Properties

Label 9025.2.a.z.1.1
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.361.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.28514\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.28514 q^{2} +2.50702 q^{3} +3.22188 q^{4} -5.72889 q^{6} -3.50702 q^{7} -2.79216 q^{8} +3.28514 q^{9} -4.50702 q^{11} +8.07730 q^{12} +5.00000 q^{13} +8.01404 q^{14} -0.0632663 q^{16} -0.158610 q^{17} -7.50702 q^{18} -8.79216 q^{21} +10.2992 q^{22} -1.15861 q^{23} -7.00000 q^{24} -11.4257 q^{26} +0.714858 q^{27} -11.2992 q^{28} -3.50702 q^{29} -2.28514 q^{31} +5.72889 q^{32} -11.2992 q^{33} +0.362446 q^{34} +10.5843 q^{36} +10.9648 q^{37} +12.5351 q^{39} +6.07730 q^{41} +20.0913 q^{42} +3.34841 q^{43} -14.5211 q^{44} +2.64759 q^{46} -3.06327 q^{47} -0.158610 q^{48} +5.29918 q^{49} -0.397638 q^{51} +16.1094 q^{52} +5.74293 q^{53} -1.63355 q^{54} +9.79216 q^{56} +8.01404 q^{58} +3.06327 q^{59} -0.873467 q^{61} +5.22188 q^{62} -11.5211 q^{63} -12.9648 q^{64} +25.8202 q^{66} +8.44375 q^{67} -0.511021 q^{68} -2.90466 q^{69} -16.2359 q^{71} -9.17265 q^{72} +7.15861 q^{73} -25.0561 q^{74} +15.8062 q^{77} -28.6445 q^{78} -10.1265 q^{79} -8.06327 q^{81} -13.8875 q^{82} -4.85543 q^{83} -28.3273 q^{84} -7.65159 q^{86} -8.79216 q^{87} +12.5843 q^{88} -1.11250 q^{89} -17.5351 q^{91} -3.73290 q^{92} -5.72889 q^{93} +7.00000 q^{94} +14.3624 q^{96} -1.61951 q^{97} -12.1094 q^{98} -14.8062 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - q^{3} + 7 q^{4} - 6 q^{6} - 2 q^{7} + 6 q^{8} + 4 q^{9} - 5 q^{11} + 4 q^{12} + 15 q^{13} + 7 q^{14} + 3 q^{16} - q^{17} - 14 q^{18} - 12 q^{21} + 8 q^{22} - 4 q^{23} - 21 q^{24} - 5 q^{26}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.28514 −1.61584 −0.807920 0.589292i \(-0.799407\pi\)
−0.807920 + 0.589292i \(0.799407\pi\)
\(3\) 2.50702 1.44743 0.723714 0.690100i \(-0.242434\pi\)
0.723714 + 0.690100i \(0.242434\pi\)
\(4\) 3.22188 1.61094
\(5\) 0 0
\(6\) −5.72889 −2.33881
\(7\) −3.50702 −1.32553 −0.662764 0.748828i \(-0.730617\pi\)
−0.662764 + 0.748828i \(0.730617\pi\)
\(8\) −2.79216 −0.987178
\(9\) 3.28514 1.09505
\(10\) 0 0
\(11\) −4.50702 −1.35892 −0.679459 0.733714i \(-0.737785\pi\)
−0.679459 + 0.733714i \(0.737785\pi\)
\(12\) 8.07730 2.33172
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 8.01404 2.14184
\(15\) 0 0
\(16\) −0.0632663 −0.0158166
\(17\) −0.158610 −0.0384685 −0.0192343 0.999815i \(-0.506123\pi\)
−0.0192343 + 0.999815i \(0.506123\pi\)
\(18\) −7.50702 −1.76942
\(19\) 0 0
\(20\) 0 0
\(21\) −8.79216 −1.91861
\(22\) 10.2992 2.19579
\(23\) −1.15861 −0.241587 −0.120793 0.992678i \(-0.538544\pi\)
−0.120793 + 0.992678i \(0.538544\pi\)
\(24\) −7.00000 −1.42887
\(25\) 0 0
\(26\) −11.4257 −2.24077
\(27\) 0.714858 0.137574
\(28\) −11.2992 −2.13534
\(29\) −3.50702 −0.651237 −0.325619 0.945501i \(-0.605573\pi\)
−0.325619 + 0.945501i \(0.605573\pi\)
\(30\) 0 0
\(31\) −2.28514 −0.410424 −0.205212 0.978718i \(-0.565788\pi\)
−0.205212 + 0.978718i \(0.565788\pi\)
\(32\) 5.72889 1.01274
\(33\) −11.2992 −1.96693
\(34\) 0.362446 0.0621590
\(35\) 0 0
\(36\) 10.5843 1.76405
\(37\) 10.9648 1.80260 0.901302 0.433192i \(-0.142613\pi\)
0.901302 + 0.433192i \(0.142613\pi\)
\(38\) 0 0
\(39\) 12.5351 2.00722
\(40\) 0 0
\(41\) 6.07730 0.949115 0.474558 0.880224i \(-0.342608\pi\)
0.474558 + 0.880224i \(0.342608\pi\)
\(42\) 20.0913 3.10016
\(43\) 3.34841 0.510628 0.255314 0.966858i \(-0.417821\pi\)
0.255314 + 0.966858i \(0.417821\pi\)
\(44\) −14.5211 −2.18913
\(45\) 0 0
\(46\) 2.64759 0.390366
\(47\) −3.06327 −0.446823 −0.223412 0.974724i \(-0.571719\pi\)
−0.223412 + 0.974724i \(0.571719\pi\)
\(48\) −0.158610 −0.0228934
\(49\) 5.29918 0.757026
\(50\) 0 0
\(51\) −0.397638 −0.0556804
\(52\) 16.1094 2.23397
\(53\) 5.74293 0.788852 0.394426 0.918928i \(-0.370943\pi\)
0.394426 + 0.918928i \(0.370943\pi\)
\(54\) −1.63355 −0.222298
\(55\) 0 0
\(56\) 9.79216 1.30853
\(57\) 0 0
\(58\) 8.01404 1.05229
\(59\) 3.06327 0.398803 0.199402 0.979918i \(-0.436100\pi\)
0.199402 + 0.979918i \(0.436100\pi\)
\(60\) 0 0
\(61\) −0.873467 −0.111836 −0.0559180 0.998435i \(-0.517809\pi\)
−0.0559180 + 0.998435i \(0.517809\pi\)
\(62\) 5.22188 0.663179
\(63\) −11.5211 −1.45152
\(64\) −12.9648 −1.62060
\(65\) 0 0
\(66\) 25.8202 3.17825
\(67\) 8.44375 1.03157 0.515784 0.856719i \(-0.327501\pi\)
0.515784 + 0.856719i \(0.327501\pi\)
\(68\) −0.511021 −0.0619704
\(69\) −2.90466 −0.349680
\(70\) 0 0
\(71\) −16.2359 −1.92685 −0.963424 0.267981i \(-0.913644\pi\)
−0.963424 + 0.267981i \(0.913644\pi\)
\(72\) −9.17265 −1.08101
\(73\) 7.15861 0.837852 0.418926 0.908020i \(-0.362407\pi\)
0.418926 + 0.908020i \(0.362407\pi\)
\(74\) −25.0561 −2.91272
\(75\) 0 0
\(76\) 0 0
\(77\) 15.8062 1.80128
\(78\) −28.6445 −3.24335
\(79\) −10.1265 −1.13932 −0.569662 0.821879i \(-0.692926\pi\)
−0.569662 + 0.821879i \(0.692926\pi\)
\(80\) 0 0
\(81\) −8.06327 −0.895918
\(82\) −13.8875 −1.53362
\(83\) −4.85543 −0.532952 −0.266476 0.963841i \(-0.585859\pi\)
−0.266476 + 0.963841i \(0.585859\pi\)
\(84\) −28.3273 −3.09076
\(85\) 0 0
\(86\) −7.65159 −0.825092
\(87\) −8.79216 −0.942619
\(88\) 12.5843 1.34149
\(89\) −1.11250 −0.117924 −0.0589621 0.998260i \(-0.518779\pi\)
−0.0589621 + 0.998260i \(0.518779\pi\)
\(90\) 0 0
\(91\) −17.5351 −1.83818
\(92\) −3.73290 −0.389181
\(93\) −5.72889 −0.594059
\(94\) 7.00000 0.721995
\(95\) 0 0
\(96\) 14.3624 1.46586
\(97\) −1.61951 −0.164437 −0.0822184 0.996614i \(-0.526200\pi\)
−0.0822184 + 0.996614i \(0.526200\pi\)
\(98\) −12.1094 −1.22323
\(99\) −14.8062 −1.48808
\(100\) 0 0
\(101\) 12.3132 1.22521 0.612605 0.790389i \(-0.290121\pi\)
0.612605 + 0.790389i \(0.290121\pi\)
\(102\) 0.908659 0.0899707
\(103\) −10.6164 −1.04606 −0.523032 0.852313i \(-0.675199\pi\)
−0.523032 + 0.852313i \(0.675199\pi\)
\(104\) −13.9608 −1.36897
\(105\) 0 0
\(106\) −13.1234 −1.27466
\(107\) 2.17265 0.210038 0.105019 0.994470i \(-0.466510\pi\)
0.105019 + 0.994470i \(0.466510\pi\)
\(108\) 2.30318 0.221624
\(109\) 15.8202 1.51530 0.757652 0.652659i \(-0.226347\pi\)
0.757652 + 0.652659i \(0.226347\pi\)
\(110\) 0 0
\(111\) 27.4890 2.60914
\(112\) 0.221876 0.0209653
\(113\) −9.83828 −0.925507 −0.462754 0.886487i \(-0.653139\pi\)
−0.462754 + 0.886487i \(0.653139\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −11.2992 −1.04910
\(117\) 16.4257 1.51856
\(118\) −7.00000 −0.644402
\(119\) 0.556248 0.0509911
\(120\) 0 0
\(121\) 9.31322 0.846656
\(122\) 1.99600 0.180709
\(123\) 15.2359 1.37378
\(124\) −7.36245 −0.661167
\(125\) 0 0
\(126\) 26.3273 2.34542
\(127\) −15.7109 −1.39411 −0.697056 0.717016i \(-0.745507\pi\)
−0.697056 + 0.717016i \(0.745507\pi\)
\(128\) 18.1686 1.60590
\(129\) 8.39452 0.739097
\(130\) 0 0
\(131\) −11.5351 −1.00783 −0.503913 0.863754i \(-0.668107\pi\)
−0.503913 + 0.863754i \(0.668107\pi\)
\(132\) −36.4046 −3.16861
\(133\) 0 0
\(134\) −19.2952 −1.66685
\(135\) 0 0
\(136\) 0.442864 0.0379753
\(137\) −0.109381 −0.00934503 −0.00467252 0.999989i \(-0.501487\pi\)
−0.00467252 + 0.999989i \(0.501487\pi\)
\(138\) 6.63755 0.565026
\(139\) 1.44375 0.122457 0.0612287 0.998124i \(-0.480498\pi\)
0.0612287 + 0.998124i \(0.480498\pi\)
\(140\) 0 0
\(141\) −7.67967 −0.646745
\(142\) 37.1014 3.11348
\(143\) −22.5351 −1.88448
\(144\) −0.207839 −0.0173199
\(145\) 0 0
\(146\) −16.3584 −1.35383
\(147\) 13.2851 1.09574
\(148\) 35.3273 2.90388
\(149\) 1.72889 0.141637 0.0708183 0.997489i \(-0.477439\pi\)
0.0708183 + 0.997489i \(0.477439\pi\)
\(150\) 0 0
\(151\) −20.1406 −1.63902 −0.819508 0.573068i \(-0.805753\pi\)
−0.819508 + 0.573068i \(0.805753\pi\)
\(152\) 0 0
\(153\) −0.521056 −0.0421249
\(154\) −36.1194 −2.91059
\(155\) 0 0
\(156\) 40.3865 3.23351
\(157\) −3.77812 −0.301527 −0.150764 0.988570i \(-0.548173\pi\)
−0.150764 + 0.988570i \(0.548173\pi\)
\(158\) 23.1406 1.84096
\(159\) 14.3976 1.14181
\(160\) 0 0
\(161\) 4.06327 0.320230
\(162\) 18.4257 1.44766
\(163\) 1.61640 0.126606 0.0633031 0.997994i \(-0.479837\pi\)
0.0633031 + 0.997994i \(0.479837\pi\)
\(164\) 19.5803 1.52897
\(165\) 0 0
\(166\) 11.0953 0.861166
\(167\) −6.49298 −0.502442 −0.251221 0.967930i \(-0.580832\pi\)
−0.251221 + 0.967930i \(0.580832\pi\)
\(168\) 24.5491 1.89401
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 10.7882 0.822589
\(173\) −8.52106 −0.647844 −0.323922 0.946084i \(-0.605002\pi\)
−0.323922 + 0.946084i \(0.605002\pi\)
\(174\) 20.0913 1.52312
\(175\) 0 0
\(176\) 0.285142 0.0214934
\(177\) 7.67967 0.577239
\(178\) 2.54221 0.190547
\(179\) −10.2711 −0.767698 −0.383849 0.923396i \(-0.625402\pi\)
−0.383849 + 0.923396i \(0.625402\pi\)
\(180\) 0 0
\(181\) 12.2671 0.911807 0.455903 0.890029i \(-0.349316\pi\)
0.455903 + 0.890029i \(0.349316\pi\)
\(182\) 40.0702 2.97020
\(183\) −2.18980 −0.161875
\(184\) 3.23503 0.238489
\(185\) 0 0
\(186\) 13.0913 0.959904
\(187\) 0.714858 0.0522756
\(188\) −9.86946 −0.719805
\(189\) −2.50702 −0.182359
\(190\) 0 0
\(191\) 5.71085 0.413223 0.206611 0.978423i \(-0.433756\pi\)
0.206611 + 0.978423i \(0.433756\pi\)
\(192\) −32.5030 −2.34570
\(193\) 10.1586 0.731233 0.365616 0.930766i \(-0.380858\pi\)
0.365616 + 0.930766i \(0.380858\pi\)
\(194\) 3.70082 0.265703
\(195\) 0 0
\(196\) 17.0733 1.21952
\(197\) −16.2038 −1.15448 −0.577238 0.816576i \(-0.695869\pi\)
−0.577238 + 0.816576i \(0.695869\pi\)
\(198\) 33.8343 2.40450
\(199\) 0.334372 0.0237030 0.0118515 0.999930i \(-0.496227\pi\)
0.0118515 + 0.999930i \(0.496227\pi\)
\(200\) 0 0
\(201\) 21.1686 1.49312
\(202\) −28.1375 −1.97974
\(203\) 12.2992 0.863233
\(204\) −1.28114 −0.0896977
\(205\) 0 0
\(206\) 24.2600 1.69027
\(207\) −3.80620 −0.264549
\(208\) −0.316332 −0.0219336
\(209\) 0 0
\(210\) 0 0
\(211\) 2.02807 0.139618 0.0698092 0.997560i \(-0.477761\pi\)
0.0698092 + 0.997560i \(0.477761\pi\)
\(212\) 18.5030 1.27079
\(213\) −40.7037 −2.78897
\(214\) −4.96481 −0.339387
\(215\) 0 0
\(216\) −1.99600 −0.135810
\(217\) 8.01404 0.544028
\(218\) −36.1515 −2.44849
\(219\) 17.9468 1.21273
\(220\) 0 0
\(221\) −0.793049 −0.0533463
\(222\) −62.8162 −4.21595
\(223\) 19.2319 1.28786 0.643932 0.765083i \(-0.277302\pi\)
0.643932 + 0.765083i \(0.277302\pi\)
\(224\) −20.0913 −1.34241
\(225\) 0 0
\(226\) 22.4819 1.49547
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) −12.9788 −0.857666 −0.428833 0.903384i \(-0.641075\pi\)
−0.428833 + 0.903384i \(0.641075\pi\)
\(230\) 0 0
\(231\) 39.6264 2.60723
\(232\) 9.79216 0.642887
\(233\) −27.0733 −1.77363 −0.886815 0.462124i \(-0.847088\pi\)
−0.886815 + 0.462124i \(0.847088\pi\)
\(234\) −37.5351 −2.45375
\(235\) 0 0
\(236\) 9.86946 0.642447
\(237\) −25.3874 −1.64909
\(238\) −1.27111 −0.0823935
\(239\) 20.0602 1.29758 0.648792 0.760966i \(-0.275275\pi\)
0.648792 + 0.760966i \(0.275275\pi\)
\(240\) 0 0
\(241\) −21.5843 −1.39037 −0.695184 0.718832i \(-0.744677\pi\)
−0.695184 + 0.718832i \(0.744677\pi\)
\(242\) −21.2820 −1.36806
\(243\) −22.3593 −1.43435
\(244\) −2.81420 −0.180161
\(245\) 0 0
\(246\) −34.8162 −2.21980
\(247\) 0 0
\(248\) 6.38049 0.405161
\(249\) −12.1726 −0.771410
\(250\) 0 0
\(251\) −7.26799 −0.458752 −0.229376 0.973338i \(-0.573668\pi\)
−0.229376 + 0.973338i \(0.573668\pi\)
\(252\) −37.1194 −2.33830
\(253\) 5.22188 0.328297
\(254\) 35.9015 2.25266
\(255\) 0 0
\(256\) −15.5883 −0.974270
\(257\) −15.0773 −0.940496 −0.470248 0.882534i \(-0.655836\pi\)
−0.470248 + 0.882534i \(0.655836\pi\)
\(258\) −19.1827 −1.19426
\(259\) −38.4538 −2.38940
\(260\) 0 0
\(261\) −11.5211 −0.713135
\(262\) 26.3593 1.62848
\(263\) −20.1546 −1.24279 −0.621393 0.783499i \(-0.713433\pi\)
−0.621393 + 0.783499i \(0.713433\pi\)
\(264\) 31.5491 1.94171
\(265\) 0 0
\(266\) 0 0
\(267\) −2.78905 −0.170687
\(268\) 27.2047 1.66179
\(269\) −7.72489 −0.470995 −0.235497 0.971875i \(-0.575672\pi\)
−0.235497 + 0.971875i \(0.575672\pi\)
\(270\) 0 0
\(271\) −5.28514 −0.321050 −0.160525 0.987032i \(-0.551319\pi\)
−0.160525 + 0.987032i \(0.551319\pi\)
\(272\) 0.0100347 0.000608441 0
\(273\) −43.9608 −2.66063
\(274\) 0.249951 0.0151001
\(275\) 0 0
\(276\) −9.35844 −0.563312
\(277\) −30.6264 −1.84016 −0.920082 0.391726i \(-0.871878\pi\)
−0.920082 + 0.391726i \(0.871878\pi\)
\(278\) −3.29918 −0.197872
\(279\) −7.50702 −0.449433
\(280\) 0 0
\(281\) 13.3624 0.797137 0.398568 0.917139i \(-0.369507\pi\)
0.398568 + 0.917139i \(0.369507\pi\)
\(282\) 17.5491 1.04504
\(283\) −4.09534 −0.243443 −0.121721 0.992564i \(-0.538841\pi\)
−0.121721 + 0.992564i \(0.538841\pi\)
\(284\) −52.3101 −3.10403
\(285\) 0 0
\(286\) 51.4959 3.04502
\(287\) −21.3132 −1.25808
\(288\) 18.8202 1.10899
\(289\) −16.9748 −0.998520
\(290\) 0 0
\(291\) −4.06015 −0.238010
\(292\) 23.0642 1.34973
\(293\) −12.1726 −0.711134 −0.355567 0.934651i \(-0.615712\pi\)
−0.355567 + 0.934651i \(0.615712\pi\)
\(294\) −30.3584 −1.77054
\(295\) 0 0
\(296\) −30.6155 −1.77949
\(297\) −3.22188 −0.186952
\(298\) −3.95077 −0.228862
\(299\) −5.79305 −0.335021
\(300\) 0 0
\(301\) −11.7429 −0.676851
\(302\) 46.0241 2.64839
\(303\) 30.8695 1.77340
\(304\) 0 0
\(305\) 0 0
\(306\) 1.19069 0.0680670
\(307\) −24.5351 −1.40029 −0.700146 0.714000i \(-0.746882\pi\)
−0.700146 + 0.714000i \(0.746882\pi\)
\(308\) 50.9256 2.90176
\(309\) −26.6155 −1.51410
\(310\) 0 0
\(311\) −10.2038 −0.578606 −0.289303 0.957238i \(-0.593424\pi\)
−0.289303 + 0.957238i \(0.593424\pi\)
\(312\) −35.0000 −1.98148
\(313\) 31.9820 1.80773 0.903864 0.427821i \(-0.140719\pi\)
0.903864 + 0.427821i \(0.140719\pi\)
\(314\) 8.63355 0.487219
\(315\) 0 0
\(316\) −32.6264 −1.83538
\(317\) −2.23591 −0.125581 −0.0627907 0.998027i \(-0.520000\pi\)
−0.0627907 + 0.998027i \(0.520000\pi\)
\(318\) −32.9007 −1.84498
\(319\) 15.8062 0.884977
\(320\) 0 0
\(321\) 5.44687 0.304014
\(322\) −9.28514 −0.517441
\(323\) 0 0
\(324\) −25.9788 −1.44327
\(325\) 0 0
\(326\) −3.69370 −0.204575
\(327\) 39.6616 2.19329
\(328\) −16.9688 −0.936946
\(329\) 10.7429 0.592277
\(330\) 0 0
\(331\) −10.0913 −0.554670 −0.277335 0.960773i \(-0.589451\pi\)
−0.277335 + 0.960773i \(0.589451\pi\)
\(332\) −15.6436 −0.858553
\(333\) 36.0210 1.97394
\(334\) 14.8374 0.811866
\(335\) 0 0
\(336\) 0.556248 0.0303458
\(337\) −5.61240 −0.305727 −0.152863 0.988247i \(-0.548849\pi\)
−0.152863 + 0.988247i \(0.548849\pi\)
\(338\) −27.4217 −1.49154
\(339\) −24.6647 −1.33960
\(340\) 0 0
\(341\) 10.2992 0.557732
\(342\) 0 0
\(343\) 5.96481 0.322069
\(344\) −9.34930 −0.504080
\(345\) 0 0
\(346\) 19.4718 1.04681
\(347\) −5.47494 −0.293910 −0.146955 0.989143i \(-0.546947\pi\)
−0.146955 + 0.989143i \(0.546947\pi\)
\(348\) −28.3273 −1.51850
\(349\) −18.8202 −1.00742 −0.503712 0.863872i \(-0.668033\pi\)
−0.503712 + 0.863872i \(0.668033\pi\)
\(350\) 0 0
\(351\) 3.57429 0.190781
\(352\) −25.8202 −1.37622
\(353\) 12.7008 0.675996 0.337998 0.941147i \(-0.390250\pi\)
0.337998 + 0.941147i \(0.390250\pi\)
\(354\) −17.5491 −0.932726
\(355\) 0 0
\(356\) −3.58432 −0.189969
\(357\) 1.39452 0.0738060
\(358\) 23.4709 1.24048
\(359\) −11.0804 −0.584802 −0.292401 0.956296i \(-0.594454\pi\)
−0.292401 + 0.956296i \(0.594454\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −28.0321 −1.47333
\(363\) 23.3484 1.22547
\(364\) −56.4959 −2.96119
\(365\) 0 0
\(366\) 5.00400 0.261563
\(367\) 20.6405 1.07742 0.538712 0.842490i \(-0.318911\pi\)
0.538712 + 0.842490i \(0.318911\pi\)
\(368\) 0.0733010 0.00382108
\(369\) 19.9648 1.03933
\(370\) 0 0
\(371\) −20.1406 −1.04565
\(372\) −18.4578 −0.956992
\(373\) −4.55313 −0.235752 −0.117876 0.993028i \(-0.537609\pi\)
−0.117876 + 0.993028i \(0.537609\pi\)
\(374\) −1.63355 −0.0844689
\(375\) 0 0
\(376\) 8.55313 0.441094
\(377\) −17.5351 −0.903103
\(378\) 5.72889 0.294663
\(379\) −19.9187 −1.02315 −0.511577 0.859237i \(-0.670939\pi\)
−0.511577 + 0.859237i \(0.670939\pi\)
\(380\) 0 0
\(381\) −39.3874 −2.01788
\(382\) −13.0501 −0.667702
\(383\) 19.9748 1.02067 0.510333 0.859977i \(-0.329522\pi\)
0.510333 + 0.859977i \(0.329522\pi\)
\(384\) 45.5491 2.32442
\(385\) 0 0
\(386\) −23.2139 −1.18155
\(387\) 11.0000 0.559161
\(388\) −5.21787 −0.264897
\(389\) 13.8022 0.699799 0.349900 0.936787i \(-0.386216\pi\)
0.349900 + 0.936787i \(0.386216\pi\)
\(390\) 0 0
\(391\) 0.183767 0.00929349
\(392\) −14.7962 −0.747319
\(393\) −28.9187 −1.45876
\(394\) 37.0281 1.86545
\(395\) 0 0
\(396\) −47.7037 −2.39720
\(397\) 16.5491 0.830577 0.415289 0.909690i \(-0.363681\pi\)
0.415289 + 0.909690i \(0.363681\pi\)
\(398\) −0.764087 −0.0383002
\(399\) 0 0
\(400\) 0 0
\(401\) 8.52506 0.425721 0.212861 0.977083i \(-0.431722\pi\)
0.212861 + 0.977083i \(0.431722\pi\)
\(402\) −48.3734 −2.41264
\(403\) −11.4257 −0.569155
\(404\) 39.6717 1.97374
\(405\) 0 0
\(406\) −28.1054 −1.39485
\(407\) −49.4186 −2.44959
\(408\) 1.11027 0.0549665
\(409\) −11.5663 −0.571916 −0.285958 0.958242i \(-0.592312\pi\)
−0.285958 + 0.958242i \(0.592312\pi\)
\(410\) 0 0
\(411\) −0.274220 −0.0135263
\(412\) −34.2047 −1.68515
\(413\) −10.7429 −0.528625
\(414\) 8.69771 0.427469
\(415\) 0 0
\(416\) 28.6445 1.40441
\(417\) 3.61951 0.177248
\(418\) 0 0
\(419\) −21.7149 −1.06084 −0.530420 0.847735i \(-0.677966\pi\)
−0.530420 + 0.847735i \(0.677966\pi\)
\(420\) 0 0
\(421\) −6.92270 −0.337392 −0.168696 0.985668i \(-0.553956\pi\)
−0.168696 + 0.985668i \(0.553956\pi\)
\(422\) −4.63444 −0.225601
\(423\) −10.0633 −0.489293
\(424\) −16.0352 −0.778738
\(425\) 0 0
\(426\) 93.0138 4.50654
\(427\) 3.06327 0.148242
\(428\) 7.00000 0.338358
\(429\) −56.4959 −2.72765
\(430\) 0 0
\(431\) −27.9788 −1.34769 −0.673847 0.738871i \(-0.735359\pi\)
−0.673847 + 0.738871i \(0.735359\pi\)
\(432\) −0.0452264 −0.00217596
\(433\) −6.25395 −0.300546 −0.150273 0.988645i \(-0.548015\pi\)
−0.150273 + 0.988645i \(0.548015\pi\)
\(434\) −18.3132 −0.879063
\(435\) 0 0
\(436\) 50.9708 2.44106
\(437\) 0 0
\(438\) −41.0109 −1.95958
\(439\) 31.1976 1.48898 0.744490 0.667633i \(-0.232693\pi\)
0.744490 + 0.667633i \(0.232693\pi\)
\(440\) 0 0
\(441\) 17.4086 0.828979
\(442\) 1.81223 0.0861990
\(443\) 32.7037 1.55380 0.776901 0.629623i \(-0.216791\pi\)
0.776901 + 0.629623i \(0.216791\pi\)
\(444\) 88.5661 4.20316
\(445\) 0 0
\(446\) −43.9477 −2.08098
\(447\) 4.33437 0.205009
\(448\) 45.4678 2.14815
\(449\) 25.6304 1.20958 0.604788 0.796387i \(-0.293258\pi\)
0.604788 + 0.796387i \(0.293258\pi\)
\(450\) 0 0
\(451\) −27.3905 −1.28977
\(452\) −31.6977 −1.49093
\(453\) −50.4928 −2.37236
\(454\) 9.14057 0.428988
\(455\) 0 0
\(456\) 0 0
\(457\) −33.1646 −1.55138 −0.775688 0.631116i \(-0.782597\pi\)
−0.775688 + 0.631116i \(0.782597\pi\)
\(458\) 29.6585 1.38585
\(459\) −0.113383 −0.00529229
\(460\) 0 0
\(461\) 2.17576 0.101335 0.0506677 0.998716i \(-0.483865\pi\)
0.0506677 + 0.998716i \(0.483865\pi\)
\(462\) −90.5520 −4.21286
\(463\) 6.20072 0.288172 0.144086 0.989565i \(-0.453976\pi\)
0.144086 + 0.989565i \(0.453976\pi\)
\(464\) 0.221876 0.0103003
\(465\) 0 0
\(466\) 61.8664 2.86590
\(467\) 17.1546 0.793821 0.396910 0.917857i \(-0.370082\pi\)
0.396910 + 0.917857i \(0.370082\pi\)
\(468\) 52.9216 2.44630
\(469\) −29.6124 −1.36737
\(470\) 0 0
\(471\) −9.47183 −0.436439
\(472\) −8.55313 −0.393690
\(473\) −15.0913 −0.693901
\(474\) 58.0138 2.66466
\(475\) 0 0
\(476\) 1.79216 0.0821436
\(477\) 18.8664 0.863831
\(478\) −45.8403 −2.09669
\(479\) −35.7781 −1.63474 −0.817372 0.576110i \(-0.804570\pi\)
−0.817372 + 0.576110i \(0.804570\pi\)
\(480\) 0 0
\(481\) 54.8240 2.49976
\(482\) 49.3233 2.24661
\(483\) 10.1867 0.463510
\(484\) 30.0060 1.36391
\(485\) 0 0
\(486\) 51.0943 2.31768
\(487\) 23.7149 1.07462 0.537311 0.843384i \(-0.319440\pi\)
0.537311 + 0.843384i \(0.319440\pi\)
\(488\) 2.43886 0.110402
\(489\) 4.05234 0.183253
\(490\) 0 0
\(491\) −39.1867 −1.76847 −0.884235 0.467042i \(-0.845320\pi\)
−0.884235 + 0.467042i \(0.845320\pi\)
\(492\) 49.0882 2.21307
\(493\) 0.556248 0.0250521
\(494\) 0 0
\(495\) 0 0
\(496\) 0.144573 0.00649150
\(497\) 56.9397 2.55409
\(498\) 27.8162 1.24648
\(499\) −9.37648 −0.419749 −0.209875 0.977728i \(-0.567306\pi\)
−0.209875 + 0.977728i \(0.567306\pi\)
\(500\) 0 0
\(501\) −16.2780 −0.727249
\(502\) 16.6084 0.741269
\(503\) −13.4930 −0.601622 −0.300811 0.953684i \(-0.597257\pi\)
−0.300811 + 0.953684i \(0.597257\pi\)
\(504\) 32.1686 1.43291
\(505\) 0 0
\(506\) −11.9327 −0.530475
\(507\) 30.0842 1.33609
\(508\) −50.6184 −2.24583
\(509\) 25.7069 1.13944 0.569718 0.821840i \(-0.307052\pi\)
0.569718 + 0.821840i \(0.307052\pi\)
\(510\) 0 0
\(511\) −25.1054 −1.11060
\(512\) −0.715746 −0.0316318
\(513\) 0 0
\(514\) 34.4538 1.51969
\(515\) 0 0
\(516\) 27.0461 1.19064
\(517\) 13.8062 0.607196
\(518\) 87.8724 3.86089
\(519\) −21.3624 −0.937707
\(520\) 0 0
\(521\) −37.7358 −1.65324 −0.826618 0.562763i \(-0.809738\pi\)
−0.826618 + 0.562763i \(0.809738\pi\)
\(522\) 26.3273 1.15231
\(523\) −38.4006 −1.67914 −0.839570 0.543252i \(-0.817193\pi\)
−0.839570 + 0.543252i \(0.817193\pi\)
\(524\) −37.1646 −1.62354
\(525\) 0 0
\(526\) 46.0561 2.00814
\(527\) 0.362446 0.0157884
\(528\) 0.714858 0.0311102
\(529\) −21.6576 −0.941636
\(530\) 0 0
\(531\) 10.0633 0.436709
\(532\) 0 0
\(533\) 30.3865 1.31619
\(534\) 6.37337 0.275803
\(535\) 0 0
\(536\) −23.5763 −1.01834
\(537\) −25.7499 −1.11119
\(538\) 17.6525 0.761052
\(539\) −23.8835 −1.02874
\(540\) 0 0
\(541\) −12.8062 −0.550581 −0.275291 0.961361i \(-0.588774\pi\)
−0.275291 + 0.961361i \(0.588774\pi\)
\(542\) 12.0773 0.518765
\(543\) 30.7539 1.31977
\(544\) −0.908659 −0.0389584
\(545\) 0 0
\(546\) 100.457 4.29915
\(547\) 18.2571 0.780616 0.390308 0.920684i \(-0.372369\pi\)
0.390308 + 0.920684i \(0.372369\pi\)
\(548\) −0.352411 −0.0150543
\(549\) −2.86946 −0.122466
\(550\) 0 0
\(551\) 0 0
\(552\) 8.11027 0.345196
\(553\) 35.5139 1.51021
\(554\) 69.9858 2.97341
\(555\) 0 0
\(556\) 4.65159 0.197271
\(557\) −14.9047 −0.631531 −0.315765 0.948837i \(-0.602261\pi\)
−0.315765 + 0.948837i \(0.602261\pi\)
\(558\) 17.1546 0.726212
\(559\) 16.7420 0.708113
\(560\) 0 0
\(561\) 1.79216 0.0756651
\(562\) −30.5351 −1.28805
\(563\) −45.7810 −1.92944 −0.964720 0.263276i \(-0.915197\pi\)
−0.964720 + 0.263276i \(0.915197\pi\)
\(564\) −24.7429 −1.04187
\(565\) 0 0
\(566\) 9.35844 0.393365
\(567\) 28.2780 1.18757
\(568\) 45.3333 1.90214
\(569\) 0.379598 0.0159136 0.00795679 0.999968i \(-0.497467\pi\)
0.00795679 + 0.999968i \(0.497467\pi\)
\(570\) 0 0
\(571\) −15.8514 −0.663361 −0.331681 0.943392i \(-0.607616\pi\)
−0.331681 + 0.943392i \(0.607616\pi\)
\(572\) −72.6053 −3.03578
\(573\) 14.3172 0.598110
\(574\) 48.7037 2.03285
\(575\) 0 0
\(576\) −42.5912 −1.77464
\(577\) 19.2350 0.800765 0.400382 0.916348i \(-0.368877\pi\)
0.400382 + 0.916348i \(0.368877\pi\)
\(578\) 38.7899 1.61345
\(579\) 25.4678 1.05841
\(580\) 0 0
\(581\) 17.0281 0.706444
\(582\) 9.27803 0.384587
\(583\) −25.8835 −1.07199
\(584\) −19.9880 −0.827109
\(585\) 0 0
\(586\) 27.8162 1.14908
\(587\) −40.8483 −1.68599 −0.842995 0.537921i \(-0.819210\pi\)
−0.842995 + 0.537921i \(0.819210\pi\)
\(588\) 42.8031 1.76517
\(589\) 0 0
\(590\) 0 0
\(591\) −40.6233 −1.67102
\(592\) −0.693703 −0.0285110
\(593\) 14.2468 0.585047 0.292524 0.956258i \(-0.405505\pi\)
0.292524 + 0.956258i \(0.405505\pi\)
\(594\) 7.36245 0.302085
\(595\) 0 0
\(596\) 5.57028 0.228168
\(597\) 0.838276 0.0343083
\(598\) 13.2379 0.541340
\(599\) −15.8514 −0.647672 −0.323836 0.946113i \(-0.604973\pi\)
−0.323836 + 0.946113i \(0.604973\pi\)
\(600\) 0 0
\(601\) 16.4718 0.671900 0.335950 0.941880i \(-0.390943\pi\)
0.335950 + 0.941880i \(0.390943\pi\)
\(602\) 26.8343 1.09368
\(603\) 27.7389 1.12962
\(604\) −64.8904 −2.64035
\(605\) 0 0
\(606\) −70.5411 −2.86554
\(607\) 10.3914 0.421774 0.210887 0.977510i \(-0.432365\pi\)
0.210887 + 0.977510i \(0.432365\pi\)
\(608\) 0 0
\(609\) 30.8343 1.24947
\(610\) 0 0
\(611\) −15.3163 −0.619632
\(612\) −1.67878 −0.0678606
\(613\) 21.7850 0.879890 0.439945 0.898025i \(-0.354998\pi\)
0.439945 + 0.898025i \(0.354998\pi\)
\(614\) 56.0662 2.26265
\(615\) 0 0
\(616\) −44.1335 −1.77819
\(617\) 42.7710 1.72190 0.860948 0.508693i \(-0.169871\pi\)
0.860948 + 0.508693i \(0.169871\pi\)
\(618\) 60.8202 2.44655
\(619\) 28.7882 1.15709 0.578547 0.815649i \(-0.303620\pi\)
0.578547 + 0.815649i \(0.303620\pi\)
\(620\) 0 0
\(621\) −0.828241 −0.0332362
\(622\) 23.3172 0.934935
\(623\) 3.90154 0.156312
\(624\) −0.793049 −0.0317474
\(625\) 0 0
\(626\) −73.0833 −2.92100
\(627\) 0 0
\(628\) −12.1726 −0.485742
\(629\) −1.73913 −0.0693435
\(630\) 0 0
\(631\) −19.3874 −0.771800 −0.385900 0.922541i \(-0.626109\pi\)
−0.385900 + 0.922541i \(0.626109\pi\)
\(632\) 28.2749 1.12472
\(633\) 5.08442 0.202088
\(634\) 5.10938 0.202919
\(635\) 0 0
\(636\) 46.3874 1.83938
\(637\) 26.4959 1.04981
\(638\) −36.1194 −1.42998
\(639\) −53.3373 −2.10999
\(640\) 0 0
\(641\) 40.6866 1.60702 0.803512 0.595289i \(-0.202962\pi\)
0.803512 + 0.595289i \(0.202962\pi\)
\(642\) −12.4469 −0.491239
\(643\) 34.1054 1.34498 0.672492 0.740104i \(-0.265224\pi\)
0.672492 + 0.740104i \(0.265224\pi\)
\(644\) 13.0913 0.515871
\(645\) 0 0
\(646\) 0 0
\(647\) 48.0029 1.88719 0.943595 0.331103i \(-0.107421\pi\)
0.943595 + 0.331103i \(0.107421\pi\)
\(648\) 22.5139 0.884431
\(649\) −13.8062 −0.541941
\(650\) 0 0
\(651\) 20.0913 0.787442
\(652\) 5.20784 0.203955
\(653\) −3.90866 −0.152958 −0.0764788 0.997071i \(-0.524368\pi\)
−0.0764788 + 0.997071i \(0.524368\pi\)
\(654\) −90.6325 −3.54401
\(655\) 0 0
\(656\) −0.384489 −0.0150118
\(657\) 23.5171 0.917488
\(658\) −24.5491 −0.957025
\(659\) 13.0882 0.509845 0.254922 0.966961i \(-0.417950\pi\)
0.254922 + 0.966961i \(0.417950\pi\)
\(660\) 0 0
\(661\) −23.9428 −0.931266 −0.465633 0.884978i \(-0.654173\pi\)
−0.465633 + 0.884978i \(0.654173\pi\)
\(662\) 23.0602 0.896258
\(663\) −1.98819 −0.0772149
\(664\) 13.5571 0.526119
\(665\) 0 0
\(666\) −82.3130 −3.18956
\(667\) 4.06327 0.157330
\(668\) −20.9196 −0.809403
\(669\) 48.2148 1.86409
\(670\) 0 0
\(671\) 3.93673 0.151976
\(672\) −50.3694 −1.94304
\(673\) 11.3304 0.436754 0.218377 0.975865i \(-0.429924\pi\)
0.218377 + 0.975865i \(0.429924\pi\)
\(674\) 12.8251 0.494005
\(675\) 0 0
\(676\) 38.6625 1.48702
\(677\) −8.90466 −0.342234 −0.171117 0.985251i \(-0.554738\pi\)
−0.171117 + 0.985251i \(0.554738\pi\)
\(678\) 56.3624 2.16459
\(679\) 5.67967 0.217966
\(680\) 0 0
\(681\) −10.0281 −0.384277
\(682\) −23.5351 −0.901205
\(683\) 26.6977 1.02156 0.510780 0.859712i \(-0.329357\pi\)
0.510780 + 0.859712i \(0.329357\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −13.6304 −0.520412
\(687\) −32.5382 −1.24141
\(688\) −0.211842 −0.00807638
\(689\) 28.7147 1.09394
\(690\) 0 0
\(691\) 35.9708 1.36840 0.684198 0.729297i \(-0.260153\pi\)
0.684198 + 0.729297i \(0.260153\pi\)
\(692\) −27.4538 −1.04364
\(693\) 51.9256 1.97249
\(694\) 12.5110 0.474912
\(695\) 0 0
\(696\) 24.5491 0.930532
\(697\) −0.963920 −0.0365111
\(698\) 43.0069 1.62784
\(699\) −67.8733 −2.56720
\(700\) 0 0
\(701\) 2.45087 0.0925681 0.0462840 0.998928i \(-0.485262\pi\)
0.0462840 + 0.998928i \(0.485262\pi\)
\(702\) −8.16776 −0.308272
\(703\) 0 0
\(704\) 58.4326 2.20226
\(705\) 0 0
\(706\) −29.0232 −1.09230
\(707\) −43.1827 −1.62405
\(708\) 24.7429 0.929896
\(709\) −50.2881 −1.88861 −0.944304 0.329075i \(-0.893263\pi\)
−0.944304 + 0.329075i \(0.893263\pi\)
\(710\) 0 0
\(711\) −33.2671 −1.24761
\(712\) 3.10627 0.116412
\(713\) 2.64759 0.0991530
\(714\) −3.18668 −0.119259
\(715\) 0 0
\(716\) −33.0922 −1.23671
\(717\) 50.2912 1.87816
\(718\) 25.3203 0.944946
\(719\) −48.0983 −1.79376 −0.896881 0.442271i \(-0.854173\pi\)
−0.896881 + 0.442271i \(0.854173\pi\)
\(720\) 0 0
\(721\) 37.2319 1.38659
\(722\) 0 0
\(723\) −54.1123 −2.01246
\(724\) 39.5231 1.46886
\(725\) 0 0
\(726\) −53.3544 −1.98017
\(727\) 16.6797 0.618615 0.309307 0.950962i \(-0.399903\pi\)
0.309307 + 0.950962i \(0.399903\pi\)
\(728\) 48.9608 1.81461
\(729\) −31.8655 −1.18020
\(730\) 0 0
\(731\) −0.531091 −0.0196431
\(732\) −7.05526 −0.260770
\(733\) 4.13365 0.152680 0.0763399 0.997082i \(-0.475677\pi\)
0.0763399 + 0.997082i \(0.475677\pi\)
\(734\) −47.1664 −1.74094
\(735\) 0 0
\(736\) −6.63755 −0.244663
\(737\) −38.0561 −1.40182
\(738\) −45.6224 −1.67938
\(739\) 46.9740 1.72796 0.863982 0.503522i \(-0.167963\pi\)
0.863982 + 0.503522i \(0.167963\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 46.0241 1.68960
\(743\) −41.2139 −1.51199 −0.755995 0.654577i \(-0.772847\pi\)
−0.755995 + 0.654577i \(0.772847\pi\)
\(744\) 15.9960 0.586442
\(745\) 0 0
\(746\) 10.4046 0.380938
\(747\) −15.9508 −0.583608
\(748\) 2.30318 0.0842127
\(749\) −7.61951 −0.278411
\(750\) 0 0
\(751\) 5.97885 0.218171 0.109086 0.994032i \(-0.465208\pi\)
0.109086 + 0.994032i \(0.465208\pi\)
\(752\) 0.193802 0.00706722
\(753\) −18.2210 −0.664010
\(754\) 40.0702 1.45927
\(755\) 0 0
\(756\) −8.07730 −0.293769
\(757\) −36.3936 −1.32275 −0.661375 0.750056i \(-0.730027\pi\)
−0.661375 + 0.750056i \(0.730027\pi\)
\(758\) 45.5171 1.65325
\(759\) 13.0913 0.475186
\(760\) 0 0
\(761\) −2.71397 −0.0983813 −0.0491907 0.998789i \(-0.515664\pi\)
−0.0491907 + 0.998789i \(0.515664\pi\)
\(762\) 90.0058 3.26057
\(763\) −55.4819 −2.00858
\(764\) 18.3997 0.665677
\(765\) 0 0
\(766\) −45.6454 −1.64923
\(767\) 15.3163 0.553041
\(768\) −39.0802 −1.41019
\(769\) 39.7991 1.43519 0.717596 0.696460i \(-0.245243\pi\)
0.717596 + 0.696460i \(0.245243\pi\)
\(770\) 0 0
\(771\) −37.7991 −1.36130
\(772\) 32.7298 1.17797
\(773\) −44.9748 −1.61763 −0.808816 0.588061i \(-0.799891\pi\)
−0.808816 + 0.588061i \(0.799891\pi\)
\(774\) −25.1366 −0.903515
\(775\) 0 0
\(776\) 4.52194 0.162328
\(777\) −96.4044 −3.45849
\(778\) −31.5400 −1.13076
\(779\) 0 0
\(780\) 0 0
\(781\) 73.1756 2.61843
\(782\) −0.419934 −0.0150168
\(783\) −2.50702 −0.0895935
\(784\) −0.335260 −0.0119736
\(785\) 0 0
\(786\) 66.0833 2.35711
\(787\) 17.7149 0.631466 0.315733 0.948848i \(-0.397750\pi\)
0.315733 + 0.948848i \(0.397750\pi\)
\(788\) −52.2068 −1.85979
\(789\) −50.5280 −1.79884
\(790\) 0 0
\(791\) 34.5030 1.22679
\(792\) 41.3413 1.46900
\(793\) −4.36734 −0.155089
\(794\) −37.8171 −1.34208
\(795\) 0 0
\(796\) 1.07730 0.0381840
\(797\) −25.4930 −0.903008 −0.451504 0.892269i \(-0.649112\pi\)
−0.451504 + 0.892269i \(0.649112\pi\)
\(798\) 0 0
\(799\) 0.485864 0.0171886
\(800\) 0 0
\(801\) −3.65471 −0.129133
\(802\) −19.4810 −0.687897
\(803\) −32.2640 −1.13857
\(804\) 68.2028 2.40533
\(805\) 0 0
\(806\) 26.1094 0.919664
\(807\) −19.3664 −0.681731
\(808\) −34.3805 −1.20950
\(809\) −20.4678 −0.719610 −0.359805 0.933027i \(-0.617157\pi\)
−0.359805 + 0.933027i \(0.617157\pi\)
\(810\) 0 0
\(811\) −22.9015 −0.804182 −0.402091 0.915600i \(-0.631716\pi\)
−0.402091 + 0.915600i \(0.631716\pi\)
\(812\) 39.6264 1.39062
\(813\) −13.2500 −0.464696
\(814\) 112.929 3.95814
\(815\) 0 0
\(816\) 0.0251571 0.000880674 0
\(817\) 0 0
\(818\) 26.4306 0.924124
\(819\) −57.6053 −2.01289
\(820\) 0 0
\(821\) 30.7218 1.07220 0.536099 0.844155i \(-0.319897\pi\)
0.536099 + 0.844155i \(0.319897\pi\)
\(822\) 0.626631 0.0218563
\(823\) −4.19692 −0.146295 −0.0731476 0.997321i \(-0.523304\pi\)
−0.0731476 + 0.997321i \(0.523304\pi\)
\(824\) 29.6427 1.03265
\(825\) 0 0
\(826\) 24.5491 0.854173
\(827\) 21.3304 0.741730 0.370865 0.928687i \(-0.379061\pi\)
0.370865 + 0.928687i \(0.379061\pi\)
\(828\) −12.2631 −0.426172
\(829\) 34.0390 1.18222 0.591112 0.806590i \(-0.298689\pi\)
0.591112 + 0.806590i \(0.298689\pi\)
\(830\) 0 0
\(831\) −76.7810 −2.66350
\(832\) −64.8240 −2.24737
\(833\) −0.840502 −0.0291217
\(834\) −8.27111 −0.286405
\(835\) 0 0
\(836\) 0 0
\(837\) −1.63355 −0.0564638
\(838\) 49.6215 1.71415
\(839\) 10.4117 0.359451 0.179725 0.983717i \(-0.442479\pi\)
0.179725 + 0.983717i \(0.442479\pi\)
\(840\) 0 0
\(841\) −16.7008 −0.575890
\(842\) 15.8193 0.545171
\(843\) 33.4999 1.15380
\(844\) 6.53421 0.224917
\(845\) 0 0
\(846\) 22.9960 0.790619
\(847\) −32.6616 −1.12227
\(848\) −0.363334 −0.0124769
\(849\) −10.2671 −0.352366
\(850\) 0 0
\(851\) −12.7039 −0.435485
\(852\) −131.142 −4.49286
\(853\) 13.1305 0.449581 0.224790 0.974407i \(-0.427830\pi\)
0.224790 + 0.974407i \(0.427830\pi\)
\(854\) −7.00000 −0.239535
\(855\) 0 0
\(856\) −6.06638 −0.207345
\(857\) 43.2459 1.47725 0.738627 0.674115i \(-0.235475\pi\)
0.738627 + 0.674115i \(0.235475\pi\)
\(858\) 129.101 4.40744
\(859\) 31.4687 1.07370 0.536849 0.843678i \(-0.319614\pi\)
0.536849 + 0.843678i \(0.319614\pi\)
\(860\) 0 0
\(861\) −53.4326 −1.82098
\(862\) 63.9356 2.17766
\(863\) 23.7842 0.809622 0.404811 0.914400i \(-0.367337\pi\)
0.404811 + 0.914400i \(0.367337\pi\)
\(864\) 4.09534 0.139326
\(865\) 0 0
\(866\) 14.2912 0.485634
\(867\) −42.5562 −1.44529
\(868\) 25.8202 0.876396
\(869\) 45.6405 1.54825
\(870\) 0 0
\(871\) 42.2188 1.43053
\(872\) −44.1726 −1.49587
\(873\) −5.32033 −0.180066
\(874\) 0 0
\(875\) 0 0
\(876\) 57.8223 1.95363
\(877\) 38.1695 1.28889 0.644447 0.764649i \(-0.277088\pi\)
0.644447 + 0.764649i \(0.277088\pi\)
\(878\) −71.2910 −2.40595
\(879\) −30.5171 −1.02931
\(880\) 0 0
\(881\) 5.49209 0.185033 0.0925167 0.995711i \(-0.470509\pi\)
0.0925167 + 0.995711i \(0.470509\pi\)
\(882\) −39.7810 −1.33950
\(883\) 34.2983 1.15423 0.577115 0.816663i \(-0.304179\pi\)
0.577115 + 0.816663i \(0.304179\pi\)
\(884\) −2.55511 −0.0859375
\(885\) 0 0
\(886\) −74.7327 −2.51069
\(887\) 37.5171 1.25970 0.629850 0.776717i \(-0.283116\pi\)
0.629850 + 0.776717i \(0.283116\pi\)
\(888\) −76.7537 −2.57568
\(889\) 55.0983 1.84794
\(890\) 0 0
\(891\) 36.3413 1.21748
\(892\) 61.9628 2.07467
\(893\) 0 0
\(894\) −9.90466 −0.331261
\(895\) 0 0
\(896\) −63.7178 −2.12866
\(897\) −14.5233 −0.484918
\(898\) −58.5692 −1.95448
\(899\) 8.01404 0.267283
\(900\) 0 0
\(901\) −0.910886 −0.0303460
\(902\) 62.5912 2.08406
\(903\) −29.4397 −0.979694
\(904\) 27.4701 0.913640
\(905\) 0 0
\(906\) 115.383 3.83335
\(907\) 22.2531 0.738901 0.369450 0.929250i \(-0.379546\pi\)
0.369450 + 0.929250i \(0.379546\pi\)
\(908\) −12.8875 −0.427687
\(909\) 40.4507 1.34166
\(910\) 0 0
\(911\) 10.0421 0.332710 0.166355 0.986066i \(-0.446800\pi\)
0.166355 + 0.986066i \(0.446800\pi\)
\(912\) 0 0
\(913\) 21.8835 0.724238
\(914\) 75.7859 2.50678
\(915\) 0 0
\(916\) −41.8162 −1.38165
\(917\) 40.4538 1.33590
\(918\) 0.259097 0.00855149
\(919\) 6.06104 0.199935 0.0999676 0.994991i \(-0.468126\pi\)
0.0999676 + 0.994991i \(0.468126\pi\)
\(920\) 0 0
\(921\) −61.5099 −2.02682
\(922\) −4.97193 −0.163742
\(923\) −81.1796 −2.67206
\(924\) 127.671 4.20008
\(925\) 0 0
\(926\) −14.1695 −0.465640
\(927\) −34.8764 −1.14549
\(928\) −20.0913 −0.659531
\(929\) −51.8764 −1.70201 −0.851004 0.525158i \(-0.824006\pi\)
−0.851004 + 0.525158i \(0.824006\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −87.2268 −2.85721
\(933\) −25.5812 −0.837491
\(934\) −39.2007 −1.28269
\(935\) 0 0
\(936\) −45.8632 −1.49909
\(937\) −25.1998 −0.823243 −0.411621 0.911355i \(-0.635037\pi\)
−0.411621 + 0.911355i \(0.635037\pi\)
\(938\) 67.6685 2.20946
\(939\) 80.1794 2.61655
\(940\) 0 0
\(941\) −1.93585 −0.0631068 −0.0315534 0.999502i \(-0.510045\pi\)
−0.0315534 + 0.999502i \(0.510045\pi\)
\(942\) 21.6445 0.705215
\(943\) −7.04122 −0.229294
\(944\) −0.193802 −0.00630770
\(945\) 0 0
\(946\) 34.4859 1.12123
\(947\) −31.3624 −1.01914 −0.509571 0.860428i \(-0.670196\pi\)
−0.509571 + 0.860428i \(0.670196\pi\)
\(948\) −81.7951 −2.65658
\(949\) 35.7930 1.16189
\(950\) 0 0
\(951\) −5.60548 −0.181770
\(952\) −1.55313 −0.0503373
\(953\) −52.9085 −1.71387 −0.856937 0.515422i \(-0.827635\pi\)
−0.856937 + 0.515422i \(0.827635\pi\)
\(954\) −43.1123 −1.39581
\(955\) 0 0
\(956\) 64.6313 2.09033
\(957\) 39.6264 1.28094
\(958\) 81.7581 2.64148
\(959\) 0.383601 0.0123871
\(960\) 0 0
\(961\) −25.7781 −0.831552
\(962\) −125.281 −4.03921
\(963\) 7.13746 0.230001
\(964\) −69.5420 −2.23980
\(965\) 0 0
\(966\) −23.2780 −0.748958
\(967\) 60.0281 1.93037 0.965186 0.261563i \(-0.0842380\pi\)
0.965186 + 0.261563i \(0.0842380\pi\)
\(968\) −26.0040 −0.835800
\(969\) 0 0
\(970\) 0 0
\(971\) 1.75005 0.0561618 0.0280809 0.999606i \(-0.491060\pi\)
0.0280809 + 0.999606i \(0.491060\pi\)
\(972\) −72.0390 −2.31065
\(973\) −5.06327 −0.162321
\(974\) −54.1918 −1.73642
\(975\) 0 0
\(976\) 0.0552611 0.00176886
\(977\) −5.47583 −0.175187 −0.0875937 0.996156i \(-0.527918\pi\)
−0.0875937 + 0.996156i \(0.527918\pi\)
\(978\) −9.26018 −0.296108
\(979\) 5.01404 0.160249
\(980\) 0 0
\(981\) 51.9717 1.65933
\(982\) 89.5472 2.85756
\(983\) −5.05926 −0.161365 −0.0806827 0.996740i \(-0.525710\pi\)
−0.0806827 + 0.996740i \(0.525710\pi\)
\(984\) −42.5411 −1.35616
\(985\) 0 0
\(986\) −1.27111 −0.0404802
\(987\) 26.9327 0.857278
\(988\) 0 0
\(989\) −3.87950 −0.123361
\(990\) 0 0
\(991\) 0.0984581 0.00312762 0.00156381 0.999999i \(-0.499502\pi\)
0.00156381 + 0.999999i \(0.499502\pi\)
\(992\) −13.0913 −0.415650
\(993\) −25.2992 −0.802845
\(994\) −130.115 −4.12700
\(995\) 0 0
\(996\) −39.2188 −1.24269
\(997\) −18.3593 −0.581446 −0.290723 0.956807i \(-0.593896\pi\)
−0.290723 + 0.956807i \(0.593896\pi\)
\(998\) 21.4266 0.678247
\(999\) 7.83828 0.247992
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.z.1.1 3
5.4 even 2 1805.2.a.h.1.3 3
19.7 even 3 475.2.e.d.201.3 6
19.11 even 3 475.2.e.d.26.3 6
19.18 odd 2 9025.2.a.ba.1.3 3
95.7 odd 12 475.2.j.b.49.5 12
95.49 even 6 95.2.e.b.26.1 yes 6
95.64 even 6 95.2.e.b.11.1 6
95.68 odd 12 475.2.j.b.349.5 12
95.83 odd 12 475.2.j.b.49.2 12
95.87 odd 12 475.2.j.b.349.2 12
95.94 odd 2 1805.2.a.g.1.1 3
285.239 odd 6 855.2.k.g.406.3 6
285.254 odd 6 855.2.k.g.676.3 6
380.159 odd 6 1520.2.q.j.961.1 6
380.239 odd 6 1520.2.q.j.881.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.b.11.1 6 95.64 even 6
95.2.e.b.26.1 yes 6 95.49 even 6
475.2.e.d.26.3 6 19.11 even 3
475.2.e.d.201.3 6 19.7 even 3
475.2.j.b.49.2 12 95.83 odd 12
475.2.j.b.49.5 12 95.7 odd 12
475.2.j.b.349.2 12 95.87 odd 12
475.2.j.b.349.5 12 95.68 odd 12
855.2.k.g.406.3 6 285.239 odd 6
855.2.k.g.676.3 6 285.254 odd 6
1520.2.q.j.881.1 6 380.239 odd 6
1520.2.q.j.961.1 6 380.159 odd 6
1805.2.a.g.1.1 3 95.94 odd 2
1805.2.a.h.1.3 3 5.4 even 2
9025.2.a.z.1.1 3 1.1 even 1 trivial
9025.2.a.ba.1.3 3 19.18 odd 2