Properties

Label 8649.2.a.bu.1.20
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 2883)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 8649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.33041 q^{2} +3.43080 q^{4} +4.15417 q^{5} +1.65165 q^{7} +3.33434 q^{8} +9.68090 q^{10} -3.57216 q^{11} +5.72597 q^{13} +3.84901 q^{14} +0.908780 q^{16} +0.565884 q^{17} +4.78254 q^{19} +14.2521 q^{20} -8.32459 q^{22} +1.56241 q^{23} +12.2571 q^{25} +13.3438 q^{26} +5.66647 q^{28} -1.53197 q^{29} -4.55086 q^{32} +1.31874 q^{34} +6.86122 q^{35} -2.46370 q^{37} +11.1453 q^{38} +13.8514 q^{40} -5.37388 q^{41} +2.70459 q^{43} -12.2554 q^{44} +3.64106 q^{46} +0.768928 q^{47} -4.27206 q^{49} +28.5640 q^{50} +19.6446 q^{52} -9.50473 q^{53} -14.8394 q^{55} +5.50716 q^{56} -3.57010 q^{58} +5.75881 q^{59} -7.16953 q^{61} -12.4229 q^{64} +23.7866 q^{65} -1.90301 q^{67} +1.94144 q^{68} +15.9894 q^{70} -10.0456 q^{71} -6.61798 q^{73} -5.74143 q^{74} +16.4079 q^{76} -5.89995 q^{77} -15.3513 q^{79} +3.77522 q^{80} -12.5233 q^{82} +12.7125 q^{83} +2.35078 q^{85} +6.30281 q^{86} -11.9108 q^{88} -0.417559 q^{89} +9.45728 q^{91} +5.36032 q^{92} +1.79192 q^{94} +19.8675 q^{95} +2.34660 q^{97} -9.95564 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 32 q^{4} + 16 q^{7} + 24 q^{8} - 8 q^{10} - 16 q^{11} + 32 q^{13} + 24 q^{14} + 48 q^{16} - 32 q^{17} + 32 q^{19} + 24 q^{20} + 32 q^{22} - 32 q^{23} + 40 q^{25} - 16 q^{26} + 8 q^{28} - 48 q^{29}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.33041 1.64785 0.823923 0.566701i \(-0.191781\pi\)
0.823923 + 0.566701i \(0.191781\pi\)
\(3\) 0 0
\(4\) 3.43080 1.71540
\(5\) 4.15417 1.85780 0.928900 0.370331i \(-0.120756\pi\)
0.928900 + 0.370331i \(0.120756\pi\)
\(6\) 0 0
\(7\) 1.65165 0.624264 0.312132 0.950039i \(-0.398957\pi\)
0.312132 + 0.950039i \(0.398957\pi\)
\(8\) 3.33434 1.17887
\(9\) 0 0
\(10\) 9.68090 3.06137
\(11\) −3.57216 −1.07705 −0.538524 0.842610i \(-0.681018\pi\)
−0.538524 + 0.842610i \(0.681018\pi\)
\(12\) 0 0
\(13\) 5.72597 1.58810 0.794049 0.607854i \(-0.207970\pi\)
0.794049 + 0.607854i \(0.207970\pi\)
\(14\) 3.84901 1.02869
\(15\) 0 0
\(16\) 0.908780 0.227195
\(17\) 0.565884 0.137247 0.0686236 0.997643i \(-0.478139\pi\)
0.0686236 + 0.997643i \(0.478139\pi\)
\(18\) 0 0
\(19\) 4.78254 1.09719 0.548595 0.836088i \(-0.315163\pi\)
0.548595 + 0.836088i \(0.315163\pi\)
\(20\) 14.2521 3.18687
\(21\) 0 0
\(22\) −8.32459 −1.77481
\(23\) 1.56241 0.325785 0.162893 0.986644i \(-0.447918\pi\)
0.162893 + 0.986644i \(0.447918\pi\)
\(24\) 0 0
\(25\) 12.2571 2.45142
\(26\) 13.3438 2.61694
\(27\) 0 0
\(28\) 5.66647 1.07086
\(29\) −1.53197 −0.284479 −0.142239 0.989832i \(-0.545430\pi\)
−0.142239 + 0.989832i \(0.545430\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) −4.55086 −0.804486
\(33\) 0 0
\(34\) 1.31874 0.226162
\(35\) 6.86122 1.15976
\(36\) 0 0
\(37\) −2.46370 −0.405030 −0.202515 0.979279i \(-0.564912\pi\)
−0.202515 + 0.979279i \(0.564912\pi\)
\(38\) 11.1453 1.80800
\(39\) 0 0
\(40\) 13.8514 2.19010
\(41\) −5.37388 −0.839260 −0.419630 0.907695i \(-0.637840\pi\)
−0.419630 + 0.907695i \(0.637840\pi\)
\(42\) 0 0
\(43\) 2.70459 0.412447 0.206223 0.978505i \(-0.433883\pi\)
0.206223 + 0.978505i \(0.433883\pi\)
\(44\) −12.2554 −1.84757
\(45\) 0 0
\(46\) 3.64106 0.536844
\(47\) 0.768928 0.112160 0.0560799 0.998426i \(-0.482140\pi\)
0.0560799 + 0.998426i \(0.482140\pi\)
\(48\) 0 0
\(49\) −4.27206 −0.610294
\(50\) 28.5640 4.03956
\(51\) 0 0
\(52\) 19.6446 2.72422
\(53\) −9.50473 −1.30557 −0.652787 0.757541i \(-0.726401\pi\)
−0.652787 + 0.757541i \(0.726401\pi\)
\(54\) 0 0
\(55\) −14.8394 −2.00094
\(56\) 5.50716 0.735925
\(57\) 0 0
\(58\) −3.57010 −0.468777
\(59\) 5.75881 0.749734 0.374867 0.927079i \(-0.377688\pi\)
0.374867 + 0.927079i \(0.377688\pi\)
\(60\) 0 0
\(61\) −7.16953 −0.917964 −0.458982 0.888446i \(-0.651786\pi\)
−0.458982 + 0.888446i \(0.651786\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −12.4229 −1.55286
\(65\) 23.7866 2.95037
\(66\) 0 0
\(67\) −1.90301 −0.232489 −0.116245 0.993221i \(-0.537086\pi\)
−0.116245 + 0.993221i \(0.537086\pi\)
\(68\) 1.94144 0.235434
\(69\) 0 0
\(70\) 15.9894 1.91110
\(71\) −10.0456 −1.19220 −0.596098 0.802912i \(-0.703283\pi\)
−0.596098 + 0.802912i \(0.703283\pi\)
\(72\) 0 0
\(73\) −6.61798 −0.774576 −0.387288 0.921959i \(-0.626588\pi\)
−0.387288 + 0.921959i \(0.626588\pi\)
\(74\) −5.74143 −0.667428
\(75\) 0 0
\(76\) 16.4079 1.88212
\(77\) −5.89995 −0.672362
\(78\) 0 0
\(79\) −15.3513 −1.72715 −0.863576 0.504220i \(-0.831780\pi\)
−0.863576 + 0.504220i \(0.831780\pi\)
\(80\) 3.77522 0.422083
\(81\) 0 0
\(82\) −12.5233 −1.38297
\(83\) 12.7125 1.39538 0.697691 0.716399i \(-0.254211\pi\)
0.697691 + 0.716399i \(0.254211\pi\)
\(84\) 0 0
\(85\) 2.35078 0.254978
\(86\) 6.30281 0.679649
\(87\) 0 0
\(88\) −11.9108 −1.26970
\(89\) −0.417559 −0.0442612 −0.0221306 0.999755i \(-0.507045\pi\)
−0.0221306 + 0.999755i \(0.507045\pi\)
\(90\) 0 0
\(91\) 9.45728 0.991392
\(92\) 5.36032 0.558852
\(93\) 0 0
\(94\) 1.79192 0.184822
\(95\) 19.8675 2.03836
\(96\) 0 0
\(97\) 2.34660 0.238261 0.119130 0.992879i \(-0.461989\pi\)
0.119130 + 0.992879i \(0.461989\pi\)
\(98\) −9.95564 −1.00567
\(99\) 0 0
\(100\) 42.0516 4.20516
\(101\) −17.3169 −1.72309 −0.861547 0.507678i \(-0.830504\pi\)
−0.861547 + 0.507678i \(0.830504\pi\)
\(102\) 0 0
\(103\) 5.92115 0.583428 0.291714 0.956506i \(-0.405774\pi\)
0.291714 + 0.956506i \(0.405774\pi\)
\(104\) 19.0923 1.87216
\(105\) 0 0
\(106\) −22.1499 −2.15139
\(107\) 4.72697 0.456973 0.228487 0.973547i \(-0.426622\pi\)
0.228487 + 0.973547i \(0.426622\pi\)
\(108\) 0 0
\(109\) 13.9699 1.33807 0.669035 0.743231i \(-0.266708\pi\)
0.669035 + 0.743231i \(0.266708\pi\)
\(110\) −34.5817 −3.29724
\(111\) 0 0
\(112\) 1.50098 0.141830
\(113\) −8.81880 −0.829603 −0.414801 0.909912i \(-0.636149\pi\)
−0.414801 + 0.909912i \(0.636149\pi\)
\(114\) 0 0
\(115\) 6.49052 0.605244
\(116\) −5.25586 −0.487995
\(117\) 0 0
\(118\) 13.4204 1.23545
\(119\) 0.934642 0.0856785
\(120\) 0 0
\(121\) 1.76034 0.160031
\(122\) −16.7079 −1.51266
\(123\) 0 0
\(124\) 0 0
\(125\) 30.1472 2.69645
\(126\) 0 0
\(127\) 20.1800 1.79069 0.895344 0.445376i \(-0.146930\pi\)
0.895344 + 0.445376i \(0.146930\pi\)
\(128\) −19.8487 −1.75440
\(129\) 0 0
\(130\) 55.4325 4.86175
\(131\) 8.02193 0.700879 0.350439 0.936585i \(-0.386032\pi\)
0.350439 + 0.936585i \(0.386032\pi\)
\(132\) 0 0
\(133\) 7.89908 0.684937
\(134\) −4.43478 −0.383107
\(135\) 0 0
\(136\) 1.88685 0.161796
\(137\) −0.581602 −0.0496896 −0.0248448 0.999691i \(-0.507909\pi\)
−0.0248448 + 0.999691i \(0.507909\pi\)
\(138\) 0 0
\(139\) −4.35014 −0.368974 −0.184487 0.982835i \(-0.559062\pi\)
−0.184487 + 0.982835i \(0.559062\pi\)
\(140\) 23.5395 1.98945
\(141\) 0 0
\(142\) −23.4104 −1.96456
\(143\) −20.4541 −1.71046
\(144\) 0 0
\(145\) −6.36404 −0.528505
\(146\) −15.4226 −1.27638
\(147\) 0 0
\(148\) −8.45247 −0.694789
\(149\) 21.3209 1.74668 0.873340 0.487112i \(-0.161950\pi\)
0.873340 + 0.487112i \(0.161950\pi\)
\(150\) 0 0
\(151\) 10.7008 0.870815 0.435407 0.900234i \(-0.356604\pi\)
0.435407 + 0.900234i \(0.356604\pi\)
\(152\) 15.9466 1.29344
\(153\) 0 0
\(154\) −13.7493 −1.10795
\(155\) 0 0
\(156\) 0 0
\(157\) 5.19490 0.414598 0.207299 0.978278i \(-0.433533\pi\)
0.207299 + 0.978278i \(0.433533\pi\)
\(158\) −35.7747 −2.84608
\(159\) 0 0
\(160\) −18.9050 −1.49457
\(161\) 2.58055 0.203376
\(162\) 0 0
\(163\) −15.3104 −1.19920 −0.599602 0.800298i \(-0.704675\pi\)
−0.599602 + 0.800298i \(0.704675\pi\)
\(164\) −18.4367 −1.43967
\(165\) 0 0
\(166\) 29.6254 2.29937
\(167\) −7.70280 −0.596061 −0.298030 0.954556i \(-0.596330\pi\)
−0.298030 + 0.954556i \(0.596330\pi\)
\(168\) 0 0
\(169\) 19.7867 1.52205
\(170\) 5.47827 0.420164
\(171\) 0 0
\(172\) 9.27892 0.707511
\(173\) −17.3804 −1.32140 −0.660702 0.750648i \(-0.729741\pi\)
−0.660702 + 0.750648i \(0.729741\pi\)
\(174\) 0 0
\(175\) 20.2444 1.53033
\(176\) −3.24631 −0.244700
\(177\) 0 0
\(178\) −0.973083 −0.0729357
\(179\) 13.7099 1.02473 0.512365 0.858768i \(-0.328770\pi\)
0.512365 + 0.858768i \(0.328770\pi\)
\(180\) 0 0
\(181\) 7.42967 0.552243 0.276122 0.961123i \(-0.410951\pi\)
0.276122 + 0.961123i \(0.410951\pi\)
\(182\) 22.0393 1.63366
\(183\) 0 0
\(184\) 5.20962 0.384058
\(185\) −10.2346 −0.752465
\(186\) 0 0
\(187\) −2.02143 −0.147822
\(188\) 2.63804 0.192399
\(189\) 0 0
\(190\) 46.2993 3.35891
\(191\) −15.0365 −1.08800 −0.544002 0.839084i \(-0.683091\pi\)
−0.544002 + 0.839084i \(0.683091\pi\)
\(192\) 0 0
\(193\) −11.2247 −0.807968 −0.403984 0.914766i \(-0.632375\pi\)
−0.403984 + 0.914766i \(0.632375\pi\)
\(194\) 5.46853 0.392617
\(195\) 0 0
\(196\) −14.6566 −1.04690
\(197\) 5.78297 0.412020 0.206010 0.978550i \(-0.433952\pi\)
0.206010 + 0.978550i \(0.433952\pi\)
\(198\) 0 0
\(199\) 19.3866 1.37428 0.687141 0.726524i \(-0.258865\pi\)
0.687141 + 0.726524i \(0.258865\pi\)
\(200\) 40.8694 2.88990
\(201\) 0 0
\(202\) −40.3554 −2.83940
\(203\) −2.53027 −0.177590
\(204\) 0 0
\(205\) −22.3240 −1.55918
\(206\) 13.7987 0.961400
\(207\) 0 0
\(208\) 5.20364 0.360808
\(209\) −17.0840 −1.18173
\(210\) 0 0
\(211\) −9.12288 −0.628045 −0.314022 0.949416i \(-0.601677\pi\)
−0.314022 + 0.949416i \(0.601677\pi\)
\(212\) −32.6088 −2.23958
\(213\) 0 0
\(214\) 11.0158 0.753022
\(215\) 11.2353 0.766244
\(216\) 0 0
\(217\) 0 0
\(218\) 32.5554 2.20493
\(219\) 0 0
\(220\) −50.9108 −3.43241
\(221\) 3.24023 0.217962
\(222\) 0 0
\(223\) 19.0384 1.27491 0.637453 0.770490i \(-0.279988\pi\)
0.637453 + 0.770490i \(0.279988\pi\)
\(224\) −7.51642 −0.502212
\(225\) 0 0
\(226\) −20.5514 −1.36706
\(227\) 8.74272 0.580275 0.290137 0.956985i \(-0.406299\pi\)
0.290137 + 0.956985i \(0.406299\pi\)
\(228\) 0 0
\(229\) −2.37374 −0.156861 −0.0784306 0.996920i \(-0.524991\pi\)
−0.0784306 + 0.996920i \(0.524991\pi\)
\(230\) 15.1256 0.997349
\(231\) 0 0
\(232\) −5.10810 −0.335363
\(233\) −4.15967 −0.272509 −0.136254 0.990674i \(-0.543506\pi\)
−0.136254 + 0.990674i \(0.543506\pi\)
\(234\) 0 0
\(235\) 3.19426 0.208370
\(236\) 19.7573 1.28609
\(237\) 0 0
\(238\) 2.17810 0.141185
\(239\) 3.94657 0.255282 0.127641 0.991820i \(-0.459259\pi\)
0.127641 + 0.991820i \(0.459259\pi\)
\(240\) 0 0
\(241\) −9.20017 −0.592635 −0.296317 0.955090i \(-0.595759\pi\)
−0.296317 + 0.955090i \(0.595759\pi\)
\(242\) 4.10230 0.263706
\(243\) 0 0
\(244\) −24.5972 −1.57467
\(245\) −17.7468 −1.13380
\(246\) 0 0
\(247\) 27.3847 1.74245
\(248\) 0 0
\(249\) 0 0
\(250\) 70.2552 4.44333
\(251\) −4.51770 −0.285155 −0.142577 0.989784i \(-0.545539\pi\)
−0.142577 + 0.989784i \(0.545539\pi\)
\(252\) 0 0
\(253\) −5.58119 −0.350886
\(254\) 47.0277 2.95078
\(255\) 0 0
\(256\) −21.4098 −1.33811
\(257\) 16.6467 1.03839 0.519197 0.854655i \(-0.326231\pi\)
0.519197 + 0.854655i \(0.326231\pi\)
\(258\) 0 0
\(259\) −4.06917 −0.252846
\(260\) 81.6071 5.06106
\(261\) 0 0
\(262\) 18.6944 1.15494
\(263\) −8.39304 −0.517537 −0.258769 0.965939i \(-0.583317\pi\)
−0.258769 + 0.965939i \(0.583317\pi\)
\(264\) 0 0
\(265\) −39.4842 −2.42550
\(266\) 18.4081 1.12867
\(267\) 0 0
\(268\) −6.52884 −0.398812
\(269\) −27.0941 −1.65196 −0.825980 0.563700i \(-0.809377\pi\)
−0.825980 + 0.563700i \(0.809377\pi\)
\(270\) 0 0
\(271\) −7.57443 −0.460114 −0.230057 0.973177i \(-0.573891\pi\)
−0.230057 + 0.973177i \(0.573891\pi\)
\(272\) 0.514264 0.0311818
\(273\) 0 0
\(274\) −1.35537 −0.0818809
\(275\) −43.7843 −2.64029
\(276\) 0 0
\(277\) 24.3277 1.46171 0.730856 0.682532i \(-0.239121\pi\)
0.730856 + 0.682532i \(0.239121\pi\)
\(278\) −10.1376 −0.608013
\(279\) 0 0
\(280\) 22.8777 1.36720
\(281\) −21.2225 −1.26603 −0.633013 0.774141i \(-0.718182\pi\)
−0.633013 + 0.774141i \(0.718182\pi\)
\(282\) 0 0
\(283\) −15.6565 −0.930680 −0.465340 0.885132i \(-0.654068\pi\)
−0.465340 + 0.885132i \(0.654068\pi\)
\(284\) −34.4645 −2.04509
\(285\) 0 0
\(286\) −47.6663 −2.81857
\(287\) −8.87576 −0.523920
\(288\) 0 0
\(289\) −16.6798 −0.981163
\(290\) −14.8308 −0.870895
\(291\) 0 0
\(292\) −22.7049 −1.32871
\(293\) −10.6217 −0.620524 −0.310262 0.950651i \(-0.600417\pi\)
−0.310262 + 0.950651i \(0.600417\pi\)
\(294\) 0 0
\(295\) 23.9231 1.39285
\(296\) −8.21483 −0.477477
\(297\) 0 0
\(298\) 49.6865 2.87826
\(299\) 8.94632 0.517379
\(300\) 0 0
\(301\) 4.46704 0.257476
\(302\) 24.9371 1.43497
\(303\) 0 0
\(304\) 4.34628 0.249276
\(305\) −29.7834 −1.70539
\(306\) 0 0
\(307\) 26.5520 1.51540 0.757700 0.652603i \(-0.226323\pi\)
0.757700 + 0.652603i \(0.226323\pi\)
\(308\) −20.2415 −1.15337
\(309\) 0 0
\(310\) 0 0
\(311\) −12.7370 −0.722250 −0.361125 0.932517i \(-0.617607\pi\)
−0.361125 + 0.932517i \(0.617607\pi\)
\(312\) 0 0
\(313\) 13.4833 0.762122 0.381061 0.924550i \(-0.375559\pi\)
0.381061 + 0.924550i \(0.375559\pi\)
\(314\) 12.1062 0.683194
\(315\) 0 0
\(316\) −52.6671 −2.96275
\(317\) 19.0901 1.07221 0.536104 0.844152i \(-0.319896\pi\)
0.536104 + 0.844152i \(0.319896\pi\)
\(318\) 0 0
\(319\) 5.47243 0.306397
\(320\) −51.6068 −2.88491
\(321\) 0 0
\(322\) 6.01374 0.335133
\(323\) 2.70637 0.150586
\(324\) 0 0
\(325\) 70.1837 3.89309
\(326\) −35.6795 −1.97611
\(327\) 0 0
\(328\) −17.9184 −0.989376
\(329\) 1.27000 0.0700173
\(330\) 0 0
\(331\) 22.5320 1.23847 0.619236 0.785205i \(-0.287442\pi\)
0.619236 + 0.785205i \(0.287442\pi\)
\(332\) 43.6141 2.39364
\(333\) 0 0
\(334\) −17.9507 −0.982217
\(335\) −7.90541 −0.431919
\(336\) 0 0
\(337\) −1.41197 −0.0769147 −0.0384573 0.999260i \(-0.512244\pi\)
−0.0384573 + 0.999260i \(0.512244\pi\)
\(338\) 46.1110 2.50811
\(339\) 0 0
\(340\) 8.06504 0.437388
\(341\) 0 0
\(342\) 0 0
\(343\) −18.6175 −1.00525
\(344\) 9.01804 0.486220
\(345\) 0 0
\(346\) −40.5033 −2.17747
\(347\) −22.5146 −1.20865 −0.604323 0.796739i \(-0.706556\pi\)
−0.604323 + 0.796739i \(0.706556\pi\)
\(348\) 0 0
\(349\) −28.2486 −1.51211 −0.756057 0.654506i \(-0.772877\pi\)
−0.756057 + 0.654506i \(0.772877\pi\)
\(350\) 47.1777 2.52176
\(351\) 0 0
\(352\) 16.2564 0.866469
\(353\) 15.5403 0.827126 0.413563 0.910475i \(-0.364284\pi\)
0.413563 + 0.910475i \(0.364284\pi\)
\(354\) 0 0
\(355\) −41.7312 −2.21486
\(356\) −1.43256 −0.0759256
\(357\) 0 0
\(358\) 31.9498 1.68860
\(359\) −0.177558 −0.00937116 −0.00468558 0.999989i \(-0.501491\pi\)
−0.00468558 + 0.999989i \(0.501491\pi\)
\(360\) 0 0
\(361\) 3.87273 0.203828
\(362\) 17.3142 0.910012
\(363\) 0 0
\(364\) 32.4460 1.70063
\(365\) −27.4922 −1.43901
\(366\) 0 0
\(367\) 15.1788 0.792328 0.396164 0.918180i \(-0.370341\pi\)
0.396164 + 0.918180i \(0.370341\pi\)
\(368\) 1.41989 0.0740168
\(369\) 0 0
\(370\) −23.8509 −1.23995
\(371\) −15.6985 −0.815024
\(372\) 0 0
\(373\) 3.26402 0.169005 0.0845024 0.996423i \(-0.473070\pi\)
0.0845024 + 0.996423i \(0.473070\pi\)
\(374\) −4.71076 −0.243587
\(375\) 0 0
\(376\) 2.56387 0.132221
\(377\) −8.77198 −0.451780
\(378\) 0 0
\(379\) 37.5117 1.92685 0.963423 0.267984i \(-0.0863576\pi\)
0.963423 + 0.267984i \(0.0863576\pi\)
\(380\) 68.1613 3.49660
\(381\) 0 0
\(382\) −35.0412 −1.79286
\(383\) −38.2598 −1.95499 −0.977493 0.210970i \(-0.932338\pi\)
−0.977493 + 0.210970i \(0.932338\pi\)
\(384\) 0 0
\(385\) −24.5094 −1.24911
\(386\) −26.1580 −1.33141
\(387\) 0 0
\(388\) 8.05070 0.408712
\(389\) 17.1797 0.871046 0.435523 0.900178i \(-0.356563\pi\)
0.435523 + 0.900178i \(0.356563\pi\)
\(390\) 0 0
\(391\) 0.884144 0.0447131
\(392\) −14.2445 −0.719456
\(393\) 0 0
\(394\) 13.4767 0.678946
\(395\) −63.7717 −3.20870
\(396\) 0 0
\(397\) −10.1959 −0.511718 −0.255859 0.966714i \(-0.582358\pi\)
−0.255859 + 0.966714i \(0.582358\pi\)
\(398\) 45.1788 2.26461
\(399\) 0 0
\(400\) 11.1390 0.556950
\(401\) −24.3178 −1.21437 −0.607186 0.794560i \(-0.707702\pi\)
−0.607186 + 0.794560i \(0.707702\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −59.4107 −2.95579
\(405\) 0 0
\(406\) −5.89655 −0.292641
\(407\) 8.80075 0.436237
\(408\) 0 0
\(409\) −36.5945 −1.80948 −0.904740 0.425965i \(-0.859935\pi\)
−0.904740 + 0.425965i \(0.859935\pi\)
\(410\) −52.0240 −2.56928
\(411\) 0 0
\(412\) 20.3143 1.00081
\(413\) 9.51153 0.468032
\(414\) 0 0
\(415\) 52.8100 2.59234
\(416\) −26.0581 −1.27760
\(417\) 0 0
\(418\) −39.8127 −1.94730
\(419\) −22.2202 −1.08553 −0.542763 0.839886i \(-0.682622\pi\)
−0.542763 + 0.839886i \(0.682622\pi\)
\(420\) 0 0
\(421\) 9.82044 0.478619 0.239309 0.970943i \(-0.423079\pi\)
0.239309 + 0.970943i \(0.423079\pi\)
\(422\) −21.2600 −1.03492
\(423\) 0 0
\(424\) −31.6920 −1.53910
\(425\) 6.93610 0.336450
\(426\) 0 0
\(427\) −11.8415 −0.573052
\(428\) 16.2173 0.783892
\(429\) 0 0
\(430\) 26.1829 1.26265
\(431\) 2.56171 0.123393 0.0616966 0.998095i \(-0.480349\pi\)
0.0616966 + 0.998095i \(0.480349\pi\)
\(432\) 0 0
\(433\) −7.35747 −0.353577 −0.176789 0.984249i \(-0.556571\pi\)
−0.176789 + 0.984249i \(0.556571\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 47.9277 2.29532
\(437\) 7.47230 0.357449
\(438\) 0 0
\(439\) −28.5778 −1.36395 −0.681973 0.731377i \(-0.738878\pi\)
−0.681973 + 0.731377i \(0.738878\pi\)
\(440\) −49.4795 −2.35884
\(441\) 0 0
\(442\) 7.55107 0.359168
\(443\) 2.83340 0.134619 0.0673094 0.997732i \(-0.478559\pi\)
0.0673094 + 0.997732i \(0.478559\pi\)
\(444\) 0 0
\(445\) −1.73461 −0.0822284
\(446\) 44.3672 2.10085
\(447\) 0 0
\(448\) −20.5183 −0.969398
\(449\) 24.3383 1.14859 0.574297 0.818647i \(-0.305276\pi\)
0.574297 + 0.818647i \(0.305276\pi\)
\(450\) 0 0
\(451\) 19.1964 0.903922
\(452\) −30.2555 −1.42310
\(453\) 0 0
\(454\) 20.3741 0.956204
\(455\) 39.2871 1.84181
\(456\) 0 0
\(457\) 21.8877 1.02387 0.511933 0.859026i \(-0.328930\pi\)
0.511933 + 0.859026i \(0.328930\pi\)
\(458\) −5.53178 −0.258483
\(459\) 0 0
\(460\) 22.2677 1.03823
\(461\) 24.8682 1.15823 0.579113 0.815248i \(-0.303399\pi\)
0.579113 + 0.815248i \(0.303399\pi\)
\(462\) 0 0
\(463\) 2.97304 0.138169 0.0690845 0.997611i \(-0.477992\pi\)
0.0690845 + 0.997611i \(0.477992\pi\)
\(464\) −1.39222 −0.0646321
\(465\) 0 0
\(466\) −9.69372 −0.449053
\(467\) 10.6715 0.493816 0.246908 0.969039i \(-0.420585\pi\)
0.246908 + 0.969039i \(0.420585\pi\)
\(468\) 0 0
\(469\) −3.14310 −0.145135
\(470\) 7.44392 0.343362
\(471\) 0 0
\(472\) 19.2019 0.883837
\(473\) −9.66125 −0.444225
\(474\) 0 0
\(475\) 58.6201 2.68968
\(476\) 3.20657 0.146973
\(477\) 0 0
\(478\) 9.19711 0.420666
\(479\) 17.3984 0.794952 0.397476 0.917613i \(-0.369886\pi\)
0.397476 + 0.917613i \(0.369886\pi\)
\(480\) 0 0
\(481\) −14.1071 −0.643227
\(482\) −21.4401 −0.976571
\(483\) 0 0
\(484\) 6.03936 0.274516
\(485\) 9.74815 0.442641
\(486\) 0 0
\(487\) 29.1998 1.32317 0.661585 0.749870i \(-0.269884\pi\)
0.661585 + 0.749870i \(0.269884\pi\)
\(488\) −23.9057 −1.08216
\(489\) 0 0
\(490\) −41.3574 −1.86834
\(491\) 6.45569 0.291341 0.145671 0.989333i \(-0.453466\pi\)
0.145671 + 0.989333i \(0.453466\pi\)
\(492\) 0 0
\(493\) −0.866915 −0.0390439
\(494\) 63.8175 2.87128
\(495\) 0 0
\(496\) 0 0
\(497\) −16.5918 −0.744246
\(498\) 0 0
\(499\) −3.30497 −0.147951 −0.0739753 0.997260i \(-0.523569\pi\)
−0.0739753 + 0.997260i \(0.523569\pi\)
\(500\) 103.429 4.62548
\(501\) 0 0
\(502\) −10.5281 −0.469891
\(503\) 4.41674 0.196933 0.0984664 0.995140i \(-0.468606\pi\)
0.0984664 + 0.995140i \(0.468606\pi\)
\(504\) 0 0
\(505\) −71.9372 −3.20116
\(506\) −13.0064 −0.578207
\(507\) 0 0
\(508\) 69.2336 3.07174
\(509\) −2.09660 −0.0929303 −0.0464652 0.998920i \(-0.514796\pi\)
−0.0464652 + 0.998920i \(0.514796\pi\)
\(510\) 0 0
\(511\) −10.9306 −0.483540
\(512\) −10.1961 −0.450608
\(513\) 0 0
\(514\) 38.7936 1.71111
\(515\) 24.5974 1.08389
\(516\) 0 0
\(517\) −2.74674 −0.120801
\(518\) −9.48283 −0.416651
\(519\) 0 0
\(520\) 79.3127 3.47809
\(521\) −36.1620 −1.58429 −0.792144 0.610335i \(-0.791035\pi\)
−0.792144 + 0.610335i \(0.791035\pi\)
\(522\) 0 0
\(523\) −0.412008 −0.0180158 −0.00900792 0.999959i \(-0.502867\pi\)
−0.00900792 + 0.999959i \(0.502867\pi\)
\(524\) 27.5216 1.20229
\(525\) 0 0
\(526\) −19.5592 −0.852822
\(527\) 0 0
\(528\) 0 0
\(529\) −20.5589 −0.893864
\(530\) −92.0143 −3.99685
\(531\) 0 0
\(532\) 27.1002 1.17494
\(533\) −30.7707 −1.33283
\(534\) 0 0
\(535\) 19.6366 0.848965
\(536\) −6.34528 −0.274074
\(537\) 0 0
\(538\) −63.1404 −2.72218
\(539\) 15.2605 0.657316
\(540\) 0 0
\(541\) 17.4868 0.751815 0.375908 0.926657i \(-0.377331\pi\)
0.375908 + 0.926657i \(0.377331\pi\)
\(542\) −17.6515 −0.758198
\(543\) 0 0
\(544\) −2.57526 −0.110413
\(545\) 58.0331 2.48586
\(546\) 0 0
\(547\) 35.9041 1.53515 0.767575 0.640959i \(-0.221463\pi\)
0.767575 + 0.640959i \(0.221463\pi\)
\(548\) −1.99536 −0.0852375
\(549\) 0 0
\(550\) −102.035 −4.35080
\(551\) −7.32669 −0.312128
\(552\) 0 0
\(553\) −25.3549 −1.07820
\(554\) 56.6935 2.40868
\(555\) 0 0
\(556\) −14.9245 −0.632938
\(557\) −14.2983 −0.605838 −0.302919 0.953016i \(-0.597961\pi\)
−0.302919 + 0.953016i \(0.597961\pi\)
\(558\) 0 0
\(559\) 15.4864 0.655006
\(560\) 6.23534 0.263491
\(561\) 0 0
\(562\) −49.4570 −2.08622
\(563\) 18.5366 0.781226 0.390613 0.920555i \(-0.372263\pi\)
0.390613 + 0.920555i \(0.372263\pi\)
\(564\) 0 0
\(565\) −36.6348 −1.54124
\(566\) −36.4859 −1.53362
\(567\) 0 0
\(568\) −33.4955 −1.40544
\(569\) 6.63855 0.278302 0.139151 0.990271i \(-0.455563\pi\)
0.139151 + 0.990271i \(0.455563\pi\)
\(570\) 0 0
\(571\) −6.93232 −0.290109 −0.145054 0.989424i \(-0.546336\pi\)
−0.145054 + 0.989424i \(0.546336\pi\)
\(572\) −70.1738 −2.93411
\(573\) 0 0
\(574\) −20.6841 −0.863340
\(575\) 19.1506 0.798637
\(576\) 0 0
\(577\) −20.1163 −0.837451 −0.418726 0.908113i \(-0.637523\pi\)
−0.418726 + 0.908113i \(0.637523\pi\)
\(578\) −38.8707 −1.61681
\(579\) 0 0
\(580\) −21.8337 −0.906596
\(581\) 20.9966 0.871087
\(582\) 0 0
\(583\) 33.9524 1.40617
\(584\) −22.0666 −0.913122
\(585\) 0 0
\(586\) −24.7528 −1.02253
\(587\) −16.1167 −0.665208 −0.332604 0.943067i \(-0.607927\pi\)
−0.332604 + 0.943067i \(0.607927\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 55.7505 2.29521
\(591\) 0 0
\(592\) −2.23896 −0.0920208
\(593\) 23.7429 0.975005 0.487502 0.873122i \(-0.337908\pi\)
0.487502 + 0.873122i \(0.337908\pi\)
\(594\) 0 0
\(595\) 3.88266 0.159173
\(596\) 73.1478 2.99625
\(597\) 0 0
\(598\) 20.8486 0.852561
\(599\) 45.7722 1.87020 0.935101 0.354381i \(-0.115308\pi\)
0.935101 + 0.354381i \(0.115308\pi\)
\(600\) 0 0
\(601\) −36.9040 −1.50534 −0.752672 0.658395i \(-0.771236\pi\)
−0.752672 + 0.658395i \(0.771236\pi\)
\(602\) 10.4100 0.424281
\(603\) 0 0
\(604\) 36.7121 1.49379
\(605\) 7.31273 0.297305
\(606\) 0 0
\(607\) 22.1292 0.898197 0.449099 0.893482i \(-0.351745\pi\)
0.449099 + 0.893482i \(0.351745\pi\)
\(608\) −21.7647 −0.882674
\(609\) 0 0
\(610\) −69.4075 −2.81023
\(611\) 4.40286 0.178121
\(612\) 0 0
\(613\) 1.00830 0.0407250 0.0203625 0.999793i \(-0.493518\pi\)
0.0203625 + 0.999793i \(0.493518\pi\)
\(614\) 61.8769 2.49715
\(615\) 0 0
\(616\) −19.6725 −0.792626
\(617\) −5.94272 −0.239245 −0.119623 0.992819i \(-0.538168\pi\)
−0.119623 + 0.992819i \(0.538168\pi\)
\(618\) 0 0
\(619\) −34.6733 −1.39364 −0.696819 0.717247i \(-0.745402\pi\)
−0.696819 + 0.717247i \(0.745402\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −29.6824 −1.19016
\(623\) −0.689661 −0.0276307
\(624\) 0 0
\(625\) 63.9510 2.55804
\(626\) 31.4216 1.25586
\(627\) 0 0
\(628\) 17.8227 0.711201
\(629\) −1.39417 −0.0555892
\(630\) 0 0
\(631\) −40.6967 −1.62011 −0.810054 0.586355i \(-0.800562\pi\)
−0.810054 + 0.586355i \(0.800562\pi\)
\(632\) −51.1863 −2.03608
\(633\) 0 0
\(634\) 44.4877 1.76683
\(635\) 83.8312 3.32674
\(636\) 0 0
\(637\) −24.4617 −0.969206
\(638\) 12.7530 0.504895
\(639\) 0 0
\(640\) −82.4549 −3.25932
\(641\) −43.6515 −1.72413 −0.862066 0.506797i \(-0.830830\pi\)
−0.862066 + 0.506797i \(0.830830\pi\)
\(642\) 0 0
\(643\) −31.4817 −1.24152 −0.620759 0.784002i \(-0.713175\pi\)
−0.620759 + 0.784002i \(0.713175\pi\)
\(644\) 8.85336 0.348871
\(645\) 0 0
\(646\) 6.30694 0.248143
\(647\) 49.2323 1.93552 0.967760 0.251873i \(-0.0810466\pi\)
0.967760 + 0.251873i \(0.0810466\pi\)
\(648\) 0 0
\(649\) −20.5714 −0.807499
\(650\) 163.557 6.41522
\(651\) 0 0
\(652\) −52.5270 −2.05711
\(653\) −8.05179 −0.315091 −0.157545 0.987512i \(-0.550358\pi\)
−0.157545 + 0.987512i \(0.550358\pi\)
\(654\) 0 0
\(655\) 33.3244 1.30209
\(656\) −4.88368 −0.190675
\(657\) 0 0
\(658\) 2.95961 0.115378
\(659\) −26.3006 −1.02452 −0.512262 0.858829i \(-0.671192\pi\)
−0.512262 + 0.858829i \(0.671192\pi\)
\(660\) 0 0
\(661\) −12.5448 −0.487938 −0.243969 0.969783i \(-0.578449\pi\)
−0.243969 + 0.969783i \(0.578449\pi\)
\(662\) 52.5088 2.04081
\(663\) 0 0
\(664\) 42.3879 1.64497
\(665\) 32.8141 1.27248
\(666\) 0 0
\(667\) −2.39356 −0.0926790
\(668\) −26.4268 −1.02248
\(669\) 0 0
\(670\) −18.4228 −0.711736
\(671\) 25.6107 0.988690
\(672\) 0 0
\(673\) 26.2972 1.01368 0.506840 0.862040i \(-0.330813\pi\)
0.506840 + 0.862040i \(0.330813\pi\)
\(674\) −3.29045 −0.126744
\(675\) 0 0
\(676\) 67.8841 2.61093
\(677\) −44.5434 −1.71194 −0.855970 0.517025i \(-0.827039\pi\)
−0.855970 + 0.517025i \(0.827039\pi\)
\(678\) 0 0
\(679\) 3.87575 0.148738
\(680\) 7.83830 0.300585
\(681\) 0 0
\(682\) 0 0
\(683\) −0.986898 −0.0377626 −0.0188813 0.999822i \(-0.506010\pi\)
−0.0188813 + 0.999822i \(0.506010\pi\)
\(684\) 0 0
\(685\) −2.41607 −0.0923133
\(686\) −43.3863 −1.65650
\(687\) 0 0
\(688\) 2.45788 0.0937058
\(689\) −54.4237 −2.07338
\(690\) 0 0
\(691\) 28.6534 1.09003 0.545013 0.838428i \(-0.316525\pi\)
0.545013 + 0.838428i \(0.316525\pi\)
\(692\) −59.6285 −2.26674
\(693\) 0 0
\(694\) −52.4682 −1.99166
\(695\) −18.0712 −0.685480
\(696\) 0 0
\(697\) −3.04100 −0.115186
\(698\) −65.8308 −2.49173
\(699\) 0 0
\(700\) 69.4545 2.62513
\(701\) 27.1957 1.02717 0.513584 0.858040i \(-0.328318\pi\)
0.513584 + 0.858040i \(0.328318\pi\)
\(702\) 0 0
\(703\) −11.7828 −0.444396
\(704\) 44.3766 1.67251
\(705\) 0 0
\(706\) 36.2152 1.36298
\(707\) −28.6014 −1.07567
\(708\) 0 0
\(709\) 28.1085 1.05564 0.527819 0.849357i \(-0.323010\pi\)
0.527819 + 0.849357i \(0.323010\pi\)
\(710\) −97.2507 −3.64975
\(711\) 0 0
\(712\) −1.39229 −0.0521781
\(713\) 0 0
\(714\) 0 0
\(715\) −84.9696 −3.17768
\(716\) 47.0361 1.75782
\(717\) 0 0
\(718\) −0.413783 −0.0154422
\(719\) −20.8740 −0.778468 −0.389234 0.921139i \(-0.627260\pi\)
−0.389234 + 0.921139i \(0.627260\pi\)
\(720\) 0 0
\(721\) 9.77965 0.364213
\(722\) 9.02504 0.335877
\(723\) 0 0
\(724\) 25.4897 0.947317
\(725\) −18.7774 −0.697377
\(726\) 0 0
\(727\) −5.96155 −0.221102 −0.110551 0.993870i \(-0.535261\pi\)
−0.110551 + 0.993870i \(0.535261\pi\)
\(728\) 31.5338 1.16872
\(729\) 0 0
\(730\) −64.0680 −2.37126
\(731\) 1.53049 0.0566071
\(732\) 0 0
\(733\) 23.4155 0.864873 0.432436 0.901664i \(-0.357654\pi\)
0.432436 + 0.901664i \(0.357654\pi\)
\(734\) 35.3728 1.30563
\(735\) 0 0
\(736\) −7.11031 −0.262090
\(737\) 6.79785 0.250402
\(738\) 0 0
\(739\) −2.25362 −0.0829008 −0.0414504 0.999141i \(-0.513198\pi\)
−0.0414504 + 0.999141i \(0.513198\pi\)
\(740\) −35.1130 −1.29078
\(741\) 0 0
\(742\) −36.5838 −1.34303
\(743\) −45.7086 −1.67689 −0.838443 0.544990i \(-0.816534\pi\)
−0.838443 + 0.544990i \(0.816534\pi\)
\(744\) 0 0
\(745\) 88.5707 3.24498
\(746\) 7.60650 0.278494
\(747\) 0 0
\(748\) −6.93512 −0.253573
\(749\) 7.80729 0.285272
\(750\) 0 0
\(751\) −35.6244 −1.29995 −0.649977 0.759954i \(-0.725221\pi\)
−0.649977 + 0.759954i \(0.725221\pi\)
\(752\) 0.698786 0.0254821
\(753\) 0 0
\(754\) −20.4423 −0.744464
\(755\) 44.4527 1.61780
\(756\) 0 0
\(757\) 13.6771 0.497102 0.248551 0.968619i \(-0.420046\pi\)
0.248551 + 0.968619i \(0.420046\pi\)
\(758\) 87.4175 3.17515
\(759\) 0 0
\(760\) 66.2450 2.40296
\(761\) 29.8950 1.08369 0.541847 0.840477i \(-0.317725\pi\)
0.541847 + 0.840477i \(0.317725\pi\)
\(762\) 0 0
\(763\) 23.0733 0.835309
\(764\) −51.5872 −1.86636
\(765\) 0 0
\(766\) −89.1609 −3.22152
\(767\) 32.9748 1.19065
\(768\) 0 0
\(769\) −28.4216 −1.02491 −0.512455 0.858714i \(-0.671264\pi\)
−0.512455 + 0.858714i \(0.671264\pi\)
\(770\) −57.1169 −2.05835
\(771\) 0 0
\(772\) −38.5095 −1.38599
\(773\) −9.66694 −0.347696 −0.173848 0.984773i \(-0.555620\pi\)
−0.173848 + 0.984773i \(0.555620\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 7.82436 0.280878
\(777\) 0 0
\(778\) 40.0357 1.43535
\(779\) −25.7008 −0.920828
\(780\) 0 0
\(781\) 35.8846 1.28405
\(782\) 2.06042 0.0736803
\(783\) 0 0
\(784\) −3.88236 −0.138656
\(785\) 21.5805 0.770240
\(786\) 0 0
\(787\) 12.6164 0.449725 0.224862 0.974391i \(-0.427807\pi\)
0.224862 + 0.974391i \(0.427807\pi\)
\(788\) 19.8402 0.706778
\(789\) 0 0
\(790\) −148.614 −5.28745
\(791\) −14.5656 −0.517892
\(792\) 0 0
\(793\) −41.0525 −1.45782
\(794\) −23.7606 −0.843233
\(795\) 0 0
\(796\) 66.5116 2.35744
\(797\) 0.567057 0.0200862 0.0100431 0.999950i \(-0.496803\pi\)
0.0100431 + 0.999950i \(0.496803\pi\)
\(798\) 0 0
\(799\) 0.435124 0.0153936
\(800\) −55.7803 −1.97213
\(801\) 0 0
\(802\) −56.6703 −2.00110
\(803\) 23.6405 0.834254
\(804\) 0 0
\(805\) 10.7201 0.377832
\(806\) 0 0
\(807\) 0 0
\(808\) −57.7404 −2.03130
\(809\) −2.36052 −0.0829913 −0.0414956 0.999139i \(-0.513212\pi\)
−0.0414956 + 0.999139i \(0.513212\pi\)
\(810\) 0 0
\(811\) 40.8306 1.43376 0.716878 0.697199i \(-0.245571\pi\)
0.716878 + 0.697199i \(0.245571\pi\)
\(812\) −8.68084 −0.304638
\(813\) 0 0
\(814\) 20.5093 0.718851
\(815\) −63.6020 −2.22788
\(816\) 0 0
\(817\) 12.9348 0.452533
\(818\) −85.2800 −2.98174
\(819\) 0 0
\(820\) −76.5892 −2.67461
\(821\) −34.7565 −1.21301 −0.606505 0.795080i \(-0.707429\pi\)
−0.606505 + 0.795080i \(0.707429\pi\)
\(822\) 0 0
\(823\) 38.8988 1.35593 0.677964 0.735095i \(-0.262862\pi\)
0.677964 + 0.735095i \(0.262862\pi\)
\(824\) 19.7431 0.687785
\(825\) 0 0
\(826\) 22.1657 0.771245
\(827\) 29.9815 1.04256 0.521279 0.853386i \(-0.325455\pi\)
0.521279 + 0.853386i \(0.325455\pi\)
\(828\) 0 0
\(829\) −9.02926 −0.313599 −0.156800 0.987630i \(-0.550118\pi\)
−0.156800 + 0.987630i \(0.550118\pi\)
\(830\) 123.069 4.27178
\(831\) 0 0
\(832\) −71.1332 −2.46610
\(833\) −2.41749 −0.0837611
\(834\) 0 0
\(835\) −31.9987 −1.10736
\(836\) −58.6118 −2.02713
\(837\) 0 0
\(838\) −51.7820 −1.78878
\(839\) 17.6163 0.608184 0.304092 0.952643i \(-0.401647\pi\)
0.304092 + 0.952643i \(0.401647\pi\)
\(840\) 0 0
\(841\) −26.6531 −0.919072
\(842\) 22.8856 0.788690
\(843\) 0 0
\(844\) −31.2988 −1.07735
\(845\) 82.1972 2.82767
\(846\) 0 0
\(847\) 2.90746 0.0999014
\(848\) −8.63770 −0.296620
\(849\) 0 0
\(850\) 16.1639 0.554419
\(851\) −3.84932 −0.131953
\(852\) 0 0
\(853\) 34.3306 1.17546 0.587728 0.809058i \(-0.300022\pi\)
0.587728 + 0.809058i \(0.300022\pi\)
\(854\) −27.5956 −0.944302
\(855\) 0 0
\(856\) 15.7613 0.538711
\(857\) −37.3423 −1.27559 −0.637795 0.770206i \(-0.720153\pi\)
−0.637795 + 0.770206i \(0.720153\pi\)
\(858\) 0 0
\(859\) −15.3156 −0.522563 −0.261282 0.965263i \(-0.584145\pi\)
−0.261282 + 0.965263i \(0.584145\pi\)
\(860\) 38.5462 1.31441
\(861\) 0 0
\(862\) 5.96982 0.203333
\(863\) 56.7996 1.93348 0.966740 0.255761i \(-0.0823260\pi\)
0.966740 + 0.255761i \(0.0823260\pi\)
\(864\) 0 0
\(865\) −72.2009 −2.45491
\(866\) −17.1459 −0.582641
\(867\) 0 0
\(868\) 0 0
\(869\) 54.8372 1.86022
\(870\) 0 0
\(871\) −10.8966 −0.369216
\(872\) 46.5803 1.57741
\(873\) 0 0
\(874\) 17.4135 0.589021
\(875\) 49.7925 1.68330
\(876\) 0 0
\(877\) −36.7407 −1.24065 −0.620323 0.784347i \(-0.712998\pi\)
−0.620323 + 0.784347i \(0.712998\pi\)
\(878\) −66.5980 −2.24757
\(879\) 0 0
\(880\) −13.4857 −0.454603
\(881\) −7.35814 −0.247902 −0.123951 0.992288i \(-0.539557\pi\)
−0.123951 + 0.992288i \(0.539557\pi\)
\(882\) 0 0
\(883\) 31.1461 1.04815 0.524075 0.851672i \(-0.324411\pi\)
0.524075 + 0.851672i \(0.324411\pi\)
\(884\) 11.1166 0.373891
\(885\) 0 0
\(886\) 6.60297 0.221831
\(887\) −15.1283 −0.507957 −0.253979 0.967210i \(-0.581739\pi\)
−0.253979 + 0.967210i \(0.581739\pi\)
\(888\) 0 0
\(889\) 33.3303 1.11786
\(890\) −4.04235 −0.135500
\(891\) 0 0
\(892\) 65.3169 2.18697
\(893\) 3.67743 0.123061
\(894\) 0 0
\(895\) 56.9534 1.90374
\(896\) −32.7831 −1.09521
\(897\) 0 0
\(898\) 56.7180 1.89271
\(899\) 0 0
\(900\) 0 0
\(901\) −5.37858 −0.179186
\(902\) 44.7354 1.48953
\(903\) 0 0
\(904\) −29.4049 −0.977992
\(905\) 30.8641 1.02596
\(906\) 0 0
\(907\) 4.72657 0.156943 0.0784716 0.996916i \(-0.474996\pi\)
0.0784716 + 0.996916i \(0.474996\pi\)
\(908\) 29.9945 0.995403
\(909\) 0 0
\(910\) 91.5550 3.03502
\(911\) −39.1885 −1.29837 −0.649187 0.760629i \(-0.724891\pi\)
−0.649187 + 0.760629i \(0.724891\pi\)
\(912\) 0 0
\(913\) −45.4112 −1.50289
\(914\) 51.0073 1.68717
\(915\) 0 0
\(916\) −8.14382 −0.269079
\(917\) 13.2494 0.437534
\(918\) 0 0
\(919\) −20.2830 −0.669075 −0.334538 0.942382i \(-0.608580\pi\)
−0.334538 + 0.942382i \(0.608580\pi\)
\(920\) 21.6416 0.713503
\(921\) 0 0
\(922\) 57.9529 1.90858
\(923\) −57.5209 −1.89332
\(924\) 0 0
\(925\) −30.1979 −0.992899
\(926\) 6.92840 0.227681
\(927\) 0 0
\(928\) 6.97176 0.228859
\(929\) 12.6462 0.414909 0.207455 0.978245i \(-0.433482\pi\)
0.207455 + 0.978245i \(0.433482\pi\)
\(930\) 0 0
\(931\) −20.4313 −0.669609
\(932\) −14.2710 −0.467462
\(933\) 0 0
\(934\) 24.8688 0.813733
\(935\) −8.39736 −0.274623
\(936\) 0 0
\(937\) −0.926058 −0.0302530 −0.0151265 0.999886i \(-0.504815\pi\)
−0.0151265 + 0.999886i \(0.504815\pi\)
\(938\) −7.32470 −0.239160
\(939\) 0 0
\(940\) 10.9588 0.357438
\(941\) 23.7883 0.775475 0.387738 0.921770i \(-0.373257\pi\)
0.387738 + 0.921770i \(0.373257\pi\)
\(942\) 0 0
\(943\) −8.39622 −0.273419
\(944\) 5.23349 0.170336
\(945\) 0 0
\(946\) −22.5146 −0.732014
\(947\) −20.1610 −0.655144 −0.327572 0.944826i \(-0.606230\pi\)
−0.327572 + 0.944826i \(0.606230\pi\)
\(948\) 0 0
\(949\) −37.8943 −1.23010
\(950\) 136.609 4.43217
\(951\) 0 0
\(952\) 3.11642 0.101004
\(953\) 4.41316 0.142956 0.0714781 0.997442i \(-0.477228\pi\)
0.0714781 + 0.997442i \(0.477228\pi\)
\(954\) 0 0
\(955\) −62.4641 −2.02129
\(956\) 13.5399 0.437911
\(957\) 0 0
\(958\) 40.5453 1.30996
\(959\) −0.960602 −0.0310194
\(960\) 0 0
\(961\) 0 0
\(962\) −32.8752 −1.05994
\(963\) 0 0
\(964\) −31.5639 −1.01661
\(965\) −46.6291 −1.50104
\(966\) 0 0
\(967\) −52.5227 −1.68902 −0.844509 0.535542i \(-0.820107\pi\)
−0.844509 + 0.535542i \(0.820107\pi\)
\(968\) 5.86957 0.188655
\(969\) 0 0
\(970\) 22.7172 0.729404
\(971\) −15.2898 −0.490674 −0.245337 0.969438i \(-0.578899\pi\)
−0.245337 + 0.969438i \(0.578899\pi\)
\(972\) 0 0
\(973\) −7.18490 −0.230337
\(974\) 68.0475 2.18038
\(975\) 0 0
\(976\) −6.51552 −0.208557
\(977\) 45.2365 1.44725 0.723623 0.690196i \(-0.242476\pi\)
0.723623 + 0.690196i \(0.242476\pi\)
\(978\) 0 0
\(979\) 1.49159 0.0476714
\(980\) −60.8858 −1.94493
\(981\) 0 0
\(982\) 15.0444 0.480086
\(983\) 34.9761 1.11556 0.557782 0.829987i \(-0.311652\pi\)
0.557782 + 0.829987i \(0.311652\pi\)
\(984\) 0 0
\(985\) 24.0234 0.765450
\(986\) −2.02027 −0.0643384
\(987\) 0 0
\(988\) 93.9513 2.98899
\(989\) 4.22569 0.134369
\(990\) 0 0
\(991\) −3.85931 −0.122595 −0.0612974 0.998120i \(-0.519524\pi\)
−0.0612974 + 0.998120i \(0.519524\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −38.6657 −1.22640
\(995\) 80.5353 2.55314
\(996\) 0 0
\(997\) −39.2889 −1.24429 −0.622146 0.782901i \(-0.713739\pi\)
−0.622146 + 0.782901i \(0.713739\pi\)
\(998\) −7.70192 −0.243800
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.bu.1.20 24
3.2 odd 2 2883.2.a.v.1.5 yes 24
31.30 odd 2 8649.2.a.bv.1.20 24
93.92 even 2 2883.2.a.u.1.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2883.2.a.u.1.5 24 93.92 even 2
2883.2.a.v.1.5 yes 24 3.2 odd 2
8649.2.a.bu.1.20 24 1.1 even 1 trivial
8649.2.a.bv.1.20 24 31.30 odd 2