Properties

Label 855.2.n.c.818.4
Level $855$
Weight $2$
Character 855.818
Analytic conductor $6.827$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(647,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 818.4
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 855.818
Dual form 855.2.n.c.647.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 + 1.41421i) q^{2} +2.00000i q^{4} +(-0.448288 + 2.19067i) q^{5} +(2.36603 - 2.36603i) q^{7} +(-3.73205 + 2.46410i) q^{10} +1.55291i q^{11} +(0.732051 + 0.732051i) q^{13} +6.69213 q^{14} +4.00000 q^{16} +(4.57081 + 4.57081i) q^{17} +1.00000i q^{19} +(-4.38134 - 0.896575i) q^{20} +(-2.19615 + 2.19615i) q^{22} +(-2.44949 + 2.44949i) q^{23} +(-4.59808 - 1.96410i) q^{25} +2.07055i q^{26} +(4.73205 + 4.73205i) q^{28} -8.76268 q^{29} -0.535898 q^{31} +(5.65685 + 5.65685i) q^{32} +12.9282i q^{34} +(4.12252 + 6.24384i) q^{35} +(3.46410 - 3.46410i) q^{37} +(-1.41421 + 1.41421i) q^{38} -2.82843i q^{41} +(-3.09808 - 3.09808i) q^{43} -3.10583 q^{44} -6.92820 q^{46} +(-2.63896 - 2.63896i) q^{47} -4.19615i q^{49} +(-3.72500 - 9.28032i) q^{50} +(-1.46410 + 1.46410i) q^{52} +(4.24264 - 4.24264i) q^{53} +(-3.40192 - 0.696152i) q^{55} +(-12.3923 - 12.3923i) q^{58} +13.3843 q^{59} -12.8564 q^{61} +(-0.757875 - 0.757875i) q^{62} +8.00000i q^{64} +(-1.93185 + 1.27551i) q^{65} +(9.46410 - 9.46410i) q^{67} +(-9.14162 + 9.14162i) q^{68} +(-3.00000 + 14.6603i) q^{70} -0.757875i q^{71} +(-3.90192 - 3.90192i) q^{73} +9.79796 q^{74} -2.00000 q^{76} +(3.67423 + 3.67423i) q^{77} +13.4641i q^{79} +(-1.79315 + 8.76268i) q^{80} +(4.00000 - 4.00000i) q^{82} +(-0.757875 + 0.757875i) q^{83} +(-12.0622 + 7.96410i) q^{85} -8.76268i q^{86} +8.76268 q^{89} +3.46410 q^{91} +(-4.89898 - 4.89898i) q^{92} -7.46410i q^{94} +(-2.19067 - 0.448288i) q^{95} +(-5.66025 + 5.66025i) q^{97} +(5.93426 - 5.93426i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{7} - 16 q^{10} - 8 q^{13} + 32 q^{16} + 24 q^{22} - 16 q^{25} + 24 q^{28} - 32 q^{31} - 4 q^{43} + 16 q^{52} - 48 q^{55} - 16 q^{58} + 8 q^{61} + 48 q^{67} - 24 q^{70} - 52 q^{73} - 16 q^{76}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 + 1.41421i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) −0.448288 + 2.19067i −0.200480 + 0.979698i
\(6\) 0 0
\(7\) 2.36603 2.36603i 0.894274 0.894274i −0.100649 0.994922i \(-0.532092\pi\)
0.994922 + 0.100649i \(0.0320918\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) −3.73205 + 2.46410i −1.18018 + 0.779217i
\(11\) 1.55291i 0.468221i 0.972210 + 0.234111i \(0.0752178\pi\)
−0.972210 + 0.234111i \(0.924782\pi\)
\(12\) 0 0
\(13\) 0.732051 + 0.732051i 0.203034 + 0.203034i 0.801299 0.598264i \(-0.204143\pi\)
−0.598264 + 0.801299i \(0.704143\pi\)
\(14\) 6.69213 1.78855
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 4.57081 + 4.57081i 1.10858 + 1.10858i 0.993337 + 0.115247i \(0.0367661\pi\)
0.115247 + 0.993337i \(0.463234\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) −4.38134 0.896575i −0.979698 0.200480i
\(21\) 0 0
\(22\) −2.19615 + 2.19615i −0.468221 + 0.468221i
\(23\) −2.44949 + 2.44949i −0.510754 + 0.510754i −0.914757 0.404004i \(-0.867618\pi\)
0.404004 + 0.914757i \(0.367618\pi\)
\(24\) 0 0
\(25\) −4.59808 1.96410i −0.919615 0.392820i
\(26\) 2.07055i 0.406069i
\(27\) 0 0
\(28\) 4.73205 + 4.73205i 0.894274 + 0.894274i
\(29\) −8.76268 −1.62719 −0.813595 0.581432i \(-0.802492\pi\)
−0.813595 + 0.581432i \(0.802492\pi\)
\(30\) 0 0
\(31\) −0.535898 −0.0962502 −0.0481251 0.998841i \(-0.515325\pi\)
−0.0481251 + 0.998841i \(0.515325\pi\)
\(32\) 5.65685 + 5.65685i 1.00000 + 1.00000i
\(33\) 0 0
\(34\) 12.9282i 2.21717i
\(35\) 4.12252 + 6.24384i 0.696833 + 1.05540i
\(36\) 0 0
\(37\) 3.46410 3.46410i 0.569495 0.569495i −0.362492 0.931987i \(-0.618074\pi\)
0.931987 + 0.362492i \(0.118074\pi\)
\(38\) −1.41421 + 1.41421i −0.229416 + 0.229416i
\(39\) 0 0
\(40\) 0 0
\(41\) 2.82843i 0.441726i −0.975305 0.220863i \(-0.929113\pi\)
0.975305 0.220863i \(-0.0708874\pi\)
\(42\) 0 0
\(43\) −3.09808 3.09808i −0.472452 0.472452i 0.430255 0.902707i \(-0.358424\pi\)
−0.902707 + 0.430255i \(0.858424\pi\)
\(44\) −3.10583 −0.468221
\(45\) 0 0
\(46\) −6.92820 −1.02151
\(47\) −2.63896 2.63896i −0.384932 0.384932i 0.487944 0.872875i \(-0.337747\pi\)
−0.872875 + 0.487944i \(0.837747\pi\)
\(48\) 0 0
\(49\) 4.19615i 0.599450i
\(50\) −3.72500 9.28032i −0.526795 1.31244i
\(51\) 0 0
\(52\) −1.46410 + 1.46410i −0.203034 + 0.203034i
\(53\) 4.24264 4.24264i 0.582772 0.582772i −0.352892 0.935664i \(-0.614802\pi\)
0.935664 + 0.352892i \(0.114802\pi\)
\(54\) 0 0
\(55\) −3.40192 0.696152i −0.458715 0.0938692i
\(56\) 0 0
\(57\) 0 0
\(58\) −12.3923 12.3923i −1.62719 1.62719i
\(59\) 13.3843 1.74248 0.871241 0.490855i \(-0.163316\pi\)
0.871241 + 0.490855i \(0.163316\pi\)
\(60\) 0 0
\(61\) −12.8564 −1.64609 −0.823047 0.567973i \(-0.807728\pi\)
−0.823047 + 0.567973i \(0.807728\pi\)
\(62\) −0.757875 0.757875i −0.0962502 0.0962502i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) −1.93185 + 1.27551i −0.239617 + 0.158208i
\(66\) 0 0
\(67\) 9.46410 9.46410i 1.15622 1.15622i 0.170943 0.985281i \(-0.445319\pi\)
0.985281 0.170943i \(-0.0546814\pi\)
\(68\) −9.14162 + 9.14162i −1.10858 + 1.10858i
\(69\) 0 0
\(70\) −3.00000 + 14.6603i −0.358569 + 1.75224i
\(71\) 0.757875i 0.0899432i −0.998988 0.0449716i \(-0.985680\pi\)
0.998988 0.0449716i \(-0.0143197\pi\)
\(72\) 0 0
\(73\) −3.90192 3.90192i −0.456686 0.456686i 0.440880 0.897566i \(-0.354666\pi\)
−0.897566 + 0.440880i \(0.854666\pi\)
\(74\) 9.79796 1.13899
\(75\) 0 0
\(76\) −2.00000 −0.229416
\(77\) 3.67423 + 3.67423i 0.418718 + 0.418718i
\(78\) 0 0
\(79\) 13.4641i 1.51483i 0.652934 + 0.757415i \(0.273538\pi\)
−0.652934 + 0.757415i \(0.726462\pi\)
\(80\) −1.79315 + 8.76268i −0.200480 + 0.979698i
\(81\) 0 0
\(82\) 4.00000 4.00000i 0.441726 0.441726i
\(83\) −0.757875 + 0.757875i −0.0831876 + 0.0831876i −0.747476 0.664289i \(-0.768735\pi\)
0.664289 + 0.747476i \(0.268735\pi\)
\(84\) 0 0
\(85\) −12.0622 + 7.96410i −1.30833 + 0.863828i
\(86\) 8.76268i 0.944904i
\(87\) 0 0
\(88\) 0 0
\(89\) 8.76268 0.928843 0.464421 0.885614i \(-0.346262\pi\)
0.464421 + 0.885614i \(0.346262\pi\)
\(90\) 0 0
\(91\) 3.46410 0.363137
\(92\) −4.89898 4.89898i −0.510754 0.510754i
\(93\) 0 0
\(94\) 7.46410i 0.769863i
\(95\) −2.19067 0.448288i −0.224758 0.0459934i
\(96\) 0 0
\(97\) −5.66025 + 5.66025i −0.574712 + 0.574712i −0.933441 0.358730i \(-0.883210\pi\)
0.358730 + 0.933441i \(0.383210\pi\)
\(98\) 5.93426 5.93426i 0.599450 0.599450i
\(99\) 0 0
\(100\) 3.92820 9.19615i 0.392820 0.919615i
\(101\) 18.9396i 1.88456i −0.334828 0.942279i \(-0.608678\pi\)
0.334828 0.942279i \(-0.391322\pi\)
\(102\) 0 0
\(103\) 1.80385 + 1.80385i 0.177738 + 0.177738i 0.790369 0.612631i \(-0.209889\pi\)
−0.612631 + 0.790369i \(0.709889\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 12.0000 1.16554
\(107\) −0.378937 0.378937i −0.0366333 0.0366333i 0.688553 0.725186i \(-0.258246\pi\)
−0.725186 + 0.688553i \(0.758246\pi\)
\(108\) 0 0
\(109\) 8.39230i 0.803837i −0.915675 0.401919i \(-0.868344\pi\)
0.915675 0.401919i \(-0.131656\pi\)
\(110\) −3.82654 5.79555i −0.364846 0.552584i
\(111\) 0 0
\(112\) 9.46410 9.46410i 0.894274 0.894274i
\(113\) −10.9348 + 10.9348i −1.02866 + 1.02866i −0.0290796 + 0.999577i \(0.509258\pi\)
−0.999577 + 0.0290796i \(0.990742\pi\)
\(114\) 0 0
\(115\) −4.26795 6.46410i −0.397988 0.602781i
\(116\) 17.5254i 1.62719i
\(117\) 0 0
\(118\) 18.9282 + 18.9282i 1.74248 + 1.74248i
\(119\) 21.6293 1.98276
\(120\) 0 0
\(121\) 8.58846 0.780769
\(122\) −18.1817 18.1817i −1.64609 1.64609i
\(123\) 0 0
\(124\) 1.07180i 0.0962502i
\(125\) 6.36396 9.19239i 0.569210 0.822192i
\(126\) 0 0
\(127\) −1.26795 + 1.26795i −0.112512 + 0.112512i −0.761122 0.648609i \(-0.775351\pi\)
0.648609 + 0.761122i \(0.275351\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) −4.53590 0.928203i −0.397825 0.0814088i
\(131\) 12.8666i 1.12416i −0.827082 0.562081i \(-0.810001\pi\)
0.827082 0.562081i \(-0.189999\pi\)
\(132\) 0 0
\(133\) 2.36603 + 2.36603i 0.205160 + 0.205160i
\(134\) 26.7685 2.31245
\(135\) 0 0
\(136\) 0 0
\(137\) −1.08604 1.08604i −0.0927870 0.0927870i 0.659190 0.751977i \(-0.270899\pi\)
−0.751977 + 0.659190i \(0.770899\pi\)
\(138\) 0 0
\(139\) 9.73205i 0.825462i −0.910853 0.412731i \(-0.864575\pi\)
0.910853 0.412731i \(-0.135425\pi\)
\(140\) −12.4877 + 8.24504i −1.05540 + 0.696833i
\(141\) 0 0
\(142\) 1.07180 1.07180i 0.0899432 0.0899432i
\(143\) −1.13681 + 1.13681i −0.0950650 + 0.0950650i
\(144\) 0 0
\(145\) 3.92820 19.1962i 0.326220 1.59415i
\(146\) 11.0363i 0.913371i
\(147\) 0 0
\(148\) 6.92820 + 6.92820i 0.569495 + 0.569495i
\(149\) −24.3562 −1.99534 −0.997669 0.0682436i \(-0.978261\pi\)
−0.997669 + 0.0682436i \(0.978261\pi\)
\(150\) 0 0
\(151\) 1.07180 0.0872216 0.0436108 0.999049i \(-0.486114\pi\)
0.0436108 + 0.999049i \(0.486114\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 10.3923i 0.837436i
\(155\) 0.240237 1.17398i 0.0192963 0.0942961i
\(156\) 0 0
\(157\) −0.0717968 + 0.0717968i −0.00573001 + 0.00573001i −0.709966 0.704236i \(-0.751290\pi\)
0.704236 + 0.709966i \(0.251290\pi\)
\(158\) −19.0411 + 19.0411i −1.51483 + 1.51483i
\(159\) 0 0
\(160\) −14.9282 + 9.85641i −1.18018 + 0.779217i
\(161\) 11.5911i 0.913507i
\(162\) 0 0
\(163\) −9.19615 9.19615i −0.720298 0.720298i 0.248368 0.968666i \(-0.420106\pi\)
−0.968666 + 0.248368i \(0.920106\pi\)
\(164\) 5.65685 0.441726
\(165\) 0 0
\(166\) −2.14359 −0.166375
\(167\) 14.0406 + 14.0406i 1.08649 + 1.08649i 0.995887 + 0.0906075i \(0.0288809\pi\)
0.0906075 + 0.995887i \(0.471119\pi\)
\(168\) 0 0
\(169\) 11.9282i 0.917554i
\(170\) −28.3214 5.79555i −2.17215 0.444499i
\(171\) 0 0
\(172\) 6.19615 6.19615i 0.472452 0.472452i
\(173\) −8.10634 + 8.10634i −0.616314 + 0.616314i −0.944584 0.328270i \(-0.893534\pi\)
0.328270 + 0.944584i \(0.393534\pi\)
\(174\) 0 0
\(175\) −15.5263 + 6.23205i −1.17368 + 0.471099i
\(176\) 6.21166i 0.468221i
\(177\) 0 0
\(178\) 12.3923 + 12.3923i 0.928843 + 0.928843i
\(179\) −5.17638 −0.386901 −0.193450 0.981110i \(-0.561968\pi\)
−0.193450 + 0.981110i \(0.561968\pi\)
\(180\) 0 0
\(181\) 18.3923 1.36709 0.683545 0.729909i \(-0.260437\pi\)
0.683545 + 0.729909i \(0.260437\pi\)
\(182\) 4.89898 + 4.89898i 0.363137 + 0.363137i
\(183\) 0 0
\(184\) 0 0
\(185\) 6.03579 + 9.14162i 0.443760 + 0.672105i
\(186\) 0 0
\(187\) −7.09808 + 7.09808i −0.519063 + 0.519063i
\(188\) 5.27792 5.27792i 0.384932 0.384932i
\(189\) 0 0
\(190\) −2.46410 3.73205i −0.178765 0.270751i
\(191\) 2.58819i 0.187275i 0.995606 + 0.0936374i \(0.0298495\pi\)
−0.995606 + 0.0936374i \(0.970151\pi\)
\(192\) 0 0
\(193\) −11.4641 11.4641i −0.825204 0.825204i 0.161645 0.986849i \(-0.448320\pi\)
−0.986849 + 0.161645i \(0.948320\pi\)
\(194\) −16.0096 −1.14942
\(195\) 0 0
\(196\) 8.39230 0.599450
\(197\) −9.79796 9.79796i −0.698076 0.698076i 0.265920 0.963995i \(-0.414324\pi\)
−0.963995 + 0.265920i \(0.914324\pi\)
\(198\) 0 0
\(199\) 9.73205i 0.689887i −0.938623 0.344943i \(-0.887898\pi\)
0.938623 0.344943i \(-0.112102\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 26.7846 26.7846i 1.88456 1.88456i
\(203\) −20.7327 + 20.7327i −1.45515 + 1.45515i
\(204\) 0 0
\(205\) 6.19615 + 1.26795i 0.432758 + 0.0885574i
\(206\) 5.10205i 0.355477i
\(207\) 0 0
\(208\) 2.92820 + 2.92820i 0.203034 + 0.203034i
\(209\) −1.55291 −0.107417
\(210\) 0 0
\(211\) −5.85641 −0.403172 −0.201586 0.979471i \(-0.564609\pi\)
−0.201586 + 0.979471i \(0.564609\pi\)
\(212\) 8.48528 + 8.48528i 0.582772 + 0.582772i
\(213\) 0 0
\(214\) 1.07180i 0.0732665i
\(215\) 8.17569 5.39804i 0.557578 0.368143i
\(216\) 0 0
\(217\) −1.26795 + 1.26795i −0.0860740 + 0.0860740i
\(218\) 11.8685 11.8685i 0.803837 0.803837i
\(219\) 0 0
\(220\) 1.39230 6.80385i 0.0938692 0.458715i
\(221\) 6.69213i 0.450161i
\(222\) 0 0
\(223\) −4.92820 4.92820i −0.330017 0.330017i 0.522576 0.852593i \(-0.324971\pi\)
−0.852593 + 0.522576i \(0.824971\pi\)
\(224\) 26.7685 1.78855
\(225\) 0 0
\(226\) −30.9282 −2.05731
\(227\) −17.1464 17.1464i −1.13805 1.13805i −0.988800 0.149249i \(-0.952314\pi\)
−0.149249 0.988800i \(-0.547686\pi\)
\(228\) 0 0
\(229\) 12.6603i 0.836613i −0.908306 0.418307i \(-0.862624\pi\)
0.908306 0.418307i \(-0.137376\pi\)
\(230\) 3.10583 15.1774i 0.204792 1.00077i
\(231\) 0 0
\(232\) 0 0
\(233\) −5.46739 + 5.46739i −0.358180 + 0.358180i −0.863142 0.504962i \(-0.831507\pi\)
0.504962 + 0.863142i \(0.331507\pi\)
\(234\) 0 0
\(235\) 6.96410 4.59808i 0.454288 0.299945i
\(236\) 26.7685i 1.74248i
\(237\) 0 0
\(238\) 30.5885 + 30.5885i 1.98276 + 1.98276i
\(239\) 8.14351 0.526760 0.263380 0.964692i \(-0.415163\pi\)
0.263380 + 0.964692i \(0.415163\pi\)
\(240\) 0 0
\(241\) 28.3923 1.82891 0.914455 0.404689i \(-0.132620\pi\)
0.914455 + 0.404689i \(0.132620\pi\)
\(242\) 12.1459 + 12.1459i 0.780769 + 0.780769i
\(243\) 0 0
\(244\) 25.7128i 1.64609i
\(245\) 9.19239 + 1.88108i 0.587280 + 0.120178i
\(246\) 0 0
\(247\) −0.732051 + 0.732051i −0.0465793 + 0.0465793i
\(248\) 0 0
\(249\) 0 0
\(250\) 22.0000 4.00000i 1.39140 0.252982i
\(251\) 15.0387i 0.949235i 0.880192 + 0.474618i \(0.157414\pi\)
−0.880192 + 0.474618i \(0.842586\pi\)
\(252\) 0 0
\(253\) −3.80385 3.80385i −0.239146 0.239146i
\(254\) −3.58630 −0.225025
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −18.5606 18.5606i −1.15778 1.15778i −0.984952 0.172829i \(-0.944709\pi\)
−0.172829 0.984952i \(-0.555291\pi\)
\(258\) 0 0
\(259\) 16.3923i 1.01857i
\(260\) −2.55103 3.86370i −0.158208 0.239617i
\(261\) 0 0
\(262\) 18.1962 18.1962i 1.12416 1.12416i
\(263\) −12.9546 + 12.9546i −0.798812 + 0.798812i −0.982908 0.184096i \(-0.941064\pi\)
0.184096 + 0.982908i \(0.441064\pi\)
\(264\) 0 0
\(265\) 7.39230 + 11.1962i 0.454106 + 0.687774i
\(266\) 6.69213i 0.410321i
\(267\) 0 0
\(268\) 18.9282 + 18.9282i 1.15622 + 1.15622i
\(269\) −16.4901 −1.00542 −0.502709 0.864456i \(-0.667663\pi\)
−0.502709 + 0.864456i \(0.667663\pi\)
\(270\) 0 0
\(271\) 19.4641 1.18236 0.591180 0.806540i \(-0.298662\pi\)
0.591180 + 0.806540i \(0.298662\pi\)
\(272\) 18.2832 + 18.2832i 1.10858 + 1.10858i
\(273\) 0 0
\(274\) 3.07180i 0.185574i
\(275\) 3.05008 7.14042i 0.183927 0.430583i
\(276\) 0 0
\(277\) −9.16987 + 9.16987i −0.550964 + 0.550964i −0.926719 0.375755i \(-0.877383\pi\)
0.375755 + 0.926719i \(0.377383\pi\)
\(278\) 13.7632 13.7632i 0.825462 0.825462i
\(279\) 0 0
\(280\) 0 0
\(281\) 3.10583i 0.185278i 0.995700 + 0.0926391i \(0.0295303\pi\)
−0.995700 + 0.0926391i \(0.970470\pi\)
\(282\) 0 0
\(283\) 0.633975 + 0.633975i 0.0376859 + 0.0376859i 0.725699 0.688013i \(-0.241517\pi\)
−0.688013 + 0.725699i \(0.741517\pi\)
\(284\) 1.51575 0.0899432
\(285\) 0 0
\(286\) −3.21539 −0.190130
\(287\) −6.69213 6.69213i −0.395024 0.395024i
\(288\) 0 0
\(289\) 24.7846i 1.45792i
\(290\) 32.7028 21.5921i 1.92037 1.26793i
\(291\) 0 0
\(292\) 7.80385 7.80385i 0.456686 0.456686i
\(293\) −10.2784 + 10.2784i −0.600472 + 0.600472i −0.940438 0.339965i \(-0.889585\pi\)
0.339965 + 0.940438i \(0.389585\pi\)
\(294\) 0 0
\(295\) −6.00000 + 29.3205i −0.349334 + 1.70711i
\(296\) 0 0
\(297\) 0 0
\(298\) −34.4449 34.4449i −1.99534 1.99534i
\(299\) −3.58630 −0.207401
\(300\) 0 0
\(301\) −14.6603 −0.845003
\(302\) 1.51575 + 1.51575i 0.0872216 + 0.0872216i
\(303\) 0 0
\(304\) 4.00000i 0.229416i
\(305\) 5.76337 28.1642i 0.330010 1.61267i
\(306\) 0 0
\(307\) −18.3923 + 18.3923i −1.04970 + 1.04970i −0.0510059 + 0.998698i \(0.516243\pi\)
−0.998698 + 0.0510059i \(0.983757\pi\)
\(308\) −7.34847 + 7.34847i −0.418718 + 0.418718i
\(309\) 0 0
\(310\) 2.00000 1.32051i 0.113592 0.0749998i
\(311\) 9.65926i 0.547726i −0.961769 0.273863i \(-0.911698\pi\)
0.961769 0.273863i \(-0.0883015\pi\)
\(312\) 0 0
\(313\) 22.3205 + 22.3205i 1.26163 + 1.26163i 0.950303 + 0.311327i \(0.100773\pi\)
0.311327 + 0.950303i \(0.399227\pi\)
\(314\) −0.203072 −0.0114600
\(315\) 0 0
\(316\) −26.9282 −1.51483
\(317\) 7.45001 + 7.45001i 0.418434 + 0.418434i 0.884664 0.466230i \(-0.154388\pi\)
−0.466230 + 0.884664i \(0.654388\pi\)
\(318\) 0 0
\(319\) 13.6077i 0.761885i
\(320\) −17.5254 3.58630i −0.979698 0.200480i
\(321\) 0 0
\(322\) −16.3923 + 16.3923i −0.913507 + 0.913507i
\(323\) −4.57081 + 4.57081i −0.254327 + 0.254327i
\(324\) 0 0
\(325\) −1.92820 4.80385i −0.106957 0.266470i
\(326\) 26.0106i 1.44060i
\(327\) 0 0
\(328\) 0 0
\(329\) −12.4877 −0.688468
\(330\) 0 0
\(331\) 2.14359 0.117823 0.0589113 0.998263i \(-0.481237\pi\)
0.0589113 + 0.998263i \(0.481237\pi\)
\(332\) −1.51575 1.51575i −0.0831876 0.0831876i
\(333\) 0 0
\(334\) 39.7128i 2.17299i
\(335\) 16.4901 + 24.9754i 0.900950 + 1.36455i
\(336\) 0 0
\(337\) 3.66025 3.66025i 0.199387 0.199387i −0.600350 0.799737i \(-0.704972\pi\)
0.799737 + 0.600350i \(0.204972\pi\)
\(338\) 16.8690 16.8690i 0.917554 0.917554i
\(339\) 0 0
\(340\) −15.9282 24.1244i −0.863828 1.30833i
\(341\) 0.832204i 0.0450664i
\(342\) 0 0
\(343\) 6.63397 + 6.63397i 0.358201 + 0.358201i
\(344\) 0 0
\(345\) 0 0
\(346\) −22.9282 −1.23263
\(347\) 24.1667 + 24.1667i 1.29734 + 1.29734i 0.930145 + 0.367193i \(0.119681\pi\)
0.367193 + 0.930145i \(0.380319\pi\)
\(348\) 0 0
\(349\) 11.3397i 0.607003i −0.952831 0.303501i \(-0.901844\pi\)
0.952831 0.303501i \(-0.0981557\pi\)
\(350\) −30.7709 13.1440i −1.64478 0.702578i
\(351\) 0 0
\(352\) −8.78461 + 8.78461i −0.468221 + 0.468221i
\(353\) 12.6264 12.6264i 0.672035 0.672035i −0.286150 0.958185i \(-0.592376\pi\)
0.958185 + 0.286150i \(0.0923756\pi\)
\(354\) 0 0
\(355\) 1.66025 + 0.339746i 0.0881171 + 0.0180318i
\(356\) 17.5254i 0.928843i
\(357\) 0 0
\(358\) −7.32051 7.32051i −0.386901 0.386901i
\(359\) 0.517638 0.0273199 0.0136599 0.999907i \(-0.495652\pi\)
0.0136599 + 0.999907i \(0.495652\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 26.0106 + 26.0106i 1.36709 + 1.36709i
\(363\) 0 0
\(364\) 6.92820i 0.363137i
\(365\) 10.2970 6.79865i 0.538970 0.355857i
\(366\) 0 0
\(367\) −13.7321 + 13.7321i −0.716807 + 0.716807i −0.967950 0.251143i \(-0.919194\pi\)
0.251143 + 0.967950i \(0.419194\pi\)
\(368\) −9.79796 + 9.79796i −0.510754 + 0.510754i
\(369\) 0 0
\(370\) −4.39230 + 21.4641i −0.228345 + 1.11587i
\(371\) 20.0764i 1.04231i
\(372\) 0 0
\(373\) −3.46410 3.46410i −0.179364 0.179364i 0.611714 0.791079i \(-0.290480\pi\)
−0.791079 + 0.611714i \(0.790480\pi\)
\(374\) −20.0764 −1.03813
\(375\) 0 0
\(376\) 0 0
\(377\) −6.41473 6.41473i −0.330375 0.330375i
\(378\) 0 0
\(379\) 20.9282i 1.07501i 0.843261 + 0.537505i \(0.180633\pi\)
−0.843261 + 0.537505i \(0.819367\pi\)
\(380\) 0.896575 4.38134i 0.0459934 0.224758i
\(381\) 0 0
\(382\) −3.66025 + 3.66025i −0.187275 + 0.187275i
\(383\) −14.0406 + 14.0406i −0.717441 + 0.717441i −0.968081 0.250639i \(-0.919359\pi\)
0.250639 + 0.968081i \(0.419359\pi\)
\(384\) 0 0
\(385\) −9.69615 + 6.40192i −0.494162 + 0.326272i
\(386\) 32.4254i 1.65041i
\(387\) 0 0
\(388\) −11.3205 11.3205i −0.574712 0.574712i
\(389\) −11.0735 −0.561447 −0.280724 0.959789i \(-0.590574\pi\)
−0.280724 + 0.959789i \(0.590574\pi\)
\(390\) 0 0
\(391\) −22.3923 −1.13243
\(392\) 0 0
\(393\) 0 0
\(394\) 27.7128i 1.39615i
\(395\) −29.4954 6.03579i −1.48408 0.303694i
\(396\) 0 0
\(397\) 23.2224 23.2224i 1.16550 1.16550i 0.182248 0.983253i \(-0.441663\pi\)
0.983253 0.182248i \(-0.0583373\pi\)
\(398\) 13.7632 13.7632i 0.689887 0.689887i
\(399\) 0 0
\(400\) −18.3923 7.85641i −0.919615 0.392820i
\(401\) 19.0411i 0.950868i 0.879751 + 0.475434i \(0.157709\pi\)
−0.879751 + 0.475434i \(0.842291\pi\)
\(402\) 0 0
\(403\) −0.392305 0.392305i −0.0195421 0.0195421i
\(404\) 37.8792 1.88456
\(405\) 0 0
\(406\) −58.6410 −2.91030
\(407\) 5.37945 + 5.37945i 0.266650 + 0.266650i
\(408\) 0 0
\(409\) 11.8564i 0.586262i 0.956072 + 0.293131i \(0.0946971\pi\)
−0.956072 + 0.293131i \(0.905303\pi\)
\(410\) 6.96953 + 10.5558i 0.344201 + 0.521315i
\(411\) 0 0
\(412\) −3.60770 + 3.60770i −0.177738 + 0.177738i
\(413\) 31.6675 31.6675i 1.55826 1.55826i
\(414\) 0 0
\(415\) −1.32051 2.00000i −0.0648212 0.0981761i
\(416\) 8.28221i 0.406069i
\(417\) 0 0
\(418\) −2.19615 2.19615i −0.107417 0.107417i
\(419\) 29.9759 1.46442 0.732209 0.681080i \(-0.238489\pi\)
0.732209 + 0.681080i \(0.238489\pi\)
\(420\) 0 0
\(421\) 9.60770 0.468250 0.234125 0.972206i \(-0.424777\pi\)
0.234125 + 0.972206i \(0.424777\pi\)
\(422\) −8.28221 8.28221i −0.403172 0.403172i
\(423\) 0 0
\(424\) 0 0
\(425\) −12.0394 29.9945i −0.583997 1.45495i
\(426\) 0 0
\(427\) −30.4186 + 30.4186i −1.47206 + 1.47206i
\(428\) 0.757875 0.757875i 0.0366333 0.0366333i
\(429\) 0 0
\(430\) 19.1962 + 3.92820i 0.925721 + 0.189435i
\(431\) 8.76268i 0.422084i 0.977477 + 0.211042i \(0.0676856\pi\)
−0.977477 + 0.211042i \(0.932314\pi\)
\(432\) 0 0
\(433\) −4.73205 4.73205i −0.227408 0.227408i 0.584201 0.811609i \(-0.301408\pi\)
−0.811609 + 0.584201i \(0.801408\pi\)
\(434\) −3.58630 −0.172148
\(435\) 0 0
\(436\) 16.7846 0.803837
\(437\) −2.44949 2.44949i −0.117175 0.117175i
\(438\) 0 0
\(439\) 31.8564i 1.52042i 0.649675 + 0.760212i \(0.274905\pi\)
−0.649675 + 0.760212i \(0.725095\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −9.46410 + 9.46410i −0.450161 + 0.450161i
\(443\) −22.4379 + 22.4379i −1.06606 + 1.06606i −0.0684012 + 0.997658i \(0.521790\pi\)
−0.997658 + 0.0684012i \(0.978210\pi\)
\(444\) 0 0
\(445\) −3.92820 + 19.1962i −0.186215 + 0.909985i
\(446\) 13.9391i 0.660034i
\(447\) 0 0
\(448\) 18.9282 + 18.9282i 0.894274 + 0.894274i
\(449\) −6.41473 −0.302730 −0.151365 0.988478i \(-0.548367\pi\)
−0.151365 + 0.988478i \(0.548367\pi\)
\(450\) 0 0
\(451\) 4.39230 0.206826
\(452\) −21.8695 21.8695i −1.02866 1.02866i
\(453\) 0 0
\(454\) 48.4974i 2.27610i
\(455\) −1.55291 + 7.58871i −0.0728017 + 0.355764i
\(456\) 0 0
\(457\) 0.0262794 0.0262794i 0.00122930 0.00122930i −0.706492 0.707721i \(-0.749723\pi\)
0.707721 + 0.706492i \(0.249723\pi\)
\(458\) 17.9043 17.9043i 0.836613 0.836613i
\(459\) 0 0
\(460\) 12.9282 8.53590i 0.602781 0.397988i
\(461\) 17.5897i 0.819236i −0.912257 0.409618i \(-0.865662\pi\)
0.912257 0.409618i \(-0.134338\pi\)
\(462\) 0 0
\(463\) 9.97372 + 9.97372i 0.463518 + 0.463518i 0.899807 0.436289i \(-0.143707\pi\)
−0.436289 + 0.899807i \(0.643707\pi\)
\(464\) −35.0507 −1.62719
\(465\) 0 0
\(466\) −15.4641 −0.716361
\(467\) −7.91688 7.91688i −0.366349 0.366349i 0.499795 0.866144i \(-0.333409\pi\)
−0.866144 + 0.499795i \(0.833409\pi\)
\(468\) 0 0
\(469\) 44.7846i 2.06796i
\(470\) 16.3514 + 3.34607i 0.754233 + 0.154342i
\(471\) 0 0
\(472\) 0 0
\(473\) 4.81105 4.81105i 0.221212 0.221212i
\(474\) 0 0
\(475\) 1.96410 4.59808i 0.0901192 0.210974i
\(476\) 43.2586i 1.98276i
\(477\) 0 0
\(478\) 11.5167 + 11.5167i 0.526760 + 0.526760i
\(479\) −23.7642 −1.08582 −0.542908 0.839792i \(-0.682677\pi\)
−0.542908 + 0.839792i \(0.682677\pi\)
\(480\) 0 0
\(481\) 5.07180 0.231254
\(482\) 40.1528 + 40.1528i 1.82891 + 1.82891i
\(483\) 0 0
\(484\) 17.1769i 0.780769i
\(485\) −9.86233 14.9372i −0.447825 0.678262i
\(486\) 0 0
\(487\) −26.9282 + 26.9282i −1.22023 + 1.22023i −0.252685 + 0.967549i \(0.581314\pi\)
−0.967549 + 0.252685i \(0.918686\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 10.3397 + 15.6603i 0.467102 + 0.707458i
\(491\) 37.7033i 1.70153i 0.525550 + 0.850763i \(0.323860\pi\)
−0.525550 + 0.850763i \(0.676140\pi\)
\(492\) 0 0
\(493\) −40.0526 40.0526i −1.80388 1.80388i
\(494\) −2.07055 −0.0931586
\(495\) 0 0
\(496\) −2.14359 −0.0962502
\(497\) −1.79315 1.79315i −0.0804338 0.0804338i
\(498\) 0 0
\(499\) 41.7321i 1.86818i −0.357033 0.934092i \(-0.616212\pi\)
0.357033 0.934092i \(-0.383788\pi\)
\(500\) 18.3848 + 12.7279i 0.822192 + 0.569210i
\(501\) 0 0
\(502\) −21.2679 + 21.2679i −0.949235 + 0.949235i
\(503\) −2.07055 + 2.07055i −0.0923214 + 0.0923214i −0.751759 0.659438i \(-0.770794\pi\)
0.659438 + 0.751759i \(0.270794\pi\)
\(504\) 0 0
\(505\) 41.4904 + 8.49038i 1.84630 + 0.377817i
\(506\) 10.7589i 0.478292i
\(507\) 0 0
\(508\) −2.53590 2.53590i −0.112512 0.112512i
\(509\) −11.0363 −0.489176 −0.244588 0.969627i \(-0.578653\pi\)
−0.244588 + 0.969627i \(0.578653\pi\)
\(510\) 0 0
\(511\) −18.4641 −0.816804
\(512\) 22.6274 + 22.6274i 1.00000 + 1.00000i
\(513\) 0 0
\(514\) 52.4974i 2.31556i
\(515\) −4.76028 + 3.14299i −0.209763 + 0.138497i
\(516\) 0 0
\(517\) 4.09808 4.09808i 0.180233 0.180233i
\(518\) 23.1822 23.1822i 1.01857 1.01857i
\(519\) 0 0
\(520\) 0 0
\(521\) 5.65685i 0.247831i 0.992293 + 0.123916i \(0.0395452\pi\)
−0.992293 + 0.123916i \(0.960455\pi\)
\(522\) 0 0
\(523\) 25.6603 + 25.6603i 1.12204 + 1.12204i 0.991434 + 0.130611i \(0.0416938\pi\)
0.130611 + 0.991434i \(0.458306\pi\)
\(524\) 25.7332 1.12416
\(525\) 0 0
\(526\) −36.6410 −1.59762
\(527\) −2.44949 2.44949i −0.106701 0.106701i
\(528\) 0 0
\(529\) 11.0000i 0.478261i
\(530\) −5.37945 + 26.2880i −0.233668 + 1.14188i
\(531\) 0 0
\(532\) −4.73205 + 4.73205i −0.205160 + 0.205160i
\(533\) 2.07055 2.07055i 0.0896856 0.0896856i
\(534\) 0 0
\(535\) 1.00000 0.660254i 0.0432338 0.0285453i
\(536\) 0 0
\(537\) 0 0
\(538\) −23.3205 23.3205i −1.00542 1.00542i
\(539\) 6.51626 0.280675
\(540\) 0 0
\(541\) 29.1962 1.25524 0.627620 0.778520i \(-0.284029\pi\)
0.627620 + 0.778520i \(0.284029\pi\)
\(542\) 27.5264 + 27.5264i 1.18236 + 1.18236i
\(543\) 0 0
\(544\) 51.7128i 2.21717i
\(545\) 18.3848 + 3.76217i 0.787517 + 0.161154i
\(546\) 0 0
\(547\) −22.0526 + 22.0526i −0.942899 + 0.942899i −0.998456 0.0555562i \(-0.982307\pi\)
0.0555562 + 0.998456i \(0.482307\pi\)
\(548\) 2.17209 2.17209i 0.0927870 0.0927870i
\(549\) 0 0
\(550\) 14.4115 5.78461i 0.614510 0.246657i
\(551\) 8.76268i 0.373303i
\(552\) 0 0
\(553\) 31.8564 + 31.8564i 1.35467 + 1.35467i
\(554\) −25.9363 −1.10193
\(555\) 0 0
\(556\) 19.4641 0.825462
\(557\) 15.0895 + 15.0895i 0.639362 + 0.639362i 0.950398 0.311036i \(-0.100676\pi\)
−0.311036 + 0.950398i \(0.600676\pi\)
\(558\) 0 0
\(559\) 4.53590i 0.191848i
\(560\) 16.4901 + 24.9754i 0.696833 + 1.05540i
\(561\) 0 0
\(562\) −4.39230 + 4.39230i −0.185278 + 0.185278i
\(563\) 28.2843 28.2843i 1.19204 1.19204i 0.215546 0.976494i \(-0.430847\pi\)
0.976494 0.215546i \(-0.0691532\pi\)
\(564\) 0 0
\(565\) −19.0526 28.8564i −0.801547 1.21400i
\(566\) 1.79315i 0.0753718i
\(567\) 0 0
\(568\) 0 0
\(569\) −17.4510 −0.731585 −0.365793 0.930696i \(-0.619202\pi\)
−0.365793 + 0.930696i \(0.619202\pi\)
\(570\) 0 0
\(571\) −42.3923 −1.77406 −0.887031 0.461709i \(-0.847236\pi\)
−0.887031 + 0.461709i \(0.847236\pi\)
\(572\) −2.27362 2.27362i −0.0950650 0.0950650i
\(573\) 0 0
\(574\) 18.9282i 0.790048i
\(575\) 16.0740 6.45189i 0.670332 0.269063i
\(576\) 0 0
\(577\) 14.8301 14.8301i 0.617386 0.617386i −0.327474 0.944860i \(-0.606197\pi\)
0.944860 + 0.327474i \(0.106197\pi\)
\(578\) −35.0507 + 35.0507i −1.45792 + 1.45792i
\(579\) 0 0
\(580\) 38.3923 + 7.85641i 1.59415 + 0.326220i
\(581\) 3.58630i 0.148785i
\(582\) 0 0
\(583\) 6.58846 + 6.58846i 0.272866 + 0.272866i
\(584\) 0 0
\(585\) 0 0
\(586\) −29.0718 −1.20094
\(587\) 24.6844 + 24.6844i 1.01883 + 1.01883i 0.999819 + 0.0190136i \(0.00605258\pi\)
0.0190136 + 0.999819i \(0.493947\pi\)
\(588\) 0 0
\(589\) 0.535898i 0.0220813i
\(590\) −49.9507 + 32.9802i −2.05644 + 1.35777i
\(591\) 0 0
\(592\) 13.8564 13.8564i 0.569495 0.569495i
\(593\) −5.00052 + 5.00052i −0.205347 + 0.205347i −0.802286 0.596940i \(-0.796383\pi\)
0.596940 + 0.802286i \(0.296383\pi\)
\(594\) 0 0
\(595\) −9.69615 + 47.3827i −0.397503 + 1.94250i
\(596\) 48.7124i 1.99534i
\(597\) 0 0
\(598\) −5.07180 5.07180i −0.207401 0.207401i
\(599\) 23.3853 0.955497 0.477749 0.878497i \(-0.341453\pi\)
0.477749 + 0.878497i \(0.341453\pi\)
\(600\) 0 0
\(601\) 16.0000 0.652654 0.326327 0.945257i \(-0.394189\pi\)
0.326327 + 0.945257i \(0.394189\pi\)
\(602\) −20.7327 20.7327i −0.845003 0.845003i
\(603\) 0 0
\(604\) 2.14359i 0.0872216i
\(605\) −3.85010 + 18.8145i −0.156529 + 0.764917i
\(606\) 0 0
\(607\) −11.5167 + 11.5167i −0.467447 + 0.467447i −0.901086 0.433640i \(-0.857229\pi\)
0.433640 + 0.901086i \(0.357229\pi\)
\(608\) −5.65685 + 5.65685i −0.229416 + 0.229416i
\(609\) 0 0
\(610\) 47.9808 31.6795i 1.94268 1.28267i
\(611\) 3.86370i 0.156309i
\(612\) 0 0
\(613\) 13.1506 + 13.1506i 0.531149 + 0.531149i 0.920914 0.389765i \(-0.127444\pi\)
−0.389765 + 0.920914i \(0.627444\pi\)
\(614\) −52.0213 −2.09941
\(615\) 0 0
\(616\) 0 0
\(617\) −28.5109 28.5109i −1.14781 1.14781i −0.986983 0.160822i \(-0.948585\pi\)
−0.160822 0.986983i \(-0.551415\pi\)
\(618\) 0 0
\(619\) 36.2487i 1.45696i −0.685068 0.728479i \(-0.740227\pi\)
0.685068 0.728479i \(-0.259773\pi\)
\(620\) 2.34795 + 0.480473i 0.0942961 + 0.0192963i
\(621\) 0 0
\(622\) 13.6603 13.6603i 0.547726 0.547726i
\(623\) 20.7327 20.7327i 0.830639 0.830639i
\(624\) 0 0
\(625\) 17.2846 + 18.0622i 0.691384 + 0.722487i
\(626\) 63.1319i 2.52326i
\(627\) 0 0
\(628\) −0.143594 0.143594i −0.00573001 0.00573001i
\(629\) 31.6675 1.26267
\(630\) 0 0
\(631\) 7.00000 0.278666 0.139333 0.990246i \(-0.455504\pi\)
0.139333 + 0.990246i \(0.455504\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 21.0718i 0.836868i
\(635\) −2.20925 3.34607i −0.0876715 0.132785i
\(636\) 0 0
\(637\) 3.07180 3.07180i 0.121709 0.121709i
\(638\) 19.2442 19.2442i 0.761885 0.761885i
\(639\) 0 0
\(640\) 0 0
\(641\) 12.5521i 0.495776i 0.968789 + 0.247888i \(0.0797366\pi\)
−0.968789 + 0.247888i \(0.920263\pi\)
\(642\) 0 0
\(643\) −8.24167 8.24167i −0.325020 0.325020i 0.525669 0.850689i \(-0.323815\pi\)
−0.850689 + 0.525669i \(0.823815\pi\)
\(644\) −23.1822 −0.913507
\(645\) 0 0
\(646\) −12.9282 −0.508653
\(647\) −22.1977 22.1977i −0.872682 0.872682i 0.120082 0.992764i \(-0.461684\pi\)
−0.992764 + 0.120082i \(0.961684\pi\)
\(648\) 0 0
\(649\) 20.7846i 0.815867i
\(650\) 4.06678 9.52056i 0.159512 0.373427i
\(651\) 0 0
\(652\) 18.3923 18.3923i 0.720298 0.720298i
\(653\) −13.7124 + 13.7124i −0.536609 + 0.536609i −0.922531 0.385922i \(-0.873883\pi\)
0.385922 + 0.922531i \(0.373883\pi\)
\(654\) 0 0
\(655\) 28.1865 + 5.76795i 1.10134 + 0.225372i
\(656\) 11.3137i 0.441726i
\(657\) 0 0
\(658\) −17.6603 17.6603i −0.688468 0.688468i
\(659\) −12.9038 −0.502660 −0.251330 0.967901i \(-0.580868\pi\)
−0.251330 + 0.967901i \(0.580868\pi\)
\(660\) 0 0
\(661\) 37.5692 1.46127 0.730637 0.682767i \(-0.239223\pi\)
0.730637 + 0.682767i \(0.239223\pi\)
\(662\) 3.03150 + 3.03150i 0.117823 + 0.117823i
\(663\) 0 0
\(664\) 0 0
\(665\) −6.24384 + 4.12252i −0.242126 + 0.159865i
\(666\) 0 0
\(667\) 21.4641 21.4641i 0.831093 0.831093i
\(668\) −28.0812 + 28.0812i −1.08649 + 1.08649i
\(669\) 0 0
\(670\) −12.0000 + 58.6410i −0.463600 + 2.26550i
\(671\) 19.9649i 0.770736i
\(672\) 0 0
\(673\) 6.92820 + 6.92820i 0.267063 + 0.267063i 0.827915 0.560853i \(-0.189527\pi\)
−0.560853 + 0.827915i \(0.689527\pi\)
\(674\) 10.3528 0.398773
\(675\) 0 0
\(676\) 23.8564 0.917554
\(677\) 12.2474 + 12.2474i 0.470708 + 0.470708i 0.902144 0.431436i \(-0.141993\pi\)
−0.431436 + 0.902144i \(0.641993\pi\)
\(678\) 0 0
\(679\) 26.7846i 1.02790i
\(680\) 0 0
\(681\) 0 0
\(682\) 1.17691 1.17691i 0.0450664 0.0450664i
\(683\) 21.2132 21.2132i 0.811701 0.811701i −0.173188 0.984889i \(-0.555407\pi\)
0.984889 + 0.173188i \(0.0554069\pi\)
\(684\) 0 0
\(685\) 2.86603 1.89230i 0.109505 0.0723013i
\(686\) 18.7637i 0.716402i
\(687\) 0 0
\(688\) −12.3923 12.3923i −0.472452 0.472452i
\(689\) 6.21166 0.236645
\(690\) 0 0
\(691\) 30.5167 1.16091 0.580454 0.814293i \(-0.302875\pi\)
0.580454 + 0.814293i \(0.302875\pi\)
\(692\) −16.2127 16.2127i −0.616314 0.616314i
\(693\) 0 0
\(694\) 68.3538i 2.59468i
\(695\) 21.3197 + 4.36276i 0.808703 + 0.165489i
\(696\) 0 0
\(697\) 12.9282 12.9282i 0.489691 0.489691i
\(698\) 16.0368 16.0368i 0.607003 0.607003i
\(699\) 0 0
\(700\) −12.4641 31.0526i −0.471099 1.17368i
\(701\) 42.8797i 1.61954i 0.586745 + 0.809771i \(0.300409\pi\)
−0.586745 + 0.809771i \(0.699591\pi\)
\(702\) 0 0
\(703\) 3.46410 + 3.46410i 0.130651 + 0.130651i
\(704\) −12.4233 −0.468221
\(705\) 0 0
\(706\) 35.7128 1.34407
\(707\) −44.8115 44.8115i −1.68531 1.68531i
\(708\) 0 0
\(709\) 29.8564i 1.12128i −0.828059 0.560640i \(-0.810555\pi\)
0.828059 0.560640i \(-0.189445\pi\)
\(710\) 1.86748 + 2.82843i 0.0700853 + 0.106149i
\(711\) 0 0
\(712\) 0 0
\(713\) 1.31268 1.31268i 0.0491602 0.0491602i
\(714\) 0 0
\(715\) −1.98076 3.00000i −0.0740763 0.112194i
\(716\) 10.3528i 0.386901i
\(717\) 0 0
\(718\) 0.732051 + 0.732051i 0.0273199 + 0.0273199i
\(719\) 20.4182 0.761469 0.380735 0.924684i \(-0.375671\pi\)
0.380735 + 0.924684i \(0.375671\pi\)
\(720\) 0 0
\(721\) 8.53590 0.317893
\(722\) −1.41421 1.41421i −0.0526316 0.0526316i
\(723\) 0 0
\(724\) 36.7846i 1.36709i
\(725\) 40.2915 + 17.2108i 1.49639 + 0.639193i
\(726\) 0 0
\(727\) 8.95448 8.95448i 0.332103 0.332103i −0.521281 0.853385i \(-0.674546\pi\)
0.853385 + 0.521281i \(0.174546\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 24.1769 + 4.94744i 0.894828 + 0.183113i
\(731\) 28.3214i 1.04751i
\(732\) 0 0
\(733\) −3.00000 3.00000i −0.110808 0.110808i 0.649529 0.760337i \(-0.274966\pi\)
−0.760337 + 0.649529i \(0.774966\pi\)
\(734\) −38.8401 −1.43361
\(735\) 0 0
\(736\) −27.7128 −1.02151
\(737\) 14.6969 + 14.6969i 0.541369 + 0.541369i
\(738\) 0 0
\(739\) 3.78461i 0.139219i 0.997574 + 0.0696096i \(0.0221753\pi\)
−0.997574 + 0.0696096i \(0.977825\pi\)
\(740\) −18.2832 + 12.0716i −0.672105 + 0.443760i
\(741\) 0 0
\(742\) 28.3923 28.3923i 1.04231 1.04231i
\(743\) −8.76268 + 8.76268i −0.321472 + 0.321472i −0.849331 0.527860i \(-0.822995\pi\)
0.527860 + 0.849331i \(0.322995\pi\)
\(744\) 0 0
\(745\) 10.9186 53.3564i 0.400026 1.95483i
\(746\) 9.79796i 0.358729i
\(747\) 0 0
\(748\) −14.1962 14.1962i −0.519063 0.519063i
\(749\) −1.79315 −0.0655203
\(750\) 0 0
\(751\) −40.1051 −1.46346 −0.731728 0.681596i \(-0.761286\pi\)
−0.731728 + 0.681596i \(0.761286\pi\)
\(752\) −10.5558 10.5558i −0.384932 0.384932i
\(753\) 0 0
\(754\) 18.1436i 0.660751i
\(755\) −0.480473 + 2.34795i −0.0174862 + 0.0854508i
\(756\) 0 0
\(757\) −5.43782 + 5.43782i −0.197641 + 0.197641i −0.798988 0.601347i \(-0.794631\pi\)
0.601347 + 0.798988i \(0.294631\pi\)
\(758\) −29.5969 + 29.5969i −1.07501 + 1.07501i
\(759\) 0 0
\(760\) 0 0
\(761\) 17.7656i 0.644003i −0.946739 0.322001i \(-0.895644\pi\)
0.946739 0.322001i \(-0.104356\pi\)
\(762\) 0 0
\(763\) −19.8564 19.8564i −0.718850 0.718850i
\(764\) −5.17638 −0.187275
\(765\) 0 0
\(766\) −39.7128 −1.43488
\(767\) 9.79796 + 9.79796i 0.353784 + 0.353784i
\(768\) 0 0
\(769\) 10.8038i 0.389597i −0.980843 0.194798i \(-0.937595\pi\)
0.980843 0.194798i \(-0.0624052\pi\)
\(770\) −22.7661 4.65874i −0.820434 0.167889i
\(771\) 0 0
\(772\) 22.9282 22.9282i 0.825204 0.825204i
\(773\) 21.6665 21.6665i 0.779289 0.779289i −0.200421 0.979710i \(-0.564231\pi\)
0.979710 + 0.200421i \(0.0642310\pi\)
\(774\) 0 0
\(775\) 2.46410 + 1.05256i 0.0885131 + 0.0378090i
\(776\) 0 0
\(777\) 0 0
\(778\) −15.6603 15.6603i −0.561447 0.561447i
\(779\) 2.82843 0.101339
\(780\) 0 0
\(781\) 1.17691 0.0421133
\(782\) −31.6675 31.6675i −1.13243 1.13243i
\(783\) 0 0
\(784\) 16.7846i 0.599450i
\(785\) −0.125097 0.189469i −0.00446492 0.00676243i
\(786\) 0 0
\(787\) −9.46410 + 9.46410i −0.337359 + 0.337359i −0.855372 0.518014i \(-0.826672\pi\)
0.518014 + 0.855372i \(0.326672\pi\)
\(788\) 19.5959 19.5959i 0.698076 0.698076i
\(789\) 0 0
\(790\) −33.1769 50.2487i −1.18038 1.78777i
\(791\) 51.7439i 1.83980i
\(792\) 0 0
\(793\) −9.41154 9.41154i −0.334214 0.334214i
\(794\) 65.6830 2.33100
\(795\) 0 0
\(796\) 19.4641 0.689887
\(797\) −15.6579 15.6579i −0.554631 0.554631i 0.373143 0.927774i \(-0.378280\pi\)
−0.927774 + 0.373143i \(0.878280\pi\)
\(798\) 0 0
\(799\) 24.1244i 0.853458i
\(800\) −14.9000 37.1213i −0.526795 1.31244i
\(801\) 0 0
\(802\) −26.9282 + 26.9282i −0.950868 + 0.950868i
\(803\) 6.05935 6.05935i 0.213830 0.213830i
\(804\) 0 0
\(805\) −25.3923 5.19615i −0.894961 0.183140i
\(806\) 1.10961i 0.0390842i
\(807\) 0 0
\(808\) 0 0
\(809\) 0.314566 0.0110596 0.00552978 0.999985i \(-0.498240\pi\)
0.00552978 + 0.999985i \(0.498240\pi\)
\(810\) 0 0
\(811\) 39.8564 1.39955 0.699774 0.714364i \(-0.253284\pi\)
0.699774 + 0.714364i \(0.253284\pi\)
\(812\) −41.4655 41.4655i −1.45515 1.45515i
\(813\) 0 0
\(814\) 15.2154i 0.533299i
\(815\) 24.2683 16.0232i 0.850080 0.561269i
\(816\) 0 0
\(817\) 3.09808 3.09808i 0.108388 0.108388i
\(818\) −16.7675 + 16.7675i −0.586262 + 0.586262i
\(819\) 0 0
\(820\) −2.53590 + 12.3923i −0.0885574 + 0.432758i
\(821\) 33.7752i 1.17876i −0.807855 0.589382i \(-0.799371\pi\)
0.807855 0.589382i \(-0.200629\pi\)
\(822\) 0 0
\(823\) 12.6340 + 12.6340i 0.440393 + 0.440393i 0.892144 0.451751i \(-0.149201\pi\)
−0.451751 + 0.892144i \(0.649201\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 89.5692 3.11651
\(827\) 39.1918 + 39.1918i 1.36283 + 1.36283i 0.870285 + 0.492549i \(0.163935\pi\)
0.492549 + 0.870285i \(0.336065\pi\)
\(828\) 0 0
\(829\) 16.6795i 0.579303i 0.957132 + 0.289651i \(0.0935394\pi\)
−0.957132 + 0.289651i \(0.906461\pi\)
\(830\) 0.960947 4.69591i 0.0333549 0.162997i
\(831\) 0 0
\(832\) −5.85641 + 5.85641i −0.203034 + 0.203034i
\(833\) 19.1798 19.1798i 0.664541 0.664541i
\(834\) 0 0
\(835\) −37.0526 + 24.4641i −1.28226 + 0.846615i
\(836\) 3.10583i 0.107417i
\(837\) 0 0
\(838\) 42.3923 + 42.3923i 1.46442 + 1.46442i
\(839\) −21.5921 −0.745443 −0.372722 0.927943i \(-0.621575\pi\)
−0.372722 + 0.927943i \(0.621575\pi\)
\(840\) 0 0
\(841\) 47.7846 1.64775
\(842\) 13.5873 + 13.5873i 0.468250 + 0.468250i
\(843\) 0 0
\(844\) 11.7128i 0.403172i
\(845\) 26.1308 + 5.34727i 0.898926 + 0.183952i
\(846\) 0 0
\(847\) 20.3205 20.3205i 0.698221 0.698221i
\(848\) 16.9706 16.9706i 0.582772 0.582772i
\(849\) 0 0
\(850\) 25.3923 59.4449i 0.870949 2.03894i
\(851\) 16.9706i 0.581743i
\(852\) 0 0
\(853\) −24.7128 24.7128i −0.846151 0.846151i 0.143500 0.989650i \(-0.454164\pi\)
−0.989650 + 0.143500i \(0.954164\pi\)
\(854\) −86.0367 −2.94412
\(855\) 0 0
\(856\) 0 0
\(857\) −4.62158 4.62158i −0.157870 0.157870i 0.623752 0.781622i \(-0.285607\pi\)
−0.781622 + 0.623752i \(0.785607\pi\)
\(858\) 0 0
\(859\) 28.5692i 0.974769i −0.873187 0.487385i \(-0.837951\pi\)
0.873187 0.487385i \(-0.162049\pi\)
\(860\) 10.7961 + 16.3514i 0.368143 + 0.557578i
\(861\) 0 0
\(862\) −12.3923 + 12.3923i −0.422084 + 0.422084i
\(863\) −11.5911 + 11.5911i −0.394566 + 0.394566i −0.876311 0.481745i \(-0.840003\pi\)
0.481745 + 0.876311i \(0.340003\pi\)
\(864\) 0 0
\(865\) −14.1244 21.3923i −0.480242 0.727360i
\(866\) 13.3843i 0.454816i
\(867\) 0 0
\(868\) −2.53590 2.53590i −0.0860740 0.0860740i
\(869\) −20.9086 −0.709276
\(870\) 0 0
\(871\) 13.8564 0.469506
\(872\) 0 0
\(873\) 0 0
\(874\) 6.92820i 0.234350i
\(875\) −6.69213 36.8067i −0.226235 1.24429i
\(876\) 0 0
\(877\) −17.2679 + 17.2679i −0.583097 + 0.583097i −0.935753 0.352656i \(-0.885279\pi\)
0.352656 + 0.935753i \(0.385279\pi\)
\(878\) −45.0518 + 45.0518i −1.52042 + 1.52042i
\(879\) 0 0
\(880\) −13.6077 2.78461i −0.458715 0.0938692i
\(881\) 30.0131i 1.01117i 0.862778 + 0.505583i \(0.168722\pi\)
−0.862778 + 0.505583i \(0.831278\pi\)
\(882\) 0 0
\(883\) −24.6340 24.6340i −0.828999 0.828999i 0.158379 0.987378i \(-0.449373\pi\)
−0.987378 + 0.158379i \(0.949373\pi\)
\(884\) −13.3843 −0.450161
\(885\) 0 0
\(886\) −63.4641 −2.13212
\(887\) 16.2127 + 16.2127i 0.544369 + 0.544369i 0.924807 0.380438i \(-0.124227\pi\)
−0.380438 + 0.924807i \(0.624227\pi\)
\(888\) 0 0
\(889\) 6.00000i 0.201234i
\(890\) −32.7028 + 21.5921i −1.09620 + 0.723770i
\(891\) 0 0
\(892\) 9.85641 9.85641i 0.330017 0.330017i
\(893\) 2.63896 2.63896i 0.0883094 0.0883094i
\(894\) 0 0
\(895\) 2.32051 11.3397i 0.0775660 0.379046i
\(896\) 0 0
\(897\) 0 0
\(898\) −9.07180 9.07180i −0.302730 0.302730i
\(899\) 4.69591 0.156617
\(900\) 0 0
\(901\) 38.7846 1.29210
\(902\) 6.21166 + 6.21166i 0.206826 + 0.206826i
\(903\) 0 0
\(904\) 0 0
\(905\) −8.24504 + 40.2915i −0.274075 + 1.33933i
\(906\) 0 0
\(907\) −6.33975 + 6.33975i −0.210508 + 0.210508i −0.804483 0.593975i \(-0.797558\pi\)
0.593975 + 0.804483i \(0.297558\pi\)
\(908\) 34.2929 34.2929i 1.13805 1.13805i
\(909\) 0 0
\(910\) −12.9282 + 8.53590i −0.428566 + 0.282962i
\(911\) 57.4007i 1.90177i −0.309542 0.950886i \(-0.600176\pi\)
0.309542 0.950886i \(-0.399824\pi\)
\(912\) 0 0
\(913\) −1.17691 1.17691i −0.0389502 0.0389502i
\(914\) 0.0743295 0.00245860
\(915\) 0 0
\(916\) 25.3205 0.836613
\(917\) −30.4428 30.4428i −1.00531 1.00531i
\(918\) 0 0
\(919\) 43.7128i 1.44195i 0.692960 + 0.720976i \(0.256306\pi\)
−0.692960 + 0.720976i \(0.743694\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 24.8756 24.8756i 0.819236 0.819236i
\(923\) 0.554803 0.554803i 0.0182616 0.0182616i
\(924\) 0 0
\(925\) −22.7321 + 9.12436i −0.747425 + 0.300007i
\(926\) 28.2099i 0.927036i
\(927\) 0 0
\(928\) −49.5692 49.5692i −1.62719 1.62719i
\(929\) −5.00052 −0.164062 −0.0820308 0.996630i \(-0.526141\pi\)
−0.0820308 + 0.996630i \(0.526141\pi\)
\(930\) 0 0
\(931\) 4.19615 0.137523
\(932\) −10.9348 10.9348i −0.358180 0.358180i
\(933\) 0 0
\(934\) 22.3923i 0.732699i
\(935\) −12.3676 18.7315i −0.404463 0.612586i
\(936\) 0 0
\(937\) −13.7583 + 13.7583i −0.449465 + 0.449465i −0.895177 0.445712i \(-0.852951\pi\)
0.445712 + 0.895177i \(0.352951\pi\)
\(938\) 63.3350 63.3350i 2.06796 2.06796i
\(939\) 0 0
\(940\) 9.19615 + 13.9282i 0.299945 + 0.454288i
\(941\) 37.6018i 1.22578i −0.790167 0.612891i \(-0.790006\pi\)
0.790167 0.612891i \(-0.209994\pi\)
\(942\) 0 0
\(943\) 6.92820 + 6.92820i 0.225613 + 0.225613i
\(944\) 53.5370 1.74248
\(945\) 0 0
\(946\) 13.6077 0.442424
\(947\) −31.6675 31.6675i −1.02906 1.02906i −0.999565 0.0294905i \(-0.990612\pi\)
−0.0294905 0.999565i \(-0.509388\pi\)
\(948\) 0 0
\(949\) 5.71281i 0.185446i
\(950\) 9.28032 3.72500i 0.301093 0.120855i
\(951\) 0 0
\(952\) 0 0
\(953\) 34.9764 34.9764i 1.13300 1.13300i 0.143320 0.989676i \(-0.454222\pi\)
0.989676 0.143320i \(-0.0457780\pi\)
\(954\) 0 0
\(955\) −5.66987 1.16025i −0.183473 0.0375449i
\(956\) 16.2870i 0.526760i
\(957\) 0 0
\(958\) −33.6077 33.6077i −1.08582 1.08582i
\(959\) −5.13922 −0.165954
\(960\) 0 0
\(961\) −30.7128 −0.990736
\(962\) 7.17260 + 7.17260i 0.231254 + 0.231254i
\(963\) 0 0
\(964\) 56.7846i 1.82891i
\(965\) 30.2533 19.9749i 0.973888 0.643013i
\(966\) 0 0
\(967\) −25.9808 + 25.9808i −0.835485 + 0.835485i −0.988261 0.152776i \(-0.951179\pi\)
0.152776 + 0.988261i \(0.451179\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 7.17691 35.0718i 0.230437 1.12609i
\(971\) 26.0106i 0.834721i 0.908741 + 0.417361i \(0.137045\pi\)
−0.908741 + 0.417361i \(0.862955\pi\)
\(972\) 0 0
\(973\) −23.0263 23.0263i −0.738189 0.738189i
\(974\) −76.1645 −2.44047
\(975\) 0 0
\(976\) −51.4256 −1.64609
\(977\) 2.24642 + 2.24642i 0.0718693 + 0.0718693i 0.742128 0.670258i \(-0.233817\pi\)
−0.670258 + 0.742128i \(0.733817\pi\)
\(978\) 0 0
\(979\) 13.6077i 0.434904i
\(980\) −3.76217 + 18.3848i −0.120178 + 0.587280i
\(981\) 0 0
\(982\) −53.3205 + 53.3205i −1.70153 + 1.70153i
\(983\) −13.9391 + 13.9391i −0.444587 + 0.444587i −0.893550 0.448963i \(-0.851793\pi\)
0.448963 + 0.893550i \(0.351793\pi\)
\(984\) 0 0
\(985\) 25.8564 17.0718i 0.823854 0.543953i
\(986\) 113.286i 3.60775i
\(987\) 0 0
\(988\) −1.46410 1.46410i −0.0465793 0.0465793i
\(989\) 15.1774 0.482614
\(990\) 0 0
\(991\) 26.1436 0.830479 0.415239 0.909712i \(-0.363698\pi\)
0.415239 + 0.909712i \(0.363698\pi\)
\(992\) −3.03150 3.03150i −0.0962502 0.0962502i
\(993\) 0 0
\(994\) 5.07180i 0.160868i
\(995\) 21.3197 + 4.36276i 0.675881 + 0.138309i
\(996\) 0 0
\(997\) −16.3660 + 16.3660i −0.518317 + 0.518317i −0.917062 0.398745i \(-0.869446\pi\)
0.398745 + 0.917062i \(0.369446\pi\)
\(998\) 59.0180 59.0180i 1.86818 1.86818i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.n.c.818.4 yes 8
3.2 odd 2 inner 855.2.n.c.818.1 yes 8
5.2 odd 4 inner 855.2.n.c.647.1 8
15.2 even 4 inner 855.2.n.c.647.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
855.2.n.c.647.1 8 5.2 odd 4 inner
855.2.n.c.647.4 yes 8 15.2 even 4 inner
855.2.n.c.818.1 yes 8 3.2 odd 2 inner
855.2.n.c.818.4 yes 8 1.1 even 1 trivial