0.621672i 0.119125 0.0795970i −0.494580 0.869132i \(-0.664678\pi\)
0.613706 + 0.789535i \(0.289678\pi\)
\(62\) 5.83924 + 8.73903i 0.741584 + 1.10986i
\(63\) −0.609368 3.06350i −0.0767732 0.385965i
\(64\) −0.707107 0.707107i −0.0883883 0.0883883i
\(65\) 0 0
\(66\) 2.20148 5.31485i 0.270984 0.654212i
\(67\) −6.65464 6.65464i −0.812994 0.812994i 0.172088 0.985082i \(-0.444949\pi\)
−0.985082 + 0.172088i \(0.944949\pi\)
\(68\) 4.11392 0.275124i 0.498886 0.0333636i
\(69\) 4.73315i 0.569804i
\(70\) 0 0
\(71\) 6.11118 1.21559i 0.725264 0.144264i 0.181366 0.983416i \(-0.441948\pi\)
0.543897 + 0.839152i \(0.316948\pi\)
\(72\) −0.922015 −0.108661
\(73\) −2.06953 + 0.411656i −0.242220 + 0.0481806i −0.314707 0.949189i \(-0.601906\pi\)
0.0724870 + 0.997369i \(0.476906\pi\)
\(74\) −1.23591 + 6.21333i −0.143671 + 0.722285i
\(75\) 0 0
\(76\) −2.45357 5.92345i −0.281444 0.679466i
\(77\) 5.17368 12.4904i 0.589596 1.42341i
\(78\) −5.80973 1.15563i −0.657822 0.130849i
\(79\) −0.0457198 0.00909423i −0.00514388 0.00102318i 0.192518 0.981293i \(-0.438335\pi\)
−0.197662 + 0.980270i \(0.563335\pi\)
\(80\) 0 0
\(81\) 3.80695 3.80695i 0.422995 0.422995i
\(82\) 0.953562 + 0.637150i 0.105303 + 0.0703614i
\(83\) 0.909194 0.376601i 0.0997970 0.0413373i −0.332226 0.943200i \(-0.607800\pi\)
0.432023 + 0.901862i \(0.357800\pi\)
\(84\) 4.88345 0.532829
\(85\) 0 0
\(86\) −4.62074 −0.498267
\(87\) −11.8337 + 4.90166i −1.26870 + 0.525513i
\(88\) −3.31818 2.21714i −0.353720 0.236348i
\(89\) 6.70937 6.70937i 0.711191 0.711191i −0.255593 0.966784i \(-0.582271\pi\)
0.966784 + 0.255593i \(0.0822708\pi\)
\(90\) 0 0
\(91\) −13.6534 2.71583i −1.43126 0.284696i
\(92\) 3.22035 + 0.640567i 0.335745 + 0.0667838i
\(93\) −5.79800 + 13.9976i −0.601224 + 1.45148i
\(94\) 0.0904666 + 0.218406i 0.00933091 + 0.0225268i
\(95\) 0 0
\(96\) 0.281227 1.41382i 0.0287026 0.144298i
\(97\) −6.84757 + 1.36207i −0.695265 + 0.138297i −0.530057 0.847962i \(-0.677830\pi\)
−0.165208 + 0.986259i \(0.552830\pi\)
\(98\) 4.47657 0.452201
\(99\) −3.60883 + 0.717841i −0.362701 + 0.0721457i
\(100\) 0 0
\(101\) 0.274817i 0.0273453i 0.999907 + 0.0136727i \(0.00435228\pi\)
−0.999907 + 0.0136727i \(0.995648\pi\)
\(102\) 3.62446 + 4.71053i 0.358875 + 0.466412i
\(103\) −2.76147 2.76147i −0.272096 0.272096i 0.557848 0.829943i \(-0.311627\pi\)
−0.829943 + 0.557848i \(0.811627\pi\)
\(104\) −1.57253 + 3.79643i −0.154200 + 0.372271i
\(105\) 0 0
\(106\) −0.650533 0.650533i −0.0631854 0.0631854i
\(107\) 2.36785 + 11.9040i 0.228909 + 1.15080i 0.908717 + 0.417414i \(0.137063\pi\)
−0.679807 + 0.733391i \(0.737937\pi\)
\(108\) −3.14101 4.70085i −0.302244 0.452340i
\(109\) −15.8475 + 10.5890i −1.51792 + 1.01424i −0.532048 + 0.846714i \(0.678577\pi\)
−0.985868 + 0.167525i \(0.946423\pi\)
\(110\) 0 0
\(111\) −8.43698 + 3.49471i −0.800803 + 0.331704i
\(112\) 0.660909 3.32261i 0.0624500 0.313958i
\(113\) 5.19185 3.46908i 0.488408 0.326344i −0.286864 0.957971i \(-0.592613\pi\)
0.775272 + 0.631628i \(0.217613\pi\)
\(114\) 5.13475 7.68469i 0.480913 0.719738i
\(115\) 0 0
\(116\) 1.73348 + 8.71477i 0.160949 + 0.809147i
\(117\) 1.44990 + 3.50037i 0.134043 + 0.323609i
\(118\) −2.34935 + 2.34935i −0.216275 + 0.216275i
\(119\) 8.51780 + 11.0702i 0.780826 + 1.01480i
\(120\) 0 0
\(121\) −4.55109 1.88512i −0.413735 0.171375i
\(122\) 0.621672 0.930398i 0.0562836 0.0842343i
\(123\) 1.65319i 0.149063i
\(124\) 8.73903 + 5.83924i 0.784788 + 0.524379i
\(125\) 0 0
\(126\) −1.73533 2.59711i −0.154596 0.231369i
\(127\) −5.21517 2.16020i −0.462772 0.191686i 0.139101 0.990278i \(-0.455579\pi\)
−0.601873 + 0.798592i \(0.705579\pi\)
\(128\) −0.923880 0.382683i −0.0816602 0.0338248i
\(129\) −3.70059 5.53833i −0.325819 0.487623i
\(130\) 0 0
\(131\) −9.76948 6.52776i −0.853563 0.570333i 0.0500185 0.998748i \(-0.484072\pi\)
−0.903582 + 0.428415i \(0.859072\pi\)
\(132\) 5.75275i 0.500712i
\(133\) 12.0671 18.0597i 1.04635 1.56598i
\(134\) −8.69471 3.60147i −0.751108 0.311119i
\(135\) 0 0
\(136\) 3.69548 1.82851i 0.316885 0.156793i
\(137\) −6.69914 + 6.69914i −0.572346 + 0.572346i −0.932783 0.360438i \(-0.882627\pi\)
0.360438 + 0.932783i \(0.382627\pi\)
\(138\) 1.81130 + 4.37286i 0.154188 + 0.372243i
\(139\) 0.949096 + 4.77143i 0.0805013 + 0.404707i 0.999934 + 0.0114607i \(0.00364813\pi\)
−0.919433 + 0.393247i \(0.871352\pi\)
\(140\) 0 0
\(141\) −0.189325 + 0.283345i −0.0159441 + 0.0238620i
\(142\) 5.18081 3.46171i 0.434764 0.290500i
\(143\) −3.19927 + 16.0838i −0.267536 + 1.34500i
\(144\) −0.851831 + 0.352840i −0.0709859 + 0.0294033i
\(145\) 0 0
\(146\) −1.75446 + 1.17230i −0.145201 + 0.0970199i
\(147\) 3.58513 + 5.36553i 0.295697 + 0.442541i
\(148\) 1.23591 + 6.21333i 0.101591 + 0.510733i
\(149\) 0.853790 + 0.853790i 0.0699452 + 0.0699452i 0.741214 0.671269i \(-0.234250\pi\)
−0.671269 + 0.741214i \(0.734250\pi\)
\(150\) 0 0
\(151\) 2.75046 6.64020i 0.223829 0.540372i −0.771574 0.636139i \(-0.780530\pi\)
0.995404 + 0.0957674i \(0.0305305\pi\)
\(152\) −4.53361 4.53361i −0.367724 0.367724i
\(153\) 1.21720 3.60144i 0.0984044 0.291159i
\(154\) 13.5195i 1.08943i
\(155\) 0 0
\(156\) −5.80973 + 1.15563i −0.465150 + 0.0925242i
\(157\) −22.3932 −1.78717 −0.893587 0.448889i \(-0.851820\pi\)
−0.893587 + 0.448889i \(0.851820\pi\)
\(158\) −0.0457198 + 0.00909423i −0.00363727 + 0.000723498i
\(159\) 0.258727 1.30071i 0.0205184 0.103153i
\(160\) 0 0
\(161\) 4.25672 + 10.2766i 0.335476 + 0.809911i
\(162\) 2.06031 4.97402i 0.161873 0.390796i
\(163\) 2.72119 + 0.541279i 0.213140 + 0.0423962i 0.300505 0.953780i \(-0.402845\pi\)
−0.0873651 + 0.996176i \(0.527845\pi\)
\(164\) 1.12480 + 0.223737i 0.0878323 + 0.0174709i
\(165\) 0 0
\(166\) 0.695867 0.695867i 0.0540098 0.0540098i
\(167\) −3.35489 2.24166i −0.259609 0.173465i 0.418954 0.908008i \(-0.362397\pi\)
−0.678563 + 0.734542i \(0.737397\pi\)
\(168\) 4.51172 1.86882i 0.348087 0.144182i
\(169\) 3.88578 0.298906
\(170\) 0 0
\(171\) −5.91149 −0.452063
\(172\) −4.26901 + 1.76828i −0.325509 + 0.134830i
\(173\) 9.10954 + 6.08680i 0.692585 + 0.462771i 0.851386 0.524540i \(-0.175763\pi\)
−0.158801 + 0.987311i \(0.550763\pi\)
\(174\) −9.05708 + 9.05708i −0.686616 + 0.686616i
\(175\) 0 0
\(176\) −3.91407 0.778556i −0.295034 0.0586859i
\(177\) −4.69740 0.934372i −0.353079 0.0702317i
\(178\) 3.63108 8.76621i 0.272161 0.657055i
\(179\) 1.74304 + 4.20808i 0.130281 + 0.314527i 0.975537 0.219835i \(-0.0705519\pi\)
−0.845256 + 0.534362i \(0.820552\pi\)
\(180\) 0 0
\(181\) 4.89042 24.5858i 0.363502 1.82745i −0.174688 0.984624i \(-0.555892\pi\)
0.538190 0.842823i \(-0.319108\pi\)
\(182\) −13.6534 + 2.71583i −1.01206 + 0.201311i
\(183\) 1.61303 0.119239
\(184\) 3.22035 0.640567i 0.237407 0.0472232i
\(185\) 0 0
\(186\) 15.1509i 1.11092i
\(187\) 13.0407 10.0340i 0.953634 0.733762i
\(188\) 0.167160 + 0.167160i 0.0121914 + 0.0121914i
\(189\) 7.32953 17.6950i 0.533145 1.28713i
\(190\) 0 0
\(191\) 14.3864 + 14.3864i 1.04096 + 1.04096i 0.999124 + 0.0418392i \(0.0133217\pi\)
0.0418392 + 0.999124i \(0.486678\pi\)
\(192\) −0.281227 1.41382i −0.0202958 0.102034i
\(193\) −0.455950 0.682377i −0.0328200 0.0491186i 0.814697 0.579887i \(-0.196903\pi\)
−0.847517 + 0.530769i \(0.821903\pi\)
\(194\) −5.80509 + 3.87883i −0.416781 + 0.278484i
\(195\) 0 0
\(196\) 4.13581 1.71311i 0.295415 0.122365i
\(197\) 4.87199 24.4932i 0.347115 1.74507i −0.274355 0.961628i \(-0.588464\pi\)
0.621470 0.783438i \(-0.286536\pi\)
\(198\) −3.05942 + 2.04424i −0.217423 + 0.145278i
\(199\) 9.38195 14.0411i 0.665069 0.995346i −0.333546 0.942734i \(-0.608245\pi\)
0.998615 0.0526122i \(-0.0167547\pi\)
\(200\) 0 0
\(201\) −2.64665 13.3056i −0.186680 0.938505i
\(202\) 0.105168 + 0.253898i 0.00739959 + 0.0178642i
\(203\) −21.2850 + 21.2850i −1.49391 + 1.49391i
\(204\) 5.15120 + 2.96494i 0.360656 + 0.207587i
\(205\) 0 0
\(206\) −3.60803 1.49450i −0.251384 0.104126i
\(207\) 1.68192 2.51718i 0.116902 0.174956i
\(208\) 4.10923i 0.284924i
\(209\) −21.2745 14.2152i −1.47159 0.983284i
\(210\) 0 0
\(211\) 11.6479 + 17.4323i 0.801875 + 1.20009i 0.976513 + 0.215457i \(0.0691243\pi\)
−0.174639 + 0.984633i \(0.555876\pi\)
\(212\) −0.849962 0.352066i −0.0583757 0.0241800i
\(213\) 8.29827 + 3.43726i 0.568588 + 0.235517i
\(214\) 6.74308 + 10.0917i 0.460947 + 0.689857i
\(215\) 0 0
\(216\) −4.70085 3.14101i −0.319853 0.213719i
\(217\) 35.6060i 2.41709i
\(218\) −10.5890 + 15.8475i −0.717175 + 1.07333i
\(219\) −2.81018 1.16402i −0.189895 0.0786569i
\(220\) 0 0
\(221\) −12.7531 11.1542i −0.857865 0.750316i
\(222\) −6.45739 + 6.45739i −0.433392 + 0.433392i
\(223\) −1.10412 2.66557i −0.0739371 0.178500i 0.882590 0.470144i \(-0.155798\pi\)
−0.956527 + 0.291644i \(0.905798\pi\)
\(224\) −0.660909 3.32261i −0.0441588 0.222001i
\(225\) 0 0
\(226\) 3.46908 5.19185i 0.230760 0.345356i
\(227\) 4.08992 2.73280i 0.271458 0.181382i −0.412389 0.911008i \(-0.635306\pi\)
0.683847 + 0.729625i \(0.260306\pi\)
\(228\) 1.80308 9.06472i 0.119412 0.600325i
\(229\) −12.9587 + 5.36767i −0.856336 + 0.354706i −0.767273 0.641320i \(-0.778387\pi\)
−0.0890622 + 0.996026i \(0.528387\pi\)
\(230\) 0 0
\(231\) 16.2042 10.8273i 1.06616 0.712384i
\(232\) 4.93652 + 7.38803i 0.324099 + 0.485048i
\(233\) −0.900329 4.52626i −0.0589825 0.296525i 0.940023 0.341111i \(-0.110803\pi\)
−0.999006 + 0.0445858i \(0.985803\pi\)
\(234\) 2.67907 + 2.67907i 0.175136 + 0.175136i
\(235\) 0 0
\(236\) −1.27146 + 3.06957i −0.0827650 + 0.199812i
\(237\) −0.0475156 0.0475156i −0.00308647 0.00308647i
\(238\) 12.1058 + 6.96788i 0.784702 + 0.451661i
\(239\) 15.9839i 1.03391i 0.856011 + 0.516957i \(0.172935\pi\)
−0.856011 + 0.516957i \(0.827065\pi\)
\(240\) 0 0
\(241\) −9.99768 + 1.98866i −0.644007 + 0.128101i −0.506280 0.862369i \(-0.668980\pi\)
−0.137727 + 0.990470i \(0.543980\pi\)
\(242\) −4.92606 −0.316659
\(243\) −9.02331 + 1.79485i −0.578845 + 0.115140i
\(244\) 0.218302 1.09748i 0.0139754 0.0702589i
\(245\) 0 0
\(246\) 0.632650 + 1.52735i 0.0403363 + 0.0973804i
\(247\) −10.0823 + 24.3408i −0.641521 + 1.54877i
\(248\) 10.3084 + 2.05047i 0.654584 + 0.130205i
\(249\) 1.39135 + 0.276757i 0.0881732 + 0.0175387i
\(250\) 0 0
\(251\) −11.9830 + 11.9830i −0.756361 + 0.756361i −0.975658 0.219297i \(-0.929623\pi\)
0.219297 + 0.975658i \(0.429623\pi\)
\(252\) −2.59711 1.73533i −0.163603 0.109316i
\(253\) 12.1059 5.01444i 0.761094 0.315255i
\(254\) −5.64486 −0.354190
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) 7.46649 3.09272i 0.465747 0.192919i −0.137454 0.990508i \(-0.543892\pi\)
0.603200 + 0.797590i \(0.293892\pi\)
\(258\) −5.53833 3.70059i −0.344801 0.230389i
\(259\) −15.1755 + 15.1755i −0.942957 + 0.942957i
\(260\) 0 0
\(261\) 8.03516 + 1.59829i 0.497364 + 0.0989318i
\(262\) −11.5239 2.29224i −0.711948 0.141615i
\(263\) −0.764104 + 1.84471i −0.0471167 + 0.113750i −0.945686 0.325083i \(-0.894608\pi\)
0.898569 + 0.438832i \(0.144608\pi\)
\(264\) −2.20148 5.31485i −0.135492 0.327106i
\(265\) 0 0
\(266\) 4.23741 21.3029i 0.259812 1.30617i
\(267\) 13.4150 2.66841i 0.820986 0.163304i
\(268\) −9.41108 −0.574873
\(269\) 19.6028 3.89924i 1.19520 0.237741i 0.442908 0.896567i \(-0.353947\pi\)
0.752295 + 0.658826i \(0.228947\pi\)
\(270\) 0 0
\(271\) 4.71454i 0.286388i −0.989695 0.143194i \(-0.954263\pi\)
0.989695 0.143194i \(-0.0457373\pi\)
\(272\) 2.71444 3.10352i 0.164587 0.188179i
\(273\) −14.1897 14.1897i −0.858799 0.858799i
\(274\) −3.62555 + 8.75284i −0.219027 + 0.528779i
\(275\) 0 0
\(276\) 3.34684 + 3.34684i 0.201456 + 0.201456i
\(277\) −1.56666 7.87611i −0.0941312 0.473229i −0.998881 0.0472868i \(-0.984943\pi\)
0.904750 0.425943i \(-0.140057\pi\)
\(278\) 2.70280 + 4.04502i 0.162103 + 0.242604i
\(279\) 8.05752 5.38387i 0.482391 0.322324i
\(280\) 0 0
\(281\) −2.47998 + 1.02724i −0.147943 + 0.0612800i −0.455426 0.890273i \(-0.650513\pi\)
0.307483 + 0.951553i \(0.400513\pi\)
\(282\) −0.0664822 + 0.334229i −0.00395896 + 0.0199030i
\(283\) −11.9901 + 8.01151i −0.712736 + 0.476235i −0.858323 0.513111i \(-0.828493\pi\)
0.145586 + 0.989346i \(0.453493\pi\)
\(284\) 3.46171 5.18081i 0.205414 0.307424i
\(285\) 0 0
\(286\) 3.19927 + 16.0838i 0.189177 + 0.951055i
\(287\) 1.48678 + 3.58942i 0.0877621 + 0.211876i
\(288\) −0.651963 + 0.651963i −0.0384173 + 0.0384173i
\(289\) 2.26367 + 16.8486i 0.133157 + 0.991095i
\(290\) 0 0
\(291\) −9.29820 3.85144i −0.545070 0.225775i
\(292\) −1.17230 + 1.75446i −0.0686034 + 0.102672i
\(293\) 25.4534i 1.48700i 0.668734 + 0.743502i \(0.266836\pi\)
−0.668734 + 0.743502i \(0.733164\pi\)
\(294\) 5.36553 + 3.58513i 0.312924 + 0.209089i
\(295\) 0 0
\(296\) 3.51957 + 5.26741i 0.204571 + 0.306162i
\(297\) −20.8449 8.63424i −1.20954 0.501010i
\(298\) 1.11553 + 0.462068i 0.0646209 + 0.0267669i
\(299\) −7.49598 11.2185i −0.433504 0.648784i
\(300\) 0 0
\(301\) −13.0156 8.69674i −0.750206 0.501272i
\(302\) 7.18730i 0.413583i
\(303\) −0.220092 + 0.329391i −0.0126439 + 0.0189230i
\(304\) −5.92345 2.45357i −0.339733 0.140722i
\(305\) 0 0
\(306\) −0.253668 3.79309i −0.0145012 0.216837i
\(307\) 20.6197 20.6197i 1.17683 1.17683i 0.196278 0.980548i \(-0.437114\pi\)
0.980548 0.196278i \(-0.0628856\pi\)
\(308\) −5.17368 12.4904i −0.294798 0.711705i
\(309\) −1.09828 5.52141i −0.0624788 0.314102i
\(310\) 0 0
\(311\) 4.37580 6.54884i 0.248129 0.371351i −0.686409 0.727216i \(-0.740814\pi\)
0.934537 + 0.355865i \(0.115814\pi\)
\(312\) −4.92525 + 3.29095i −0.278837 + 0.186313i
\(313\) −3.59937 + 18.0953i −0.203449 + 1.02280i 0.735179 + 0.677873i \(0.237098\pi\)
−0.938628 + 0.344932i \(0.887902\pi\)
\(314\) −20.6887 + 8.56952i −1.16753 + 0.483606i
\(315\) 0 0
\(316\) −0.0387593 + 0.0258982i −0.00218038 + 0.00145689i
\(317\) −7.57932 11.3432i −0.425697 0.637100i 0.555180 0.831730i \(-0.312649\pi\)
−0.980877 + 0.194630i \(0.937649\pi\)
\(318\) −0.258727 1.30071i −0.0145087 0.0729400i
\(319\) 25.0739 + 25.0739i 1.40387 + 1.40387i
\(320\) 0 0
\(321\) −6.69546 + 16.1643i −0.373704 + 0.902201i
\(322\) 7.86539 + 7.86539i 0.438321 + 0.438321i
\(323\) 23.6935 11.7235i 1.31834 0.652311i
\(324\) 5.38384i 0.299102i
\(325\) 0 0
\(326\) 2.72119 0.541279i 0.150713 0.0299787i
\(327\) −27.4749 −1.51936
\(328\) 1.12480 0.223737i 0.0621068 0.0123538i
\(329\) −0.156239 + 0.785468i −0.00861375 + 0.0433042i
\(330\) 0 0
\(331\) 4.14619 + 10.0098i 0.227895 + 0.550188i 0.995921 0.0902314i \(-0.0287607\pi\)
−0.768026 + 0.640419i \(0.778761\pi\)
\(332\) 0.376601 0.909194i 0.0206686 0.0498985i
\(333\) 5.72879 + 1.13953i 0.313936 + 0.0624457i
\(334\) −3.95736 0.787168i −0.216537 0.0430719i
\(335\) 0 0
\(336\) 3.45312 3.45312i 0.188383 0.188383i
\(337\) 20.7479 + 13.8633i 1.13021 + 0.755182i 0.972638 0.232325i \(-0.0746334\pi\)
0.157572 + 0.987507i \(0.449633\pi\)
\(338\) 3.58999 1.48702i 0.195270 0.0808834i
\(339\) 9.00112 0.488874
\(340\) 0 0
\(341\) 41.9441 2.27140
\(342\) −5.46151 + 2.26223i −0.295324 + 0.122327i
\(343\) −7.10795 4.74938i −0.383793 0.256442i
\(344\) −3.26736 + 3.26736i −0.176164 + 0.176164i
\(345\) 0 0
\(346\) 10.7454 + 2.13740i 0.577678 + 0.114907i
\(347\) 14.5581 + 2.89578i 0.781519 + 0.155454i 0.569697 0.821855i \(-0.307060\pi\)
0.211821 + 0.977308i \(0.432060\pi\)
\(348\) −4.90166 + 11.8337i −0.262756 + 0.634350i
\(349\) −9.23718 22.3005i −0.494455 1.19372i −0.952431 0.304756i \(-0.901425\pi\)
0.457975 0.888965i \(-0.348575\pi\)
\(350\) 0 0
\(351\) −4.53238 + 22.7858i −0.241921 + 1.21622i
\(352\) −3.91407 + 0.778556i −0.208620 + 0.0414972i
\(353\) 28.6326 1.52396 0.761979 0.647601i \(-0.224228\pi\)
0.761979 + 0.647601i \(0.224228\pi\)
\(354\) −4.69740 + 0.934372i −0.249664 + 0.0496613i
\(355\) 0 0
\(356\) 9.48848i 0.502888i
\(357\) 1.34355 + 20.0901i 0.0711084 + 1.06328i
\(358\) 3.22073 + 3.22073i 0.170221 + 0.170221i
\(359\) 0.934800 2.25681i 0.0493369 0.119110i −0.897290 0.441442i \(-0.854467\pi\)
0.946626 + 0.322333i \(0.104467\pi\)
\(360\) 0 0
\(361\) −15.6322 15.6322i −0.822746 0.822746i
\(362\) −4.89042 24.5858i −0.257035 1.29220i
\(363\) −3.94512 5.90428i −0.207065 0.309895i
\(364\) −11.5748 + 7.73402i −0.606684 + 0.405373i
\(365\) 0 0
\(366\) 1.49025 0.617282i 0.0778966 0.0322658i
\(367\) 0.610498 3.06918i 0.0318677 0.160210i −0.961575 0.274543i \(-0.911473\pi\)
0.993442 + 0.114334i \(0.0364733\pi\)
\(368\) 2.73008 1.82418i 0.142315 0.0950920i
\(369\) 0.587462 0.879198i 0.0305820 0.0457692i
\(370\) 0 0
\(371\) −0.608031 3.05678i −0.0315674 0.158700i
\(372\) 5.79800 + 13.9976i 0.300612 + 0.725742i
\(373\) 26.0461 26.0461i 1.34861 1.34861i 0.461447 0.887168i \(-0.347331\pi\)
0.887168 0.461447i \(-0.152669\pi\)
\(374\) 8.20822 14.2607i 0.424437 0.737404i
\(375\) 0 0
\(376\) 0.218406 + 0.0904666i 0.0112634 + 0.00466546i
\(377\) 20.2853 30.3591i 1.04475 1.56357i
\(378\) 19.1530i 0.985123i
\(379\) −12.5653 8.39587i −0.645437 0.431267i 0.189298 0.981920i \(-0.439379\pi\)
−0.834734 + 0.550653i \(0.814379\pi\)
\(380\) 0 0
\(381\) −4.52078 6.76583i −0.231607 0.346624i
\(382\) 18.7967 + 7.78586i 0.961725 + 0.398360i
\(383\) −12.3842 5.12969i −0.632802 0.262115i 0.0431413 0.999069i \(-0.486263\pi\)
−0.675943 + 0.736954i \(0.736263\pi\)
\(384\) −0.800867 1.19858i −0.0408690 0.0611649i
\(385\) 0 0
\(386\) −0.682377 0.455950i −0.0347321 0.0232072i
\(387\) 4.26039i 0.216568i
\(388\) −3.87883 + 5.80509i −0.196918 + 0.294709i
\(389\) 26.7298 + 11.0719i 1.35526 + 0.561366i 0.937751 0.347308i \(-0.112904\pi\)
0.417506 + 0.908674i \(0.362904\pi\)
\(390\) 0 0
\(391\) −1.74925 + 13.4245i −0.0884632 + 0.678905i
\(392\) 3.16541 3.16541i 0.159877 0.159877i
\(393\) −6.48165 15.6481i −0.326956 0.789342i
\(394\) −4.87199 24.4932i −0.245448 1.23395i
\(395\) 0 0
\(396\) −2.04424 + 3.05942i −0.102727 + 0.153741i
\(397\) 6.44614 4.30718i 0.323523 0.216171i −0.383194 0.923668i \(-0.625176\pi\)
0.706716 + 0.707497i \(0.250176\pi\)
\(398\) 3.29450 16.5626i 0.165139 0.830207i
\(399\) 28.9269 11.9819i 1.44816 0.599845i
\(400\) 0 0
\(401\) −18.0601 + 12.0674i −0.901881 + 0.602618i −0.917707 0.397257i \(-0.869962\pi\)
0.0158265 + 0.999875i \(0.494962\pi\)
\(402\) −7.53702 11.2799i −0.375912 0.562593i
\(403\) −8.42584 42.3596i −0.419721 2.11008i
\(404\) 0.194325 + 0.194325i 0.00966803 + 0.00966803i
\(405\) 0 0
\(406\) −11.5193 + 27.8102i −0.571696 + 1.38020i
\(407\) 17.8768 + 17.8768i 0.886120 + 0.886120i
\(408\) 5.89372 + 0.767968i 0.291783 + 0.0380201i
\(409\) 23.8104i 1.17735i −0.808371 0.588673i \(-0.799650\pi\)
0.808371 0.588673i \(-0.200350\pi\)
\(410\) 0 0
\(411\) −13.3946 + 2.66435i −0.660706 + 0.131423i
\(412\) −3.90531 −0.192401
\(413\) −11.0393 + 2.19586i −0.543210 + 0.108051i
\(414\) 0.590613 2.96921i 0.0290270 0.145929i
\(415\) 0 0
\(416\) 1.57253 + 3.79643i 0.0770999 + 0.186136i
\(417\) −2.68371 + 6.47905i −0.131422 + 0.317280i
\(418\) −25.0950 4.99171i −1.22744 0.244152i
\(419\) 26.4209 + 5.25544i 1.29074 + 0.256745i 0.792276 0.610163i \(-0.208896\pi\)
0.498468 + 0.866908i \(0.333896\pi\)
\(420\) 0 0
\(421\) 5.64041 5.64041i 0.274897 0.274897i −0.556171 0.831068i \(-0.687730\pi\)
0.831068 + 0.556171i \(0.187730\pi\)
\(422\) 17.4323 + 11.6479i 0.848592 + 0.567011i
\(423\) 0.201373 0.0834116i 0.00979111 0.00405561i
\(424\) −0.919993 −0.0446788
\(425\) 0 0
\(426\) 8.98199 0.435179
\(427\) 3.50222 1.45067i 0.169484 0.0702028i
\(428\) 10.0917 + 6.74308i 0.487802 + 0.325939i
\(429\) −16.7156 + 16.7156i −0.807035 + 0.807035i
\(430\) 0 0
\(431\) 15.3057 + 3.04448i 0.737247 + 0.146648i 0.549410 0.835553i \(-0.314852\pi\)
0.187837 + 0.982200i \(0.439852\pi\)
\(432\) −5.54504 1.10298i −0.266786 0.0530670i
\(433\) 8.12458 19.6145i 0.390443 0.942612i −0.599401 0.800449i \(-0.704594\pi\)
0.989843 0.142163i \(-0.0454056\pi\)
\(434\) 13.6258 + 32.8956i 0.654060 + 1.57904i
\(435\) 0 0
\(436\) −3.71835 + 18.6934i −0.178077 + 0.895252i
\(437\) 20.6472 4.10699i 0.987691 0.196464i
\(438\) −3.04172 −0.145339
\(439\) −6.00338 + 1.19415i −0.286526 + 0.0569935i −0.336261 0.941769i \(-0.609162\pi\)
0.0497351 + 0.998762i \(0.484162\pi\)
\(440\) 0 0
\(441\) 4.12746i 0.196546i
\(442\) −16.0509 5.42479i −0.763461 0.258031i
\(443\) −9.63227 9.63227i −0.457643 0.457643i 0.440238 0.897881i \(-0.354894\pi\)
−0.897881 + 0.440238i \(0.854894\pi\)
\(444\) −3.49471 + 8.43698i −0.165852 + 0.400402i
\(445\) 0 0
\(446\) −2.04014 2.04014i −0.0966035 0.0966035i
\(447\) 0.339565 + 1.70711i 0.0160609 + 0.0807434i
\(448\) −1.88211 2.81678i −0.0889213 0.133080i
\(449\) −14.9345 + 9.97891i −0.704803 + 0.470934i −0.855605 0.517630i \(-0.826814\pi\)
0.150802 + 0.988564i \(0.451814\pi\)
\(450\) 0 0
\(451\) 4.22836 1.75144i 0.199106 0.0824723i
\(452\) 1.21818 6.12420i 0.0572983 0.288058i
\(453\) 8.61456 5.75607i 0.404747 0.270444i
\(454\) 2.73280 4.08992i 0.128257 0.191950i
\(455\) 0 0
\(456\) −1.80308 9.06472i −0.0844371 0.424494i
\(457\) −5.40111 13.0394i −0.252653 0.609959i 0.745763 0.666211i \(-0.232085\pi\)
−0.998417 + 0.0562522i \(0.982085\pi\)
\(458\) −9.91817 + 9.91817i −0.463445 + 0.463445i
\(459\) 18.4748 14.2152i 0.862328 0.663507i
\(460\) 0 0
\(461\) −0.0278421 0.0115326i −0.00129673 0.000537125i 0.382035 0.924148i \(-0.375223\pi\)
−0.383332 + 0.923611i \(0.625223\pi\)
\(462\) 10.8273 16.2042i 0.503732 0.753888i
\(463\) 1.59180i 0.0739771i 0.999316 + 0.0369885i \(0.0117765\pi\)
−0.999316 + 0.0369885i \(0.988223\pi\)
\(464\) 7.38803 + 4.93652i 0.342981 + 0.229172i
\(465\) 0 0
\(466\) −2.56392 3.83718i −0.118771 0.177754i
\(467\) 7.40647 + 3.06786i 0.342730 + 0.141964i 0.547408 0.836866i \(-0.315615\pi\)
−0.204678 + 0.978829i \(0.565615\pi\)
\(468\) 3.50037 + 1.44990i 0.161805 + 0.0670217i
\(469\) −17.7127 26.5089i −0.817896 1.22407i
\(470\) 0 0
\(471\) −26.8401 17.9340i −1.23673 0.826355i
\(472\) 3.32248i 0.152930i
\(473\) −10.2448 + 15.3325i −0.471058 + 0.704987i
\(474\) −0.0620821 0.0257153i −0.00285153 0.00118114i
\(475\) 0 0
\(476\) 13.8508 + 1.80480i 0.634850 + 0.0827227i
\(477\) −0.599801 + 0.599801i −0.0274630 + 0.0274630i
\(478\) 6.11678 + 14.7672i 0.279775 + 0.675437i
\(479\) −4.90199 24.6439i −0.223977 1.12601i −0.915086 0.403259i \(-0.867877\pi\)
0.691108 0.722751i \(-0.257123\pi\)
\(480\) 0 0
\(481\) 14.4627 21.6450i 0.659444 0.986927i
\(482\) −8.47562 + 5.66323i −0.386054 + 0.257953i
\(483\) −3.12818 + 15.7264i −0.142337 + 0.715577i
\(484\) −4.55109 + 1.88512i −0.206868 + 0.0856873i
\(485\) 0 0
\(486\) −7.64959 + 5.11129i −0.346993 + 0.231853i
\(487\) 16.5862 + 24.8229i 0.751591 + 1.12483i 0.988191 + 0.153228i \(0.0489668\pi\)
−0.236600 + 0.971607i \(0.576033\pi\)
\(488\) −0.218302 1.09748i −0.00988208 0.0496806i
\(489\) 2.82808 + 2.82808i 0.127890 + 0.127890i
\(490\) 0 0
\(491\) 4.99913 12.0690i 0.225608 0.544665i −0.770026 0.638013i \(-0.779757\pi\)
0.995634 + 0.0933475i \(0.0297568\pi\)
\(492\) 1.16898 + 1.16898i 0.0527019 + 0.0527019i
\(493\) −35.3749 + 9.52902i −1.59321 + 0.429165i
\(494\) 26.3463i 1.18538i
\(495\) 0 0
\(496\) 10.3084 2.05047i 0.462861 0.0920687i
\(497\) 21.1085 0.946845
\(498\) 1.39135 0.276757i 0.0623479 0.0124018i
\(499\) 0.263630 1.32536i 0.0118017 0.0593312i −0.974436 0.224667i \(-0.927871\pi\)
0.986237 + 0.165335i \(0.0528707\pi\)
\(500\) 0 0
\(501\) −2.22583 5.37364i −0.0994429 0.240076i
\(502\) −6.48516 + 15.6566i −0.289447 + 0.698786i
\(503\) −11.3171 2.25111i −0.504604 0.100372i −0.0637774 0.997964i \(-0.520315\pi\)
−0.440827 + 0.897592i \(0.645315\pi\)
\(504\) −3.06350 0.609368i −0.136459 0.0271434i
\(505\) 0 0
\(506\) 9.26549 9.26549i 0.411901 0.411901i
\(507\) 4.65743 + 3.11199i 0.206844 + 0.138208i
\(508\) −5.21517 + 2.16020i −0.231386 + 0.0958432i
\(509\) −14.1673 −0.627955 −0.313978 0.949430i \(-0.601662\pi\)
−0.313978 + 0.949430i \(0.601662\pi\)
\(510\) 0 0
\(511\) −7.14832 −0.316223
\(512\) −0.923880 + 0.382683i −0.0408301 + 0.0169124i
\(513\) −30.1395 20.1386i −1.33069 0.889139i
\(514\) 5.71460 5.71460i 0.252060 0.252060i
\(515\) 0 0
\(516\) −6.53291 1.29948i −0.287595 0.0572062i
\(517\) 0.925287 + 0.184051i 0.0406941 + 0.00809456i
\(518\) −8.21290 + 19.8277i −0.360854 + 0.871179i
\(519\) 6.04381 + 14.5910i 0.265294 + 0.640476i
\(520\) 0 0
\(521\) 4.56636 22.9566i 0.200056 1.00575i −0.742028 0.670369i \(-0.766136\pi\)
0.942083 0.335379i \(-0.108864\pi\)
\(522\) 8.03516 1.59829i 0.351689 0.0699553i
\(523\) 9.20697 0.402593 0.201296 0.979530i \(-0.435485\pi\)
0.201296 + 0.979530i \(0.435485\pi\)
\(524\) −11.5239 + 2.29224i −0.503423 + 0.100137i
\(525\) 0 0
\(526\) 1.99670i 0.0870602i
\(527\) −21.6178 + 37.5582i −0.941687 + 1.63606i
\(528\) −4.06781 4.06781i −0.177029 0.177029i
\(529\) 4.67602 11.2889i 0.203305 0.490822i
\(530\) 0 0
\(531\) 2.16614 + 2.16614i 0.0940023 + 0.0940023i
\(532\) −4.23741 21.3029i −0.183715 0.923598i
\(533\) −2.61819 3.91841i −0.113407 0.169725i
\(534\) 11.3727 7.59900i 0.492145 0.328841i
\(535\) 0 0
\(536\) −8.69471 + 3.60147i −0.375554 + 0.155560i
\(537\) −1.28093 + 6.43968i −0.0552763 + 0.277893i
\(538\) 16.6184 11.1041i 0.716472 0.478731i
\(539\) 9.92517 14.8541i 0.427507 0.639810i
\(540\) 0 0
\(541\) −2.15895 10.8538i −0.0928205 0.466640i −0.999039 0.0438305i \(-0.986044\pi\)
0.906218 0.422810i \(-0.138956\pi\)
\(542\) −1.80418 4.35567i −0.0774961 0.187092i
\(543\) 25.5515 25.5515i 1.09652 1.09652i
\(544\) 1.32015 3.90605i 0.0566008 0.167470i
\(545\) 0 0
\(546\) −18.5397 7.67940i −0.793427 0.328648i
\(547\) 12.8978 19.3029i 0.551471 0.825334i −0.446101 0.894983i \(-0.647188\pi\)
0.997572 + 0.0696486i \(0.0221878\pi\)
\(548\) 9.47401i 0.404710i
\(549\) −0.857841 0.573191i −0.0366118 0.0244632i
\(550\) 0 0
\(551\) 31.6505 + 47.3683i 1.34836 + 2.01796i
\(552\) 4.37286 + 1.81130i 0.186121 + 0.0770940i
\(553\) −0.145899 0.0604332i −0.00620424 0.00256988i
\(554\) −4.46146 6.67704i −0.189549 0.283680i
\(555\) 0 0
\(556\) 4.04502 + 2.70280i 0.171547 + 0.114624i
\(557\) 2.59243i 0.109845i −0.998491 0.0549225i \(-0.982509\pi\)
0.998491 0.0549225i \(-0.0174912\pi\)
\(558\) 5.38387 8.05752i 0.227917 0.341102i
\(559\) 17.5423 + 7.26627i 0.741962 + 0.307331i
\(560\) 0 0
\(561\) 23.6663 1.58272i 0.999193 0.0668223i
\(562\) −1.89809 + 1.89809i −0.0800662 + 0.0800662i
\(563\) 15.5244 + 37.4793i 0.654277 + 1.57957i 0.806510 + 0.591221i \(0.201354\pi\)
−0.152232 + 0.988345i \(0.548646\pi\)
\(564\) 0.0664822 + 0.334229i 0.00279941 + 0.0140736i
\(565\) 0 0
\(566\) −8.01151 + 11.9901i −0.336749 + 0.503981i
\(567\) 15.1651 10.1330i 0.636873 0.425545i
\(568\) 1.21559 6.11118i 0.0510050 0.256419i
\(569\) 7.73559 3.20419i 0.324293 0.134326i −0.214597 0.976703i \(-0.568844\pi\)
0.538890 + 0.842376i \(0.318844\pi\)
\(570\) 0 0
\(571\) −21.0371 + 14.0565i −0.880375 + 0.588248i −0.911515 0.411267i \(-0.865086\pi\)
0.0311396 + 0.999515i \(0.490086\pi\)
\(572\) 9.11074 + 13.6352i 0.380939 + 0.570116i
\(573\) 5.72169 + 28.7649i 0.239027 + 1.20167i
\(574\) 2.74722 + 2.74722i 0.114667 + 0.114667i
\(575\) 0 0
\(576\) −0.352840 + 0.851831i −0.0147017 + 0.0354930i
\(577\) −18.6006 18.6006i −0.774352 0.774352i 0.204512 0.978864i \(-0.434439\pi\)
−0.978864 + 0.204512i \(0.934439\pi\)
\(578\) 8.53904 + 14.6998i 0.355177 + 0.611432i
\(579\) 1.18304i 0.0491654i
\(580\) 0 0
\(581\) 3.26980 0.650404i 0.135654 0.0269833i
\(582\) −10.0643 −0.417179
\(583\) −3.60091 + 0.716266i −0.149135 + 0.0296647i
\(584\) −0.411656 + 2.06953i −0.0170344 + 0.0856378i
\(585\) 0 0
\(586\) 9.74059 + 23.5159i 0.402380 + 0.971432i
\(587\) −16.0085 + 38.6479i −0.660740 + 1.59517i 0.135906 + 0.990722i \(0.456606\pi\)
−0.796646 + 0.604446i \(0.793394\pi\)
\(588\) 6.32907 + 1.25893i 0.261007 + 0.0519174i
\(589\) 66.0922 + 13.1466i 2.72328 + 0.541694i
\(590\) 0 0
\(591\) 25.4552 25.4552i 1.04709 1.04709i
\(592\) 5.26741 + 3.51957i 0.216489 + 0.144653i
\(593\) 23.9894 9.93672i 0.985125 0.408052i 0.168804 0.985650i \(-0.446010\pi\)
0.816322 + 0.577597i \(0.196010\pi\)
\(594\) −22.5624 −0.925745
\(595\) 0 0
\(596\) 1.20744 0.0494587
\(597\) 22.4901 9.31569i 0.920457 0.381266i
\(598\) −11.2185 7.49598i −0.458760 0.306534i
\(599\) −26.4954 + 26.4954i −1.08257 + 1.08257i −0.0863049 + 0.996269i \(0.527506\pi\)
−0.996269 + 0.0863049i \(0.972494\pi\)
\(600\) 0 0
\(601\) 40.1212 + 7.98061i 1.63658 + 0.325536i 0.925839 0.377919i \(-0.123360\pi\)
0.710740 + 0.703455i \(0.248360\pi\)
\(602\) −15.3529 3.05389i −0.625739 0.124467i
\(603\) −3.32061 + 8.01665i −0.135226 + 0.326463i
\(604\) −2.75046 6.64020i −0.111915 0.270186i
\(605\) 0 0
\(606\) −0.0772859 + 0.388543i −0.00313953 + 0.0157835i
\(607\) −13.3146 + 2.64843i −0.540422 + 0.107497i −0.457751 0.889080i \(-0.651345\pi\)
−0.0826705 + 0.996577i \(0.526345\pi\)
\(608\) −6.41149 −0.260020
\(609\) −42.5582 + 8.46535i −1.72455 + 0.343033i
\(610\) 0 0
\(611\) 0.971424i 0.0392996i
\(612\) −1.68591 3.40729i −0.0681490 0.137731i
\(613\) 21.4097 + 21.4097i 0.864728 + 0.864728i 0.991883 0.127154i \(-0.0405844\pi\)
−0.127154 + 0.991883i \(0.540584\pi\)
\(614\) 11.1593 26.9409i 0.450352 1.08725i
\(615\) 0 0
\(616\) −9.55972 9.55972i −0.385172 0.385172i
\(617\) −6.59622 33.1615i −0.265554 1.33503i −0.851361 0.524580i \(-0.824223\pi\)
0.585807 0.810450i \(-0.300777\pi\)
\(618\) −3.12763 4.68083i −0.125812 0.188291i
\(619\) −13.5554 + 9.05744i −0.544838 + 0.364049i −0.797324 0.603551i \(-0.793752\pi\)
0.252486 + 0.967601i \(0.418752\pi\)
\(620\) 0 0
\(621\) 17.1504 7.10394i 0.688223 0.285071i
\(622\) 1.53658 7.72489i 0.0616111 0.309740i
\(623\) 26.7269 17.8584i 1.07079 0.715480i
\(624\) −3.29095 + 4.92525i −0.131743 + 0.197168i
\(625\) 0 0
\(626\) 3.59937 + 18.0953i 0.143860 + 0.723232i
\(627\) −14.1148 34.0761i −0.563690 1.36087i
\(628\) −15.8344 + 15.8344i −0.631862 + 0.631862i
\(629\) −25.2211 + 6.79386i −1.00563 + 0.270889i
\(630\) 0 0
\(631\) −37.9013 15.6992i −1.50883 0.624976i −0.533510 0.845794i \(-0.679127\pi\)
−0.975315 + 0.220818i \(0.929127\pi\)
\(632\) −0.0258982 + 0.0387593i −0.00103017 + 0.00154176i
\(633\) 30.2225i 1.20124i
\(634\) −11.3432 7.57932i −0.450498 0.301013i
\(635\) 0 0
\(636\) −0.736791 1.10269i −0.0292157 0.0437243i
\(637\) −16.9950 7.03955i −0.673366 0.278917i
\(638\) 32.7606 + 13.5699i 1.29700 + 0.537237i
\(639\) −3.19175 4.77679i −0.126264 0.188967i
\(640\) 0 0
\(641\) 27.6769 + 18.4931i 1.09317 + 0.730433i 0.965244 0.261351i \(-0.0841679\pi\)
0.127926 + 0.991784i \(0.459168\pi\)
\(642\) 17.4961i 0.690515i
\(643\) 17.3317 25.9387i 0.683495 1.02292i −0.313805 0.949487i \(-0.601604\pi\)
0.997300 0.0734351i \(-0.0233962\pi\)
\(644\) 10.2766 + 4.25672i 0.404956 + 0.167738i
\(645\) 0 0
\(646\) 17.4036 19.8982i 0.684735 0.782884i
\(647\) 12.0824 12.0824i 0.475009 0.475009i −0.428522 0.903531i \(-0.640966\pi\)
0.903531 + 0.428522i \(0.140966\pi\)
\(648\) −2.06031 4.97402i −0.0809365 0.195398i
\(649\) 2.58674 + 13.0044i 0.101538 + 0.510468i
\(650\) 0 0
\(651\) −28.5156 + 42.6767i −1.11762 + 1.67263i
\(652\) 2.30691 1.54143i 0.0903458 0.0603671i
\(653\) 5.03733 25.3244i 0.197126 0.991019i −0.747847 0.663871i \(-0.768912\pi\)
0.944973 0.327148i \(-0.106088\pi\)
\(654\) −25.3835 + 10.5142i −0.992572 + 0.411137i
\(655\) 0 0
\(656\) 0.953562 0.637150i 0.0372303 0.0248765i
\(657\) 1.08087 + 1.61764i 0.0421689 + 0.0631103i
\(658\) 0.156239 + 0.785468i 0.00609084 + 0.0306207i
\(659\) −14.3607 14.3607i −0.559413 0.559413i 0.369727 0.929140i \(-0.379451\pi\)
−0.929140 + 0.369727i \(0.879451\pi\)
\(660\) 0 0
\(661\) −15.4896 + 37.3951i −0.602474 + 1.45450i 0.268553 + 0.963265i \(0.413455\pi\)
−0.871027 + 0.491236i \(0.836545\pi\)
\(662\) 7.66116 + 7.66116i 0.297759 + 0.297759i
\(663\) −6.35254 23.5828i −0.246712 0.915880i
\(664\) 0.984105i 0.0381907i
\(665\) 0 0
\(666\) 5.72879 1.13953i 0.221986 0.0441558i
\(667\) −29.1750 −1.12966
\(668\) −3.95736 + 0.787168i −0.153115 + 0.0304564i
\(669\) 0.811395 4.07916i 0.0313703 0.157709i
\(670\) 0 0
\(671\) −1.70890 4.12565i −0.0659713 0.159269i
\(672\) 1.86882 4.51172i 0.0720912 0.174044i
\(673\) −24.4315 4.85972i −0.941763 0.187328i −0.299746 0.954019i \(-0.596902\pi\)
−0.642017 + 0.766691i \(0.721902\pi\)
\(674\) 24.4738 + 4.86815i 0.942696 + 0.187514i
\(675\) 0 0
\(676\) 2.74766 2.74766i 0.105679 0.105679i
\(677\) −15.3618 10.2644i −0.590400 0.394493i 0.224176 0.974549i \(-0.428031\pi\)
−0.814577 + 0.580056i \(0.803031\pi\)
\(678\) 8.31595 3.44458i 0.319372 0.132288i
\(679\) −23.6520 −0.907681
\(680\) 0 0
\(681\) 7.09071 0.271717
\(682\) 38.7513 16.0513i 1.48387 0.614637i
\(683\) 28.0572 + 18.7472i 1.07358 + 0.717342i 0.961069 0.276309i \(-0.0891112\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(684\) −4.18006 + 4.18006i −0.159828 + 0.159828i
\(685\) 0 0
\(686\) −8.38440 1.66776i −0.320118 0.0636754i
\(687\) −19.8309 3.94460i −0.756594 0.150496i
\(688\) −1.76828 + 4.26901i −0.0674150 + 0.162754i
\(689\) 1.44672 + 3.49269i 0.0551157 + 0.133061i
\(690\) 0 0
\(691\) 0.992781 4.99105i 0.0377672 0.189868i −0.957296 0.289108i \(-0.906641\pi\)
0.995064 + 0.0992401i \(0.0316412\pi\)
\(692\) 10.7454 2.13740i 0.408480 0.0812517i
\(693\) −12.4652 −0.473513
\(694\) 14.5581 2.89578i 0.552617 0.109922i
\(695\) 0 0
\(696\) 12.8087i 0.485511i
\(697\) −0.610976 + 4.68890i −0.0231424 + 0.177605i
\(698\) −17.0681 17.0681i −0.646037 0.646037i
\(699\) 2.54581 6.14614i 0.0962915 0.232468i
\(700\) 0 0
\(701\) 4.66511 + 4.66511i 0.176199 + 0.176199i 0.789696 0.613498i \(-0.210238\pi\)
−0.613498 + 0.789696i \(0.710238\pi\)
\(702\) 4.53238 + 22.7858i 0.171064 + 0.859996i
\(703\) 22.5657 + 33.7720i 0.851081 + 1.27373i
\(704\) −3.31818 + 2.21714i −0.125059 + 0.0835616i
\(705\) 0 0
\(706\) 26.4531 10.9572i 0.995574 0.412380i
\(707\) −0.181629 + 0.913111i −0.00683086 + 0.0343411i
\(708\) −3.98227 + 2.66087i −0.149663 + 0.100001i
\(709\) 6.35644 9.51308i 0.238721 0.357271i −0.692693 0.721233i \(-0.743576\pi\)
0.931414 + 0.363961i \(0.118576\pi\)
\(710\) 0 0
\(711\) 0.00838502 + 0.0421543i 0.000314463 + 0.00158091i
\(712\) −3.63108 8.76621i −0.136081 0.328528i
\(713\) −24.4023 + 24.4023i −0.913874 + 0.913874i
\(714\) 8.92944 + 18.0467i 0.334176 + 0.675381i
\(715\) 0 0
\(716\) 4.20808 + 1.74304i 0.157263 + 0.0651406i
\(717\) −12.8010 + 19.1580i −0.478062 + 0.715470i
\(718\) 2.44275i 0.0911626i
\(719\) 2.07623 + 1.38730i 0.0774305 + 0.0517374i 0.593683 0.804699i \(-0.297673\pi\)
−0.516252 + 0.856436i \(0.672673\pi\)
\(720\) 0 0
\(721\) −7.35022 11.0004i −0.273736 0.409675i
\(722\) −20.4244 8.46007i −0.760118 0.314851i
\(723\) −13.5757 5.62323i −0.504885 0.209130i
\(724\) −13.9267 20.8428i −0.517583 0.774617i
\(725\) 0 0
\(726\) −5.90428 3.94512i −0.219129 0.146417i
\(727\) 3.46425i 0.128482i −0.997934 0.0642410i \(-0.979537\pi\)
0.997934 0.0642410i \(-0.0204626\pi\)
\(728\) −7.73402 + 11.5748i −0.286642 + 0.428990i
\(729\) −27.1747 11.2561i −1.00647 0.416893i
\(730\) 0 0
\(731\) −8.44906 17.0758i −0.312500 0.631573i
\(732\) 1.14059 1.14059i 0.0421573 0.0421573i
\(733\) 1.45266 + 3.50704i 0.0536554 + 0.129536i 0.948434 0.316974i \(-0.102667\pi\)
−0.894779 + 0.446510i \(0.852667\pi\)
\(734\) −0.610498 3.06918i −0.0225339 0.113285i
\(735\) 0 0
\(736\) 1.82418 2.73008i 0.0672402 0.100632i
\(737\) −31.2277 + 20.8657i −1.15029 + 0.768598i
\(738\) 0.206289 1.03709i 0.00759361 0.0381756i
\(739\) 1.03602 0.429133i 0.0381105 0.0157859i −0.363547 0.931576i \(-0.618434\pi\)
0.401657 + 0.915790i \(0.368434\pi\)
\(740\) 0 0
\(741\) −31.5782 + 21.0999i −1.16005 + 0.775123i
\(742\) −1.73153 2.59141i −0.0635664 0.0951338i
\(743\) 6.53046 + 32.8308i 0.239579 + 1.20445i 0.893913 + 0.448241i \(0.147949\pi\)
−0.654334 + 0.756206i \(0.727051\pi\)
\(744\) 10.7133 + 10.7133i 0.392769 + 0.392769i
\(745\) 0 0
\(746\) 14.0960 34.0308i 0.516093 1.24596i
\(747\) −0.641600 0.641600i −0.0234749 0.0234749i
\(748\) 2.12606 16.3163i 0.0777366 0.596584i
\(749\) 41.1174i 1.50240i
\(750\) 0 0
\(751\) −48.2534 + 9.59819i −1.76079 + 0.350243i −0.966376 0.257133i \(-0.917222\pi\)
−0.794415 + 0.607376i \(0.792222\pi\)
\(752\) 0.236401 0.00862064
\(753\) −23.9594 + 4.76582i −0.873129 + 0.173676i
\(754\) 7.12326 35.8110i 0.259414 1.30416i
\(755\) 0 0
\(756\) −7.32953 17.6950i −0.266572 0.643563i
\(757\) −0.354617 + 0.856120i −0.0128888 + 0.0311162i −0.930193 0.367071i \(-0.880361\pi\)
0.917304 + 0.398187i \(0.130361\pi\)
\(758\) −14.8218 2.94824i −0.538352 0.107085i
\(759\) 18.5259 + 3.68502i 0.672446 + 0.133758i
\(760\) 0 0
\(761\) −10.7310 + 10.7310i −0.388999 + 0.388999i −0.874330 0.485331i \(-0.838699\pi\)
0.485331 + 0.874330i \(0.338699\pi\)
\(762\) −6.76583 4.52078i −0.245100 0.163771i
\(763\) −59.6535 + 24.7093i −2.15960 + 0.894536i
\(764\) 20.3454 0.736072
\(765\) 0 0
\(766\) −13.4045 −0.484325
\(767\) 12.6136 5.22472i 0.455450 0.188654i
\(768\) −1.19858 0.800867i −0.0432501 0.0288988i
\(769\) 3.05558 3.05558i 0.110187 0.110187i −0.649864 0.760051i \(-0.725174\pi\)
0.760051 + 0.649864i \(0.225174\pi\)
\(770\) 0 0
\(771\) 11.4260 + 2.27278i 0.411499 + 0.0818522i
\(772\) −0.804919 0.160108i −0.0289697 0.00576242i
\(773\) 18.4025 44.4276i 0.661893 1.59795i −0.132942 0.991124i \(-0.542442\pi\)
0.794834 0.606826i \(-0.207558\pi\)
\(774\) 1.63038 + 3.93609i 0.0586028 + 0.141480i
\(775\) 0 0
\(776\) −1.36207 + 6.84757i −0.0488953 + 0.245813i
\(777\) −30.3425 + 6.03550i −1.08853 + 0.216523i
\(778\) 28.9322 1.03727
\(779\) 7.21166 1.43449i 0.258385 0.0513959i
\(780\) 0 0
\(781\) 24.8660i 0.889774i
\(782\) 3.52123 + 13.0720i 0.125919 + 0.467454i
\(783\) 35.5220 + 35.5220i 1.26945 + 1.26945i
\(784\) 1.71311 4.13581i 0.0611824 0.147707i
\(785\) 0 0
\(786\) −11.9765 11.9765i −0.427189 0.427189i
\(787\) −4.23720 21.3018i −0.151040 0.759329i −0.979840 0.199784i \(-0.935976\pi\)
0.828800 0.559545i \(-0.189024\pi\)
\(788\) −13.8743 20.7643i −0.494250 0.739698i
\(789\) −2.39321 + 1.59909i −0.0852004 + 0.0569291i
\(790\) 0 0
\(791\) 19.5432 8.09508i 0.694878 0.287828i
\(792\) −0.717841 + 3.60883i −0.0255074 + 0.128234i
\(793\) −3.82322 + 2.55459i −0.135767 + 0.0907163i
\(794\) 4.30718 6.44614i 0.152856 0.228765i
\(795\) 0 0
\(796\) −3.29450 16.5626i −0.116771 0.587045i
\(797\) 18.1709 + 43.8685i 0.643647 + 1.55390i 0.821725 + 0.569884i \(0.193012\pi\)
−0.178078 + 0.984016i \(0.556988\pi\)
\(798\) 22.1397 22.1397i 0.783736 0.783736i
\(799\) −0.641694 + 0.733674i −0.0227015 + 0.0259555i
\(800\) 0 0
\(801\) −8.08258 3.34791i −0.285584 0.118293i
\(802\) −12.0674 + 18.0601i −0.426115 + 0.637726i
\(803\) 8.42078i 0.297163i
\(804\) −11.2799 7.53702i −0.397813 0.265810i
\(805\) 0 0
\(806\) −23.9948 35.9107i −0.845180 1.26490i
\(807\) 26.6183 + 11.0257i 0.937009 + 0.388122i
\(808\) 0.253898 + 0.105168i 0.00893209 + 0.00369979i
\(809\) 12.2131 + 18.2782i 0.429389 + 0.642626i 0.981571 0.191098i \(-0.0612047\pi\)
−0.552182 + 0.833724i \(0.686205\pi\)
\(810\) 0 0
\(811\) 4.88955 + 3.26709i 0.171695 + 0.114723i 0.638449 0.769664i \(-0.279576\pi\)
−0.466753 + 0.884387i \(0.654576\pi\)
\(812\) 30.1015i 1.05636i
\(813\) 3.77572 5.65077i 0.132420 0.198181i
\(814\) 23.3572 + 9.67486i 0.818668 + 0.339104i
\(815\) 0 0
\(816\) 5.73898 1.54592i 0.200904 0.0541180i
\(817\) −20.9486 + 20.9486i −0.732900 + 0.732900i
\(818\) −9.11183 21.9979i −0.318588 0.769139i
\(819\) 2.50404 + 12.5886i 0.0874981 + 0.439882i
\(820\) 0 0
\(821\) −24.8776 + 37.2319i −0.868234 + 1.29940i 0.0847559 + 0.996402i \(0.472989\pi\)
−0.952990 + 0.303002i \(0.902011\pi\)
\(822\) −11.3554 + 7.58742i −0.396064 + 0.264642i
\(823\) −6.32796 + 31.8128i −0.220579 + 1.10892i 0.698730 + 0.715386i \(0.253749\pi\)
−0.919308 + 0.393538i \(0.871251\pi\)
\(824\) −3.60803 + 1.49450i −0.125692 + 0.0520632i
\(825\) 0 0
\(826\) −9.35869 + 6.25328i −0.325631 + 0.217579i
\(827\) −19.7136 29.5034i −0.685508 1.02594i −0.997128 0.0757284i \(-0.975872\pi\)
0.311621 0.950207i \(-0.399128\pi\)
\(828\) −0.590613 2.96921i −0.0205252 0.103187i
\(829\) 37.4477 + 37.4477i 1.30061 + 1.30061i 0.927978 + 0.372634i \(0.121545\pi\)
0.372634 + 0.927978i \(0.378455\pi\)
\(830\) 0 0
\(831\) 4.42995 10.6948i 0.153673 0.371000i
\(832\) 2.90567 + 2.90567i 0.100736 + 0.100736i
\(833\) 8.18544 + 16.5430i 0.283609 + 0.573183i
\(834\) 7.01287i 0.242836i
\(835\) 0 0
\(836\) −25.0950 + 4.99171i −0.867929 + 0.172642i
\(837\) 59.4220 2.05393
\(838\) 26.4209 5.25544i 0.912694 0.181546i
\(839\) −1.12143 + 5.63782i −0.0387161 + 0.194639i −0.995303 0.0968079i \(-0.969137\pi\)
0.956587 + 0.291447i \(0.0941367\pi\)
\(840\) 0 0
\(841\) −19.1159 46.1499i −0.659169 1.59137i
\(842\) 3.05257 7.36955i 0.105198 0.253972i
\(843\) −3.79514 0.754899i −0.130711 0.0260001i
\(844\) 20.5628 + 4.09020i 0.707801 + 0.140790i
\(845\) 0 0
\(846\) 0.154124 0.154124i 0.00529891 0.00529891i
\(847\) −13.8756 9.27138i −0.476772 0.318569i
\(848\) −0.849962 + 0.352066i −0.0291878 + 0.0120900i
\(849\) −20.7872 −0.713416
\(850\) 0 0
\(851\) −20.8008 −0.713042
\(852\) 8.29827 3.43726i 0.284294 0.117758i
\(853\) −42.9088 28.6707i −1.46917 0.981667i −0.994855 0.101312i \(-0.967696\pi\)
−0.474314 0.880356i \(-0.657304\pi\)
\(854\) 2.68049 2.68049i 0.0917243 0.0917243i
\(855\) 0 0
\(856\) 11.9040 + 2.36785i 0.406871 + 0.0809316i
\(857\) −41.4056 8.23610i −1.41439 0.281340i −0.572020 0.820240i \(-0.693840\pi\)
−0.842370 + 0.538900i \(0.818840\pi\)
\(858\) −9.04640 + 21.8399i −0.308839 + 0.745603i
\(859\) −15.3248 36.9973i −0.522874 1.26233i −0.936110 0.351706i \(-0.885602\pi\)
0.413236 0.910624i \(-0.364398\pi\)
\(860\) 0 0
\(861\) −1.09261 + 5.49292i −0.0372361 + 0.187198i
\(862\) 15.3057 3.04448i 0.521313 0.103696i
\(863\) −18.5491 −0.631417 −0.315709 0.948856i \(-0.602242\pi\)
−0.315709 + 0.948856i \(0.602242\pi\)
\(864\) −5.54504 + 1.10298i −0.188646 + 0.0375240i
\(865\) 0 0
\(866\) 21.2306i 0.721444i
\(867\) −10.7803 + 22.0073i −0.366118 + 0.747408i
\(868\) 25.1772 + 25.1772i 0.854571 + 0.854571i
\(869\) −0.0711908 + 0.171870i −0.00241498 + 0.00583028i
\(870\) 0 0
\(871\) 27.3455 + 27.3455i 0.926565 + 0.926565i
\(872\) 3.71835 + 18.6934i 0.125919 + 0.633039i
\(873\) 3.57634 + 5.35238i 0.121041 + 0.181151i
\(874\) 17.5039 11.6957i 0.592078 0.395614i
\(875\) 0 0
\(876\) −2.81018 + 1.16402i −0.0949473 + 0.0393285i
\(877\) 3.03337 15.2498i 0.102430 0.514949i −0.895171 0.445722i \(-0.852947\pi\)
0.997601 0.0692263i \(-0.0220531\pi\)
\(878\) −5.08942 + 3.40064i −0.171760 + 0.114766i
\(879\) −20.3848 + 30.5080i −0.687561 + 1.02901i
\(880\) 0 0
\(881\) −8.46141 42.5384i −0.285072 1.43316i −0.812205 0.583372i \(-0.801733\pi\)
0.527133 0.849783i \(-0.323267\pi\)
\(882\) −1.57951 3.81328i −0.0531849 0.128400i
\(883\) 8.26816 8.26816i 0.278246 0.278246i −0.554163 0.832408i \(-0.686961\pi\)
0.832408 + 0.554163i \(0.186961\pi\)
\(884\) −16.9050 + 1.13055i −0.568578 + 0.0380244i
\(885\) 0 0
\(886\) −12.5852 5.21295i −0.422807 0.175132i
\(887\) 2.11844 3.17047i 0.0711304 0.106454i −0.794199 0.607658i \(-0.792109\pi\)
0.865329 + 0.501204i \(0.167109\pi\)
\(888\) 9.13213i 0.306454i
\(889\) −15.9003 10.6243i −0.533280 0.356326i
\(890\) 0 0
\(891\) −11.9367 17.8646i −0.399896 0.598486i
\(892\) −2.66557 1.10412i −0.0892500 0.0369686i
\(893\) 1.40031 + 0.580026i 0.0468594 + 0.0194098i
\(894\) 0.966999 + 1.44722i 0.0323413 + 0.0484021i
\(895\) 0 0
\(896\) −2.81678 1.88211i −0.0941019 0.0628769i
\(897\) 19.4496i 0.649403i
\(898\) −9.97891 + 14.9345i −0.333001 + 0.498371i
\(899\) −86.2809 35.7387i −2.87763 1.19195i
\(900\) 0 0
\(901\) 1.21453 3.59354i 0.0404617 0.119718i
\(902\) 3.23625 3.23625i 0.107755 0.107755i
\(903\) −8.63532 20.8475i −0.287365 0.693761i
\(904\) −1.21818 6.12420i −0.0405160 0.203688i
\(905\) 0 0
\(906\) 5.75607 8.61456i 0.191233 0.286200i
\(907\) −35.2429 + 23.5486i −1.17022 + 0.781917i −0.979838 0.199793i \(-0.935973\pi\)
−0.190384 + 0.981710i \(0.560973\pi\)
\(908\) 0.959632 4.82439i 0.0318465 0.160103i
\(909\) 0.234098 0.0969664i 0.00776453 0.00321617i
\(910\) 0 0
\(911\) 49.6433 33.1706i 1.64476 1.09899i 0.740448 0.672113i \(-0.234613\pi\)
0.904309 0.426879i \(-0.140387\pi\)
\(912\) −5.13475 7.68469i −0.170029 0.254466i
\(913\) −0.766181 3.85185i −0.0253569 0.127478i
\(914\) −9.97995 9.97995i −0.330107 0.330107i
\(915\) 0 0
\(916\) −5.36767 + 12.9587i −0.177353 + 0.428168i
\(917\) −28.1460 28.1460i −0.929461 0.929461i
\(918\) 11.6285 20.2031i 0.383799 0.666801i
\(919\) 14.6741i 0.484053i −0.970270 0.242026i \(-0.922188\pi\)
0.970270 0.242026i \(-0.0778120\pi\)
\(920\) 0 0
\(921\) 41.2280 8.20075i 1.35851 0.270224i
\(922\) −0.0301360 −0.000992478
\(923\) −25.1123 + 4.99514i −0.826580 + 0.164417i
\(924\) 3.80204 19.1142i 0.125078 0.628810i
\(925\) 0 0
\(926\) 0.609154 + 1.47063i 0.0200181 + 0.0483279i
\(927\) −1.37795 + 3.32666i −0.0452578 + 0.109262i
\(928\) 8.71477 + 1.73348i 0.286077 + 0.0569042i
\(929\) 2.76873 + 0.550734i 0.0908391 + 0.0180690i 0.240301 0.970699i \(-0.422754\pi\)
−0.149461 + 0.988768i \(0.547754\pi\)
\(930\) 0 0
\(931\) 20.2950 20.2950i 0.665142 0.665142i
\(932\) −3.83718 2.56392i −0.125691 0.0839840i
\(933\) 10.4895 4.34489i 0.343411 0.142245i
\(934\) 8.01670 0.262314
\(935\) 0 0
\(936\) 3.78877 0.123840
\(937\) −6.17591 + 2.55815i −0.201758 + 0.0835710i −0.481274 0.876570i \(-0.659826\pi\)
0.279516 + 0.960141i \(0.409826\pi\)
\(938\) −26.5089 17.7127i −0.865547 0.578340i
\(939\) −18.8060 + 18.8060i −0.613712 + 0.613712i
\(940\) 0 0
\(941\) −40.1031 7.97701i −1.30733 0.260043i −0.508216 0.861229i \(-0.669695\pi\)
−0.799109 + 0.601186i \(0.794695\pi\)
\(942\) −31.6601 6.29758i −1.03154 0.205186i
\(943\) −1.44102 + 3.47894i −0.0469262 + 0.113290i
\(944\) 1.27146 + 3.06957i 0.0413825 + 0.0999061i
\(945\) 0 0
\(946\) −3.59750 + 18.0859i −0.116965 + 0.588023i
\(947\) 31.4810 6.26196i 1.02299 0.203486i 0.345038 0.938589i \(-0.387866\pi\)
0.677956 + 0.735102i \(0.262866\pi\)
\(948\) −0.0671972 −0.00218246
\(949\) 8.50419 1.69159i 0.276058 0.0549113i
\(950\) 0 0
\(951\) 19.6658i 0.637708i
\(952\) 13.4871 3.63305i 0.437120 0.117748i
\(953\) 9.45879 + 9.45879i 0.306400 + 0.306400i 0.843511 0.537111i \(-0.180484\pi\)
−0.537111 + 0.843511i \(0.680484\pi\)
\(954\) −0.324610 + 0.783678i −0.0105096 + 0.0253725i
\(955\) 0 0
\(956\) 11.3023 + 11.3023i 0.365544 + 0.365544i
\(957\) 9.97225 + 50.1339i 0.322357 + 1.62060i
\(958\) −13.9597 20.8921i −0.451017 0.674994i
\(959\) −26.6862 + 17.8311i −0.861741 + 0.575797i
\(960\) 0 0
\(961\) −73.4183 + 30.4109i −2.36833 + 0.980995i
\(962\) 5.07864 25.5320i 0.163742 0.823186i
\(963\) 9.30473 6.21722i 0.299841 0.200347i
\(964\) −5.66323 + 8.47562i −0.182400 + 0.272981i
\(965\) 0 0
\(966\) 3.12818 + 15.7264i 0.100648 + 0.505990i
\(967\) −3.82200 9.22713i −0.122907 0.296725i 0.850436 0.526079i \(-0.176338\pi\)
−0.973343 + 0.229355i \(0.926338\pi\)
\(968\) −3.48325 + 3.48325i −0.111956 + 0.111956i
\(969\) 37.7876 + 4.92382i 1.21391 + 0.158176i
\(970\) 0 0
\(971\) 3.40320 + 1.40965i 0.109214 + 0.0452379i 0.436621 0.899645i \(-0.356175\pi\)
−0.327407 + 0.944883i \(0.606175\pi\)
\(972\) −5.11129 + 7.64959i −0.163945 + 0.245361i
\(973\) 16.4809i 0.528353i
\(974\) 24.8229 + 16.5862i 0.795378 + 0.531455i
\(975\) 0 0
\(976\) −0.621672 0.930398i −0.0198992 0.0297813i
\(977\) 4.18309 + 1.73269i 0.133829 + 0.0554338i 0.448593 0.893736i \(-0.351925\pi\)
−0.314764 + 0.949170i \(0.601925\pi\)
\(978\) 3.69506 + 1.53054i 0.118155 + 0.0489414i
\(979\) −21.0373 31.4845i −0.672354 1.00625i
\(980\) 0 0
\(981\) 14.6116 + 9.76319i 0.466514 + 0.311715i
\(982\) 13.0634i 0.416869i
\(983\) 19.9641 29.8783i 0.636755 0.952971i −0.363021 0.931781i \(-0.618255\pi\)
0.999775 0.0211897i \(-0.00674539\pi\)
\(984\) 1.52735 + 0.632650i 0.0486902 + 0.0201681i
\(985\) 0 0
\(986\) −29.0356 + 22.3411i −0.924681 + 0.711484i
\(987\) −0.816320 + 0.816320i −0.0259838 + 0.0259838i
\(988\) 10.0823 + 24.3408i 0.320760 + 0.774384i
\(989\) −2.95989 14.8804i −0.0941192 0.473169i
\(990\) 0 0
\(991\) 8.74298 13.0848i 0.277730 0.415652i −0.666213 0.745762i \(-0.732086\pi\)
0.943943 + 0.330110i \(0.107086\pi\)
\(992\) 8.73903 5.83924i 0.277465 0.185396i
\(993\) −3.04696 + 15.3181i −0.0966923 + 0.486105i
\(994\) 19.5017 8.07787i 0.618556 0.256214i
\(995\) 0 0
\(996\) 1.17953 0.788137i 0.0373748 0.0249731i
\(997\) 13.1987 + 19.7532i 0.418007 + 0.625591i 0.979393 0.201963i \(-0.0647319\pi\)
−0.561387 + 0.827554i \(0.689732\pi\)
\(998\) −0.263630 1.32536i −0.00834507 0.0419535i
\(999\) 25.3260 + 25.3260i 0.801278 + 0.801278i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.c.193.4 32
5.2 odd 4 850.2.s.c.57.4 32
5.3 odd 4 170.2.o.a.57.1 yes 32
5.4 even 2 170.2.r.a.23.1 yes 32
17.3 odd 16 850.2.s.c.343.4 32
85.3 even 16 170.2.r.a.37.1 yes 32
85.37 even 16 inner 850.2.v.c.207.4 32
85.54 odd 16 170.2.o.a.3.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.o.a.3.1 32 85.54 odd 16
170.2.o.a.57.1 yes 32 5.3 odd 4
170.2.r.a.23.1 yes 32 5.4 even 2
170.2.r.a.37.1 yes 32 85.3 even 16
850.2.s.c.57.4 32 5.2 odd 4
850.2.s.c.343.4 32 17.3 odd 16
850.2.v.c.193.4 32 1.1 even 1 trivial
850.2.v.c.207.4 32 85.37 even 16 inner