Properties

Label 8649.2.a.bu.1.6
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 2883)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 8649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73783 q^{2} +1.02004 q^{4} -3.85240 q^{5} -2.44804 q^{7} +1.70300 q^{8} +6.69480 q^{10} +1.08295 q^{11} +4.06671 q^{13} +4.25427 q^{14} -4.99960 q^{16} -7.93311 q^{17} -1.66668 q^{19} -3.92959 q^{20} -1.88198 q^{22} +1.52487 q^{23} +9.84101 q^{25} -7.06724 q^{26} -2.49709 q^{28} -7.97442 q^{29} +5.28242 q^{32} +13.7864 q^{34} +9.43084 q^{35} -2.39623 q^{37} +2.89639 q^{38} -6.56066 q^{40} +3.81137 q^{41} +7.55291 q^{43} +1.10465 q^{44} -2.64995 q^{46} +5.06376 q^{47} -1.00709 q^{49} -17.1020 q^{50} +4.14820 q^{52} +3.29130 q^{53} -4.17197 q^{55} -4.16903 q^{56} +13.8581 q^{58} -14.2187 q^{59} -3.02518 q^{61} +0.819272 q^{64} -15.6666 q^{65} -9.93407 q^{67} -8.09206 q^{68} -16.3892 q^{70} -12.6838 q^{71} +5.17551 q^{73} +4.16423 q^{74} -1.70007 q^{76} -2.65111 q^{77} -1.53803 q^{79} +19.2605 q^{80} -6.62349 q^{82} +6.46074 q^{83} +30.5615 q^{85} -13.1256 q^{86} +1.84427 q^{88} +7.44199 q^{89} -9.95548 q^{91} +1.55542 q^{92} -8.79992 q^{94} +6.42071 q^{95} -7.34932 q^{97} +1.75015 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 32 q^{4} + 16 q^{7} + 24 q^{8} - 8 q^{10} - 16 q^{11} + 32 q^{13} + 24 q^{14} + 48 q^{16} - 32 q^{17} + 32 q^{19} + 24 q^{20} + 32 q^{22} - 32 q^{23} + 40 q^{25} - 16 q^{26} + 8 q^{28} - 48 q^{29}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73783 −1.22883 −0.614414 0.788984i \(-0.710608\pi\)
−0.614414 + 0.788984i \(0.710608\pi\)
\(3\) 0 0
\(4\) 1.02004 0.510019
\(5\) −3.85240 −1.72285 −0.861423 0.507887i \(-0.830427\pi\)
−0.861423 + 0.507887i \(0.830427\pi\)
\(6\) 0 0
\(7\) −2.44804 −0.925273 −0.462636 0.886548i \(-0.653096\pi\)
−0.462636 + 0.886548i \(0.653096\pi\)
\(8\) 1.70300 0.602103
\(9\) 0 0
\(10\) 6.69480 2.11708
\(11\) 1.08295 0.326522 0.163261 0.986583i \(-0.447799\pi\)
0.163261 + 0.986583i \(0.447799\pi\)
\(12\) 0 0
\(13\) 4.06671 1.12790 0.563952 0.825808i \(-0.309280\pi\)
0.563952 + 0.825808i \(0.309280\pi\)
\(14\) 4.25427 1.13700
\(15\) 0 0
\(16\) −4.99960 −1.24990
\(17\) −7.93311 −1.92406 −0.962030 0.272943i \(-0.912003\pi\)
−0.962030 + 0.272943i \(0.912003\pi\)
\(18\) 0 0
\(19\) −1.66668 −0.382362 −0.191181 0.981555i \(-0.561232\pi\)
−0.191181 + 0.981555i \(0.561232\pi\)
\(20\) −3.92959 −0.878684
\(21\) 0 0
\(22\) −1.88198 −0.401240
\(23\) 1.52487 0.317957 0.158978 0.987282i \(-0.449180\pi\)
0.158978 + 0.987282i \(0.449180\pi\)
\(24\) 0 0
\(25\) 9.84101 1.96820
\(26\) −7.06724 −1.38600
\(27\) 0 0
\(28\) −2.49709 −0.471906
\(29\) −7.97442 −1.48081 −0.740406 0.672160i \(-0.765367\pi\)
−0.740406 + 0.672160i \(0.765367\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) 5.28242 0.933809
\(33\) 0 0
\(34\) 13.7864 2.36434
\(35\) 9.43084 1.59410
\(36\) 0 0
\(37\) −2.39623 −0.393938 −0.196969 0.980410i \(-0.563110\pi\)
−0.196969 + 0.980410i \(0.563110\pi\)
\(38\) 2.89639 0.469857
\(39\) 0 0
\(40\) −6.56066 −1.03733
\(41\) 3.81137 0.595235 0.297618 0.954685i \(-0.403808\pi\)
0.297618 + 0.954685i \(0.403808\pi\)
\(42\) 0 0
\(43\) 7.55291 1.15181 0.575904 0.817517i \(-0.304650\pi\)
0.575904 + 0.817517i \(0.304650\pi\)
\(44\) 1.10465 0.166533
\(45\) 0 0
\(46\) −2.64995 −0.390714
\(47\) 5.06376 0.738625 0.369312 0.929305i \(-0.379593\pi\)
0.369312 + 0.929305i \(0.379593\pi\)
\(48\) 0 0
\(49\) −1.00709 −0.143870
\(50\) −17.1020 −2.41858
\(51\) 0 0
\(52\) 4.14820 0.575252
\(53\) 3.29130 0.452095 0.226047 0.974116i \(-0.427420\pi\)
0.226047 + 0.974116i \(0.427420\pi\)
\(54\) 0 0
\(55\) −4.17197 −0.562548
\(56\) −4.16903 −0.557110
\(57\) 0 0
\(58\) 13.8581 1.81966
\(59\) −14.2187 −1.85112 −0.925561 0.378599i \(-0.876406\pi\)
−0.925561 + 0.378599i \(0.876406\pi\)
\(60\) 0 0
\(61\) −3.02518 −0.387334 −0.193667 0.981067i \(-0.562038\pi\)
−0.193667 + 0.981067i \(0.562038\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.819272 0.102409
\(65\) −15.6666 −1.94320
\(66\) 0 0
\(67\) −9.93407 −1.21364 −0.606820 0.794839i \(-0.707555\pi\)
−0.606820 + 0.794839i \(0.707555\pi\)
\(68\) −8.09206 −0.981307
\(69\) 0 0
\(70\) −16.3892 −1.95888
\(71\) −12.6838 −1.50530 −0.752648 0.658423i \(-0.771224\pi\)
−0.752648 + 0.658423i \(0.771224\pi\)
\(72\) 0 0
\(73\) 5.17551 0.605747 0.302874 0.953031i \(-0.402054\pi\)
0.302874 + 0.953031i \(0.402054\pi\)
\(74\) 4.16423 0.484082
\(75\) 0 0
\(76\) −1.70007 −0.195011
\(77\) −2.65111 −0.302122
\(78\) 0 0
\(79\) −1.53803 −0.173042 −0.0865210 0.996250i \(-0.527575\pi\)
−0.0865210 + 0.996250i \(0.527575\pi\)
\(80\) 19.2605 2.15339
\(81\) 0 0
\(82\) −6.62349 −0.731442
\(83\) 6.46074 0.709158 0.354579 0.935026i \(-0.384624\pi\)
0.354579 + 0.935026i \(0.384624\pi\)
\(84\) 0 0
\(85\) 30.5615 3.31486
\(86\) −13.1256 −1.41537
\(87\) 0 0
\(88\) 1.84427 0.196600
\(89\) 7.44199 0.788850 0.394425 0.918928i \(-0.370944\pi\)
0.394425 + 0.918928i \(0.370944\pi\)
\(90\) 0 0
\(91\) −9.95548 −1.04362
\(92\) 1.55542 0.162164
\(93\) 0 0
\(94\) −8.79992 −0.907643
\(95\) 6.42071 0.658750
\(96\) 0 0
\(97\) −7.34932 −0.746210 −0.373105 0.927789i \(-0.621707\pi\)
−0.373105 + 0.927789i \(0.621707\pi\)
\(98\) 1.75015 0.176792
\(99\) 0 0
\(100\) 10.0382 1.00382
\(101\) −2.12363 −0.211310 −0.105655 0.994403i \(-0.533694\pi\)
−0.105655 + 0.994403i \(0.533694\pi\)
\(102\) 0 0
\(103\) 6.27988 0.618775 0.309388 0.950936i \(-0.399876\pi\)
0.309388 + 0.950936i \(0.399876\pi\)
\(104\) 6.92563 0.679114
\(105\) 0 0
\(106\) −5.71971 −0.555547
\(107\) 11.8553 1.14610 0.573048 0.819522i \(-0.305761\pi\)
0.573048 + 0.819522i \(0.305761\pi\)
\(108\) 0 0
\(109\) −18.7983 −1.80055 −0.900275 0.435322i \(-0.856635\pi\)
−0.900275 + 0.435322i \(0.856635\pi\)
\(110\) 7.25015 0.691275
\(111\) 0 0
\(112\) 12.2392 1.15650
\(113\) −6.24648 −0.587620 −0.293810 0.955864i \(-0.594923\pi\)
−0.293810 + 0.955864i \(0.594923\pi\)
\(114\) 0 0
\(115\) −5.87440 −0.547791
\(116\) −8.13420 −0.755242
\(117\) 0 0
\(118\) 24.7097 2.27471
\(119\) 19.4206 1.78028
\(120\) 0 0
\(121\) −9.82721 −0.893383
\(122\) 5.25723 0.475967
\(123\) 0 0
\(124\) 0 0
\(125\) −18.6495 −1.66806
\(126\) 0 0
\(127\) −5.25371 −0.466191 −0.233096 0.972454i \(-0.574886\pi\)
−0.233096 + 0.972454i \(0.574886\pi\)
\(128\) −11.9886 −1.05965
\(129\) 0 0
\(130\) 27.2258 2.38786
\(131\) 1.24115 0.108440 0.0542200 0.998529i \(-0.482733\pi\)
0.0542200 + 0.998529i \(0.482733\pi\)
\(132\) 0 0
\(133\) 4.08009 0.353789
\(134\) 17.2637 1.49136
\(135\) 0 0
\(136\) −13.5101 −1.15848
\(137\) −6.76086 −0.577619 −0.288810 0.957387i \(-0.593259\pi\)
−0.288810 + 0.957387i \(0.593259\pi\)
\(138\) 0 0
\(139\) −15.1040 −1.28110 −0.640552 0.767915i \(-0.721294\pi\)
−0.640552 + 0.767915i \(0.721294\pi\)
\(140\) 9.61981 0.813022
\(141\) 0 0
\(142\) 22.0423 1.84975
\(143\) 4.40406 0.368286
\(144\) 0 0
\(145\) 30.7207 2.55121
\(146\) −8.99413 −0.744359
\(147\) 0 0
\(148\) −2.44424 −0.200915
\(149\) 0.601270 0.0492580 0.0246290 0.999697i \(-0.492160\pi\)
0.0246290 + 0.999697i \(0.492160\pi\)
\(150\) 0 0
\(151\) −18.7150 −1.52300 −0.761502 0.648163i \(-0.775537\pi\)
−0.761502 + 0.648163i \(0.775537\pi\)
\(152\) −2.83836 −0.230221
\(153\) 0 0
\(154\) 4.60717 0.371256
\(155\) 0 0
\(156\) 0 0
\(157\) −1.66563 −0.132932 −0.0664658 0.997789i \(-0.521172\pi\)
−0.0664658 + 0.997789i \(0.521172\pi\)
\(158\) 2.67283 0.212639
\(159\) 0 0
\(160\) −20.3500 −1.60881
\(161\) −3.73294 −0.294197
\(162\) 0 0
\(163\) −8.38889 −0.657068 −0.328534 0.944492i \(-0.606555\pi\)
−0.328534 + 0.944492i \(0.606555\pi\)
\(164\) 3.88774 0.303581
\(165\) 0 0
\(166\) −11.2276 −0.871433
\(167\) −17.2358 −1.33375 −0.666873 0.745171i \(-0.732368\pi\)
−0.666873 + 0.745171i \(0.732368\pi\)
\(168\) 0 0
\(169\) 3.53815 0.272165
\(170\) −53.1106 −4.07340
\(171\) 0 0
\(172\) 7.70425 0.587444
\(173\) −2.50350 −0.190337 −0.0951686 0.995461i \(-0.530339\pi\)
−0.0951686 + 0.995461i \(0.530339\pi\)
\(174\) 0 0
\(175\) −24.0912 −1.82112
\(176\) −5.41433 −0.408120
\(177\) 0 0
\(178\) −12.9329 −0.969361
\(179\) −6.22436 −0.465230 −0.232615 0.972569i \(-0.574728\pi\)
−0.232615 + 0.972569i \(0.574728\pi\)
\(180\) 0 0
\(181\) 13.1798 0.979649 0.489825 0.871821i \(-0.337061\pi\)
0.489825 + 0.871821i \(0.337061\pi\)
\(182\) 17.3009 1.28243
\(183\) 0 0
\(184\) 2.59686 0.191443
\(185\) 9.23124 0.678694
\(186\) 0 0
\(187\) −8.59118 −0.628249
\(188\) 5.16522 0.376712
\(189\) 0 0
\(190\) −11.1581 −0.809491
\(191\) 18.6607 1.35024 0.675119 0.737708i \(-0.264092\pi\)
0.675119 + 0.737708i \(0.264092\pi\)
\(192\) 0 0
\(193\) −25.9315 −1.86659 −0.933294 0.359113i \(-0.883079\pi\)
−0.933294 + 0.359113i \(0.883079\pi\)
\(194\) 12.7718 0.916964
\(195\) 0 0
\(196\) −1.02727 −0.0733764
\(197\) 3.41890 0.243586 0.121793 0.992556i \(-0.461136\pi\)
0.121793 + 0.992556i \(0.461136\pi\)
\(198\) 0 0
\(199\) −10.4097 −0.737926 −0.368963 0.929444i \(-0.620287\pi\)
−0.368963 + 0.929444i \(0.620287\pi\)
\(200\) 16.7593 1.18506
\(201\) 0 0
\(202\) 3.69051 0.259663
\(203\) 19.5217 1.37016
\(204\) 0 0
\(205\) −14.6829 −1.02550
\(206\) −10.9133 −0.760369
\(207\) 0 0
\(208\) −20.3319 −1.40977
\(209\) −1.80493 −0.124850
\(210\) 0 0
\(211\) −14.7553 −1.01580 −0.507900 0.861416i \(-0.669578\pi\)
−0.507900 + 0.861416i \(0.669578\pi\)
\(212\) 3.35725 0.230577
\(213\) 0 0
\(214\) −20.6025 −1.40836
\(215\) −29.0969 −1.98439
\(216\) 0 0
\(217\) 0 0
\(218\) 32.6681 2.21257
\(219\) 0 0
\(220\) −4.25556 −0.286910
\(221\) −32.2617 −2.17015
\(222\) 0 0
\(223\) −11.4443 −0.766366 −0.383183 0.923673i \(-0.625172\pi\)
−0.383183 + 0.923673i \(0.625172\pi\)
\(224\) −12.9316 −0.864028
\(225\) 0 0
\(226\) 10.8553 0.722083
\(227\) −23.4894 −1.55904 −0.779522 0.626375i \(-0.784538\pi\)
−0.779522 + 0.626375i \(0.784538\pi\)
\(228\) 0 0
\(229\) 11.4045 0.753630 0.376815 0.926289i \(-0.377019\pi\)
0.376815 + 0.926289i \(0.377019\pi\)
\(230\) 10.2087 0.673141
\(231\) 0 0
\(232\) −13.5805 −0.891602
\(233\) −11.6370 −0.762365 −0.381182 0.924500i \(-0.624483\pi\)
−0.381182 + 0.924500i \(0.624483\pi\)
\(234\) 0 0
\(235\) −19.5076 −1.27254
\(236\) −14.5036 −0.944106
\(237\) 0 0
\(238\) −33.7496 −2.18766
\(239\) 22.6157 1.46289 0.731445 0.681901i \(-0.238846\pi\)
0.731445 + 0.681901i \(0.238846\pi\)
\(240\) 0 0
\(241\) 23.0085 1.48211 0.741055 0.671444i \(-0.234326\pi\)
0.741055 + 0.671444i \(0.234326\pi\)
\(242\) 17.0780 1.09781
\(243\) 0 0
\(244\) −3.08579 −0.197548
\(245\) 3.87972 0.247866
\(246\) 0 0
\(247\) −6.77789 −0.431267
\(248\) 0 0
\(249\) 0 0
\(250\) 32.4096 2.04976
\(251\) −20.7953 −1.31259 −0.656293 0.754506i \(-0.727876\pi\)
−0.656293 + 0.754506i \(0.727876\pi\)
\(252\) 0 0
\(253\) 1.65136 0.103820
\(254\) 9.13003 0.572869
\(255\) 0 0
\(256\) 19.1955 1.19972
\(257\) 0.0529016 0.00329991 0.00164995 0.999999i \(-0.499475\pi\)
0.00164995 + 0.999999i \(0.499475\pi\)
\(258\) 0 0
\(259\) 5.86607 0.364500
\(260\) −15.9805 −0.991070
\(261\) 0 0
\(262\) −2.15691 −0.133254
\(263\) 0.558965 0.0344672 0.0172336 0.999851i \(-0.494514\pi\)
0.0172336 + 0.999851i \(0.494514\pi\)
\(264\) 0 0
\(265\) −12.6794 −0.778890
\(266\) −7.09049 −0.434746
\(267\) 0 0
\(268\) −10.1331 −0.618979
\(269\) 12.3773 0.754660 0.377330 0.926079i \(-0.376842\pi\)
0.377330 + 0.926079i \(0.376842\pi\)
\(270\) 0 0
\(271\) −2.94489 −0.178890 −0.0894448 0.995992i \(-0.528509\pi\)
−0.0894448 + 0.995992i \(0.528509\pi\)
\(272\) 39.6623 2.40488
\(273\) 0 0
\(274\) 11.7492 0.709795
\(275\) 10.6573 0.642662
\(276\) 0 0
\(277\) 1.43354 0.0861334 0.0430667 0.999072i \(-0.486287\pi\)
0.0430667 + 0.999072i \(0.486287\pi\)
\(278\) 26.2481 1.57426
\(279\) 0 0
\(280\) 16.0608 0.959814
\(281\) 8.73944 0.521351 0.260676 0.965426i \(-0.416055\pi\)
0.260676 + 0.965426i \(0.416055\pi\)
\(282\) 0 0
\(283\) −25.9054 −1.53992 −0.769958 0.638094i \(-0.779723\pi\)
−0.769958 + 0.638094i \(0.779723\pi\)
\(284\) −12.9380 −0.767729
\(285\) 0 0
\(286\) −7.65348 −0.452560
\(287\) −9.33039 −0.550755
\(288\) 0 0
\(289\) 45.9342 2.70201
\(290\) −53.3872 −3.13500
\(291\) 0 0
\(292\) 5.27921 0.308942
\(293\) −9.05112 −0.528772 −0.264386 0.964417i \(-0.585169\pi\)
−0.264386 + 0.964417i \(0.585169\pi\)
\(294\) 0 0
\(295\) 54.7763 3.18920
\(296\) −4.08079 −0.237191
\(297\) 0 0
\(298\) −1.04490 −0.0605296
\(299\) 6.20120 0.358625
\(300\) 0 0
\(301\) −18.4899 −1.06574
\(302\) 32.5234 1.87151
\(303\) 0 0
\(304\) 8.33271 0.477914
\(305\) 11.6542 0.667317
\(306\) 0 0
\(307\) 8.76298 0.500130 0.250065 0.968229i \(-0.419548\pi\)
0.250065 + 0.968229i \(0.419548\pi\)
\(308\) −2.70423 −0.154088
\(309\) 0 0
\(310\) 0 0
\(311\) 0.722973 0.0409960 0.0204980 0.999790i \(-0.493475\pi\)
0.0204980 + 0.999790i \(0.493475\pi\)
\(312\) 0 0
\(313\) −9.55991 −0.540358 −0.270179 0.962810i \(-0.587083\pi\)
−0.270179 + 0.962810i \(0.587083\pi\)
\(314\) 2.89457 0.163350
\(315\) 0 0
\(316\) −1.56885 −0.0882547
\(317\) 4.14299 0.232694 0.116347 0.993209i \(-0.462882\pi\)
0.116347 + 0.993209i \(0.462882\pi\)
\(318\) 0 0
\(319\) −8.63592 −0.483518
\(320\) −3.15617 −0.176435
\(321\) 0 0
\(322\) 6.48720 0.361517
\(323\) 13.2219 0.735687
\(324\) 0 0
\(325\) 40.0206 2.21994
\(326\) 14.5784 0.807424
\(327\) 0 0
\(328\) 6.49077 0.358393
\(329\) −12.3963 −0.683429
\(330\) 0 0
\(331\) 5.62019 0.308914 0.154457 0.988000i \(-0.450637\pi\)
0.154457 + 0.988000i \(0.450637\pi\)
\(332\) 6.59019 0.361684
\(333\) 0 0
\(334\) 29.9528 1.63894
\(335\) 38.2700 2.09092
\(336\) 0 0
\(337\) −21.7851 −1.18671 −0.593355 0.804941i \(-0.702197\pi\)
−0.593355 + 0.804941i \(0.702197\pi\)
\(338\) −6.14869 −0.334445
\(339\) 0 0
\(340\) 31.1739 1.69064
\(341\) 0 0
\(342\) 0 0
\(343\) 19.6017 1.05839
\(344\) 12.8626 0.693507
\(345\) 0 0
\(346\) 4.35064 0.233892
\(347\) 9.59930 0.515317 0.257659 0.966236i \(-0.417049\pi\)
0.257659 + 0.966236i \(0.417049\pi\)
\(348\) 0 0
\(349\) 15.9285 0.852632 0.426316 0.904574i \(-0.359811\pi\)
0.426316 + 0.904574i \(0.359811\pi\)
\(350\) 41.8663 2.23785
\(351\) 0 0
\(352\) 5.72061 0.304910
\(353\) 26.0182 1.38481 0.692404 0.721510i \(-0.256552\pi\)
0.692404 + 0.721510i \(0.256552\pi\)
\(354\) 0 0
\(355\) 48.8633 2.59339
\(356\) 7.59111 0.402328
\(357\) 0 0
\(358\) 10.8168 0.571688
\(359\) 7.27753 0.384094 0.192047 0.981386i \(-0.438487\pi\)
0.192047 + 0.981386i \(0.438487\pi\)
\(360\) 0 0
\(361\) −16.2222 −0.853800
\(362\) −22.9043 −1.20382
\(363\) 0 0
\(364\) −10.1550 −0.532265
\(365\) −19.9381 −1.04361
\(366\) 0 0
\(367\) 1.05257 0.0549435 0.0274717 0.999623i \(-0.491254\pi\)
0.0274717 + 0.999623i \(0.491254\pi\)
\(368\) −7.62373 −0.397414
\(369\) 0 0
\(370\) −16.0423 −0.833998
\(371\) −8.05724 −0.418311
\(372\) 0 0
\(373\) −13.8184 −0.715488 −0.357744 0.933820i \(-0.616454\pi\)
−0.357744 + 0.933820i \(0.616454\pi\)
\(374\) 14.9300 0.772010
\(375\) 0 0
\(376\) 8.62360 0.444728
\(377\) −32.4297 −1.67021
\(378\) 0 0
\(379\) 27.9179 1.43405 0.717024 0.697049i \(-0.245504\pi\)
0.717024 + 0.697049i \(0.245504\pi\)
\(380\) 6.54936 0.335975
\(381\) 0 0
\(382\) −32.4290 −1.65921
\(383\) −32.4293 −1.65706 −0.828531 0.559943i \(-0.810823\pi\)
−0.828531 + 0.559943i \(0.810823\pi\)
\(384\) 0 0
\(385\) 10.2132 0.520511
\(386\) 45.0644 2.29372
\(387\) 0 0
\(388\) −7.49657 −0.380581
\(389\) −20.3874 −1.03368 −0.516840 0.856082i \(-0.672892\pi\)
−0.516840 + 0.856082i \(0.672892\pi\)
\(390\) 0 0
\(391\) −12.0969 −0.611768
\(392\) −1.71508 −0.0866246
\(393\) 0 0
\(394\) −5.94145 −0.299326
\(395\) 5.92512 0.298125
\(396\) 0 0
\(397\) −6.97908 −0.350270 −0.175135 0.984544i \(-0.556036\pi\)
−0.175135 + 0.984544i \(0.556036\pi\)
\(398\) 18.0903 0.906784
\(399\) 0 0
\(400\) −49.2011 −2.46005
\(401\) −12.5287 −0.625652 −0.312826 0.949810i \(-0.601276\pi\)
−0.312826 + 0.949810i \(0.601276\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −2.16619 −0.107772
\(405\) 0 0
\(406\) −33.9253 −1.68369
\(407\) −2.59500 −0.128629
\(408\) 0 0
\(409\) 15.2337 0.753258 0.376629 0.926364i \(-0.377083\pi\)
0.376629 + 0.926364i \(0.377083\pi\)
\(410\) 25.5164 1.26016
\(411\) 0 0
\(412\) 6.40572 0.315587
\(413\) 34.8081 1.71279
\(414\) 0 0
\(415\) −24.8894 −1.22177
\(416\) 21.4821 1.05325
\(417\) 0 0
\(418\) 3.13665 0.153419
\(419\) −0.695307 −0.0339679 −0.0169840 0.999856i \(-0.505406\pi\)
−0.0169840 + 0.999856i \(0.505406\pi\)
\(420\) 0 0
\(421\) 30.0501 1.46455 0.732276 0.681008i \(-0.238458\pi\)
0.732276 + 0.681008i \(0.238458\pi\)
\(422\) 25.6422 1.24824
\(423\) 0 0
\(424\) 5.60510 0.272208
\(425\) −78.0698 −3.78694
\(426\) 0 0
\(427\) 7.40576 0.358390
\(428\) 12.0929 0.584530
\(429\) 0 0
\(430\) 50.5653 2.43847
\(431\) 16.6803 0.803462 0.401731 0.915758i \(-0.368409\pi\)
0.401731 + 0.915758i \(0.368409\pi\)
\(432\) 0 0
\(433\) 6.72872 0.323362 0.161681 0.986843i \(-0.448308\pi\)
0.161681 + 0.986843i \(0.448308\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −19.1750 −0.918314
\(437\) −2.54146 −0.121574
\(438\) 0 0
\(439\) 34.5522 1.64909 0.824543 0.565799i \(-0.191432\pi\)
0.824543 + 0.565799i \(0.191432\pi\)
\(440\) −7.10488 −0.338712
\(441\) 0 0
\(442\) 56.0651 2.66675
\(443\) 22.7410 1.08046 0.540228 0.841518i \(-0.318338\pi\)
0.540228 + 0.841518i \(0.318338\pi\)
\(444\) 0 0
\(445\) −28.6696 −1.35907
\(446\) 19.8882 0.941732
\(447\) 0 0
\(448\) −2.00561 −0.0947563
\(449\) 36.8153 1.73742 0.868710 0.495321i \(-0.164950\pi\)
0.868710 + 0.495321i \(0.164950\pi\)
\(450\) 0 0
\(451\) 4.12753 0.194358
\(452\) −6.37164 −0.299697
\(453\) 0 0
\(454\) 40.8204 1.91580
\(455\) 38.3525 1.79799
\(456\) 0 0
\(457\) 22.0731 1.03253 0.516267 0.856427i \(-0.327321\pi\)
0.516267 + 0.856427i \(0.327321\pi\)
\(458\) −19.8190 −0.926082
\(459\) 0 0
\(460\) −5.99211 −0.279384
\(461\) 23.5140 1.09515 0.547577 0.836755i \(-0.315550\pi\)
0.547577 + 0.836755i \(0.315550\pi\)
\(462\) 0 0
\(463\) 1.34434 0.0624768 0.0312384 0.999512i \(-0.490055\pi\)
0.0312384 + 0.999512i \(0.490055\pi\)
\(464\) 39.8689 1.85087
\(465\) 0 0
\(466\) 20.2231 0.936816
\(467\) −18.9658 −0.877631 −0.438816 0.898577i \(-0.644602\pi\)
−0.438816 + 0.898577i \(0.644602\pi\)
\(468\) 0 0
\(469\) 24.3190 1.12295
\(470\) 33.9009 1.56373
\(471\) 0 0
\(472\) −24.2146 −1.11457
\(473\) 8.17945 0.376091
\(474\) 0 0
\(475\) −16.4018 −0.752565
\(476\) 19.8097 0.907976
\(477\) 0 0
\(478\) −39.3022 −1.79764
\(479\) −24.2562 −1.10829 −0.554146 0.832420i \(-0.686955\pi\)
−0.554146 + 0.832420i \(0.686955\pi\)
\(480\) 0 0
\(481\) −9.74477 −0.444323
\(482\) −39.9848 −1.82126
\(483\) 0 0
\(484\) −10.0241 −0.455642
\(485\) 28.3125 1.28561
\(486\) 0 0
\(487\) −2.76752 −0.125408 −0.0627041 0.998032i \(-0.519972\pi\)
−0.0627041 + 0.998032i \(0.519972\pi\)
\(488\) −5.15189 −0.233215
\(489\) 0 0
\(490\) −6.74228 −0.304585
\(491\) 38.3241 1.72954 0.864772 0.502165i \(-0.167463\pi\)
0.864772 + 0.502165i \(0.167463\pi\)
\(492\) 0 0
\(493\) 63.2619 2.84917
\(494\) 11.7788 0.529953
\(495\) 0 0
\(496\) 0 0
\(497\) 31.0506 1.39281
\(498\) 0 0
\(499\) −27.2331 −1.21912 −0.609560 0.792740i \(-0.708654\pi\)
−0.609560 + 0.792740i \(0.708654\pi\)
\(500\) −19.0232 −0.850743
\(501\) 0 0
\(502\) 36.1385 1.61294
\(503\) −6.29581 −0.280716 −0.140358 0.990101i \(-0.544825\pi\)
−0.140358 + 0.990101i \(0.544825\pi\)
\(504\) 0 0
\(505\) 8.18110 0.364054
\(506\) −2.86977 −0.127577
\(507\) 0 0
\(508\) −5.35898 −0.237766
\(509\) −22.8095 −1.01101 −0.505507 0.862822i \(-0.668695\pi\)
−0.505507 + 0.862822i \(0.668695\pi\)
\(510\) 0 0
\(511\) −12.6699 −0.560481
\(512\) −9.38131 −0.414599
\(513\) 0 0
\(514\) −0.0919337 −0.00405502
\(515\) −24.1926 −1.06606
\(516\) 0 0
\(517\) 5.48381 0.241178
\(518\) −10.1942 −0.447908
\(519\) 0 0
\(520\) −26.6803 −1.17001
\(521\) 2.58247 0.113140 0.0565700 0.998399i \(-0.481984\pi\)
0.0565700 + 0.998399i \(0.481984\pi\)
\(522\) 0 0
\(523\) 22.3874 0.978934 0.489467 0.872022i \(-0.337191\pi\)
0.489467 + 0.872022i \(0.337191\pi\)
\(524\) 1.26602 0.0553065
\(525\) 0 0
\(526\) −0.971383 −0.0423543
\(527\) 0 0
\(528\) 0 0
\(529\) −20.6748 −0.898903
\(530\) 22.0346 0.957122
\(531\) 0 0
\(532\) 4.16184 0.180439
\(533\) 15.4997 0.671368
\(534\) 0 0
\(535\) −45.6714 −1.97455
\(536\) −16.9178 −0.730736
\(537\) 0 0
\(538\) −21.5097 −0.927347
\(539\) −1.09063 −0.0469768
\(540\) 0 0
\(541\) 13.0929 0.562907 0.281453 0.959575i \(-0.409184\pi\)
0.281453 + 0.959575i \(0.409184\pi\)
\(542\) 5.11771 0.219825
\(543\) 0 0
\(544\) −41.9060 −1.79670
\(545\) 72.4186 3.10207
\(546\) 0 0
\(547\) −5.04447 −0.215686 −0.107843 0.994168i \(-0.534394\pi\)
−0.107843 + 0.994168i \(0.534394\pi\)
\(548\) −6.89633 −0.294597
\(549\) 0 0
\(550\) −18.5206 −0.789721
\(551\) 13.2908 0.566206
\(552\) 0 0
\(553\) 3.76517 0.160111
\(554\) −2.49125 −0.105843
\(555\) 0 0
\(556\) −15.4066 −0.653387
\(557\) −3.24936 −0.137680 −0.0688400 0.997628i \(-0.521930\pi\)
−0.0688400 + 0.997628i \(0.521930\pi\)
\(558\) 0 0
\(559\) 30.7155 1.29913
\(560\) −47.1504 −1.99247
\(561\) 0 0
\(562\) −15.1876 −0.640651
\(563\) 22.6069 0.952767 0.476383 0.879238i \(-0.341947\pi\)
0.476383 + 0.879238i \(0.341947\pi\)
\(564\) 0 0
\(565\) 24.0640 1.01238
\(566\) 45.0191 1.89229
\(567\) 0 0
\(568\) −21.6007 −0.906343
\(569\) 15.4455 0.647509 0.323754 0.946141i \(-0.395055\pi\)
0.323754 + 0.946141i \(0.395055\pi\)
\(570\) 0 0
\(571\) −7.03025 −0.294207 −0.147103 0.989121i \(-0.546995\pi\)
−0.147103 + 0.989121i \(0.546995\pi\)
\(572\) 4.49230 0.187833
\(573\) 0 0
\(574\) 16.2146 0.676784
\(575\) 15.0062 0.625803
\(576\) 0 0
\(577\) −11.1732 −0.465144 −0.232572 0.972579i \(-0.574714\pi\)
−0.232572 + 0.972579i \(0.574714\pi\)
\(578\) −79.8255 −3.32031
\(579\) 0 0
\(580\) 31.3362 1.30117
\(581\) −15.8162 −0.656165
\(582\) 0 0
\(583\) 3.56432 0.147619
\(584\) 8.81391 0.364722
\(585\) 0 0
\(586\) 15.7293 0.649770
\(587\) 1.70100 0.0702076 0.0351038 0.999384i \(-0.488824\pi\)
0.0351038 + 0.999384i \(0.488824\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −95.1916 −3.91898
\(591\) 0 0
\(592\) 11.9802 0.492382
\(593\) 17.1944 0.706090 0.353045 0.935606i \(-0.385146\pi\)
0.353045 + 0.935606i \(0.385146\pi\)
\(594\) 0 0
\(595\) −74.8159 −3.06715
\(596\) 0.613318 0.0251225
\(597\) 0 0
\(598\) −10.7766 −0.440688
\(599\) 23.6611 0.966764 0.483382 0.875409i \(-0.339408\pi\)
0.483382 + 0.875409i \(0.339408\pi\)
\(600\) 0 0
\(601\) 10.1358 0.413447 0.206723 0.978399i \(-0.433720\pi\)
0.206723 + 0.978399i \(0.433720\pi\)
\(602\) 32.1321 1.30961
\(603\) 0 0
\(604\) −19.0900 −0.776760
\(605\) 37.8584 1.53916
\(606\) 0 0
\(607\) 1.41977 0.0576267 0.0288134 0.999585i \(-0.490827\pi\)
0.0288134 + 0.999585i \(0.490827\pi\)
\(608\) −8.80408 −0.357053
\(609\) 0 0
\(610\) −20.2530 −0.820018
\(611\) 20.5928 0.833097
\(612\) 0 0
\(613\) −26.0931 −1.05389 −0.526945 0.849900i \(-0.676663\pi\)
−0.526945 + 0.849900i \(0.676663\pi\)
\(614\) −15.2285 −0.614573
\(615\) 0 0
\(616\) −4.51486 −0.181909
\(617\) 14.0358 0.565061 0.282530 0.959258i \(-0.408826\pi\)
0.282530 + 0.959258i \(0.408826\pi\)
\(618\) 0 0
\(619\) 3.69898 0.148675 0.0743373 0.997233i \(-0.476316\pi\)
0.0743373 + 0.997233i \(0.476316\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.25640 −0.0503771
\(623\) −18.2183 −0.729901
\(624\) 0 0
\(625\) 22.6404 0.905616
\(626\) 16.6135 0.664007
\(627\) 0 0
\(628\) −1.69900 −0.0677976
\(629\) 19.0095 0.757960
\(630\) 0 0
\(631\) 21.7172 0.864549 0.432274 0.901742i \(-0.357711\pi\)
0.432274 + 0.901742i \(0.357711\pi\)
\(632\) −2.61927 −0.104189
\(633\) 0 0
\(634\) −7.19979 −0.285940
\(635\) 20.2394 0.803176
\(636\) 0 0
\(637\) −4.09555 −0.162272
\(638\) 15.0077 0.594161
\(639\) 0 0
\(640\) 46.1849 1.82562
\(641\) −3.40275 −0.134400 −0.0672002 0.997740i \(-0.521407\pi\)
−0.0672002 + 0.997740i \(0.521407\pi\)
\(642\) 0 0
\(643\) −27.8988 −1.10022 −0.550111 0.835092i \(-0.685415\pi\)
−0.550111 + 0.835092i \(0.685415\pi\)
\(644\) −3.80774 −0.150046
\(645\) 0 0
\(646\) −22.9774 −0.904033
\(647\) −17.2609 −0.678597 −0.339298 0.940679i \(-0.610190\pi\)
−0.339298 + 0.940679i \(0.610190\pi\)
\(648\) 0 0
\(649\) −15.3982 −0.604433
\(650\) −69.5487 −2.72793
\(651\) 0 0
\(652\) −8.55698 −0.335117
\(653\) 13.7451 0.537886 0.268943 0.963156i \(-0.413326\pi\)
0.268943 + 0.963156i \(0.413326\pi\)
\(654\) 0 0
\(655\) −4.78142 −0.186826
\(656\) −19.0553 −0.743985
\(657\) 0 0
\(658\) 21.5426 0.839817
\(659\) −30.9576 −1.20594 −0.602969 0.797765i \(-0.706016\pi\)
−0.602969 + 0.797765i \(0.706016\pi\)
\(660\) 0 0
\(661\) −44.2197 −1.71995 −0.859973 0.510339i \(-0.829520\pi\)
−0.859973 + 0.510339i \(0.829520\pi\)
\(662\) −9.76691 −0.379602
\(663\) 0 0
\(664\) 11.0027 0.426986
\(665\) −15.7182 −0.609524
\(666\) 0 0
\(667\) −12.1599 −0.470835
\(668\) −17.5812 −0.680235
\(669\) 0 0
\(670\) −66.5067 −2.56938
\(671\) −3.27612 −0.126473
\(672\) 0 0
\(673\) 25.5392 0.984463 0.492231 0.870464i \(-0.336181\pi\)
0.492231 + 0.870464i \(0.336181\pi\)
\(674\) 37.8587 1.45826
\(675\) 0 0
\(676\) 3.60905 0.138809
\(677\) 6.44452 0.247683 0.123842 0.992302i \(-0.460479\pi\)
0.123842 + 0.992302i \(0.460479\pi\)
\(678\) 0 0
\(679\) 17.9914 0.690448
\(680\) 52.0464 1.99589
\(681\) 0 0
\(682\) 0 0
\(683\) 34.3784 1.31545 0.657726 0.753257i \(-0.271518\pi\)
0.657726 + 0.753257i \(0.271518\pi\)
\(684\) 0 0
\(685\) 26.0456 0.995149
\(686\) −34.0643 −1.30058
\(687\) 0 0
\(688\) −37.7615 −1.43965
\(689\) 13.3848 0.509919
\(690\) 0 0
\(691\) 25.2604 0.960952 0.480476 0.877008i \(-0.340464\pi\)
0.480476 + 0.877008i \(0.340464\pi\)
\(692\) −2.55366 −0.0970756
\(693\) 0 0
\(694\) −16.6819 −0.633236
\(695\) 58.1866 2.20715
\(696\) 0 0
\(697\) −30.2360 −1.14527
\(698\) −27.6809 −1.04774
\(699\) 0 0
\(700\) −24.5739 −0.928807
\(701\) 16.0320 0.605521 0.302761 0.953067i \(-0.402092\pi\)
0.302761 + 0.953067i \(0.402092\pi\)
\(702\) 0 0
\(703\) 3.99374 0.150627
\(704\) 0.887233 0.0334388
\(705\) 0 0
\(706\) −45.2151 −1.70169
\(707\) 5.19875 0.195519
\(708\) 0 0
\(709\) −3.62098 −0.135989 −0.0679945 0.997686i \(-0.521660\pi\)
−0.0679945 + 0.997686i \(0.521660\pi\)
\(710\) −84.9159 −3.18684
\(711\) 0 0
\(712\) 12.6737 0.474969
\(713\) 0 0
\(714\) 0 0
\(715\) −16.9662 −0.634500
\(716\) −6.34907 −0.237276
\(717\) 0 0
\(718\) −12.6471 −0.471985
\(719\) 6.97181 0.260005 0.130002 0.991514i \(-0.458501\pi\)
0.130002 + 0.991514i \(0.458501\pi\)
\(720\) 0 0
\(721\) −15.3734 −0.572536
\(722\) 28.1913 1.04917
\(723\) 0 0
\(724\) 13.4439 0.499639
\(725\) −78.4763 −2.91454
\(726\) 0 0
\(727\) −42.1636 −1.56376 −0.781881 0.623427i \(-0.785740\pi\)
−0.781881 + 0.623427i \(0.785740\pi\)
\(728\) −16.9542 −0.628366
\(729\) 0 0
\(730\) 34.6490 1.28242
\(731\) −59.9181 −2.21615
\(732\) 0 0
\(733\) 1.04801 0.0387091 0.0193545 0.999813i \(-0.493839\pi\)
0.0193545 + 0.999813i \(0.493839\pi\)
\(734\) −1.82918 −0.0675161
\(735\) 0 0
\(736\) 8.05499 0.296911
\(737\) −10.7581 −0.396281
\(738\) 0 0
\(739\) 28.8950 1.06292 0.531459 0.847084i \(-0.321644\pi\)
0.531459 + 0.847084i \(0.321644\pi\)
\(740\) 9.41621 0.346147
\(741\) 0 0
\(742\) 14.0021 0.514033
\(743\) −16.2261 −0.595277 −0.297638 0.954679i \(-0.596199\pi\)
−0.297638 + 0.954679i \(0.596199\pi\)
\(744\) 0 0
\(745\) −2.31634 −0.0848640
\(746\) 24.0139 0.879212
\(747\) 0 0
\(748\) −8.76332 −0.320419
\(749\) −29.0223 −1.06045
\(750\) 0 0
\(751\) −4.96932 −0.181333 −0.0906665 0.995881i \(-0.528900\pi\)
−0.0906665 + 0.995881i \(0.528900\pi\)
\(752\) −25.3167 −0.923207
\(753\) 0 0
\(754\) 56.3571 2.05240
\(755\) 72.0976 2.62390
\(756\) 0 0
\(757\) 46.4717 1.68904 0.844521 0.535522i \(-0.179885\pi\)
0.844521 + 0.535522i \(0.179885\pi\)
\(758\) −48.5165 −1.76220
\(759\) 0 0
\(760\) 10.9345 0.396636
\(761\) −48.0573 −1.74208 −0.871038 0.491215i \(-0.836553\pi\)
−0.871038 + 0.491215i \(0.836553\pi\)
\(762\) 0 0
\(763\) 46.0190 1.66600
\(764\) 19.0346 0.688647
\(765\) 0 0
\(766\) 56.3565 2.03624
\(767\) −57.8235 −2.08789
\(768\) 0 0
\(769\) 21.6466 0.780598 0.390299 0.920688i \(-0.372372\pi\)
0.390299 + 0.920688i \(0.372372\pi\)
\(770\) −17.7487 −0.639618
\(771\) 0 0
\(772\) −26.4511 −0.951995
\(773\) 42.0400 1.51207 0.756037 0.654529i \(-0.227133\pi\)
0.756037 + 0.654529i \(0.227133\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −12.5159 −0.449295
\(777\) 0 0
\(778\) 35.4297 1.27022
\(779\) −6.35231 −0.227595
\(780\) 0 0
\(781\) −13.7360 −0.491513
\(782\) 21.0224 0.751758
\(783\) 0 0
\(784\) 5.03505 0.179823
\(785\) 6.41667 0.229021
\(786\) 0 0
\(787\) −3.83760 −0.136796 −0.0683979 0.997658i \(-0.521789\pi\)
−0.0683979 + 0.997658i \(0.521789\pi\)
\(788\) 3.48740 0.124234
\(789\) 0 0
\(790\) −10.2968 −0.366344
\(791\) 15.2916 0.543708
\(792\) 0 0
\(793\) −12.3025 −0.436875
\(794\) 12.1284 0.430422
\(795\) 0 0
\(796\) −10.6183 −0.376356
\(797\) −8.81463 −0.312230 −0.156115 0.987739i \(-0.549897\pi\)
−0.156115 + 0.987739i \(0.549897\pi\)
\(798\) 0 0
\(799\) −40.1713 −1.42116
\(800\) 51.9843 1.83792
\(801\) 0 0
\(802\) 21.7727 0.768819
\(803\) 5.60483 0.197790
\(804\) 0 0
\(805\) 14.3808 0.506856
\(806\) 0 0
\(807\) 0 0
\(808\) −3.61656 −0.127230
\(809\) −17.1184 −0.601850 −0.300925 0.953648i \(-0.597295\pi\)
−0.300925 + 0.953648i \(0.597295\pi\)
\(810\) 0 0
\(811\) 39.7499 1.39581 0.697905 0.716191i \(-0.254116\pi\)
0.697905 + 0.716191i \(0.254116\pi\)
\(812\) 19.9129 0.698805
\(813\) 0 0
\(814\) 4.50966 0.158063
\(815\) 32.3174 1.13203
\(816\) 0 0
\(817\) −12.5883 −0.440407
\(818\) −26.4735 −0.925624
\(819\) 0 0
\(820\) −14.9771 −0.523024
\(821\) −24.1075 −0.841356 −0.420678 0.907210i \(-0.638208\pi\)
−0.420678 + 0.907210i \(0.638208\pi\)
\(822\) 0 0
\(823\) 14.0165 0.488584 0.244292 0.969702i \(-0.421444\pi\)
0.244292 + 0.969702i \(0.421444\pi\)
\(824\) 10.6947 0.372567
\(825\) 0 0
\(826\) −60.4903 −2.10473
\(827\) −42.4443 −1.47593 −0.737966 0.674837i \(-0.764214\pi\)
−0.737966 + 0.674837i \(0.764214\pi\)
\(828\) 0 0
\(829\) 27.8893 0.968634 0.484317 0.874893i \(-0.339068\pi\)
0.484317 + 0.874893i \(0.339068\pi\)
\(830\) 43.2534 1.50135
\(831\) 0 0
\(832\) 3.33175 0.115507
\(833\) 7.98936 0.276815
\(834\) 0 0
\(835\) 66.3992 2.29784
\(836\) −1.84110 −0.0636756
\(837\) 0 0
\(838\) 1.20832 0.0417408
\(839\) 5.77939 0.199527 0.0997633 0.995011i \(-0.468191\pi\)
0.0997633 + 0.995011i \(0.468191\pi\)
\(840\) 0 0
\(841\) 34.5914 1.19281
\(842\) −52.2218 −1.79968
\(843\) 0 0
\(844\) −15.0510 −0.518077
\(845\) −13.6304 −0.468899
\(846\) 0 0
\(847\) 24.0574 0.826623
\(848\) −16.4552 −0.565073
\(849\) 0 0
\(850\) 135.672 4.65350
\(851\) −3.65393 −0.125255
\(852\) 0 0
\(853\) −17.0916 −0.585204 −0.292602 0.956234i \(-0.594521\pi\)
−0.292602 + 0.956234i \(0.594521\pi\)
\(854\) −12.8699 −0.440399
\(855\) 0 0
\(856\) 20.1896 0.690068
\(857\) −44.7670 −1.52921 −0.764606 0.644498i \(-0.777067\pi\)
−0.764606 + 0.644498i \(0.777067\pi\)
\(858\) 0 0
\(859\) 7.31104 0.249449 0.124725 0.992191i \(-0.460195\pi\)
0.124725 + 0.992191i \(0.460195\pi\)
\(860\) −29.6799 −1.01208
\(861\) 0 0
\(862\) −28.9875 −0.987317
\(863\) −27.6370 −0.940775 −0.470388 0.882460i \(-0.655886\pi\)
−0.470388 + 0.882460i \(0.655886\pi\)
\(864\) 0 0
\(865\) 9.64448 0.327922
\(866\) −11.6933 −0.397356
\(867\) 0 0
\(868\) 0 0
\(869\) −1.66562 −0.0565021
\(870\) 0 0
\(871\) −40.3990 −1.36887
\(872\) −32.0136 −1.08412
\(873\) 0 0
\(874\) 4.41661 0.149394
\(875\) 45.6548 1.54341
\(876\) 0 0
\(877\) −22.7150 −0.767031 −0.383515 0.923534i \(-0.625287\pi\)
−0.383515 + 0.923534i \(0.625287\pi\)
\(878\) −60.0457 −2.02644
\(879\) 0 0
\(880\) 20.8582 0.703129
\(881\) −43.7533 −1.47409 −0.737044 0.675845i \(-0.763779\pi\)
−0.737044 + 0.675845i \(0.763779\pi\)
\(882\) 0 0
\(883\) −51.7405 −1.74121 −0.870603 0.491986i \(-0.836271\pi\)
−0.870603 + 0.491986i \(0.836271\pi\)
\(884\) −32.9081 −1.10682
\(885\) 0 0
\(886\) −39.5199 −1.32770
\(887\) 45.2793 1.52033 0.760165 0.649730i \(-0.225118\pi\)
0.760165 + 0.649730i \(0.225118\pi\)
\(888\) 0 0
\(889\) 12.8613 0.431354
\(890\) 49.8227 1.67006
\(891\) 0 0
\(892\) −11.6736 −0.390861
\(893\) −8.43964 −0.282422
\(894\) 0 0
\(895\) 23.9787 0.801520
\(896\) 29.3486 0.980467
\(897\) 0 0
\(898\) −63.9785 −2.13499
\(899\) 0 0
\(900\) 0 0
\(901\) −26.1102 −0.869858
\(902\) −7.17292 −0.238832
\(903\) 0 0
\(904\) −10.6378 −0.353807
\(905\) −50.7740 −1.68779
\(906\) 0 0
\(907\) 10.9585 0.363872 0.181936 0.983310i \(-0.441764\pi\)
0.181936 + 0.983310i \(0.441764\pi\)
\(908\) −23.9600 −0.795141
\(909\) 0 0
\(910\) −66.6500 −2.20943
\(911\) 29.2094 0.967752 0.483876 0.875137i \(-0.339229\pi\)
0.483876 + 0.875137i \(0.339229\pi\)
\(912\) 0 0
\(913\) 6.99667 0.231556
\(914\) −38.3591 −1.26881
\(915\) 0 0
\(916\) 11.6330 0.384365
\(917\) −3.03840 −0.100337
\(918\) 0 0
\(919\) 23.3670 0.770806 0.385403 0.922748i \(-0.374062\pi\)
0.385403 + 0.922748i \(0.374062\pi\)
\(920\) −10.0041 −0.329827
\(921\) 0 0
\(922\) −40.8632 −1.34576
\(923\) −51.5816 −1.69783
\(924\) 0 0
\(925\) −23.5813 −0.775349
\(926\) −2.33623 −0.0767733
\(927\) 0 0
\(928\) −42.1242 −1.38280
\(929\) −26.8470 −0.880821 −0.440411 0.897796i \(-0.645167\pi\)
−0.440411 + 0.897796i \(0.645167\pi\)
\(930\) 0 0
\(931\) 1.67849 0.0550104
\(932\) −11.8702 −0.388820
\(933\) 0 0
\(934\) 32.9592 1.07846
\(935\) 33.0967 1.08238
\(936\) 0 0
\(937\) 18.4283 0.602026 0.301013 0.953620i \(-0.402675\pi\)
0.301013 + 0.953620i \(0.402675\pi\)
\(938\) −42.2622 −1.37991
\(939\) 0 0
\(940\) −19.8985 −0.649018
\(941\) −20.7016 −0.674853 −0.337427 0.941352i \(-0.609556\pi\)
−0.337427 + 0.941352i \(0.609556\pi\)
\(942\) 0 0
\(943\) 5.81183 0.189259
\(944\) 71.0880 2.31372
\(945\) 0 0
\(946\) −14.2144 −0.462152
\(947\) −11.6183 −0.377543 −0.188771 0.982021i \(-0.560451\pi\)
−0.188771 + 0.982021i \(0.560451\pi\)
\(948\) 0 0
\(949\) 21.0473 0.683224
\(950\) 28.5034 0.924773
\(951\) 0 0
\(952\) 33.0733 1.07191
\(953\) 1.59717 0.0517374 0.0258687 0.999665i \(-0.491765\pi\)
0.0258687 + 0.999665i \(0.491765\pi\)
\(954\) 0 0
\(955\) −71.8884 −2.32625
\(956\) 23.0689 0.746101
\(957\) 0 0
\(958\) 42.1530 1.36190
\(959\) 16.5509 0.534455
\(960\) 0 0
\(961\) 0 0
\(962\) 16.9347 0.545997
\(963\) 0 0
\(964\) 23.4696 0.755904
\(965\) 99.8985 3.21585
\(966\) 0 0
\(967\) 24.1386 0.776245 0.388123 0.921608i \(-0.373124\pi\)
0.388123 + 0.921608i \(0.373124\pi\)
\(968\) −16.7358 −0.537909
\(969\) 0 0
\(970\) −49.2022 −1.57979
\(971\) 17.5140 0.562052 0.281026 0.959700i \(-0.409325\pi\)
0.281026 + 0.959700i \(0.409325\pi\)
\(972\) 0 0
\(973\) 36.9752 1.18537
\(974\) 4.80946 0.154105
\(975\) 0 0
\(976\) 15.1247 0.484129
\(977\) −33.8011 −1.08139 −0.540697 0.841217i \(-0.681839\pi\)
−0.540697 + 0.841217i \(0.681839\pi\)
\(978\) 0 0
\(979\) 8.05932 0.257577
\(980\) 3.95746 0.126416
\(981\) 0 0
\(982\) −66.6006 −2.12531
\(983\) 24.1804 0.771236 0.385618 0.922659i \(-0.373988\pi\)
0.385618 + 0.922659i \(0.373988\pi\)
\(984\) 0 0
\(985\) −13.1710 −0.419662
\(986\) −109.938 −3.50114
\(987\) 0 0
\(988\) −6.91370 −0.219954
\(989\) 11.5172 0.366225
\(990\) 0 0
\(991\) −32.1985 −1.02282 −0.511410 0.859337i \(-0.670877\pi\)
−0.511410 + 0.859337i \(0.670877\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −53.9605 −1.71152
\(995\) 40.1025 1.27133
\(996\) 0 0
\(997\) 33.3042 1.05475 0.527377 0.849631i \(-0.323175\pi\)
0.527377 + 0.849631i \(0.323175\pi\)
\(998\) 47.3263 1.49809
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.bu.1.6 24
3.2 odd 2 2883.2.a.v.1.19 yes 24
31.30 odd 2 8649.2.a.bv.1.6 24
93.92 even 2 2883.2.a.u.1.19 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2883.2.a.u.1.19 24 93.92 even 2
2883.2.a.v.1.19 yes 24 3.2 odd 2
8649.2.a.bu.1.6 24 1.1 even 1 trivial
8649.2.a.bv.1.6 24 31.30 odd 2