Properties

Label 855.2.k.g.406.3
Level $855$
Weight $2$
Character 855.406
Analytic conductor $6.827$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.3518667.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 406.3
Root \(1.14257 + 1.97899i\) of defining polynomial
Character \(\chi\) \(=\) 855.406
Dual form 855.2.k.g.676.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14257 + 1.97899i) q^{2} +(-1.61094 + 2.79023i) q^{4} +(-0.500000 - 0.866025i) q^{5} +3.50702 q^{7} -2.79216 q^{8} +(1.14257 - 1.97899i) q^{10} +4.50702 q^{11} +(2.50000 - 4.33013i) q^{13} +(4.00702 + 6.94036i) q^{14} +(0.0316332 + 0.0547902i) q^{16} +(0.0793049 + 0.137360i) q^{17} +(-4.26053 - 0.920816i) q^{19} +3.22188 q^{20} +(5.14959 + 8.91935i) q^{22} +(0.579305 - 1.00339i) q^{23} +(-0.500000 + 0.866025i) q^{25} +11.4257 q^{26} +(-5.64959 + 9.78538i) q^{28} +(-1.75351 + 3.03717i) q^{29} -2.28514 q^{31} +(-2.86445 + 4.96137i) q^{32} +(-0.181223 + 0.313888i) q^{34} +(-1.75351 - 3.03717i) q^{35} -10.9648 q^{37} +(-3.04567 - 9.48365i) q^{38} +(1.39608 + 2.41808i) q^{40} +(3.03865 + 5.26310i) q^{41} +(1.67420 + 2.89981i) q^{43} +(-7.26053 + 12.5756i) q^{44} +2.64759 q^{46} +(1.53163 - 2.65287i) q^{47} +5.29918 q^{49} -2.28514 q^{50} +(8.05469 + 13.9511i) q^{52} +(-2.87147 + 4.97353i) q^{53} +(-2.25351 - 3.90319i) q^{55} -9.79216 q^{56} -8.01404 q^{58} +(1.53163 + 2.65287i) q^{59} +(0.436734 - 0.756445i) q^{61} +(-2.61094 - 4.52228i) q^{62} -12.9648 q^{64} -5.00000 q^{65} +(4.22188 - 7.31250i) q^{67} -0.511021 q^{68} +(4.00702 - 6.94036i) q^{70} +(-8.11796 - 14.0607i) q^{71} +(3.57930 + 6.19954i) q^{73} +(-12.5281 - 21.6993i) q^{74} +(9.43273 - 10.4045i) q^{76} +15.8062 q^{77} +(5.06327 + 8.76983i) q^{79} +(0.0316332 - 0.0547902i) q^{80} +(-6.94375 + 12.0269i) q^{82} -4.85543 q^{83} +(0.0793049 - 0.137360i) q^{85} +(-3.82580 + 6.62647i) q^{86} -12.5843 q^{88} +(-0.556248 + 0.963449i) q^{89} +(8.76755 - 15.1858i) q^{91} +(1.86645 + 3.23278i) q^{92} +7.00000 q^{94} +(1.33281 + 4.15013i) q^{95} +(-0.809757 - 1.40254i) q^{97} +(6.05469 + 10.4870i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 7 q^{4} - 3 q^{5} + 4 q^{7} + 12 q^{8} + q^{10} + 10 q^{11} + 15 q^{13} + 7 q^{14} - 3 q^{16} + q^{17} + 14 q^{20} + 8 q^{22} + 4 q^{23} - 3 q^{25} + 10 q^{26} - 11 q^{28} - 2 q^{29} - 2 q^{31}+ \cdots + 23 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14257 + 1.97899i 0.807920 + 1.39936i 0.914302 + 0.405033i \(0.132740\pi\)
−0.106382 + 0.994325i \(0.533927\pi\)
\(3\) 0 0
\(4\) −1.61094 + 2.79023i −0.805469 + 1.39511i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) 3.50702 1.32553 0.662764 0.748828i \(-0.269383\pi\)
0.662764 + 0.748828i \(0.269383\pi\)
\(8\) −2.79216 −0.987178
\(9\) 0 0
\(10\) 1.14257 1.97899i 0.361313 0.625812i
\(11\) 4.50702 1.35892 0.679459 0.733714i \(-0.262215\pi\)
0.679459 + 0.733714i \(0.262215\pi\)
\(12\) 0 0
\(13\) 2.50000 4.33013i 0.693375 1.20096i −0.277350 0.960769i \(-0.589456\pi\)
0.970725 0.240192i \(-0.0772105\pi\)
\(14\) 4.00702 + 6.94036i 1.07092 + 1.85489i
\(15\) 0 0
\(16\) 0.0316332 + 0.0547902i 0.00790829 + 0.0136976i
\(17\) 0.0793049 + 0.137360i 0.0192343 + 0.0333147i 0.875482 0.483250i \(-0.160544\pi\)
−0.856248 + 0.516565i \(0.827210\pi\)
\(18\) 0 0
\(19\) −4.26053 0.920816i −0.977432 0.211250i
\(20\) 3.22188 0.720433
\(21\) 0 0
\(22\) 5.14959 + 8.91935i 1.09790 + 1.90161i
\(23\) 0.579305 1.00339i 0.120793 0.209220i −0.799287 0.600949i \(-0.794789\pi\)
0.920081 + 0.391729i \(0.128123\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 11.4257 2.24077
\(27\) 0 0
\(28\) −5.64959 + 9.78538i −1.06767 + 1.84926i
\(29\) −1.75351 + 3.03717i −0.325619 + 0.563988i −0.981637 0.190757i \(-0.938906\pi\)
0.656019 + 0.754745i \(0.272239\pi\)
\(30\) 0 0
\(31\) −2.28514 −0.410424 −0.205212 0.978718i \(-0.565788\pi\)
−0.205212 + 0.978718i \(0.565788\pi\)
\(32\) −2.86445 + 4.96137i −0.506368 + 0.877054i
\(33\) 0 0
\(34\) −0.181223 + 0.313888i −0.0310795 + 0.0538313i
\(35\) −1.75351 3.03717i −0.296397 0.513375i
\(36\) 0 0
\(37\) −10.9648 −1.80260 −0.901302 0.433192i \(-0.857387\pi\)
−0.901302 + 0.433192i \(0.857387\pi\)
\(38\) −3.04567 9.48365i −0.494073 1.53845i
\(39\) 0 0
\(40\) 1.39608 + 2.41808i 0.220740 + 0.382332i
\(41\) 3.03865 + 5.26310i 0.474558 + 0.821958i 0.999576 0.0291332i \(-0.00927470\pi\)
−0.525018 + 0.851091i \(0.675941\pi\)
\(42\) 0 0
\(43\) 1.67420 + 2.89981i 0.255314 + 0.442216i 0.964981 0.262321i \(-0.0844879\pi\)
−0.709667 + 0.704537i \(0.751155\pi\)
\(44\) −7.26053 + 12.5756i −1.09457 + 1.89584i
\(45\) 0 0
\(46\) 2.64759 0.390366
\(47\) 1.53163 2.65287i 0.223412 0.386960i −0.732430 0.680842i \(-0.761614\pi\)
0.955842 + 0.293882i \(0.0949472\pi\)
\(48\) 0 0
\(49\) 5.29918 0.757026
\(50\) −2.28514 −0.323168
\(51\) 0 0
\(52\) 8.05469 + 13.9511i 1.11698 + 1.93467i
\(53\) −2.87147 + 4.97353i −0.394426 + 0.683166i −0.993028 0.117881i \(-0.962390\pi\)
0.598602 + 0.801047i \(0.295723\pi\)
\(54\) 0 0
\(55\) −2.25351 3.90319i −0.303863 0.526306i
\(56\) −9.79216 −1.30853
\(57\) 0 0
\(58\) −8.01404 −1.05229
\(59\) 1.53163 + 2.65287i 0.199402 + 0.345374i 0.948335 0.317272i \(-0.102767\pi\)
−0.748933 + 0.662646i \(0.769433\pi\)
\(60\) 0 0
\(61\) 0.436734 0.756445i 0.0559180 0.0968528i −0.836711 0.547644i \(-0.815525\pi\)
0.892629 + 0.450791i \(0.148858\pi\)
\(62\) −2.61094 4.52228i −0.331589 0.574330i
\(63\) 0 0
\(64\) −12.9648 −1.62060
\(65\) −5.00000 −0.620174
\(66\) 0 0
\(67\) 4.22188 7.31250i 0.515784 0.893365i −0.484048 0.875042i \(-0.660834\pi\)
0.999832 0.0183230i \(-0.00583273\pi\)
\(68\) −0.511021 −0.0619704
\(69\) 0 0
\(70\) 4.00702 6.94036i 0.478930 0.829532i
\(71\) −8.11796 14.0607i −0.963424 1.66870i −0.713790 0.700359i \(-0.753023\pi\)
−0.249634 0.968340i \(-0.580310\pi\)
\(72\) 0 0
\(73\) 3.57930 + 6.19954i 0.418926 + 0.725601i 0.995832 0.0912097i \(-0.0290733\pi\)
−0.576906 + 0.816811i \(0.695740\pi\)
\(74\) −12.5281 21.6993i −1.45636 2.52249i
\(75\) 0 0
\(76\) 9.43273 10.4045i 1.08201 1.19347i
\(77\) 15.8062 1.80128
\(78\) 0 0
\(79\) 5.06327 + 8.76983i 0.569662 + 0.986683i 0.996599 + 0.0824022i \(0.0262592\pi\)
−0.426937 + 0.904281i \(0.640407\pi\)
\(80\) 0.0316332 0.0547902i 0.00353669 0.00612574i
\(81\) 0 0
\(82\) −6.94375 + 12.0269i −0.766809 + 1.32815i
\(83\) −4.85543 −0.532952 −0.266476 0.963841i \(-0.585859\pi\)
−0.266476 + 0.963841i \(0.585859\pi\)
\(84\) 0 0
\(85\) 0.0793049 0.137360i 0.00860183 0.0148988i
\(86\) −3.82580 + 6.62647i −0.412546 + 0.714551i
\(87\) 0 0
\(88\) −12.5843 −1.34149
\(89\) −0.556248 + 0.963449i −0.0589621 + 0.102125i −0.894000 0.448067i \(-0.852112\pi\)
0.835038 + 0.550193i \(0.185446\pi\)
\(90\) 0 0
\(91\) 8.76755 15.1858i 0.919089 1.59191i
\(92\) 1.86645 + 3.23278i 0.194591 + 0.337041i
\(93\) 0 0
\(94\) 7.00000 0.721995
\(95\) 1.33281 + 4.15013i 0.136744 + 0.425795i
\(96\) 0 0
\(97\) −0.809757 1.40254i −0.0822184 0.142406i 0.821984 0.569510i \(-0.192867\pi\)
−0.904203 + 0.427104i \(0.859534\pi\)
\(98\) 6.05469 + 10.4870i 0.611616 + 1.05935i
\(99\) 0 0
\(100\) −1.61094 2.79023i −0.161094 0.279023i
\(101\) 6.15661 10.6636i 0.612605 1.06106i −0.378194 0.925726i \(-0.623455\pi\)
0.990800 0.135337i \(-0.0432118\pi\)
\(102\) 0 0
\(103\) 10.6164 1.04606 0.523032 0.852313i \(-0.324801\pi\)
0.523032 + 0.852313i \(0.324801\pi\)
\(104\) −6.98040 + 12.0904i −0.684485 + 1.18556i
\(105\) 0 0
\(106\) −13.1234 −1.27466
\(107\) 2.17265 0.210038 0.105019 0.994470i \(-0.466510\pi\)
0.105019 + 0.994470i \(0.466510\pi\)
\(108\) 0 0
\(109\) −7.91012 13.7007i −0.757652 1.31229i −0.944045 0.329816i \(-0.893013\pi\)
0.186393 0.982475i \(-0.440320\pi\)
\(110\) 5.14959 8.91935i 0.490994 0.850427i
\(111\) 0 0
\(112\) 0.110938 + 0.192150i 0.0104827 + 0.0181565i
\(113\) −9.83828 −0.925507 −0.462754 0.886487i \(-0.653139\pi\)
−0.462754 + 0.886487i \(0.653139\pi\)
\(114\) 0 0
\(115\) −1.15861 −0.108041
\(116\) −5.64959 9.78538i −0.524551 0.908549i
\(117\) 0 0
\(118\) −3.50000 + 6.06218i −0.322201 + 0.558069i
\(119\) 0.278124 + 0.481725i 0.0254956 + 0.0441596i
\(120\) 0 0
\(121\) 9.31322 0.846656
\(122\) 1.99600 0.180709
\(123\) 0 0
\(124\) 3.68122 6.37607i 0.330584 0.572588i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −7.85543 + 13.6060i −0.697056 + 1.20734i 0.272426 + 0.962177i \(0.412174\pi\)
−0.969483 + 0.245160i \(0.921159\pi\)
\(128\) −9.08432 15.7345i −0.802948 1.39075i
\(129\) 0 0
\(130\) −5.71286 9.89496i −0.501051 0.867845i
\(131\) −5.76755 9.98968i −0.503913 0.872803i −0.999990 0.00452412i \(-0.998560\pi\)
0.496077 0.868279i \(-0.334773\pi\)
\(132\) 0 0
\(133\) −14.9418 3.22932i −1.29561 0.280017i
\(134\) 19.2952 1.66685
\(135\) 0 0
\(136\) −0.221432 0.383532i −0.0189876 0.0328876i
\(137\) 0.0546904 0.0947266i 0.00467252 0.00809304i −0.863680 0.504041i \(-0.831846\pi\)
0.868352 + 0.495948i \(0.165179\pi\)
\(138\) 0 0
\(139\) −0.721876 + 1.25033i −0.0612287 + 0.106051i −0.895015 0.446036i \(-0.852835\pi\)
0.833786 + 0.552088i \(0.186169\pi\)
\(140\) 11.2992 0.954955
\(141\) 0 0
\(142\) 18.5507 32.1307i 1.55674 2.69635i
\(143\) 11.2675 19.5160i 0.942240 1.63201i
\(144\) 0 0
\(145\) 3.50702 0.291242
\(146\) −8.17922 + 14.1668i −0.676917 + 1.17245i
\(147\) 0 0
\(148\) 17.6636 30.5943i 1.45194 2.51484i
\(149\) 0.864447 + 1.49727i 0.0708183 + 0.122661i 0.899260 0.437414i \(-0.144106\pi\)
−0.828442 + 0.560075i \(0.810772\pi\)
\(150\) 0 0
\(151\) −20.1406 −1.63902 −0.819508 0.573068i \(-0.805753\pi\)
−0.819508 + 0.573068i \(0.805753\pi\)
\(152\) 11.8961 + 2.57107i 0.964900 + 0.208541i
\(153\) 0 0
\(154\) 18.0597 + 31.2803i 1.45529 + 2.52064i
\(155\) 1.14257 + 1.97899i 0.0917735 + 0.158956i
\(156\) 0 0
\(157\) −1.88906 3.27195i −0.150764 0.261130i 0.780745 0.624850i \(-0.214840\pi\)
−0.931508 + 0.363720i \(0.881507\pi\)
\(158\) −11.5703 + 20.0403i −0.920482 + 1.59432i
\(159\) 0 0
\(160\) 5.72889 0.452909
\(161\) 2.03163 3.51889i 0.160115 0.277328i
\(162\) 0 0
\(163\) −1.61640 −0.126606 −0.0633031 0.997994i \(-0.520163\pi\)
−0.0633031 + 0.997994i \(0.520163\pi\)
\(164\) −19.5803 −1.52897
\(165\) 0 0
\(166\) −5.54767 9.60885i −0.430583 0.745791i
\(167\) 3.24649 5.62309i 0.251221 0.435128i −0.712641 0.701529i \(-0.752501\pi\)
0.963862 + 0.266401i \(0.0858346\pi\)
\(168\) 0 0
\(169\) −6.00000 10.3923i −0.461538 0.799408i
\(170\) 0.362446 0.0277983
\(171\) 0 0
\(172\) −10.7882 −0.822589
\(173\) 4.26053 + 7.37945i 0.323922 + 0.561049i 0.981294 0.192517i \(-0.0616651\pi\)
−0.657372 + 0.753567i \(0.728332\pi\)
\(174\) 0 0
\(175\) −1.75351 + 3.03717i −0.132553 + 0.229588i
\(176\) 0.142571 + 0.246941i 0.0107467 + 0.0186139i
\(177\) 0 0
\(178\) −2.54221 −0.190547
\(179\) 10.2711 0.767698 0.383849 0.923396i \(-0.374598\pi\)
0.383849 + 0.923396i \(0.374598\pi\)
\(180\) 0 0
\(181\) −6.13355 + 10.6236i −0.455903 + 0.789648i −0.998740 0.0501908i \(-0.984017\pi\)
0.542836 + 0.839838i \(0.317350\pi\)
\(182\) 40.0702 2.97020
\(183\) 0 0
\(184\) −1.61751 + 2.80161i −0.119245 + 0.206538i
\(185\) 5.48240 + 9.49580i 0.403074 + 0.698145i
\(186\) 0 0
\(187\) 0.357429 + 0.619085i 0.0261378 + 0.0452720i
\(188\) 4.93473 + 8.54721i 0.359902 + 0.623369i
\(189\) 0 0
\(190\) −6.69024 + 7.37945i −0.485361 + 0.535362i
\(191\) −5.71085 −0.413223 −0.206611 0.978423i \(-0.566244\pi\)
−0.206611 + 0.978423i \(0.566244\pi\)
\(192\) 0 0
\(193\) 5.07930 + 8.79761i 0.365616 + 0.633266i 0.988875 0.148750i \(-0.0475249\pi\)
−0.623259 + 0.782016i \(0.714192\pi\)
\(194\) 1.85041 3.20500i 0.132852 0.230106i
\(195\) 0 0
\(196\) −8.53665 + 14.7859i −0.609761 + 1.05614i
\(197\) −16.2038 −1.15448 −0.577238 0.816576i \(-0.695869\pi\)
−0.577238 + 0.816576i \(0.695869\pi\)
\(198\) 0 0
\(199\) −0.167186 + 0.289574i −0.0118515 + 0.0205274i −0.871890 0.489701i \(-0.837106\pi\)
0.860039 + 0.510229i \(0.170439\pi\)
\(200\) 1.39608 2.41808i 0.0987178 0.170984i
\(201\) 0 0
\(202\) 28.1375 1.97974
\(203\) −6.14959 + 10.6514i −0.431617 + 0.747582i
\(204\) 0 0
\(205\) 3.03865 5.26310i 0.212229 0.367591i
\(206\) 12.1300 + 21.0098i 0.845137 + 1.46382i
\(207\) 0 0
\(208\) 0.316332 0.0219336
\(209\) −19.2023 4.15013i −1.32825 0.287071i
\(210\) 0 0
\(211\) −1.01404 1.75636i −0.0698092 0.120913i 0.829008 0.559237i \(-0.188906\pi\)
−0.898817 + 0.438324i \(0.855572\pi\)
\(212\) −9.25151 16.0241i −0.635396 1.10054i
\(213\) 0 0
\(214\) 2.48240 + 4.29965i 0.169694 + 0.293918i
\(215\) 1.67420 2.89981i 0.114180 0.197765i
\(216\) 0 0
\(217\) −8.01404 −0.544028
\(218\) 18.0757 31.3081i 1.22424 2.12045i
\(219\) 0 0
\(220\) 14.5211 0.979009
\(221\) 0.793049 0.0533463
\(222\) 0 0
\(223\) 9.61596 + 16.6553i 0.643932 + 1.11532i 0.984547 + 0.175120i \(0.0560314\pi\)
−0.340615 + 0.940203i \(0.610635\pi\)
\(224\) −10.0457 + 17.3996i −0.671205 + 1.16256i
\(225\) 0 0
\(226\) −11.2409 19.4699i −0.747736 1.29512i
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) −12.9788 −0.857666 −0.428833 0.903384i \(-0.641075\pi\)
−0.428833 + 0.903384i \(0.641075\pi\)
\(230\) −1.32379 2.29288i −0.0872884 0.151188i
\(231\) 0 0
\(232\) 4.89608 8.48026i 0.321443 0.556756i
\(233\) 13.5367 + 23.4462i 0.886815 + 1.53601i 0.843619 + 0.536943i \(0.180421\pi\)
0.0431968 + 0.999067i \(0.486246\pi\)
\(234\) 0 0
\(235\) −3.06327 −0.199825
\(236\) −9.86946 −0.642447
\(237\) 0 0
\(238\) −0.635553 + 1.10081i −0.0411968 + 0.0713549i
\(239\) −20.0602 −1.29758 −0.648792 0.760966i \(-0.724725\pi\)
−0.648792 + 0.760966i \(0.724725\pi\)
\(240\) 0 0
\(241\) 10.7922 18.6926i 0.695184 1.20409i −0.274934 0.961463i \(-0.588656\pi\)
0.970119 0.242631i \(-0.0780105\pi\)
\(242\) 10.6410 + 18.4308i 0.684030 + 1.18478i
\(243\) 0 0
\(244\) 1.40710 + 2.43717i 0.0900805 + 0.156024i
\(245\) −2.64959 4.58922i −0.169276 0.293195i
\(246\) 0 0
\(247\) −14.6386 + 16.1466i −0.931430 + 1.02738i
\(248\) 6.38049 0.405161
\(249\) 0 0
\(250\) 1.14257 + 1.97899i 0.0722626 + 0.125162i
\(251\) −3.63400 + 6.29426i −0.229376 + 0.397290i −0.957623 0.288024i \(-0.907002\pi\)
0.728248 + 0.685314i \(0.240335\pi\)
\(252\) 0 0
\(253\) 2.61094 4.52228i 0.164148 0.284313i
\(254\) −35.9015 −2.25266
\(255\) 0 0
\(256\) 7.79416 13.4999i 0.487135 0.843743i
\(257\) 7.53865 13.0573i 0.470248 0.814494i −0.529173 0.848514i \(-0.677498\pi\)
0.999421 + 0.0340202i \(0.0108311\pi\)
\(258\) 0 0
\(259\) −38.4538 −2.38940
\(260\) 8.05469 13.9511i 0.499531 0.865213i
\(261\) 0 0
\(262\) 13.1797 22.8279i 0.814242 1.41031i
\(263\) 10.0773 + 17.4544i 0.621393 + 1.07628i 0.989227 + 0.146393i \(0.0467663\pi\)
−0.367833 + 0.929892i \(0.619900\pi\)
\(264\) 0 0
\(265\) 5.74293 0.352786
\(266\) −10.6812 33.2593i −0.654908 2.03926i
\(267\) 0 0
\(268\) 13.6024 + 23.5600i 0.830897 + 1.43915i
\(269\) −3.86245 6.68995i −0.235497 0.407894i 0.723920 0.689884i \(-0.242339\pi\)
−0.959417 + 0.281991i \(0.909005\pi\)
\(270\) 0 0
\(271\) 2.64257 + 4.57707i 0.160525 + 0.278037i 0.935057 0.354497i \(-0.115348\pi\)
−0.774532 + 0.632534i \(0.782015\pi\)
\(272\) −0.00501733 + 0.00869027i −0.000304220 + 0.000526925i
\(273\) 0 0
\(274\) 0.249951 0.0151001
\(275\) −2.25351 + 3.90319i −0.135892 + 0.235371i
\(276\) 0 0
\(277\) 30.6264 1.84016 0.920082 0.391726i \(-0.128122\pi\)
0.920082 + 0.391726i \(0.128122\pi\)
\(278\) −3.29918 −0.197872
\(279\) 0 0
\(280\) 4.89608 + 8.48026i 0.292597 + 0.506792i
\(281\) 6.68122 11.5722i 0.398568 0.690341i −0.594981 0.803740i \(-0.702841\pi\)
0.993550 + 0.113399i \(0.0361738\pi\)
\(282\) 0 0
\(283\) −2.04767 3.54667i −0.121721 0.210828i 0.798725 0.601696i \(-0.205508\pi\)
−0.920447 + 0.390868i \(0.872175\pi\)
\(284\) 52.3101 3.10403
\(285\) 0 0
\(286\) 51.4959 3.04502
\(287\) 10.6566 + 18.4578i 0.629040 + 1.08953i
\(288\) 0 0
\(289\) 8.48742 14.7006i 0.499260 0.864744i
\(290\) 4.00702 + 6.94036i 0.235300 + 0.407552i
\(291\) 0 0
\(292\) −23.0642 −1.34973
\(293\) −12.1726 −0.711134 −0.355567 0.934651i \(-0.615712\pi\)
−0.355567 + 0.934651i \(0.615712\pi\)
\(294\) 0 0
\(295\) 1.53163 2.65287i 0.0891751 0.154456i
\(296\) 30.6155 1.77949
\(297\) 0 0
\(298\) −1.97539 + 3.42147i −0.114431 + 0.198200i
\(299\) −2.89652 5.01693i −0.167510 0.290136i
\(300\) 0 0
\(301\) 5.87147 + 10.1697i 0.338426 + 0.586170i
\(302\) −23.0120 39.8580i −1.32419 2.29357i
\(303\) 0 0
\(304\) −0.0843223 0.262564i −0.00483621 0.0150591i
\(305\) −0.873467 −0.0500146
\(306\) 0 0
\(307\) −12.2675 21.2480i −0.700146 1.21269i −0.968415 0.249344i \(-0.919785\pi\)
0.268269 0.963344i \(-0.413548\pi\)
\(308\) −25.4628 + 44.1029i −1.45088 + 2.51299i
\(309\) 0 0
\(310\) −2.61094 + 4.52228i −0.148291 + 0.256848i
\(311\) 10.2038 0.578606 0.289303 0.957238i \(-0.406576\pi\)
0.289303 + 0.957238i \(0.406576\pi\)
\(312\) 0 0
\(313\) 15.9910 27.6972i 0.903864 1.56554i 0.0814282 0.996679i \(-0.474052\pi\)
0.822435 0.568859i \(-0.192615\pi\)
\(314\) 4.31678 7.47687i 0.243610 0.421944i
\(315\) 0 0
\(316\) −32.6264 −1.83538
\(317\) 1.11796 1.93636i 0.0627907 0.108757i −0.832921 0.553392i \(-0.813333\pi\)
0.895712 + 0.444635i \(0.146667\pi\)
\(318\) 0 0
\(319\) −7.90310 + 13.6886i −0.442489 + 0.766413i
\(320\) 6.48240 + 11.2279i 0.362377 + 0.627656i
\(321\) 0 0
\(322\) 9.28514 0.517441
\(323\) −0.211397 0.658252i −0.0117625 0.0366261i
\(324\) 0 0
\(325\) 2.50000 + 4.33013i 0.138675 + 0.240192i
\(326\) −1.84685 3.19884i −0.102288 0.177167i
\(327\) 0 0
\(328\) −8.48441 14.6954i −0.468473 0.811419i
\(329\) 5.37147 9.30365i 0.296139 0.512927i
\(330\) 0 0
\(331\) −10.0913 −0.554670 −0.277335 0.960773i \(-0.589451\pi\)
−0.277335 + 0.960773i \(0.589451\pi\)
\(332\) 7.82179 13.5477i 0.429277 0.743529i
\(333\) 0 0
\(334\) 14.8374 0.811866
\(335\) −8.44375 −0.461331
\(336\) 0 0
\(337\) −2.80620 4.86048i −0.152863 0.264767i 0.779416 0.626507i \(-0.215516\pi\)
−0.932279 + 0.361740i \(0.882183\pi\)
\(338\) 13.7109 23.7479i 0.745772 1.29172i
\(339\) 0 0
\(340\) 0.255511 + 0.442557i 0.0138570 + 0.0240010i
\(341\) −10.2992 −0.557732
\(342\) 0 0
\(343\) −5.96481 −0.322069
\(344\) −4.67465 8.09673i −0.252040 0.436546i
\(345\) 0 0
\(346\) −9.73591 + 16.8631i −0.523406 + 0.906566i
\(347\) 2.73747 + 4.74144i 0.146955 + 0.254534i 0.930101 0.367305i \(-0.119719\pi\)
−0.783146 + 0.621838i \(0.786386\pi\)
\(348\) 0 0
\(349\) −18.8202 −1.00742 −0.503712 0.863872i \(-0.668033\pi\)
−0.503712 + 0.863872i \(0.668033\pi\)
\(350\) −8.01404 −0.428368
\(351\) 0 0
\(352\) −12.9101 + 22.3610i −0.688112 + 1.19184i
\(353\) 12.7008 0.675996 0.337998 0.941147i \(-0.390250\pi\)
0.337998 + 0.941147i \(0.390250\pi\)
\(354\) 0 0
\(355\) −8.11796 + 14.0607i −0.430856 + 0.746265i
\(356\) −1.79216 3.10411i −0.0949843 0.164518i
\(357\) 0 0
\(358\) 11.7355 + 20.3264i 0.620239 + 1.07429i
\(359\) −5.54021 9.59592i −0.292401 0.506453i 0.681976 0.731375i \(-0.261121\pi\)
−0.974377 + 0.224921i \(0.927788\pi\)
\(360\) 0 0
\(361\) 17.3042 + 7.84632i 0.910747 + 0.412964i
\(362\) −28.0321 −1.47333
\(363\) 0 0
\(364\) 28.2479 + 48.9269i 1.48059 + 2.56447i
\(365\) 3.57930 6.19954i 0.187349 0.324499i
\(366\) 0 0
\(367\) 10.3202 17.8752i 0.538712 0.933076i −0.460262 0.887783i \(-0.652244\pi\)
0.998974 0.0452932i \(-0.0144222\pi\)
\(368\) 0.0733010 0.00382108
\(369\) 0 0
\(370\) −12.5281 + 21.6993i −0.651304 + 1.12809i
\(371\) −10.0703 + 17.4422i −0.522823 + 0.905556i
\(372\) 0 0
\(373\) 4.55313 0.235752 0.117876 0.993028i \(-0.462391\pi\)
0.117876 + 0.993028i \(0.462391\pi\)
\(374\) −0.816776 + 1.41470i −0.0422345 + 0.0731522i
\(375\) 0 0
\(376\) −4.27657 + 7.40723i −0.220547 + 0.381999i
\(377\) 8.76755 + 15.1858i 0.451552 + 0.782110i
\(378\) 0 0
\(379\) −19.9187 −1.02315 −0.511577 0.859237i \(-0.670939\pi\)
−0.511577 + 0.859237i \(0.670939\pi\)
\(380\) −13.7269 2.96675i −0.704175 0.152191i
\(381\) 0 0
\(382\) −6.52506 11.3017i −0.333851 0.578247i
\(383\) −9.98742 17.2987i −0.510333 0.883923i −0.999928 0.0119734i \(-0.996189\pi\)
0.489595 0.871950i \(-0.337145\pi\)
\(384\) 0 0
\(385\) −7.90310 13.6886i −0.402779 0.697634i
\(386\) −11.6069 + 20.1038i −0.590777 + 1.02326i
\(387\) 0 0
\(388\) 5.21787 0.264897
\(389\) 6.90110 11.9531i 0.349900 0.606044i −0.636332 0.771416i \(-0.719549\pi\)
0.986231 + 0.165372i \(0.0528824\pi\)
\(390\) 0 0
\(391\) 0.183767 0.00929349
\(392\) −14.7962 −0.747319
\(393\) 0 0
\(394\) −18.5140 32.0673i −0.932724 1.61552i
\(395\) 5.06327 8.76983i 0.254761 0.441258i
\(396\) 0 0
\(397\) 8.27457 + 14.3320i 0.415289 + 0.719301i 0.995459 0.0951945i \(-0.0303473\pi\)
−0.580170 + 0.814495i \(0.697014\pi\)
\(398\) −0.764087 −0.0383002
\(399\) 0 0
\(400\) −0.0632663 −0.00316332
\(401\) 4.26253 + 7.38292i 0.212861 + 0.368685i 0.952609 0.304199i \(-0.0983887\pi\)
−0.739748 + 0.672884i \(0.765055\pi\)
\(402\) 0 0
\(403\) −5.71286 + 9.89496i −0.284578 + 0.492903i
\(404\) 19.8358 + 34.3567i 0.986869 + 1.70931i
\(405\) 0 0
\(406\) −28.1054 −1.39485
\(407\) −49.4186 −2.44959
\(408\) 0 0
\(409\) 5.78314 10.0167i 0.285958 0.495294i −0.686883 0.726768i \(-0.741022\pi\)
0.972841 + 0.231474i \(0.0743549\pi\)
\(410\) 13.8875 0.685855
\(411\) 0 0
\(412\) −17.1024 + 29.6222i −0.842573 + 1.45938i
\(413\) 5.37147 + 9.30365i 0.264313 + 0.457803i
\(414\) 0 0
\(415\) 2.42771 + 4.20492i 0.119172 + 0.206412i
\(416\) 14.3222 + 24.8068i 0.702205 + 1.21626i
\(417\) 0 0
\(418\) −13.7269 42.7430i −0.671404 2.09063i
\(419\) 21.7149 1.06084 0.530420 0.847735i \(-0.322034\pi\)
0.530420 + 0.847735i \(0.322034\pi\)
\(420\) 0 0
\(421\) 3.46135 + 5.99523i 0.168696 + 0.292190i 0.937962 0.346739i \(-0.112711\pi\)
−0.769266 + 0.638929i \(0.779378\pi\)
\(422\) 2.31722 4.01354i 0.112800 0.195376i
\(423\) 0 0
\(424\) 8.01760 13.8869i 0.389369 0.674407i
\(425\) −0.158610 −0.00769371
\(426\) 0 0
\(427\) 1.53163 2.65287i 0.0741209 0.128381i
\(428\) −3.50000 + 6.06218i −0.169179 + 0.293026i
\(429\) 0 0
\(430\) 7.65159 0.368992
\(431\) −13.9894 + 24.2304i −0.673847 + 1.16714i 0.302958 + 0.953004i \(0.402026\pi\)
−0.976805 + 0.214133i \(0.931307\pi\)
\(432\) 0 0
\(433\) −3.12698 + 5.41608i −0.150273 + 0.260280i −0.931328 0.364182i \(-0.881349\pi\)
0.781055 + 0.624462i \(0.214682\pi\)
\(434\) −9.15661 15.8597i −0.439531 0.761290i
\(435\) 0 0
\(436\) 50.9708 2.44106
\(437\) −3.39208 + 3.74152i −0.162265 + 0.178981i
\(438\) 0 0
\(439\) −15.5988 27.0179i −0.744490 1.28949i −0.950433 0.310931i \(-0.899359\pi\)
0.205942 0.978564i \(-0.433974\pi\)
\(440\) 6.29216 + 10.8983i 0.299967 + 0.519558i
\(441\) 0 0
\(442\) 0.906115 + 1.56944i 0.0430995 + 0.0746505i
\(443\) −16.3519 + 28.3223i −0.776901 + 1.34563i 0.156819 + 0.987627i \(0.449876\pi\)
−0.933720 + 0.358004i \(0.883457\pi\)
\(444\) 0 0
\(445\) 1.11250 0.0527373
\(446\) −21.9738 + 38.0598i −1.04049 + 1.80218i
\(447\) 0 0
\(448\) −45.4678 −2.14815
\(449\) −25.6304 −1.20958 −0.604788 0.796387i \(-0.706742\pi\)
−0.604788 + 0.796387i \(0.706742\pi\)
\(450\) 0 0
\(451\) 13.6953 + 23.7209i 0.644885 + 1.11697i
\(452\) 15.8489 27.4510i 0.745467 1.29119i
\(453\) 0 0
\(454\) −4.57028 7.91597i −0.214494 0.371515i
\(455\) −17.5351 −0.822058
\(456\) 0 0
\(457\) 33.1646 1.55138 0.775688 0.631116i \(-0.217403\pi\)
0.775688 + 0.631116i \(0.217403\pi\)
\(458\) −14.8293 25.6850i −0.692926 1.20018i
\(459\) 0 0
\(460\) 1.86645 3.23278i 0.0870236 0.150729i
\(461\) 1.08788 + 1.88426i 0.0506677 + 0.0877590i 0.890247 0.455478i \(-0.150532\pi\)
−0.839579 + 0.543237i \(0.817198\pi\)
\(462\) 0 0
\(463\) −6.20072 −0.288172 −0.144086 0.989565i \(-0.546024\pi\)
−0.144086 + 0.989565i \(0.546024\pi\)
\(464\) −0.221876 −0.0103003
\(465\) 0 0
\(466\) −30.9332 + 53.5778i −1.43295 + 2.48195i
\(467\) 17.1546 0.793821 0.396910 0.917857i \(-0.370082\pi\)
0.396910 + 0.917857i \(0.370082\pi\)
\(468\) 0 0
\(469\) 14.8062 25.6451i 0.683687 1.18418i
\(470\) −3.50000 6.06218i −0.161443 0.279627i
\(471\) 0 0
\(472\) −4.27657 7.40723i −0.196845 0.340945i
\(473\) 7.54567 + 13.0695i 0.346950 + 0.600936i
\(474\) 0 0
\(475\) 2.92771 3.22932i 0.134333 0.148171i
\(476\) −1.79216 −0.0821436
\(477\) 0 0
\(478\) −22.9202 39.6989i −1.04834 1.81578i
\(479\) −17.8891 + 30.9848i −0.817372 + 1.41573i 0.0902399 + 0.995920i \(0.471237\pi\)
−0.907612 + 0.419810i \(0.862097\pi\)
\(480\) 0 0
\(481\) −27.4120 + 47.4790i −1.24988 + 2.16486i
\(482\) 49.3233 2.24661
\(483\) 0 0
\(484\) −15.0030 + 25.9860i −0.681955 + 1.18118i
\(485\) −0.809757 + 1.40254i −0.0367692 + 0.0636861i
\(486\) 0 0
\(487\) −23.7149 −1.07462 −0.537311 0.843384i \(-0.680560\pi\)
−0.537311 + 0.843384i \(0.680560\pi\)
\(488\) −1.21943 + 2.11212i −0.0552010 + 0.0956110i
\(489\) 0 0
\(490\) 6.05469 10.4870i 0.273523 0.473756i
\(491\) −19.5933 33.9367i −0.884235 1.53154i −0.846588 0.532249i \(-0.821347\pi\)
−0.0376474 0.999291i \(-0.511986\pi\)
\(492\) 0 0
\(493\) −0.556248 −0.0250521
\(494\) −48.6796 10.5210i −2.19020 0.473361i
\(495\) 0 0
\(496\) −0.0722863 0.125204i −0.00324575 0.00562180i
\(497\) −28.4698 49.3112i −1.27705 2.21191i
\(498\) 0 0
\(499\) 4.68824 + 8.12027i 0.209875 + 0.363513i 0.951675 0.307107i \(-0.0993611\pi\)
−0.741800 + 0.670621i \(0.766028\pi\)
\(500\) −1.61094 + 2.79023i −0.0720433 + 0.124783i
\(501\) 0 0
\(502\) −16.6084 −0.741269
\(503\) 6.74649 11.6853i 0.300811 0.521020i −0.675509 0.737352i \(-0.736076\pi\)
0.976320 + 0.216332i \(0.0694093\pi\)
\(504\) 0 0
\(505\) −12.3132 −0.547931
\(506\) 11.9327 0.530475
\(507\) 0 0
\(508\) −25.3092 43.8368i −1.12291 1.94495i
\(509\) 12.8534 22.2628i 0.569718 0.986781i −0.426875 0.904310i \(-0.640386\pi\)
0.996594 0.0824703i \(-0.0262809\pi\)
\(510\) 0 0
\(511\) 12.5527 + 21.7419i 0.555298 + 0.961805i
\(512\) −0.715746 −0.0316318
\(513\) 0 0
\(514\) 34.4538 1.51969
\(515\) −5.30820 9.19407i −0.233907 0.405139i
\(516\) 0 0
\(517\) 6.90310 11.9565i 0.303598 0.525847i
\(518\) −43.9362 76.0997i −1.93045 3.34363i
\(519\) 0 0
\(520\) 13.9608 0.612222
\(521\) 37.7358 1.65324 0.826618 0.562763i \(-0.190262\pi\)
0.826618 + 0.562763i \(0.190262\pi\)
\(522\) 0 0
\(523\) −19.2003 + 33.2559i −0.839570 + 1.45418i 0.0506855 + 0.998715i \(0.483859\pi\)
−0.890255 + 0.455462i \(0.849474\pi\)
\(524\) 37.1646 1.62354
\(525\) 0 0
\(526\) −23.0281 + 39.8858i −1.00407 + 1.73910i
\(527\) −0.181223 0.313888i −0.00789420 0.0136732i
\(528\) 0 0
\(529\) 10.8288 + 18.7561i 0.470818 + 0.815481i
\(530\) 6.56171 + 11.3652i 0.285022 + 0.493673i
\(531\) 0 0
\(532\) 33.0808 36.4886i 1.43423 1.58198i
\(533\) 30.3865 1.31619
\(534\) 0 0
\(535\) −1.08632 1.88157i −0.0469659 0.0813473i
\(536\) −11.7882 + 20.4177i −0.509171 + 0.881910i
\(537\) 0 0
\(538\) 8.82624 15.2875i 0.380526 0.659091i
\(539\) 23.8835 1.02874
\(540\) 0 0
\(541\) 6.40310 11.0905i 0.275291 0.476818i −0.694918 0.719089i \(-0.744559\pi\)
0.970208 + 0.242272i \(0.0778926\pi\)
\(542\) −6.03865 + 10.4593i −0.259382 + 0.449263i
\(543\) 0 0
\(544\) −0.908659 −0.0389584
\(545\) −7.91012 + 13.7007i −0.338832 + 0.586875i
\(546\) 0 0
\(547\) 9.12853 15.8111i 0.390308 0.676033i −0.602182 0.798359i \(-0.705702\pi\)
0.992490 + 0.122326i \(0.0390352\pi\)
\(548\) 0.176206 + 0.305197i 0.00752714 + 0.0130374i
\(549\) 0 0
\(550\) −10.2992 −0.439159
\(551\) 10.2675 11.3253i 0.437412 0.482473i
\(552\) 0 0
\(553\) 17.7570 + 30.7560i 0.755103 + 1.30788i
\(554\) 34.9929 + 60.6095i 1.48671 + 2.57505i
\(555\) 0 0
\(556\) −2.32580 4.02840i −0.0986357 0.170842i
\(557\) 7.45233 12.9078i 0.315765 0.546922i −0.663835 0.747879i \(-0.731072\pi\)
0.979600 + 0.200958i \(0.0644054\pi\)
\(558\) 0 0
\(559\) 16.7420 0.708113
\(560\) 0.110938 0.192150i 0.00468799 0.00811984i
\(561\) 0 0
\(562\) 30.5351 1.28805
\(563\) −45.7810 −1.92944 −0.964720 0.263276i \(-0.915197\pi\)
−0.964720 + 0.263276i \(0.915197\pi\)
\(564\) 0 0
\(565\) 4.91914 + 8.52020i 0.206950 + 0.358447i
\(566\) 4.67922 8.10465i 0.196682 0.340664i
\(567\) 0 0
\(568\) 22.6666 + 39.2598i 0.951071 + 1.64730i
\(569\) −0.379598 −0.0159136 −0.00795679 0.999968i \(-0.502533\pi\)
−0.00795679 + 0.999968i \(0.502533\pi\)
\(570\) 0 0
\(571\) −15.8514 −0.663361 −0.331681 0.943392i \(-0.607616\pi\)
−0.331681 + 0.943392i \(0.607616\pi\)
\(572\) 36.3026 + 62.8780i 1.51789 + 2.62906i
\(573\) 0 0
\(574\) −24.3519 + 42.1787i −1.01643 + 1.76050i
\(575\) 0.579305 + 1.00339i 0.0241587 + 0.0418441i
\(576\) 0 0
\(577\) −19.2350 −0.800765 −0.400382 0.916348i \(-0.631123\pi\)
−0.400382 + 0.916348i \(0.631123\pi\)
\(578\) 38.7899 1.61345
\(579\) 0 0
\(580\) −5.64959 + 9.78538i −0.234586 + 0.406316i
\(581\) −17.0281 −0.706444
\(582\) 0 0
\(583\) −12.9418 + 22.4158i −0.535993 + 0.928366i
\(584\) −9.99400 17.3101i −0.413554 0.716297i
\(585\) 0 0
\(586\) −13.9081 24.0896i −0.574539 0.995131i
\(587\) 20.4242 + 35.3757i 0.842995 + 1.46011i 0.887351 + 0.461095i \(0.152543\pi\)
−0.0443559 + 0.999016i \(0.514124\pi\)
\(588\) 0 0
\(589\) 9.73591 + 2.10419i 0.401161 + 0.0867018i
\(590\) 7.00000 0.288185
\(591\) 0 0
\(592\) −0.346852 0.600764i −0.0142555 0.0246913i
\(593\) −7.12342 + 12.3381i −0.292524 + 0.506666i −0.974406 0.224796i \(-0.927828\pi\)
0.681882 + 0.731462i \(0.261162\pi\)
\(594\) 0 0
\(595\) 0.278124 0.481725i 0.0114020 0.0197488i
\(596\) −5.57028 −0.228168
\(597\) 0 0
\(598\) 6.61897 11.4644i 0.270670 0.468814i
\(599\) −7.92571 + 13.7277i −0.323836 + 0.560900i −0.981276 0.192607i \(-0.938306\pi\)
0.657440 + 0.753507i \(0.271639\pi\)
\(600\) 0 0
\(601\) 16.4718 0.671900 0.335950 0.941880i \(-0.390943\pi\)
0.335950 + 0.941880i \(0.390943\pi\)
\(602\) −13.4171 + 23.2392i −0.546842 + 0.947158i
\(603\) 0 0
\(604\) 32.4452 56.1968i 1.32018 2.28661i
\(605\) −4.65661 8.06548i −0.189318 0.327908i
\(606\) 0 0
\(607\) −10.3914 −0.421774 −0.210887 0.977510i \(-0.567635\pi\)
−0.210887 + 0.977510i \(0.567635\pi\)
\(608\) 16.7726 18.5004i 0.680217 0.750291i
\(609\) 0 0
\(610\) −0.997999 1.72858i −0.0404078 0.0699883i
\(611\) −7.65817 13.2643i −0.309816 0.536617i
\(612\) 0 0
\(613\) 10.8925 + 18.8664i 0.439945 + 0.762007i 0.997685 0.0680090i \(-0.0216647\pi\)
−0.557740 + 0.830016i \(0.688331\pi\)
\(614\) 28.0331 48.5547i 1.13132 1.95951i
\(615\) 0 0
\(616\) −44.1335 −1.77819
\(617\) −21.3855 + 37.0408i −0.860948 + 1.49121i 0.0100671 + 0.999949i \(0.496795\pi\)
−0.871015 + 0.491256i \(0.836538\pi\)
\(618\) 0 0
\(619\) 28.7882 1.15709 0.578547 0.815649i \(-0.303620\pi\)
0.578547 + 0.815649i \(0.303620\pi\)
\(620\) −7.36245 −0.295683
\(621\) 0 0
\(622\) 11.6586 + 20.1933i 0.467468 + 0.809678i
\(623\) −1.95077 + 3.37883i −0.0781560 + 0.135370i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 73.0833 2.92100
\(627\) 0 0
\(628\) 12.1726 0.485742
\(629\) −0.869563 1.50613i −0.0346718 0.0600532i
\(630\) 0 0
\(631\) 9.69370 16.7900i 0.385900 0.668399i −0.605993 0.795470i \(-0.707224\pi\)
0.991894 + 0.127071i \(0.0405576\pi\)
\(632\) −14.1375 24.4868i −0.562358 0.974032i
\(633\) 0 0
\(634\) 5.10938 0.202919
\(635\) 15.7109 0.623466
\(636\) 0 0
\(637\) 13.2479 22.9461i 0.524903 0.909158i
\(638\) −36.1194 −1.42998
\(639\) 0 0
\(640\) −9.08432 + 15.7345i −0.359089 + 0.621961i
\(641\) 20.3433 + 35.2356i 0.803512 + 1.39172i 0.917291 + 0.398217i \(0.130371\pi\)
−0.113779 + 0.993506i \(0.536296\pi\)
\(642\) 0 0
\(643\) 17.0527 + 29.5361i 0.672492 + 1.16479i 0.977195 + 0.212344i \(0.0681096\pi\)
−0.304703 + 0.952448i \(0.598557\pi\)
\(644\) 6.54567 + 11.3374i 0.257936 + 0.446757i
\(645\) 0 0
\(646\) 1.06114 1.17045i 0.0417499 0.0460509i
\(647\) 48.0029 1.88719 0.943595 0.331103i \(-0.107421\pi\)
0.943595 + 0.331103i \(0.107421\pi\)
\(648\) 0 0
\(649\) 6.90310 + 11.9565i 0.270970 + 0.469334i
\(650\) −5.71286 + 9.89496i −0.224077 + 0.388112i
\(651\) 0 0
\(652\) 2.60392 4.51012i 0.101977 0.176630i
\(653\) −3.90866 −0.152958 −0.0764788 0.997071i \(-0.524368\pi\)
−0.0764788 + 0.997071i \(0.524368\pi\)
\(654\) 0 0
\(655\) −5.76755 + 9.98968i −0.225357 + 0.390329i
\(656\) −0.192244 + 0.332977i −0.00750588 + 0.0130006i
\(657\) 0 0
\(658\) 24.5491 0.957025
\(659\) 6.54411 11.3347i 0.254922 0.441539i −0.709952 0.704250i \(-0.751283\pi\)
0.964874 + 0.262711i \(0.0846167\pi\)
\(660\) 0 0
\(661\) 11.9714 20.7350i 0.465633 0.806500i −0.533597 0.845739i \(-0.679160\pi\)
0.999230 + 0.0392391i \(0.0124934\pi\)
\(662\) −11.5301 19.9707i −0.448129 0.776182i
\(663\) 0 0
\(664\) 13.5571 0.526119
\(665\) 4.67420 + 14.5546i 0.181258 + 0.564403i
\(666\) 0 0
\(667\) 2.03163 + 3.51889i 0.0786652 + 0.136252i
\(668\) 10.4598 + 18.1169i 0.404701 + 0.700963i
\(669\) 0 0
\(670\) −9.64759 16.7101i −0.372719 0.645568i
\(671\) 1.96837 3.40931i 0.0759880 0.131615i
\(672\) 0 0
\(673\) −11.3304 −0.436754 −0.218377 0.975865i \(-0.570076\pi\)
−0.218377 + 0.975865i \(0.570076\pi\)
\(674\) 6.41256 11.1069i 0.247003 0.427821i
\(675\) 0 0
\(676\) 38.6625 1.48702
\(677\) −8.90466 −0.342234 −0.171117 0.985251i \(-0.554738\pi\)
−0.171117 + 0.985251i \(0.554738\pi\)
\(678\) 0 0
\(679\) −2.83983 4.91873i −0.108983 0.188764i
\(680\) −0.221432 + 0.383532i −0.00849153 + 0.0147078i
\(681\) 0 0
\(682\) −11.7675 20.3820i −0.450603 0.780467i
\(683\) 26.6977 1.02156 0.510780 0.859712i \(-0.329357\pi\)
0.510780 + 0.859712i \(0.329357\pi\)
\(684\) 0 0
\(685\) −0.109381 −0.00417923
\(686\) −6.81522 11.8043i −0.260206 0.450690i
\(687\) 0 0
\(688\) −0.105921 + 0.183460i −0.00403819 + 0.00699435i
\(689\) 14.3573 + 24.8676i 0.546971 + 0.947381i
\(690\) 0 0
\(691\) 35.9708 1.36840 0.684198 0.729297i \(-0.260153\pi\)
0.684198 + 0.729297i \(0.260153\pi\)
\(692\) −27.4538 −1.04364
\(693\) 0 0
\(694\) −6.25551 + 10.8349i −0.237456 + 0.411286i
\(695\) 1.44375 0.0547646
\(696\) 0 0
\(697\) −0.481960 + 0.834779i −0.0182555 + 0.0316195i
\(698\) −21.5035 37.2451i −0.813918 1.40975i
\(699\) 0 0
\(700\) −5.64959 9.78538i −0.213534 0.369852i
\(701\) 1.22543 + 2.12252i 0.0462840 + 0.0801663i 0.888239 0.459381i \(-0.151929\pi\)
−0.841955 + 0.539547i \(0.818595\pi\)
\(702\) 0 0
\(703\) 46.7159 + 10.0966i 1.76192 + 0.380799i
\(704\) −58.4326 −2.20226
\(705\) 0 0
\(706\) 14.5116 + 25.1348i 0.546151 + 0.945961i
\(707\) 21.5913 37.3973i 0.812026 1.40647i
\(708\) 0 0
\(709\) 25.1440 43.5507i 0.944304 1.63558i 0.187165 0.982329i \(-0.440070\pi\)
0.757139 0.653254i \(-0.226597\pi\)
\(710\) −37.1014 −1.39239
\(711\) 0 0
\(712\) 1.55313 2.69011i 0.0582061 0.100816i
\(713\) −1.32379 + 2.29288i −0.0495765 + 0.0858690i
\(714\) 0 0
\(715\) −22.5351 −0.842765
\(716\) −16.5461 + 28.6587i −0.618357 + 1.07103i
\(717\) 0 0
\(718\) 12.6602 21.9281i 0.472473 0.818348i
\(719\) −24.0491 41.6543i −0.896881 1.55344i −0.831459 0.555586i \(-0.812494\pi\)
−0.0654223 0.997858i \(-0.520839\pi\)
\(720\) 0 0
\(721\) 37.2319 1.38659
\(722\) 4.24347 + 43.2098i 0.157926 + 1.60810i
\(723\) 0 0
\(724\) −19.7615 34.2280i −0.734432 1.27207i
\(725\) −1.75351 3.03717i −0.0651237 0.112798i
\(726\) 0 0
\(727\) 8.33983 + 14.4450i 0.309307 + 0.535736i 0.978211 0.207613i \(-0.0665695\pi\)
−0.668904 + 0.743349i \(0.733236\pi\)
\(728\) −24.4804 + 42.4013i −0.907304 + 1.57150i
\(729\) 0 0
\(730\) 16.3584 0.605453
\(731\) −0.265545 + 0.459938i −0.00982155 + 0.0170114i
\(732\) 0 0
\(733\) −4.13365 −0.152680 −0.0763399 0.997082i \(-0.524323\pi\)
−0.0763399 + 0.997082i \(0.524323\pi\)
\(734\) 47.1664 1.74094
\(735\) 0 0
\(736\) 3.31878 + 5.74829i 0.122332 + 0.211885i
\(737\) 19.0281 32.9576i 0.700908 1.21401i
\(738\) 0 0
\(739\) −23.4870 40.6806i −0.863982 1.49646i −0.868054 0.496470i \(-0.834629\pi\)
0.00407159 0.999992i \(-0.498704\pi\)
\(740\) −35.3273 −1.29866
\(741\) 0 0
\(742\) −46.0241 −1.68960
\(743\) 20.6069 + 35.6923i 0.755995 + 1.30942i 0.944878 + 0.327422i \(0.106180\pi\)
−0.188883 + 0.982000i \(0.560487\pi\)
\(744\) 0 0
\(745\) 0.864447 1.49727i 0.0316709 0.0548556i
\(746\) 5.20228 + 9.01061i 0.190469 + 0.329902i
\(747\) 0 0
\(748\) −2.30318 −0.0842127
\(749\) 7.61951 0.278411
\(750\) 0 0
\(751\) −2.98942 + 5.17783i −0.109086 + 0.188942i −0.915400 0.402545i \(-0.868126\pi\)
0.806314 + 0.591487i \(0.201459\pi\)
\(752\) 0.193802 0.00706722
\(753\) 0 0
\(754\) −20.0351 + 34.7018i −0.729635 + 1.26376i
\(755\) 10.0703 + 17.4422i 0.366495 + 0.634788i
\(756\) 0 0
\(757\) −18.1968 31.5178i −0.661375 1.14553i −0.980255 0.197739i \(-0.936640\pi\)
0.318880 0.947795i \(-0.396693\pi\)
\(758\) −22.7585 39.4189i −0.826627 1.43176i
\(759\) 0 0
\(760\) −3.72143 11.5878i −0.134991 0.420335i
\(761\) 2.71397 0.0983813 0.0491907 0.998789i \(-0.484336\pi\)
0.0491907 + 0.998789i \(0.484336\pi\)
\(762\) 0 0
\(763\) −27.7409 48.0487i −1.00429 1.73948i
\(764\) 9.19983 15.9346i 0.332838 0.576493i
\(765\) 0 0
\(766\) 22.8227 39.5300i 0.824617 1.42828i
\(767\) 15.3163 0.553041
\(768\) 0 0
\(769\) −19.8995 + 34.4670i −0.717596 + 1.24291i 0.244354 + 0.969686i \(0.421424\pi\)
−0.961950 + 0.273226i \(0.911909\pi\)
\(770\) 18.0597 31.2803i 0.650827 1.12726i
\(771\) 0 0
\(772\) −32.7298 −1.17797
\(773\) 22.4874 38.9494i 0.808816 1.40091i −0.104868 0.994486i \(-0.533442\pi\)
0.913684 0.406425i \(-0.133225\pi\)
\(774\) 0 0
\(775\) 1.14257 1.97899i 0.0410424 0.0710875i
\(776\) 2.26097 + 3.91612i 0.0811642 + 0.140580i
\(777\) 0 0
\(778\) 31.5400 1.13076
\(779\) −8.09992 25.2216i −0.290210 0.903658i
\(780\) 0 0
\(781\) −36.5878 63.3719i −1.30921 2.26762i
\(782\) 0.209967 + 0.363673i 0.00750840 + 0.0130049i
\(783\) 0 0
\(784\) 0.167630 + 0.290343i 0.00598678 + 0.0103694i
\(785\) −1.88906 + 3.27195i −0.0674235 + 0.116781i
\(786\) 0 0
\(787\) −17.7149 −0.631466 −0.315733 0.948848i \(-0.602250\pi\)
−0.315733 + 0.948848i \(0.602250\pi\)
\(788\) 26.1034 45.2124i 0.929894 1.61062i
\(789\) 0 0
\(790\) 23.1406 0.823305
\(791\) −34.5030 −1.22679
\(792\) 0 0
\(793\) −2.18367 3.78222i −0.0775443 0.134311i
\(794\) −18.9086 + 32.7506i −0.671040 + 1.16227i
\(795\) 0 0
\(796\) −0.538652 0.932972i −0.0190920 0.0330683i
\(797\) −25.4930 −0.903008 −0.451504 0.892269i \(-0.649112\pi\)
−0.451504 + 0.892269i \(0.649112\pi\)
\(798\) 0 0
\(799\) 0.485864 0.0171886
\(800\) −2.86445 4.96137i −0.101274 0.175411i
\(801\) 0 0
\(802\) −9.74049 + 16.8710i −0.343949 + 0.595736i
\(803\) 16.1320 + 27.9414i 0.569286 + 0.986032i
\(804\) 0 0
\(805\) −4.06327 −0.143211
\(806\) −26.1094 −0.919664
\(807\) 0 0
\(808\) −17.1902 + 29.7744i −0.604751 + 1.04746i
\(809\) 20.4678 0.719610 0.359805 0.933027i \(-0.382843\pi\)
0.359805 + 0.933027i \(0.382843\pi\)
\(810\) 0 0
\(811\) 11.4508 19.8333i 0.402091 0.696442i −0.591887 0.806021i \(-0.701617\pi\)
0.993978 + 0.109579i \(0.0349502\pi\)
\(812\) −19.8132 34.3175i −0.695308 1.20431i
\(813\) 0 0
\(814\) −56.4643 97.7990i −1.97907 3.42785i
\(815\) 0.808200 + 1.39984i 0.0283100 + 0.0490344i
\(816\) 0 0
\(817\) −4.46281 13.8963i −0.156134 0.486171i
\(818\) 26.4306 0.924124
\(819\) 0 0
\(820\) 9.79016 + 16.9571i 0.341887 + 0.592166i
\(821\) 15.3609 26.6058i 0.536099 0.928550i −0.463011 0.886353i \(-0.653231\pi\)
0.999109 0.0421975i \(-0.0134359\pi\)
\(822\) 0 0
\(823\) −2.09846 + 3.63464i −0.0731476 + 0.126695i −0.900279 0.435313i \(-0.856638\pi\)
0.827132 + 0.562008i \(0.189971\pi\)
\(824\) −29.6427 −1.03265
\(825\) 0 0
\(826\) −12.2746 + 21.2602i −0.427087 + 0.739736i
\(827\) −10.6652 + 18.4726i −0.370865 + 0.642357i −0.989699 0.143165i \(-0.954272\pi\)
0.618834 + 0.785522i \(0.287605\pi\)
\(828\) 0 0
\(829\) 34.0390 1.18222 0.591112 0.806590i \(-0.298689\pi\)
0.591112 + 0.806590i \(0.298689\pi\)
\(830\) −5.54767 + 9.60885i −0.192562 + 0.333528i
\(831\) 0 0
\(832\) −32.4120 + 56.1393i −1.12368 + 1.94628i
\(833\) 0.420251 + 0.727896i 0.0145608 + 0.0252201i
\(834\) 0 0
\(835\) −6.49298 −0.224699
\(836\) 42.5135 46.8931i 1.47036 1.62183i
\(837\) 0 0
\(838\) 24.8108 + 42.9735i 0.857074 + 1.48450i
\(839\) 5.20584 + 9.01678i 0.179725 + 0.311294i 0.941786 0.336212i \(-0.109146\pi\)
−0.762061 + 0.647505i \(0.775812\pi\)
\(840\) 0 0
\(841\) 8.35041 + 14.4633i 0.287945 + 0.498736i
\(842\) −7.90967 + 13.7000i −0.272585 + 0.472132i
\(843\) 0 0
\(844\) 6.53421 0.224917
\(845\) −6.00000 + 10.3923i −0.206406 + 0.357506i
\(846\) 0 0
\(847\) 32.6616 1.12227
\(848\) −0.363334 −0.0124769
\(849\) 0 0
\(850\) −0.181223 0.313888i −0.00621590 0.0107663i
\(851\) −6.35197 + 11.0019i −0.217743 + 0.377141i
\(852\) 0 0
\(853\) 6.56527 + 11.3714i 0.224790 + 0.389349i 0.956257 0.292529i \(-0.0944969\pi\)
−0.731466 + 0.681878i \(0.761164\pi\)
\(854\) 7.00000 0.239535
\(855\) 0 0
\(856\) −6.06638 −0.207345
\(857\) −21.6230 37.4521i −0.738627 1.27934i −0.953114 0.302612i \(-0.902141\pi\)
0.214487 0.976727i \(-0.431192\pi\)
\(858\) 0 0
\(859\) −15.7344 + 27.2527i −0.536849 + 0.929850i 0.462222 + 0.886764i \(0.347052\pi\)
−0.999071 + 0.0430861i \(0.986281\pi\)
\(860\) 5.39408 + 9.34282i 0.183937 + 0.318587i
\(861\) 0 0
\(862\) −63.9356 −2.17766
\(863\) 23.7842 0.809622 0.404811 0.914400i \(-0.367337\pi\)
0.404811 + 0.914400i \(0.367337\pi\)
\(864\) 0 0
\(865\) 4.26053 7.37945i 0.144862 0.250909i
\(866\) −14.2912 −0.485634
\(867\) 0 0
\(868\) 12.9101 22.3610i 0.438198 0.758981i
\(869\) 22.8202 + 39.5258i 0.774123 + 1.34082i
\(870\) 0 0
\(871\) −21.1094 36.5625i −0.715264 1.23887i
\(872\) 22.0863 + 38.2546i 0.747937 + 1.29547i
\(873\) 0 0
\(874\) −11.2801 2.43794i −0.381556 0.0824646i
\(875\) 3.50702 0.118559
\(876\) 0 0
\(877\) 19.0848 + 33.0558i 0.644447 + 1.11621i 0.984429 + 0.175783i \(0.0562456\pi\)
−0.339982 + 0.940432i \(0.610421\pi\)
\(878\) 35.6455 61.7398i 1.20298 2.08362i
\(879\) 0 0
\(880\) 0.142571 0.246941i 0.00480608 0.00832437i
\(881\) −5.49209 −0.185033 −0.0925167 0.995711i \(-0.529491\pi\)
−0.0925167 + 0.995711i \(0.529491\pi\)
\(882\) 0 0
\(883\) 17.1491 29.7032i 0.577115 0.999592i −0.418694 0.908128i \(-0.637512\pi\)
0.995808 0.0914644i \(-0.0291548\pi\)
\(884\) −1.27755 + 2.21279i −0.0429688 + 0.0744241i
\(885\) 0 0
\(886\) −74.7327 −2.51069
\(887\) −18.7585 + 32.4907i −0.629850 + 1.09093i 0.357732 + 0.933824i \(0.383550\pi\)
−0.987582 + 0.157107i \(0.949783\pi\)
\(888\) 0 0
\(889\) −27.5491 + 47.7165i −0.923968 + 1.60036i
\(890\) 1.27111 + 2.20162i 0.0426075 + 0.0737984i
\(891\) 0 0
\(892\) −61.9628 −2.07467
\(893\) −8.96837 + 9.89226i −0.300115 + 0.331032i
\(894\) 0 0
\(895\) −5.13555 8.89504i −0.171663 0.297328i
\(896\) −31.8589 55.1812i −1.06433 1.84347i
\(897\) 0 0
\(898\) −29.2846 50.7224i −0.977240 1.69263i
\(899\) 4.00702 6.94036i 0.133642 0.231474i
\(900\) 0 0
\(901\) −0.910886 −0.0303460
\(902\) −31.2956 + 54.2056i −1.04203 + 1.80485i
\(903\) 0 0
\(904\) 27.4701 0.913640
\(905\) 12.2671 0.407772
\(906\) 0 0
\(907\) 11.1265 + 19.2717i 0.369450 + 0.639907i 0.989480 0.144672i \(-0.0462126\pi\)
−0.620029 + 0.784579i \(0.712879\pi\)
\(908\) 6.44375 11.1609i 0.213843 0.370388i
\(909\) 0 0
\(910\) −20.0351 34.7018i −0.664157 1.15035i
\(911\) −10.0421 −0.332710 −0.166355 0.986066i \(-0.553200\pi\)
−0.166355 + 0.986066i \(0.553200\pi\)
\(912\) 0 0
\(913\) −21.8835 −0.724238
\(914\) 37.8930 + 65.6325i 1.25339 + 2.17093i
\(915\) 0 0
\(916\) 20.9081 36.2139i 0.690824 1.19654i
\(917\) −20.2269 35.0340i −0.667951 1.15692i
\(918\) 0 0
\(919\) 6.06104 0.199935 0.0999676 0.994991i \(-0.468126\pi\)
0.0999676 + 0.994991i \(0.468126\pi\)
\(920\) 3.23503 0.106656
\(921\) 0 0
\(922\) −2.48596 + 4.30581i −0.0818708 + 0.141804i
\(923\) −81.1796 −2.67206
\(924\) 0 0
\(925\) 5.48240 9.49580i 0.180260 0.312220i
\(926\) −7.08477 12.2712i −0.232820 0.403256i
\(927\) 0 0
\(928\) −10.0457 17.3996i −0.329765 0.571170i
\(929\) −25.9382 44.9263i −0.851004 1.47398i −0.880303 0.474412i \(-0.842661\pi\)
0.0292983 0.999571i \(-0.490673\pi\)
\(930\) 0 0
\(931\) −22.5773 4.87957i −0.739941 0.159921i
\(932\) −87.2268 −2.85721
\(933\) 0 0
\(934\) 19.6004 + 33.9488i 0.641343 + 1.11084i
\(935\) 0.357429 0.619085i 0.0116892 0.0202462i
\(936\) 0 0
\(937\) −12.5999 + 21.8237i −0.411621 + 0.712949i −0.995067 0.0992029i \(-0.968371\pi\)
0.583446 + 0.812152i \(0.301704\pi\)
\(938\) 67.6685 2.20946
\(939\) 0 0
\(940\) 4.93473 8.54721i 0.160953 0.278779i
\(941\) −0.967923 + 1.67649i −0.0315534 + 0.0546521i −0.881371 0.472425i \(-0.843379\pi\)
0.849817 + 0.527077i \(0.176712\pi\)
\(942\) 0 0
\(943\) 7.04122 0.229294
\(944\) −0.0969008 + 0.167837i −0.00315385 + 0.00546263i
\(945\) 0 0
\(946\) −17.2429 + 29.8656i −0.560616 + 0.971016i
\(947\) 15.6812 + 27.1607i 0.509571 + 0.882603i 0.999939 + 0.0110875i \(0.00352932\pi\)
−0.490367 + 0.871516i \(0.663137\pi\)
\(948\) 0 0
\(949\) 35.7930 1.16189
\(950\) 9.73591 + 2.10419i 0.315875 + 0.0682691i
\(951\) 0 0
\(952\) −0.776567 1.34505i −0.0251687 0.0435934i
\(953\) 26.4542 + 45.8201i 0.856937 + 1.48426i 0.874837 + 0.484418i \(0.160969\pi\)
−0.0179001 + 0.999840i \(0.505698\pi\)
\(954\) 0 0
\(955\) 2.85543 + 4.94575i 0.0923995 + 0.160041i
\(956\) 32.3157 55.9724i 1.04516 1.81028i
\(957\) 0 0
\(958\) −81.7581 −2.64148
\(959\) 0.191800 0.332208i 0.00619355 0.0107275i
\(960\) 0 0
\(961\) −25.7781 −0.831552
\(962\) −125.281 −4.03921
\(963\) 0 0
\(964\) 34.7710 + 60.2252i 1.11990 + 1.93972i
\(965\) 5.07930 8.79761i 0.163509 0.283205i
\(966\) 0 0
\(967\) 30.0140 + 51.9858i 0.965186 + 1.67175i 0.709113 + 0.705094i \(0.249095\pi\)
0.256073 + 0.966657i \(0.417571\pi\)
\(968\) −26.0040 −0.835800
\(969\) 0 0
\(970\) −3.70082 −0.118826
\(971\) 0.875025 + 1.51559i 0.0280809 + 0.0486375i 0.879724 0.475484i \(-0.157727\pi\)
−0.851643 + 0.524122i \(0.824394\pi\)
\(972\) 0 0
\(973\) −2.53163 + 4.38492i −0.0811604 + 0.140574i
\(974\) −27.0959 46.9315i −0.868209 1.50378i
\(975\) 0 0
\(976\) 0.0552611 0.00176886
\(977\) −5.47583 −0.175187 −0.0875937 0.996156i \(-0.527918\pi\)
−0.0875937 + 0.996156i \(0.527918\pi\)
\(978\) 0 0
\(979\) −2.50702 + 4.34228i −0.0801247 + 0.138780i
\(980\) 17.0733 0.545387
\(981\) 0 0
\(982\) 44.7736 77.5501i 1.42878 2.47472i
\(983\) 2.52963 + 4.38145i 0.0806827 + 0.139747i 0.903543 0.428497i \(-0.140957\pi\)
−0.822861 + 0.568243i \(0.807623\pi\)
\(984\) 0 0
\(985\) 8.10192 + 14.0329i 0.258149 + 0.447126i
\(986\) −0.635553 1.10081i −0.0202401 0.0350569i
\(987\) 0 0
\(988\) −21.4708 66.8561i −0.683078 2.12698i
\(989\) 3.87950 0.123361
\(990\) 0 0
\(991\) −0.0492290 0.0852672i −0.00156381 0.00270860i 0.865242 0.501354i \(-0.167164\pi\)
−0.866806 + 0.498645i \(0.833831\pi\)
\(992\) 6.54567 11.3374i 0.207825 0.359964i
\(993\) 0 0
\(994\) 65.0576 112.683i 2.06350 3.57409i
\(995\) 0.334372 0.0106003
\(996\) 0 0
\(997\) −9.17967 + 15.8996i −0.290723 + 0.503547i −0.973981 0.226630i \(-0.927229\pi\)
0.683258 + 0.730177i \(0.260562\pi\)
\(998\) −10.7133 + 18.5560i −0.339124 + 0.587379i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.k.g.406.3 6
3.2 odd 2 95.2.e.b.26.1 yes 6
12.11 even 2 1520.2.q.j.881.1 6
15.2 even 4 475.2.j.b.349.5 12
15.8 even 4 475.2.j.b.349.2 12
15.14 odd 2 475.2.e.d.26.3 6
19.11 even 3 inner 855.2.k.g.676.3 6
57.11 odd 6 95.2.e.b.11.1 6
57.26 odd 6 1805.2.a.h.1.3 3
57.50 even 6 1805.2.a.g.1.1 3
228.11 even 6 1520.2.q.j.961.1 6
285.68 even 12 475.2.j.b.49.5 12
285.164 even 6 9025.2.a.ba.1.3 3
285.182 even 12 475.2.j.b.49.2 12
285.239 odd 6 475.2.e.d.201.3 6
285.254 odd 6 9025.2.a.z.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.b.11.1 6 57.11 odd 6
95.2.e.b.26.1 yes 6 3.2 odd 2
475.2.e.d.26.3 6 15.14 odd 2
475.2.e.d.201.3 6 285.239 odd 6
475.2.j.b.49.2 12 285.182 even 12
475.2.j.b.49.5 12 285.68 even 12
475.2.j.b.349.2 12 15.8 even 4
475.2.j.b.349.5 12 15.2 even 4
855.2.k.g.406.3 6 1.1 even 1 trivial
855.2.k.g.676.3 6 19.11 even 3 inner
1520.2.q.j.881.1 6 12.11 even 2
1520.2.q.j.961.1 6 228.11 even 6
1805.2.a.g.1.1 3 57.50 even 6
1805.2.a.h.1.3 3 57.26 odd 6
9025.2.a.z.1.1 3 285.254 odd 6
9025.2.a.ba.1.3 3 285.164 even 6