Properties

Label 875.2.bb.a.143.8
Level $875$
Weight $2$
Character 875.143
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(82,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([27, 50]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 143.8
Character \(\chi\) \(=\) 875.143
Dual form 875.2.bb.a.257.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0420512 - 0.802384i) q^{2} +(2.43882 + 1.97492i) q^{3} +(1.34699 - 0.141575i) q^{4} +(1.48209 - 2.03992i) q^{6} +(0.782993 + 2.52724i) q^{7} +(-0.421625 - 2.66204i) q^{8} +(1.42381 + 6.69848i) q^{9} +(-4.90608 - 1.04282i) q^{11} +(3.56467 + 2.31492i) q^{12} +(0.416175 + 0.816789i) q^{13} +(1.99489 - 0.734535i) q^{14} +(0.531383 - 0.112949i) q^{16} +(0.483913 + 0.185757i) q^{17} +(5.31488 - 1.42412i) q^{18} +(0.116377 - 1.10725i) q^{19} +(-3.08150 + 7.70982i) q^{21} +(-0.630435 + 3.98041i) q^{22} +(5.16039 - 0.270445i) q^{23} +(4.22903 - 7.32490i) q^{24} +(0.637878 - 0.368279i) q^{26} +(-5.48243 + 10.7599i) q^{27} +(1.41248 + 3.29331i) q^{28} +(3.39698 + 4.67555i) q^{29} +(-0.139259 - 0.312781i) q^{31} +(-1.50812 - 5.62839i) q^{32} +(-9.90555 - 12.2323i) q^{33} +(0.128699 - 0.396095i) q^{34} +(2.86619 + 8.82122i) q^{36} +(3.47651 - 5.35336i) q^{37} +(-0.893337 - 0.0468178i) q^{38} +(-0.598115 + 2.81391i) q^{39} +(-6.75808 - 2.19583i) q^{41} +(6.31581 + 2.14834i) q^{42} +(3.02167 + 3.02167i) q^{43} +(-6.75609 - 0.710093i) q^{44} +(-0.434001 - 4.12924i) q^{46} +(-4.57426 - 11.9164i) q^{47} +(1.51901 + 0.773974i) q^{48} +(-5.77384 + 3.95762i) q^{49} +(0.813322 + 1.40871i) q^{51} +(0.676221 + 1.04129i) q^{52} +(3.68942 - 4.55606i) q^{53} +(8.86410 + 3.94655i) q^{54} +(6.39747 - 3.14990i) q^{56} +(2.47056 - 2.47056i) q^{57} +(3.60874 - 2.92230i) q^{58} +(-5.88478 - 6.53571i) q^{59} +(-1.07623 - 0.969040i) q^{61} +(-0.245114 + 0.124892i) q^{62} +(-15.8138 + 8.84316i) q^{63} +(-3.41938 + 1.11102i) q^{64} +(-9.39849 + 8.46244i) q^{66} +(-0.504146 + 1.31334i) q^{67} +(0.678125 + 0.181703i) q^{68} +(13.1194 + 9.53177i) q^{69} +(-6.16371 + 4.47820i) q^{71} +(17.2313 - 6.61447i) q^{72} +(-1.01144 + 0.656834i) q^{73} +(-4.44164 - 2.56438i) q^{74} -1.50794i q^{76} +(-1.20598 - 13.2153i) q^{77} +(2.28299 + 0.361590i) q^{78} +(-1.97771 + 4.44201i) q^{79} +(-15.8523 + 7.05789i) q^{81} +(-1.47772 + 5.51491i) q^{82} +(3.42852 - 0.543025i) q^{83} +(-3.05924 + 10.8213i) q^{84} +(2.29747 - 2.55160i) q^{86} +(-0.949187 + 18.1116i) q^{87} +(-0.707497 + 13.4998i) q^{88} +(2.10268 - 2.33526i) q^{89} +(-1.73836 + 1.69131i) q^{91} +(6.91272 - 1.09487i) q^{92} +(0.278088 - 1.03784i) q^{93} +(-9.36915 + 4.17141i) q^{94} +(7.43756 - 16.7050i) q^{96} +(3.51689 + 0.557021i) q^{97} +(3.41833 + 4.46642i) q^{98} -34.3480i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 2 q^{2} - 6 q^{3} + 10 q^{4} + 10 q^{7} - 64 q^{8} + 10 q^{9} - 6 q^{11} + 6 q^{12} + 20 q^{14} - 30 q^{16} + 12 q^{17} + 14 q^{18} + 30 q^{19} - 12 q^{21} + 8 q^{22} - 30 q^{23} - 48 q^{26} + 58 q^{28}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0420512 0.802384i −0.0297347 0.567371i −0.972355 0.233506i \(-0.924980\pi\)
0.942621 0.333865i \(-0.108353\pi\)
\(3\) 2.43882 + 1.97492i 1.40805 + 1.14022i 0.970521 + 0.241015i \(0.0774803\pi\)
0.437531 + 0.899203i \(0.355853\pi\)
\(4\) 1.34699 0.141575i 0.673496 0.0707873i
\(5\) 0 0
\(6\) 1.48209 2.03992i 0.605059 0.832792i
\(7\) 0.782993 + 2.52724i 0.295944 + 0.955205i
\(8\) −0.421625 2.66204i −0.149067 0.941172i
\(9\) 1.42381 + 6.69848i 0.474602 + 2.23283i
\(10\) 0 0
\(11\) −4.90608 1.04282i −1.47924 0.314422i −0.603560 0.797317i \(-0.706252\pi\)
−0.875678 + 0.482895i \(0.839585\pi\)
\(12\) 3.56467 + 2.31492i 1.02903 + 0.668260i
\(13\) 0.416175 + 0.816789i 0.115426 + 0.226536i 0.941491 0.337039i \(-0.109425\pi\)
−0.826065 + 0.563575i \(0.809425\pi\)
\(14\) 1.99489 0.734535i 0.533156 0.196313i
\(15\) 0 0
\(16\) 0.531383 0.112949i 0.132846 0.0282372i
\(17\) 0.483913 + 0.185757i 0.117366 + 0.0450526i 0.416342 0.909208i \(-0.363312\pi\)
−0.298976 + 0.954261i \(0.596645\pi\)
\(18\) 5.31488 1.42412i 1.25273 0.335668i
\(19\) 0.116377 1.10725i 0.0266987 0.254022i −0.973029 0.230683i \(-0.925904\pi\)
0.999728 0.0233383i \(-0.00742947\pi\)
\(20\) 0 0
\(21\) −3.08150 + 7.70982i −0.672439 + 1.68242i
\(22\) −0.630435 + 3.98041i −0.134409 + 0.848626i
\(23\) 5.16039 0.270445i 1.07602 0.0563916i 0.493916 0.869509i \(-0.335565\pi\)
0.582099 + 0.813118i \(0.302232\pi\)
\(24\) 4.22903 7.32490i 0.863248 1.49519i
\(25\) 0 0
\(26\) 0.637878 0.368279i 0.125098 0.0722254i
\(27\) −5.48243 + 10.7599i −1.05509 + 2.07074i
\(28\) 1.41248 + 3.29331i 0.266933 + 0.622378i
\(29\) 3.39698 + 4.67555i 0.630804 + 0.868227i 0.998083 0.0618834i \(-0.0197107\pi\)
−0.367279 + 0.930111i \(0.619711\pi\)
\(30\) 0 0
\(31\) −0.139259 0.312781i −0.0250116 0.0561771i 0.900608 0.434633i \(-0.143122\pi\)
−0.925619 + 0.378456i \(0.876455\pi\)
\(32\) −1.50812 5.62839i −0.266601 0.994968i
\(33\) −9.90555 12.2323i −1.72434 2.12938i
\(34\) 0.128699 0.396095i 0.0220717 0.0679298i
\(35\) 0 0
\(36\) 2.86619 + 8.82122i 0.477698 + 1.47020i
\(37\) 3.47651 5.35336i 0.571535 0.880086i −0.428187 0.903690i \(-0.640847\pi\)
0.999721 + 0.0236039i \(0.00751406\pi\)
\(38\) −0.893337 0.0468178i −0.144918 0.00759485i
\(39\) −0.598115 + 2.81391i −0.0957751 + 0.450586i
\(40\) 0 0
\(41\) −6.75808 2.19583i −1.05543 0.342931i −0.270635 0.962682i \(-0.587234\pi\)
−0.784799 + 0.619750i \(0.787234\pi\)
\(42\) 6.31581 + 2.14834i 0.974551 + 0.331496i
\(43\) 3.02167 + 3.02167i 0.460800 + 0.460800i 0.898918 0.438118i \(-0.144355\pi\)
−0.438118 + 0.898918i \(0.644355\pi\)
\(44\) −6.75609 0.710093i −1.01852 0.107051i
\(45\) 0 0
\(46\) −0.434001 4.12924i −0.0639899 0.608824i
\(47\) −4.57426 11.9164i −0.667225 1.73818i −0.674574 0.738207i \(-0.735673\pi\)
0.00734880 0.999973i \(-0.497661\pi\)
\(48\) 1.51901 + 0.773974i 0.219250 + 0.111714i
\(49\) −5.77384 + 3.95762i −0.824835 + 0.565374i
\(50\) 0 0
\(51\) 0.813322 + 1.40871i 0.113888 + 0.197260i
\(52\) 0.676221 + 1.04129i 0.0937749 + 0.144401i
\(53\) 3.68942 4.55606i 0.506781 0.625822i −0.457976 0.888965i \(-0.651425\pi\)
0.964757 + 0.263142i \(0.0847588\pi\)
\(54\) 8.86410 + 3.94655i 1.20625 + 0.537057i
\(55\) 0 0
\(56\) 6.39747 3.14990i 0.854897 0.420924i
\(57\) 2.47056 2.47056i 0.327233 0.327233i
\(58\) 3.60874 2.92230i 0.473850 0.383717i
\(59\) −5.88478 6.53571i −0.766133 0.850876i 0.226250 0.974069i \(-0.427353\pi\)
−0.992383 + 0.123193i \(0.960687\pi\)
\(60\) 0 0
\(61\) −1.07623 0.969040i −0.137797 0.124073i 0.597350 0.801981i \(-0.296220\pi\)
−0.735147 + 0.677908i \(0.762887\pi\)
\(62\) −0.245114 + 0.124892i −0.0311295 + 0.0158613i
\(63\) −15.8138 + 8.84316i −1.99235 + 1.11413i
\(64\) −3.41938 + 1.11102i −0.427422 + 0.138878i
\(65\) 0 0
\(66\) −9.39849 + 8.46244i −1.15687 + 1.04165i
\(67\) −0.504146 + 1.31334i −0.0615912 + 0.160451i −0.960923 0.276817i \(-0.910720\pi\)
0.899331 + 0.437268i \(0.144054\pi\)
\(68\) 0.678125 + 0.181703i 0.0822348 + 0.0220347i
\(69\) 13.1194 + 9.53177i 1.57939 + 1.14749i
\(70\) 0 0
\(71\) −6.16371 + 4.47820i −0.731498 + 0.531465i −0.890037 0.455888i \(-0.849322\pi\)
0.158539 + 0.987353i \(0.449322\pi\)
\(72\) 17.2313 6.61447i 2.03073 0.779523i
\(73\) −1.01144 + 0.656834i −0.118380 + 0.0768766i −0.602471 0.798141i \(-0.705817\pi\)
0.484091 + 0.875018i \(0.339150\pi\)
\(74\) −4.44164 2.56438i −0.516330 0.298103i
\(75\) 0 0
\(76\) 1.50794i 0.172972i
\(77\) −1.20598 13.2153i −0.137434 1.50603i
\(78\) 2.28299 + 0.361590i 0.258497 + 0.0409420i
\(79\) −1.97771 + 4.44201i −0.222510 + 0.499765i −0.989961 0.141343i \(-0.954858\pi\)
0.767451 + 0.641107i \(0.221525\pi\)
\(80\) 0 0
\(81\) −15.8523 + 7.05789i −1.76136 + 0.784210i
\(82\) −1.47772 + 5.51491i −0.163186 + 0.609020i
\(83\) 3.42852 0.543025i 0.376329 0.0596047i 0.0345952 0.999401i \(-0.488986\pi\)
0.341734 + 0.939797i \(0.388986\pi\)
\(84\) −3.05924 + 10.8213i −0.333791 + 1.18070i
\(85\) 0 0
\(86\) 2.29747 2.55160i 0.247743 0.275146i
\(87\) −0.949187 + 18.1116i −0.101764 + 1.94176i
\(88\) −0.707497 + 13.4998i −0.0754194 + 1.43909i
\(89\) 2.10268 2.33526i 0.222884 0.247537i −0.621324 0.783554i \(-0.713405\pi\)
0.844208 + 0.536016i \(0.180071\pi\)
\(90\) 0 0
\(91\) −1.73836 + 1.69131i −0.182229 + 0.177298i
\(92\) 6.91272 1.09487i 0.720700 0.114148i
\(93\) 0.278088 1.03784i 0.0288364 0.107619i
\(94\) −9.36915 + 4.17141i −0.966354 + 0.430248i
\(95\) 0 0
\(96\) 7.43756 16.7050i 0.759093 1.70495i
\(97\) 3.51689 + 0.557021i 0.357086 + 0.0565569i 0.332400 0.943138i \(-0.392141\pi\)
0.0246858 + 0.999695i \(0.492141\pi\)
\(98\) 3.41833 + 4.46642i 0.345303 + 0.451176i
\(99\) 34.3480i 3.45211i
\(100\) 0 0
\(101\) −8.57568 4.95117i −0.853312 0.492660i 0.00845468 0.999964i \(-0.497309\pi\)
−0.861767 + 0.507304i \(0.830642\pi\)
\(102\) 1.09613 0.711834i 0.108533 0.0704821i
\(103\) 6.93326 2.66143i 0.683154 0.262238i 0.00805736 0.999968i \(-0.497435\pi\)
0.675097 + 0.737729i \(0.264102\pi\)
\(104\) 1.99885 1.45225i 0.196004 0.142405i
\(105\) 0 0
\(106\) −3.81085 2.76875i −0.370143 0.268924i
\(107\) 1.50667 + 0.403711i 0.145655 + 0.0390282i 0.330910 0.943662i \(-0.392644\pi\)
−0.185255 + 0.982691i \(0.559311\pi\)
\(108\) −5.86147 + 15.2696i −0.564020 + 1.46932i
\(109\) 4.44021 3.99798i 0.425295 0.382937i −0.428504 0.903540i \(-0.640959\pi\)
0.853799 + 0.520603i \(0.174293\pi\)
\(110\) 0 0
\(111\) 19.0510 6.19005i 1.80824 0.587533i
\(112\) 0.701517 + 1.25449i 0.0662872 + 0.118538i
\(113\) 2.24970 1.14628i 0.211634 0.107833i −0.344960 0.938617i \(-0.612108\pi\)
0.556595 + 0.830784i \(0.312108\pi\)
\(114\) −2.08623 1.87845i −0.195393 0.175933i
\(115\) 0 0
\(116\) 5.23765 + 5.81700i 0.486303 + 0.540095i
\(117\) −4.87869 + 3.95069i −0.451035 + 0.365241i
\(118\) −4.99668 + 4.99668i −0.459982 + 0.459982i
\(119\) −0.0905506 + 1.36841i −0.00830076 + 0.125442i
\(120\) 0 0
\(121\) 12.9331 + 5.75820i 1.17574 + 0.523473i
\(122\) −0.732286 + 0.904298i −0.0662981 + 0.0818713i
\(123\) −12.1451 18.7019i −1.09509 1.68629i
\(124\) −0.231863 0.401598i −0.0208219 0.0360645i
\(125\) 0 0
\(126\) 7.76060 + 12.3169i 0.691369 + 1.09728i
\(127\) −8.21389 4.18519i −0.728865 0.371375i 0.0498468 0.998757i \(-0.484127\pi\)
−0.778712 + 0.627381i \(0.784127\pi\)
\(128\) −3.14112 8.18289i −0.277638 0.723272i
\(129\) 1.40176 + 13.3368i 0.123418 + 1.17424i
\(130\) 0 0
\(131\) 5.58590 + 0.587102i 0.488043 + 0.0512953i 0.345354 0.938472i \(-0.387759\pi\)
0.142688 + 0.989768i \(0.454425\pi\)
\(132\) −15.0745 15.0745i −1.31207 1.31207i
\(133\) 2.88942 0.572860i 0.250544 0.0496733i
\(134\) 1.07501 + 0.349291i 0.0928664 + 0.0301741i
\(135\) 0 0
\(136\) 0.290462 1.36651i 0.0249069 0.117178i
\(137\) 4.31718 + 0.226254i 0.368841 + 0.0193302i 0.235857 0.971788i \(-0.424210\pi\)
0.132985 + 0.991118i \(0.457544\pi\)
\(138\) 7.09646 10.9276i 0.604091 0.930218i
\(139\) −1.99140 6.12890i −0.168908 0.519847i 0.830395 0.557176i \(-0.188115\pi\)
−0.999303 + 0.0373290i \(0.988115\pi\)
\(140\) 0 0
\(141\) 12.3780 38.0956i 1.04242 3.20823i
\(142\) 3.85243 + 4.75735i 0.323289 + 0.399228i
\(143\) −1.19002 4.44123i −0.0995147 0.371394i
\(144\) 1.51317 + 3.39864i 0.126098 + 0.283220i
\(145\) 0 0
\(146\) 0.569565 + 0.783939i 0.0471376 + 0.0648793i
\(147\) −21.8973 1.75094i −1.80606 0.144415i
\(148\) 3.92493 7.70311i 0.322627 0.633192i
\(149\) −1.92554 + 1.11171i −0.157746 + 0.0910749i −0.576795 0.816889i \(-0.695697\pi\)
0.419049 + 0.907964i \(0.362364\pi\)
\(150\) 0 0
\(151\) 6.19286 10.7263i 0.503968 0.872897i −0.496022 0.868310i \(-0.665206\pi\)
0.999989 0.00458736i \(-0.00146021\pi\)
\(152\) −2.99662 + 0.157046i −0.243058 + 0.0127381i
\(153\) −0.555290 + 3.50596i −0.0448925 + 0.283440i
\(154\) −10.5531 + 1.52338i −0.850390 + 0.122757i
\(155\) 0 0
\(156\) −0.407278 + 3.87499i −0.0326083 + 0.310248i
\(157\) −16.2535 + 4.35511i −1.29717 + 0.347576i −0.840380 0.541998i \(-0.817668\pi\)
−0.456791 + 0.889574i \(0.651001\pi\)
\(158\) 3.64736 + 1.40009i 0.290168 + 0.111385i
\(159\) 17.9957 3.82509i 1.42715 0.303350i
\(160\) 0 0
\(161\) 4.72403 + 12.8298i 0.372306 + 1.01113i
\(162\) 6.32974 + 12.4228i 0.497312 + 0.976029i
\(163\) 15.2625 + 9.91155i 1.19545 + 0.776333i 0.979769 0.200132i \(-0.0641370\pi\)
0.215679 + 0.976464i \(0.430804\pi\)
\(164\) −9.41395 2.00100i −0.735106 0.156252i
\(165\) 0 0
\(166\) −0.579888 2.72816i −0.0450080 0.211746i
\(167\) 0.0529161 + 0.334099i 0.00409477 + 0.0258534i 0.989651 0.143494i \(-0.0458339\pi\)
−0.985556 + 0.169348i \(0.945834\pi\)
\(168\) 21.8231 + 4.95242i 1.68369 + 0.382087i
\(169\) 7.14727 9.83737i 0.549790 0.756721i
\(170\) 0 0
\(171\) 7.58262 0.796965i 0.579857 0.0609455i
\(172\) 4.49795 + 3.64237i 0.342966 + 0.277728i
\(173\) 0.931608 + 17.7761i 0.0708288 + 1.35149i 0.770687 + 0.637213i \(0.219913\pi\)
−0.699859 + 0.714281i \(0.746754\pi\)
\(174\) 14.5723 1.10473
\(175\) 0 0
\(176\) −2.72479 −0.205389
\(177\) −1.44443 27.5613i −0.108570 2.07164i
\(178\) −1.96220 1.58896i −0.147073 0.119097i
\(179\) 9.80573 1.03062i 0.732915 0.0770324i 0.269284 0.963061i \(-0.413213\pi\)
0.463631 + 0.886028i \(0.346546\pi\)
\(180\) 0 0
\(181\) −12.6158 + 17.3642i −0.937727 + 1.29067i 0.0190405 + 0.999819i \(0.493939\pi\)
−0.956768 + 0.290852i \(0.906061\pi\)
\(182\) 1.43018 + 1.32371i 0.106012 + 0.0981197i
\(183\) −0.710952 4.48877i −0.0525551 0.331820i
\(184\) −2.89568 13.6231i −0.213473 1.00431i
\(185\) 0 0
\(186\) −0.844440 0.179491i −0.0619174 0.0131609i
\(187\) −2.18040 1.41597i −0.159447 0.103546i
\(188\) −7.84855 15.4036i −0.572414 1.12343i
\(189\) −31.4855 5.43048i −2.29023 0.395010i
\(190\) 0 0
\(191\) −0.709623 + 0.150835i −0.0513465 + 0.0109140i −0.233513 0.972354i \(-0.575022\pi\)
0.182167 + 0.983268i \(0.441689\pi\)
\(192\) −10.5334 4.04340i −0.760185 0.291807i
\(193\) −14.2145 + 3.80877i −1.02318 + 0.274161i −0.731128 0.682240i \(-0.761006\pi\)
−0.292055 + 0.956401i \(0.594339\pi\)
\(194\) 0.299055 2.84532i 0.0214709 0.204282i
\(195\) 0 0
\(196\) −7.21702 + 6.14831i −0.515502 + 0.439165i
\(197\) −3.82227 + 24.1329i −0.272326 + 1.71940i 0.350095 + 0.936714i \(0.386149\pi\)
−0.622420 + 0.782683i \(0.713851\pi\)
\(198\) −27.5603 + 1.44438i −1.95863 + 0.102647i
\(199\) −0.487743 + 0.844796i −0.0345752 + 0.0598860i −0.882795 0.469758i \(-0.844341\pi\)
0.848220 + 0.529644i \(0.177674\pi\)
\(200\) 0 0
\(201\) −3.82326 + 2.20736i −0.269672 + 0.155695i
\(202\) −3.61212 + 7.08919i −0.254148 + 0.498794i
\(203\) −9.15640 + 12.2459i −0.642653 + 0.859494i
\(204\) 1.29498 + 1.78238i 0.0906665 + 0.124792i
\(205\) 0 0
\(206\) −2.42704 5.45122i −0.169100 0.379804i
\(207\) 9.15896 + 34.1817i 0.636592 + 2.37579i
\(208\) 0.313403 + 0.387021i 0.0217306 + 0.0268351i
\(209\) −1.72562 + 5.31092i −0.119364 + 0.367364i
\(210\) 0 0
\(211\) −8.83060 27.1778i −0.607923 1.87100i −0.475287 0.879831i \(-0.657656\pi\)
−0.132636 0.991165i \(-0.542344\pi\)
\(212\) 4.32460 6.65930i 0.297015 0.457363i
\(213\) −23.8762 1.25130i −1.63597 0.0857377i
\(214\) 0.260574 1.22591i 0.0178125 0.0838012i
\(215\) 0 0
\(216\) 30.9547 + 10.0578i 2.10620 + 0.684347i
\(217\) 0.681432 0.596846i 0.0462586 0.0405165i
\(218\) −3.39463 3.39463i −0.229913 0.229913i
\(219\) −3.76390 0.395602i −0.254341 0.0267323i
\(220\) 0 0
\(221\) 0.0496683 + 0.472562i 0.00334105 + 0.0317880i
\(222\) −5.76791 15.0259i −0.387117 1.00847i
\(223\) 19.9284 + 10.1540i 1.33450 + 0.679963i 0.968116 0.250501i \(-0.0805952\pi\)
0.366385 + 0.930463i \(0.380595\pi\)
\(224\) 13.0434 8.21837i 0.871500 0.549113i
\(225\) 0 0
\(226\) −1.01436 1.75692i −0.0674742 0.116869i
\(227\) −3.03877 4.67929i −0.201690 0.310575i 0.723324 0.690509i \(-0.242613\pi\)
−0.925014 + 0.379934i \(0.875947\pi\)
\(228\) 2.97805 3.67759i 0.197226 0.243554i
\(229\) −14.5622 6.48351i −0.962298 0.428443i −0.135398 0.990791i \(-0.543231\pi\)
−0.826900 + 0.562349i \(0.809898\pi\)
\(230\) 0 0
\(231\) 23.1580 34.6115i 1.52369 2.27727i
\(232\) 11.0142 11.0142i 0.723119 0.723119i
\(233\) −9.54478 + 7.72921i −0.625299 + 0.506357i −0.888796 0.458303i \(-0.848458\pi\)
0.263497 + 0.964660i \(0.415124\pi\)
\(234\) 3.37512 + 3.74845i 0.220639 + 0.245044i
\(235\) 0 0
\(236\) −8.85204 7.97041i −0.576218 0.518829i
\(237\) −13.5959 + 6.92744i −0.883146 + 0.449985i
\(238\) 1.10180 + 0.0151132i 0.0714189 + 0.000979641i
\(239\) −14.3549 + 4.66418i −0.928540 + 0.301701i −0.733965 0.679187i \(-0.762333\pi\)
−0.194574 + 0.980888i \(0.562333\pi\)
\(240\) 0 0
\(241\) −17.2487 + 15.5308i −1.11108 + 1.00042i −0.111106 + 0.993809i \(0.535439\pi\)
−0.999978 + 0.00661623i \(0.997894\pi\)
\(242\) 4.07644 10.6195i 0.262043 0.682646i
\(243\) −17.6057 4.71744i −1.12941 0.302624i
\(244\) −1.58686 1.15292i −0.101588 0.0738083i
\(245\) 0 0
\(246\) −14.4954 + 10.5315i −0.924191 + 0.671464i
\(247\) 0.952826 0.365756i 0.0606269 0.0232725i
\(248\) −0.773919 + 0.502589i −0.0491439 + 0.0319144i
\(249\) 9.43397 + 5.44671i 0.597854 + 0.345171i
\(250\) 0 0
\(251\) 22.1623i 1.39887i −0.714697 0.699434i \(-0.753435\pi\)
0.714697 0.699434i \(-0.246565\pi\)
\(252\) −20.0491 + 14.1505i −1.26298 + 0.891398i
\(253\) −25.5993 4.05453i −1.60941 0.254906i
\(254\) −3.01272 + 6.76669i −0.189035 + 0.424580i
\(255\) 0 0
\(256\) −13.0028 + 5.78920i −0.812673 + 0.361825i
\(257\) −0.0610358 + 0.227789i −0.00380731 + 0.0142091i −0.967803 0.251708i \(-0.919008\pi\)
0.963996 + 0.265917i \(0.0856746\pi\)
\(258\) 10.6423 1.68558i 0.662562 0.104939i
\(259\) 16.2513 + 4.59432i 1.00981 + 0.285477i
\(260\) 0 0
\(261\) −26.4824 + 29.4117i −1.63922 + 1.82054i
\(262\) 0.236188 4.50673i 0.0145917 0.278427i
\(263\) 1.19862 22.8710i 0.0739099 1.41029i −0.670176 0.742202i \(-0.733782\pi\)
0.744086 0.668083i \(-0.232885\pi\)
\(264\) −28.3865 + 31.5264i −1.74707 + 1.94032i
\(265\) 0 0
\(266\) −0.581157 2.29433i −0.0356330 0.140674i
\(267\) 9.74001 1.54267i 0.596079 0.0944096i
\(268\) −0.493144 + 1.84044i −0.0301236 + 0.112423i
\(269\) −9.75209 + 4.34191i −0.594596 + 0.264731i −0.681894 0.731451i \(-0.738843\pi\)
0.0872981 + 0.996182i \(0.472177\pi\)
\(270\) 0 0
\(271\) −7.51186 + 16.8719i −0.456313 + 1.02490i 0.528125 + 0.849166i \(0.322895\pi\)
−0.984438 + 0.175730i \(0.943772\pi\)
\(272\) 0.278124 + 0.0440505i 0.0168637 + 0.00267095i
\(273\) −7.57973 + 0.691695i −0.458746 + 0.0418633i
\(274\) 3.47355i 0.209845i
\(275\) 0 0
\(276\) 19.0211 + 10.9819i 1.14494 + 0.661030i
\(277\) 8.75448 5.68523i 0.526006 0.341592i −0.254163 0.967161i \(-0.581800\pi\)
0.780169 + 0.625569i \(0.215133\pi\)
\(278\) −4.83399 + 1.85560i −0.289924 + 0.111291i
\(279\) 1.89688 1.37816i 0.113563 0.0825084i
\(280\) 0 0
\(281\) 23.9465 + 17.3981i 1.42853 + 1.03789i 0.990288 + 0.139028i \(0.0443978\pi\)
0.438239 + 0.898858i \(0.355602\pi\)
\(282\) −31.0878 8.32996i −1.85125 0.496042i
\(283\) −9.98669 + 26.0162i −0.593647 + 1.54650i 0.226296 + 0.974059i \(0.427338\pi\)
−0.819943 + 0.572445i \(0.805995\pi\)
\(284\) −7.66847 + 6.90472i −0.455040 + 0.409720i
\(285\) 0 0
\(286\) −3.51353 + 1.14161i −0.207759 + 0.0675051i
\(287\) 0.257857 18.7986i 0.0152208 1.10965i
\(288\) 35.5544 18.1159i 2.09506 1.06749i
\(289\) −12.4338 11.1954i −0.731400 0.658555i
\(290\) 0 0
\(291\) 7.47699 + 8.30404i 0.438309 + 0.486791i
\(292\) −1.26940 + 1.02794i −0.0742863 + 0.0601559i
\(293\) −4.85076 + 4.85076i −0.283385 + 0.283385i −0.834457 0.551073i \(-0.814219\pi\)
0.551073 + 0.834457i \(0.314219\pi\)
\(294\) −0.484122 + 17.6437i −0.0282346 + 1.02900i
\(295\) 0 0
\(296\) −15.7166 6.99749i −0.913510 0.406721i
\(297\) 38.1178 47.0716i 2.21182 2.73137i
\(298\) 0.972990 + 1.49827i 0.0563638 + 0.0867926i
\(299\) 2.36852 + 4.10240i 0.136975 + 0.237248i
\(300\) 0 0
\(301\) −5.27052 + 10.0024i −0.303788 + 0.576529i
\(302\) −8.86706 4.51799i −0.510242 0.259981i
\(303\) −11.1364 29.0113i −0.639768 1.66665i
\(304\) −0.0632223 0.601520i −0.00362605 0.0344996i
\(305\) 0 0
\(306\) 2.83648 + 0.298126i 0.162151 + 0.0170427i
\(307\) −4.10345 4.10345i −0.234196 0.234196i 0.580245 0.814442i \(-0.302957\pi\)
−0.814442 + 0.580245i \(0.802957\pi\)
\(308\) −3.49540 17.6302i −0.199169 1.00457i
\(309\) 22.1650 + 7.20186i 1.26093 + 0.409700i
\(310\) 0 0
\(311\) 5.14856 24.2220i 0.291948 1.37351i −0.550548 0.834804i \(-0.685581\pi\)
0.842496 0.538703i \(-0.181085\pi\)
\(312\) 7.74291 + 0.405789i 0.438356 + 0.0229733i
\(313\) 3.89322 5.99503i 0.220058 0.338859i −0.711349 0.702839i \(-0.751916\pi\)
0.931407 + 0.363980i \(0.118582\pi\)
\(314\) 4.17795 + 12.8584i 0.235776 + 0.725642i
\(315\) 0 0
\(316\) −2.03508 + 6.26334i −0.114482 + 0.352340i
\(317\) 4.32805 + 5.34470i 0.243088 + 0.300188i 0.884058 0.467378i \(-0.154801\pi\)
−0.640970 + 0.767566i \(0.721468\pi\)
\(318\) −3.82593 14.2786i −0.214548 0.800703i
\(319\) −11.7901 26.4810i −0.660120 1.48265i
\(320\) 0 0
\(321\) 2.87720 + 3.96013i 0.160590 + 0.221033i
\(322\) 10.0957 4.32999i 0.562614 0.241301i
\(323\) 0.261996 0.514197i 0.0145779 0.0286107i
\(324\) −20.3537 + 11.7512i −1.13076 + 0.652844i
\(325\) 0 0
\(326\) 7.31107 12.6631i 0.404923 0.701347i
\(327\) 18.7245 0.981311i 1.03547 0.0542666i
\(328\) −2.99601 + 18.9161i −0.165427 + 1.04447i
\(329\) 26.5338 20.8907i 1.46286 1.15174i
\(330\) 0 0
\(331\) −1.92457 + 18.3111i −0.105784 + 1.00647i 0.804913 + 0.593392i \(0.202212\pi\)
−0.910697 + 0.413074i \(0.864455\pi\)
\(332\) 4.54131 1.21684i 0.249237 0.0667828i
\(333\) 40.8092 + 15.6652i 2.23633 + 0.858447i
\(334\) 0.265851 0.0565083i 0.0145467 0.00309200i
\(335\) 0 0
\(336\) −0.766641 + 4.44491i −0.0418237 + 0.242490i
\(337\) 5.72591 + 11.2377i 0.311910 + 0.612158i 0.992740 0.120284i \(-0.0383805\pi\)
−0.680829 + 0.732442i \(0.738380\pi\)
\(338\) −8.19390 5.32118i −0.445689 0.289434i
\(339\) 7.75043 + 1.64740i 0.420945 + 0.0894747i
\(340\) 0 0
\(341\) 0.357042 + 1.67975i 0.0193349 + 0.0909635i
\(342\) −0.958330 6.05066i −0.0518206 0.327182i
\(343\) −14.5227 11.4931i −0.784153 0.620568i
\(344\) 6.76978 9.31780i 0.365002 0.502382i
\(345\) 0 0
\(346\) 14.2241 1.49501i 0.764693 0.0803725i
\(347\) −7.99918 6.47761i −0.429418 0.347736i 0.390117 0.920766i \(-0.372435\pi\)
−0.819535 + 0.573029i \(0.805768\pi\)
\(348\) 1.28559 + 24.5305i 0.0689149 + 1.31497i
\(349\) −11.2771 −0.603650 −0.301825 0.953363i \(-0.597596\pi\)
−0.301825 + 0.953363i \(0.597596\pi\)
\(350\) 0 0
\(351\) −11.0702 −0.590883
\(352\) 1.52957 + 29.1860i 0.0815266 + 1.55562i
\(353\) 12.9303 + 10.4707i 0.688208 + 0.557300i 0.908372 0.418163i \(-0.137326\pi\)
−0.220164 + 0.975463i \(0.570659\pi\)
\(354\) −22.0540 + 2.31797i −1.17216 + 0.123199i
\(355\) 0 0
\(356\) 2.50168 3.44327i 0.132589 0.182493i
\(357\) −2.92333 + 3.15847i −0.154719 + 0.167164i
\(358\) −1.23930 7.82462i −0.0654990 0.413544i
\(359\) 3.60963 + 16.9820i 0.190509 + 0.896275i 0.964706 + 0.263330i \(0.0848208\pi\)
−0.774197 + 0.632945i \(0.781846\pi\)
\(360\) 0 0
\(361\) 17.3723 + 3.69260i 0.914333 + 0.194348i
\(362\) 14.4633 + 9.39256i 0.760173 + 0.493662i
\(363\) 20.1696 + 39.5851i 1.05863 + 2.07768i
\(364\) −2.10211 + 2.52429i −0.110180 + 0.132309i
\(365\) 0 0
\(366\) −3.57182 + 0.759215i −0.186702 + 0.0396848i
\(367\) 6.96747 + 2.67456i 0.363699 + 0.139611i 0.533353 0.845893i \(-0.320932\pi\)
−0.169654 + 0.985504i \(0.554265\pi\)
\(368\) 2.71160 0.726570i 0.141352 0.0378751i
\(369\) 5.08655 48.3953i 0.264795 2.51936i
\(370\) 0 0
\(371\) 14.4030 + 5.75668i 0.747768 + 0.298872i
\(372\) 0.227651 1.43733i 0.0118032 0.0745222i
\(373\) −29.4741 + 1.54467i −1.52611 + 0.0799802i −0.796818 0.604219i \(-0.793485\pi\)
−0.729295 + 0.684199i \(0.760152\pi\)
\(374\) −1.04446 + 1.80906i −0.0540080 + 0.0935445i
\(375\) 0 0
\(376\) −29.7932 + 17.2011i −1.53647 + 0.887079i
\(377\) −2.40520 + 4.72046i −0.123874 + 0.243116i
\(378\) −3.03333 + 25.4918i −0.156018 + 1.31116i
\(379\) 0.558890 + 0.769246i 0.0287082 + 0.0395135i 0.823130 0.567853i \(-0.192226\pi\)
−0.794422 + 0.607367i \(0.792226\pi\)
\(380\) 0 0
\(381\) −11.7668 26.4287i −0.602831 1.35398i
\(382\) 0.150868 + 0.563048i 0.00771909 + 0.0288080i
\(383\) 6.38001 + 7.87866i 0.326003 + 0.402581i 0.913627 0.406554i \(-0.133270\pi\)
−0.587623 + 0.809135i \(0.699936\pi\)
\(384\) 8.49991 26.1600i 0.433759 1.33497i
\(385\) 0 0
\(386\) 3.65383 + 11.2453i 0.185975 + 0.572373i
\(387\) −15.9383 + 24.5428i −0.810190 + 1.24758i
\(388\) 4.81608 + 0.252400i 0.244500 + 0.0128137i
\(389\) −2.79772 + 13.1622i −0.141850 + 0.667352i 0.848549 + 0.529116i \(0.177476\pi\)
−0.990399 + 0.138235i \(0.955857\pi\)
\(390\) 0 0
\(391\) 2.54742 + 0.827706i 0.128828 + 0.0418589i
\(392\) 12.9697 + 13.7016i 0.655070 + 0.692033i
\(393\) 12.4635 + 12.4635i 0.628702 + 0.628702i
\(394\) 19.5246 + 2.05212i 0.983634 + 0.103384i
\(395\) 0 0
\(396\) −4.86281 46.2665i −0.244365 2.32498i
\(397\) 9.66717 + 25.1838i 0.485181 + 1.26394i 0.929749 + 0.368195i \(0.120024\pi\)
−0.444567 + 0.895745i \(0.646643\pi\)
\(398\) 0.698361 + 0.355833i 0.0350057 + 0.0178363i
\(399\) 8.17811 + 4.30925i 0.409418 + 0.215732i
\(400\) 0 0
\(401\) −7.65133 13.2525i −0.382089 0.661798i 0.609271 0.792962i \(-0.291462\pi\)
−0.991361 + 0.131164i \(0.958129\pi\)
\(402\) 1.93193 + 2.97490i 0.0963557 + 0.148375i
\(403\) 0.197520 0.243917i 0.00983916 0.0121504i
\(404\) −12.2523 5.45509i −0.609577 0.271401i
\(405\) 0 0
\(406\) 10.2110 + 6.83199i 0.506761 + 0.339066i
\(407\) −22.6386 + 22.6386i −1.12215 + 1.12215i
\(408\) 3.40713 2.75904i 0.168678 0.136593i
\(409\) 8.68351 + 9.64401i 0.429372 + 0.476866i 0.918542 0.395322i \(-0.129367\pi\)
−0.489171 + 0.872188i \(0.662700\pi\)
\(410\) 0 0
\(411\) 10.0820 + 9.07786i 0.497308 + 0.447778i
\(412\) 8.96225 4.56649i 0.441538 0.224975i
\(413\) 11.9095 19.9896i 0.586030 0.983625i
\(414\) 27.0417 8.78639i 1.32903 0.431827i
\(415\) 0 0
\(416\) 3.96956 3.57421i 0.194624 0.175240i
\(417\) 7.24740 18.8801i 0.354907 0.924564i
\(418\) 4.33396 + 1.16128i 0.211981 + 0.0568001i
\(419\) 14.8800 + 10.8109i 0.726935 + 0.528149i 0.888592 0.458698i \(-0.151684\pi\)
−0.161658 + 0.986847i \(0.551684\pi\)
\(420\) 0 0
\(421\) 19.9632 14.5041i 0.972947 0.706887i 0.0168253 0.999858i \(-0.494644\pi\)
0.956121 + 0.292971i \(0.0946441\pi\)
\(422\) −21.4357 + 8.22839i −1.04347 + 0.400552i
\(423\) 73.3087 47.6072i 3.56439 2.31474i
\(424\) −13.6839 7.90043i −0.664551 0.383679i
\(425\) 0 0
\(426\) 19.2105i 0.930754i
\(427\) 1.60631 3.47864i 0.0777350 0.168343i
\(428\) 2.08663 + 0.330490i 0.100861 + 0.0159748i
\(429\) 5.86880 13.1815i 0.283348 0.636411i
\(430\) 0 0
\(431\) −27.9846 + 12.4596i −1.34797 + 0.600156i −0.948555 0.316614i \(-0.897454\pi\)
−0.399417 + 0.916769i \(0.630787\pi\)
\(432\) −1.69795 + 6.33685i −0.0816928 + 0.304882i
\(433\) 25.6195 4.05772i 1.23119 0.195002i 0.493263 0.869880i \(-0.335804\pi\)
0.737929 + 0.674878i \(0.235804\pi\)
\(434\) −0.507554 0.521672i −0.0243634 0.0250411i
\(435\) 0 0
\(436\) 5.41491 6.01387i 0.259327 0.288012i
\(437\) 0.301100 5.74534i 0.0144036 0.274837i
\(438\) −0.159148 + 3.03673i −0.00760440 + 0.145101i
\(439\) 8.91058 9.89620i 0.425279 0.472320i −0.491983 0.870605i \(-0.663728\pi\)
0.917262 + 0.398285i \(0.130394\pi\)
\(440\) 0 0
\(441\) −34.7309 33.0411i −1.65385 1.57339i
\(442\) 0.377088 0.0597248i 0.0179362 0.00284082i
\(443\) 3.88763 14.5088i 0.184707 0.689335i −0.809986 0.586449i \(-0.800526\pi\)
0.994693 0.102886i \(-0.0328077\pi\)
\(444\) 24.7852 11.0351i 1.17625 0.523702i
\(445\) 0 0
\(446\) 7.30940 16.4172i 0.346110 0.777376i
\(447\) −6.89157 1.09152i −0.325960 0.0516270i
\(448\) −5.48517 7.77166i −0.259150 0.367176i
\(449\) 3.87012i 0.182642i −0.995822 0.0913211i \(-0.970891\pi\)
0.995822 0.0913211i \(-0.0291090\pi\)
\(450\) 0 0
\(451\) 30.8658 + 17.8204i 1.45341 + 0.839129i
\(452\) 2.86805 1.86253i 0.134902 0.0876062i
\(453\) 36.2869 13.9292i 1.70491 0.654452i
\(454\) −3.62680 + 2.63503i −0.170214 + 0.123668i
\(455\) 0 0
\(456\) −7.61836 5.53507i −0.356763 0.259203i
\(457\) 40.9235 + 10.9654i 1.91432 + 0.512941i 0.991949 + 0.126636i \(0.0404181\pi\)
0.922371 + 0.386304i \(0.126249\pi\)
\(458\) −4.58991 + 11.9571i −0.214472 + 0.558720i
\(459\) −4.65174 + 4.18845i −0.217125 + 0.195500i
\(460\) 0 0
\(461\) −21.8890 + 7.11217i −1.01947 + 0.331247i −0.770620 0.637295i \(-0.780053\pi\)
−0.248852 + 0.968541i \(0.580053\pi\)
\(462\) −28.7455 17.1262i −1.33736 0.796782i
\(463\) 16.0881 8.19728i 0.747676 0.380960i −0.0382600 0.999268i \(-0.512182\pi\)
0.785936 + 0.618308i \(0.212182\pi\)
\(464\) 2.33320 + 2.10082i 0.108316 + 0.0975281i
\(465\) 0 0
\(466\) 6.60317 + 7.33356i 0.305886 + 0.339721i
\(467\) 21.3103 17.2567i 0.986121 0.798545i 0.00661861 0.999978i \(-0.497893\pi\)
0.979502 + 0.201433i \(0.0645599\pi\)
\(468\) −6.01224 + 6.01224i −0.277916 + 0.277916i
\(469\) −3.71387 0.245755i −0.171491 0.0113479i
\(470\) 0 0
\(471\) −48.2403 21.4780i −2.22280 0.989653i
\(472\) −14.9171 + 18.4211i −0.686616 + 0.847900i
\(473\) −11.6735 17.9756i −0.536747 0.826518i
\(474\) 6.13019 + 10.6178i 0.281569 + 0.487691i
\(475\) 0 0
\(476\) 0.0717609 + 1.85606i 0.00328916 + 0.0850721i
\(477\) 35.7717 + 18.2266i 1.63787 + 0.834538i
\(478\) 4.34610 + 11.3220i 0.198786 + 0.517856i
\(479\) 3.81683 + 36.3147i 0.174396 + 1.65926i 0.635637 + 0.771988i \(0.280737\pi\)
−0.461242 + 0.887275i \(0.652596\pi\)
\(480\) 0 0
\(481\) 5.81940 + 0.611643i 0.265342 + 0.0278885i
\(482\) 13.1870 + 13.1870i 0.600650 + 0.600650i
\(483\) −13.8167 + 40.6190i −0.628680 + 1.84823i
\(484\) 18.2360 + 5.92525i 0.828911 + 0.269330i
\(485\) 0 0
\(486\) −3.04486 + 14.3249i −0.138118 + 0.649792i
\(487\) −36.0175 1.88760i −1.63211 0.0855352i −0.785888 0.618368i \(-0.787794\pi\)
−0.846220 + 0.532833i \(0.821127\pi\)
\(488\) −2.12586 + 3.27353i −0.0962330 + 0.148186i
\(489\) 17.6479 + 54.3145i 0.798064 + 2.45619i
\(490\) 0 0
\(491\) 2.89375 8.90606i 0.130593 0.401925i −0.864285 0.503002i \(-0.832229\pi\)
0.994879 + 0.101077i \(0.0322289\pi\)
\(492\) −19.0071 23.4718i −0.856907 1.05819i
\(493\) 0.775330 + 2.89357i 0.0349191 + 0.130320i
\(494\) −0.333544 0.749152i −0.0150069 0.0337060i
\(495\) 0 0
\(496\) −0.109328 0.150477i −0.00490897 0.00675662i
\(497\) −16.1436 12.0708i −0.724140 0.541447i
\(498\) 3.97364 7.79871i 0.178063 0.349468i
\(499\) 27.8046 16.0530i 1.24470 0.718630i 0.274656 0.961543i \(-0.411436\pi\)
0.970048 + 0.242912i \(0.0781027\pi\)
\(500\) 0 0
\(501\) −0.530765 + 0.919313i −0.0237128 + 0.0410719i
\(502\) −17.7826 + 0.931948i −0.793678 + 0.0415949i
\(503\) 5.06296 31.9663i 0.225746 1.42531i −0.570979 0.820965i \(-0.693436\pi\)
0.796725 0.604342i \(-0.206564\pi\)
\(504\) 30.2083 + 38.3685i 1.34559 + 1.70907i
\(505\) 0 0
\(506\) −2.17681 + 20.7110i −0.0967710 + 0.920715i
\(507\) 36.8589 9.87630i 1.63696 0.438622i
\(508\) −11.6566 4.47454i −0.517177 0.198525i
\(509\) −25.8085 + 5.48576i −1.14394 + 0.243152i −0.740631 0.671912i \(-0.765473\pi\)
−0.403309 + 0.915064i \(0.632140\pi\)
\(510\) 0 0
\(511\) −2.45192 2.04184i −0.108467 0.0903257i
\(512\) −2.76657 5.42969i −0.122266 0.239961i
\(513\) 11.2759 + 7.32265i 0.497843 + 0.323303i
\(514\) 0.185341 + 0.0393954i 0.00817502 + 0.00173765i
\(515\) 0 0
\(516\) 3.77631 + 17.7662i 0.166243 + 0.782111i
\(517\) 10.0151 + 63.2328i 0.440463 + 2.78097i
\(518\) 3.00302 13.2330i 0.131945 0.581423i
\(519\) −32.8344 + 45.1926i −1.44127 + 1.98374i
\(520\) 0 0
\(521\) 8.94847 0.940522i 0.392039 0.0412050i 0.0935417 0.995615i \(-0.470181\pi\)
0.298498 + 0.954410i \(0.403514\pi\)
\(522\) 24.7131 + 20.0123i 1.08166 + 0.875913i
\(523\) 0.356503 + 6.80248i 0.0155888 + 0.297452i 0.995287 + 0.0969736i \(0.0309162\pi\)
−0.979698 + 0.200478i \(0.935750\pi\)
\(524\) 7.60728 0.332326
\(525\) 0 0
\(526\) −18.4017 −0.802353
\(527\) −0.00928807 0.177227i −0.000404595 0.00772013i
\(528\) −6.64527 5.38123i −0.289198 0.234188i
\(529\) 3.68248 0.387044i 0.160108 0.0168280i
\(530\) 0 0
\(531\) 35.4005 48.7246i 1.53625 2.11447i
\(532\) 3.81092 1.18071i 0.165224 0.0511901i
\(533\) −1.01901 6.43377i −0.0441382 0.278678i
\(534\) −1.64739 7.75036i −0.0712895 0.335391i
\(535\) 0 0
\(536\) 3.70873 + 0.788315i 0.160193 + 0.0340500i
\(537\) 25.9498 + 16.8520i 1.11982 + 0.727217i
\(538\) 3.89397 + 7.64234i 0.167881 + 0.329485i
\(539\) 32.4540 13.3953i 1.39789 0.576977i
\(540\) 0 0
\(541\) −3.42812 + 0.728670i −0.147387 + 0.0313280i −0.281014 0.959704i \(-0.590671\pi\)
0.133628 + 0.991032i \(0.457337\pi\)
\(542\) 13.8536 + 5.31791i 0.595065 + 0.228424i
\(543\) −65.0606 + 17.4329i −2.79202 + 0.748118i
\(544\) 0.315711 3.00379i 0.0135360 0.128787i
\(545\) 0 0
\(546\) 0.873742 + 6.05277i 0.0373927 + 0.259035i
\(547\) 4.73400 29.8893i 0.202411 1.27798i −0.651936 0.758274i \(-0.726043\pi\)
0.854348 0.519702i \(-0.173957\pi\)
\(548\) 5.84724 0.306441i 0.249782 0.0130905i
\(549\) 4.95876 8.58882i 0.211635 0.366562i
\(550\) 0 0
\(551\) 5.57235 3.21720i 0.237390 0.137057i
\(552\) 19.8425 38.9431i 0.844552 1.65753i
\(553\) −12.7745 1.52007i −0.543228 0.0646402i
\(554\) −4.92987 6.78539i −0.209450 0.288283i
\(555\) 0 0
\(556\) −3.55010 7.97365i −0.150558 0.338158i
\(557\) −3.91007 14.5926i −0.165675 0.618307i −0.997953 0.0639490i \(-0.979630\pi\)
0.832278 0.554358i \(-0.187036\pi\)
\(558\) −1.18558 1.46407i −0.0501897 0.0619791i
\(559\) −1.21052 + 3.72561i −0.0511997 + 0.157576i
\(560\) 0 0
\(561\) −2.52119 7.75941i −0.106445 0.327603i
\(562\) 12.9530 19.9459i 0.546390 0.841367i
\(563\) −35.0459 1.83668i −1.47701 0.0774067i −0.703275 0.710918i \(-0.748280\pi\)
−0.773734 + 0.633511i \(0.781613\pi\)
\(564\) 11.2797 53.0669i 0.474962 2.23452i
\(565\) 0 0
\(566\) 21.2950 + 6.91915i 0.895094 + 0.290834i
\(567\) −30.2492 34.5362i −1.27035 1.45038i
\(568\) 14.5199 + 14.5199i 0.609242 + 0.609242i
\(569\) 2.55943 + 0.269006i 0.107297 + 0.0112773i 0.158025 0.987435i \(-0.449487\pi\)
−0.0507279 + 0.998713i \(0.516154\pi\)
\(570\) 0 0
\(571\) 2.11736 + 20.1454i 0.0886089 + 0.843058i 0.945075 + 0.326854i \(0.105989\pi\)
−0.856466 + 0.516204i \(0.827345\pi\)
\(572\) −2.23172 5.81382i −0.0933127 0.243088i
\(573\) −2.02853 1.03359i −0.0847430 0.0431787i
\(574\) −15.0945 + 0.583602i −0.630033 + 0.0243591i
\(575\) 0 0
\(576\) −12.3107 21.3228i −0.512946 0.888449i
\(577\) −21.8264 33.6097i −0.908645 1.39919i −0.916853 0.399225i \(-0.869279\pi\)
0.00820794 0.999966i \(-0.497387\pi\)
\(578\) −8.46019 + 10.4475i −0.351897 + 0.434557i
\(579\) −42.1886 18.7836i −1.75330 0.780619i
\(580\) 0 0
\(581\) 4.05686 + 8.23950i 0.168307 + 0.341832i
\(582\) 6.34861 6.34861i 0.263158 0.263158i
\(583\) −22.8517 + 18.5050i −0.946422 + 0.766397i
\(584\) 2.17496 + 2.41554i 0.0900006 + 0.0999558i
\(585\) 0 0
\(586\) 4.09615 + 3.68819i 0.169211 + 0.152358i
\(587\) −17.2988 + 8.81418i −0.713998 + 0.363800i −0.772955 0.634460i \(-0.781222\pi\)
0.0589574 + 0.998261i \(0.481222\pi\)
\(588\) −29.7434 + 0.741595i −1.22660 + 0.0305829i
\(589\) −0.362534 + 0.117795i −0.0149380 + 0.00485364i
\(590\) 0 0
\(591\) −56.9823 + 51.3071i −2.34394 + 2.11049i
\(592\) 1.24270 3.23735i 0.0510747 0.133054i
\(593\) 17.2078 + 4.61082i 0.706640 + 0.189344i 0.594203 0.804315i \(-0.297468\pi\)
0.112437 + 0.993659i \(0.464134\pi\)
\(594\) −39.3724 28.6057i −1.61547 1.17371i
\(595\) 0 0
\(596\) −2.43630 + 1.77007i −0.0997945 + 0.0725050i
\(597\) −2.85792 + 1.09705i −0.116967 + 0.0448994i
\(598\) 3.19210 2.07297i 0.130535 0.0847702i
\(599\) −12.9831 7.49578i −0.530474 0.306269i 0.210735 0.977543i \(-0.432414\pi\)
−0.741209 + 0.671274i \(0.765747\pi\)
\(600\) 0 0
\(601\) 20.7383i 0.845932i 0.906145 + 0.422966i \(0.139011\pi\)
−0.906145 + 0.422966i \(0.860989\pi\)
\(602\) 8.24741 + 3.80837i 0.336139 + 0.155217i
\(603\) −9.51522 1.50706i −0.387490 0.0613723i
\(604\) 6.82315 15.3250i 0.277630 0.623567i
\(605\) 0 0
\(606\) −22.8099 + 10.1556i −0.926588 + 0.412544i
\(607\) −5.62452 + 20.9910i −0.228292 + 0.851999i 0.752766 + 0.658288i \(0.228719\pi\)
−0.981059 + 0.193711i \(0.937948\pi\)
\(608\) −6.40757 + 1.01486i −0.259861 + 0.0411580i
\(609\) −46.5154 + 11.7824i −1.88490 + 0.477448i
\(610\) 0 0
\(611\) 7.82946 8.69550i 0.316746 0.351782i
\(612\) −0.251616 + 4.80112i −0.0101710 + 0.194074i
\(613\) −0.370639 + 7.07221i −0.0149700 + 0.285644i 0.980879 + 0.194620i \(0.0623473\pi\)
−0.995849 + 0.0910239i \(0.970986\pi\)
\(614\) −3.11999 + 3.46510i −0.125913 + 0.139840i
\(615\) 0 0
\(616\) −34.6713 + 8.78228i −1.39694 + 0.353848i
\(617\) −12.2737 + 1.94396i −0.494119 + 0.0782608i −0.398521 0.917159i \(-0.630476\pi\)
−0.0955982 + 0.995420i \(0.530476\pi\)
\(618\) 4.84659 18.0877i 0.194959 0.727595i
\(619\) −25.0310 + 11.1445i −1.00608 + 0.447937i −0.842560 0.538603i \(-0.818952\pi\)
−0.163522 + 0.986540i \(0.552286\pi\)
\(620\) 0 0
\(621\) −25.3815 + 57.0079i −1.01853 + 2.28765i
\(622\) −19.6519 3.11255i −0.787969 0.124802i
\(623\) 7.54815 + 3.48548i 0.302410 + 0.139643i
\(624\) 1.56282i 0.0625628i
\(625\) 0 0
\(626\) −4.97403 2.87176i −0.198802 0.114778i
\(627\) −14.6971 + 9.54440i −0.586945 + 0.381167i
\(628\) −21.2768 + 8.16739i −0.849036 + 0.325914i
\(629\) 2.67675 1.94477i 0.106729 0.0775432i
\(630\) 0 0
\(631\) 29.5709 + 21.4845i 1.17720 + 0.855286i 0.991853 0.127387i \(-0.0406590\pi\)
0.185347 + 0.982673i \(0.440659\pi\)
\(632\) 12.6586 + 3.39187i 0.503534 + 0.134921i
\(633\) 32.1376 83.7214i 1.27736 3.32762i
\(634\) 4.10650 3.69751i 0.163090 0.146847i
\(635\) 0 0
\(636\) 23.6985 7.70010i 0.939705 0.305329i
\(637\) −5.63547 3.06895i −0.223285 0.121596i
\(638\) −20.7522 + 10.5738i −0.821587 + 0.418619i
\(639\) −38.7731 34.9114i −1.53384 1.38107i
\(640\) 0 0
\(641\) 29.7244 + 33.0123i 1.17404 + 1.30391i 0.943703 + 0.330795i \(0.107317\pi\)
0.230339 + 0.973110i \(0.426016\pi\)
\(642\) 3.05655 2.47515i 0.120633 0.0976863i
\(643\) 9.86123 9.86123i 0.388889 0.388889i −0.485402 0.874291i \(-0.661327\pi\)
0.874291 + 0.485402i \(0.161327\pi\)
\(644\) 8.17960 + 16.6128i 0.322321 + 0.654636i
\(645\) 0 0
\(646\) −0.423601 0.188599i −0.0166663 0.00742033i
\(647\) −30.5289 + 37.7000i −1.20021 + 1.48214i −0.366074 + 0.930586i \(0.619298\pi\)
−0.834139 + 0.551554i \(0.814035\pi\)
\(648\) 25.4721 + 39.2236i 1.00064 + 1.54085i
\(649\) 22.0556 + 38.2014i 0.865759 + 1.49954i
\(650\) 0 0
\(651\) 2.84061 0.109827i 0.111332 0.00430445i
\(652\) 21.9616 + 11.1900i 0.860084 + 0.438235i
\(653\) 16.2632 + 42.3671i 0.636428 + 1.65795i 0.747599 + 0.664151i \(0.231207\pi\)
−0.111171 + 0.993801i \(0.535460\pi\)
\(654\) −1.57478 14.9830i −0.0615786 0.585882i
\(655\) 0 0
\(656\) −3.83914 0.403510i −0.149893 0.0157544i
\(657\) −5.83988 5.83988i −0.227835 0.227835i
\(658\) −17.8781 20.4119i −0.696962 0.795737i
\(659\) −22.0985 7.18025i −0.860837 0.279703i −0.154859 0.987937i \(-0.549492\pi\)
−0.705978 + 0.708234i \(0.749492\pi\)
\(660\) 0 0
\(661\) −2.48937 + 11.7116i −0.0968254 + 0.455528i 0.902848 + 0.429960i \(0.141472\pi\)
−0.999673 + 0.0255671i \(0.991861\pi\)
\(662\) 14.7734 + 0.774242i 0.574186 + 0.0300918i
\(663\) −0.812139 + 1.25058i −0.0315408 + 0.0485686i
\(664\) −2.89110 8.89790i −0.112197 0.345306i
\(665\) 0 0
\(666\) 10.8534 33.4034i 0.420562 1.29436i
\(667\) 18.7942 + 23.2090i 0.727716 + 0.898654i
\(668\) 0.118578 + 0.442538i 0.00458790 + 0.0171223i
\(669\) 28.5483 + 64.1206i 1.10374 + 2.47905i
\(670\) 0 0
\(671\) 4.26953 + 5.87650i 0.164823 + 0.226860i
\(672\) 48.0411 + 5.71654i 1.85323 + 0.220520i
\(673\) −10.4791 + 20.5664i −0.403939 + 0.792775i −0.999948 0.0102030i \(-0.996752\pi\)
0.596009 + 0.802978i \(0.296752\pi\)
\(674\) 8.77620 5.06694i 0.338046 0.195171i
\(675\) 0 0
\(676\) 8.23459 14.2627i 0.316715 0.548566i
\(677\) −11.5308 + 0.604301i −0.443163 + 0.0232252i −0.272613 0.962124i \(-0.587888\pi\)
−0.170550 + 0.985349i \(0.554554\pi\)
\(678\) 0.995936 6.28809i 0.0382487 0.241493i
\(679\) 1.34598 + 9.32416i 0.0516539 + 0.357828i
\(680\) 0 0
\(681\) 1.83021 17.4132i 0.0701336 0.667277i
\(682\) 1.33279 0.357120i 0.0510352 0.0136748i
\(683\) −13.5163 5.18841i −0.517186 0.198529i 0.0857529 0.996316i \(-0.472670\pi\)
−0.602939 + 0.797787i \(0.706004\pi\)
\(684\) 10.1009 2.14701i 0.386217 0.0820931i
\(685\) 0 0
\(686\) −8.61116 + 12.1361i −0.328776 + 0.463358i
\(687\) −22.7102 44.5713i −0.866448 1.70050i
\(688\) 1.94695 + 1.26437i 0.0742270 + 0.0482036i
\(689\) 5.25678 + 1.11736i 0.200267 + 0.0425681i
\(690\) 0 0
\(691\) −9.11485 42.8820i −0.346745 1.63131i −0.713263 0.700896i \(-0.752784\pi\)
0.366518 0.930411i \(-0.380550\pi\)
\(692\) 3.77152 + 23.8124i 0.143372 + 0.905213i
\(693\) 86.8056 26.8943i 3.29747 1.02163i
\(694\) −4.86115 + 6.69080i −0.184527 + 0.253979i
\(695\) 0 0
\(696\) 48.6139 5.10952i 1.84270 0.193676i
\(697\) −2.86243 2.31795i −0.108422 0.0877986i
\(698\) 0.474216 + 9.04857i 0.0179493 + 0.342494i
\(699\) −38.5425 −1.45781
\(700\) 0 0
\(701\) −30.4358 −1.14955 −0.574773 0.818313i \(-0.694910\pi\)
−0.574773 + 0.818313i \(0.694910\pi\)
\(702\) 0.465515 + 8.88255i 0.0175697 + 0.335250i
\(703\) −5.52294 4.47239i −0.208302 0.168679i
\(704\) 17.9343 1.88498i 0.675926 0.0710427i
\(705\) 0 0
\(706\) 7.85780 10.8153i 0.295732 0.407041i
\(707\) 5.79808 25.5495i 0.218059 0.960888i
\(708\) −5.84762 36.9204i −0.219767 1.38755i
\(709\) 0.889983 + 4.18704i 0.0334240 + 0.157248i 0.991695 0.128615i \(-0.0410532\pi\)
−0.958271 + 0.285863i \(0.907720\pi\)
\(710\) 0 0
\(711\) −32.5706 6.92309i −1.22149 0.259636i
\(712\) −7.10310 4.61281i −0.266200 0.172872i
\(713\) −0.803220 1.57641i −0.0300808 0.0590370i
\(714\) 2.65724 + 2.21281i 0.0994445 + 0.0828125i
\(715\) 0 0
\(716\) 13.0623 2.77648i 0.488162 0.103762i
\(717\) −44.2203 16.9746i −1.65144 0.633927i
\(718\) 13.4743 3.61042i 0.502856 0.134740i
\(719\) −1.92780 + 18.3418i −0.0718947 + 0.684033i 0.897915 + 0.440169i \(0.145082\pi\)
−0.969810 + 0.243864i \(0.921585\pi\)
\(720\) 0 0
\(721\) 12.1547 + 15.4381i 0.452667 + 0.574945i
\(722\) 2.23236 14.0946i 0.0830798 0.524545i
\(723\) −72.7383 + 3.81205i −2.70517 + 0.141772i
\(724\) −14.5351 + 25.1755i −0.540193 + 0.935641i
\(725\) 0 0
\(726\) 30.9143 17.8484i 1.14734 0.662415i
\(727\) 15.6762 30.7663i 0.581398 1.14106i −0.393690 0.919243i \(-0.628802\pi\)
0.975089 0.221816i \(-0.0711983\pi\)
\(728\) 5.23527 + 3.91447i 0.194032 + 0.145080i
\(729\) −3.02204 4.15948i −0.111927 0.154055i
\(730\) 0 0
\(731\) 0.900929 + 2.02352i 0.0333221 + 0.0748426i
\(732\) −1.59314 5.94569i −0.0588843 0.219759i
\(733\) −17.6104 21.7471i −0.650456 0.803247i 0.340095 0.940391i \(-0.389541\pi\)
−0.990551 + 0.137144i \(0.956208\pi\)
\(734\) 1.85303 5.70305i 0.0683967 0.210504i
\(735\) 0 0
\(736\) −9.30467 28.6368i −0.342975 1.05557i
\(737\) 3.84296 5.91764i 0.141557 0.217979i
\(738\) −39.0455 2.04629i −1.43728 0.0753249i
\(739\) −1.73453 + 8.16031i −0.0638056 + 0.300182i −0.998467 0.0553586i \(-0.982370\pi\)
0.934661 + 0.355540i \(0.115703\pi\)
\(740\) 0 0
\(741\) 3.04611 + 0.989740i 0.111902 + 0.0363590i
\(742\) 4.01340 11.7988i 0.147337 0.433149i
\(743\) 31.5650 + 31.5650i 1.15801 + 1.15801i 0.984903 + 0.173106i \(0.0553802\pi\)
0.173106 + 0.984903i \(0.444620\pi\)
\(744\) −2.88002 0.302702i −0.105587 0.0110976i
\(745\) 0 0
\(746\) 2.47884 + 23.5846i 0.0907569 + 0.863495i
\(747\) 8.51899 + 22.1927i 0.311694 + 0.811989i
\(748\) −3.13745 1.59861i −0.114717 0.0584510i
\(749\) 0.159440 + 4.12382i 0.00582580 + 0.150681i
\(750\) 0 0
\(751\) 22.8072 + 39.5032i 0.832247 + 1.44149i 0.896252 + 0.443544i \(0.146279\pi\)
−0.0640055 + 0.997950i \(0.520388\pi\)
\(752\) −3.77662 5.81549i −0.137719 0.212069i
\(753\) 43.7686 54.0497i 1.59502 1.96968i
\(754\) 3.88877 + 1.73139i 0.141621 + 0.0630535i
\(755\) 0 0
\(756\) −43.1795 2.85728i −1.57042 0.103918i
\(757\) −11.9819 + 11.9819i −0.435488 + 0.435488i −0.890490 0.455002i \(-0.849638\pi\)
0.455002 + 0.890490i \(0.349638\pi\)
\(758\) 0.593728 0.480792i 0.0215652 0.0174631i
\(759\) −54.4247 60.4447i −1.97549 2.19401i
\(760\) 0 0
\(761\) −17.1557 15.4470i −0.621892 0.559954i 0.296794 0.954941i \(-0.404082\pi\)
−0.918687 + 0.394987i \(0.870749\pi\)
\(762\) −20.7111 + 10.5528i −0.750285 + 0.382289i
\(763\) 13.5805 + 8.09106i 0.491647 + 0.292916i
\(764\) −0.934503 + 0.303638i −0.0338091 + 0.0109852i
\(765\) 0 0
\(766\) 6.05342 5.45053i 0.218719 0.196936i
\(767\) 2.88920 7.52662i 0.104323 0.271770i
\(768\) −43.1446 11.5606i −1.55685 0.417155i
\(769\) 33.2899 + 24.1865i 1.20046 + 0.872188i 0.994330 0.106336i \(-0.0339120\pi\)
0.206133 + 0.978524i \(0.433912\pi\)
\(770\) 0 0
\(771\) −0.598719 + 0.434994i −0.0215623 + 0.0156659i
\(772\) −18.6076 + 7.14280i −0.669703 + 0.257075i
\(773\) 15.1818 9.85916i 0.546050 0.354609i −0.241945 0.970290i \(-0.577785\pi\)
0.787996 + 0.615681i \(0.211119\pi\)
\(774\) 20.3630 + 11.7566i 0.731933 + 0.422582i
\(775\) 0 0
\(776\) 9.59695i 0.344510i
\(777\) 30.5605 + 43.2996i 1.09635 + 1.55337i
\(778\) 10.6788 + 1.69136i 0.382854 + 0.0606381i
\(779\) −3.21783 + 7.22737i −0.115291 + 0.258947i
\(780\) 0 0
\(781\) 34.9096 15.5428i 1.24916 0.556164i
\(782\) 0.557016 2.07881i 0.0199189 0.0743382i
\(783\) −68.9320 + 10.9178i −2.46343 + 0.390169i
\(784\) −2.62111 + 2.75516i −0.0936111 + 0.0983985i
\(785\) 0 0
\(786\) 9.47643 10.5246i 0.338013 0.375401i
\(787\) 0.803521 15.3321i 0.0286424 0.546530i −0.946193 0.323603i \(-0.895106\pi\)
0.974835 0.222927i \(-0.0715610\pi\)
\(788\) −1.73197 + 33.0480i −0.0616989 + 1.17728i
\(789\) 48.0915 53.4110i 1.71210 1.90148i
\(790\) 0 0
\(791\) 4.65843 + 4.78800i 0.165635 + 0.170242i
\(792\) −91.4358 + 14.4820i −3.24903 + 0.514596i
\(793\) 0.343602 1.28234i 0.0122017 0.0455373i
\(794\) 19.8006 8.81579i 0.702697 0.312861i
\(795\) 0 0
\(796\) −0.537385 + 1.20699i −0.0190471 + 0.0427805i
\(797\) 15.1507 + 2.39964i 0.536667 + 0.0849997i 0.418884 0.908040i \(-0.362421\pi\)
0.117783 + 0.993039i \(0.462421\pi\)
\(798\) 3.11377 6.74319i 0.110226 0.238706i
\(799\) 6.61618i 0.234064i
\(800\) 0 0
\(801\) 18.6365 + 10.7598i 0.658489 + 0.380179i
\(802\) −10.3118 + 6.69659i −0.364124 + 0.236465i
\(803\) 5.64714 2.16773i 0.199283 0.0764977i
\(804\) −4.83740 + 3.51458i −0.170602 + 0.123950i
\(805\) 0 0
\(806\) −0.204021 0.148230i −0.00718632 0.00522117i
\(807\) −32.3585 8.67043i −1.13907 0.305214i
\(808\) −9.56448 + 24.9163i −0.336477 + 0.876553i
\(809\) 15.3954 13.8621i 0.541275 0.487366i −0.352544 0.935795i \(-0.614683\pi\)
0.893818 + 0.448430i \(0.148016\pi\)
\(810\) 0 0
\(811\) −27.8184 + 9.03875i −0.976837 + 0.317394i −0.753573 0.657364i \(-0.771671\pi\)
−0.223264 + 0.974758i \(0.571671\pi\)
\(812\) −10.5999 + 17.7914i −0.371983 + 0.624357i
\(813\) −51.6407 + 26.3122i −1.81112 + 0.922811i
\(814\) 19.1168 + 17.2129i 0.670045 + 0.603311i
\(815\) 0 0
\(816\) 0.591298 + 0.656703i 0.0206996 + 0.0229892i
\(817\) 3.69741 2.99410i 0.129356 0.104750i
\(818\) 7.37305 7.37305i 0.257793 0.257793i
\(819\) −13.8043 9.23625i −0.482361 0.322741i
\(820\) 0 0
\(821\) 27.1109 + 12.0706i 0.946179 + 0.421266i 0.821038 0.570873i \(-0.193395\pi\)
0.125140 + 0.992139i \(0.460062\pi\)
\(822\) 6.85997 8.47136i 0.239269 0.295472i
\(823\) −8.10388 12.4789i −0.282484 0.434986i 0.668737 0.743499i \(-0.266835\pi\)
−0.951220 + 0.308513i \(0.900169\pi\)
\(824\) −10.0081 17.3345i −0.348647 0.603875i
\(825\) 0 0
\(826\) −16.5402 8.71543i −0.575506 0.303249i
\(827\) 32.9522 + 16.7900i 1.14586 + 0.583844i 0.920620 0.390459i \(-0.127684\pi\)
0.225239 + 0.974304i \(0.427684\pi\)
\(828\) 17.1763 + 44.7458i 0.596918 + 1.55502i
\(829\) −4.28022 40.7236i −0.148658 1.41439i −0.773579 0.633700i \(-0.781535\pi\)
0.624920 0.780689i \(-0.285131\pi\)
\(830\) 0 0
\(831\) 32.5784 + 3.42413i 1.13013 + 0.118782i
\(832\) −2.33053 2.33053i −0.0807967 0.0807967i
\(833\) −3.52919 + 0.842612i −0.122279 + 0.0291948i
\(834\) −15.4539 5.02127i −0.535124 0.173872i
\(835\) 0 0
\(836\) −1.57251 + 7.39807i −0.0543863 + 0.255867i
\(837\) 4.12896 + 0.216390i 0.142718 + 0.00747952i
\(838\) 8.04880 12.3941i 0.278041 0.428146i
\(839\) 6.83090 + 21.0234i 0.235829 + 0.725807i 0.997010 + 0.0772679i \(0.0246197\pi\)
−0.761181 + 0.648539i \(0.775380\pi\)
\(840\) 0 0
\(841\) −1.35975 + 4.18488i −0.0468879 + 0.144306i
\(842\) −12.4773 15.4082i −0.429998 0.531003i
\(843\) 24.0413 + 89.7232i 0.828025 + 3.09023i
\(844\) −15.7424 35.3581i −0.541877 1.21707i
\(845\) 0 0
\(846\) −41.2820 56.8198i −1.41930 1.95350i
\(847\) −4.42578 + 37.1937i −0.152072 + 1.27799i
\(848\) 1.44589 2.83772i 0.0496522 0.0974479i
\(849\) −75.7356 + 43.7260i −2.59924 + 1.50067i
\(850\) 0 0
\(851\) 16.4924 28.5656i 0.565351 0.979217i
\(852\) −32.3383 + 1.69478i −1.10789 + 0.0580621i
\(853\) 2.30932 14.5805i 0.0790697 0.499226i −0.916091 0.400969i \(-0.868673\pi\)
0.995161 0.0982567i \(-0.0313266\pi\)
\(854\) −2.85875 1.14260i −0.0978244 0.0390990i
\(855\) 0 0
\(856\) 0.439444 4.18103i 0.0150199 0.142905i
\(857\) −18.6322 + 4.99249i −0.636465 + 0.170540i −0.562602 0.826728i \(-0.690200\pi\)
−0.0738633 + 0.997268i \(0.523533\pi\)
\(858\) −10.8234 4.15473i −0.369506 0.141840i
\(859\) −29.3200 + 6.23216i −1.00039 + 0.212639i −0.678864 0.734264i \(-0.737528\pi\)
−0.321522 + 0.946902i \(0.604194\pi\)
\(860\) 0 0
\(861\) 37.7545 45.3371i 1.28667 1.54508i
\(862\) 11.1741 + 21.9305i 0.380592 + 0.746955i
\(863\) 21.6157 + 14.0374i 0.735807 + 0.477839i 0.857341 0.514749i \(-0.172115\pi\)
−0.121534 + 0.992587i \(0.538781\pi\)
\(864\) 68.8289 + 14.6300i 2.34161 + 0.497724i
\(865\) 0 0
\(866\) −4.33318 20.3860i −0.147247 0.692745i
\(867\) −8.21371 51.8593i −0.278952 1.76124i
\(868\) 0.833385 0.900420i 0.0282869 0.0305622i
\(869\) 14.3350 19.7304i 0.486282 0.669309i
\(870\) 0 0
\(871\) −1.28254 + 0.134800i −0.0434571 + 0.00456753i
\(872\) −12.5149 10.1343i −0.423807 0.343192i
\(873\) 1.27618 + 24.3509i 0.0431921 + 0.824154i
\(874\) −4.62263 −0.156363
\(875\) 0 0
\(876\) −5.12595 −0.173190
\(877\) −1.12967 21.5554i −0.0381463 0.727876i −0.949025 0.315201i \(-0.897928\pi\)
0.910879 0.412674i \(-0.135405\pi\)
\(878\) −8.31526 6.73356i −0.280626 0.227247i
\(879\) −21.4100 + 2.25028i −0.722141 + 0.0759000i
\(880\) 0 0
\(881\) −18.9856 + 26.1314i −0.639640 + 0.880388i −0.998596 0.0529657i \(-0.983133\pi\)
0.358957 + 0.933354i \(0.383133\pi\)
\(882\) −25.0512 + 29.2569i −0.843517 + 0.985131i
\(883\) 2.76060 + 17.4297i 0.0929015 + 0.586557i 0.989592 + 0.143899i \(0.0459642\pi\)
−0.896691 + 0.442657i \(0.854036\pi\)
\(884\) 0.133806 + 0.629506i 0.00450037 + 0.0211726i
\(885\) 0 0
\(886\) −11.8051 2.50926i −0.396601 0.0843001i
\(887\) −19.3404 12.5598i −0.649387 0.421717i 0.177472 0.984126i \(-0.443208\pi\)
−0.826859 + 0.562409i \(0.809875\pi\)
\(888\) −24.5105 48.1046i −0.822519 1.61429i
\(889\) 4.14553 24.0354i 0.139037 0.806122i
\(890\) 0 0
\(891\) 85.1326 18.0955i 2.85205 0.606222i
\(892\) 28.2809 + 10.8560i 0.946914 + 0.363486i
\(893\) −13.7268 + 3.67808i −0.459349 + 0.123082i
\(894\) −0.586018 + 5.57559i −0.0195994 + 0.186476i
\(895\) 0 0
\(896\) 18.2206 14.3455i 0.608708 0.479249i
\(897\) −2.32550 + 14.6826i −0.0776462 + 0.490239i
\(898\) −3.10532 + 0.162743i −0.103626 + 0.00543080i
\(899\) 0.989361 1.71362i 0.0329970 0.0571525i
\(900\) 0 0
\(901\) 2.63168 1.51940i 0.0876739 0.0506185i
\(902\) 13.0008 25.5156i 0.432881 0.849576i
\(903\) −32.6078 + 13.9852i −1.08512 + 0.465399i
\(904\) −3.99998 5.50549i −0.133037 0.183110i
\(905\) 0 0
\(906\) −12.7025 28.5303i −0.422012 0.947855i
\(907\) −10.6692 39.8182i −0.354266 1.32214i −0.881405 0.472361i \(-0.843402\pi\)
0.527139 0.849779i \(-0.323265\pi\)
\(908\) −4.75566 5.87275i −0.157822 0.194894i
\(909\) 20.9552 64.4936i 0.695041 2.13912i
\(910\) 0 0
\(911\) 0.709840 + 2.18466i 0.0235181 + 0.0723812i 0.962127 0.272603i \(-0.0878844\pi\)
−0.938609 + 0.344984i \(0.887884\pi\)
\(912\) 1.03376 1.59186i 0.0342314 0.0527117i
\(913\) −17.3869 0.911208i −0.575422 0.0301566i
\(914\) 7.07760 33.2975i 0.234106 1.10138i
\(915\) 0 0
\(916\) −20.5331 6.67160i −0.678432 0.220436i
\(917\) 2.88998 + 14.5766i 0.0954355 + 0.481361i
\(918\) 3.55635 + 3.55635i 0.117377 + 0.117377i
\(919\) 25.3891 + 2.66851i 0.837511 + 0.0880259i 0.513566 0.858050i \(-0.328324\pi\)
0.323945 + 0.946076i \(0.394991\pi\)
\(920\) 0 0
\(921\) −1.90360 18.1116i −0.0627258 0.596796i
\(922\) 6.62715 + 17.2643i 0.218254 + 0.568570i
\(923\) −6.22293 3.17074i −0.204830 0.104366i
\(924\) 26.2936 49.9000i 0.864995 1.64159i
\(925\) 0 0
\(926\) −7.25389 12.5641i −0.238378 0.412882i
\(927\) 27.6991 + 42.6529i 0.909759 + 1.40091i
\(928\) 21.1927 26.1708i 0.695685 0.859100i
\(929\) 41.0517 + 18.2774i 1.34686 + 0.599662i 0.948270 0.317466i \(-0.102832\pi\)
0.398593 + 0.917128i \(0.369499\pi\)
\(930\) 0 0
\(931\) 3.71015 + 6.85369i 0.121595 + 0.224621i
\(932\) −11.7625 + 11.7625i −0.385293 + 0.385293i
\(933\) 60.3929 48.9052i 1.97718 1.60108i
\(934\) −14.7426 16.3733i −0.482393 0.535752i
\(935\) 0 0
\(936\) 12.5739 + 11.3216i 0.410989 + 0.370057i
\(937\) 50.8942 25.9319i 1.66264 0.847158i 0.667955 0.744202i \(-0.267170\pi\)
0.994686 0.102956i \(-0.0328301\pi\)
\(938\) −0.0410173 + 2.99029i −0.00133926 + 0.0976363i
\(939\) 21.3345 6.93200i 0.696226 0.226217i
\(940\) 0 0
\(941\) 24.2474 21.8325i 0.790444 0.711719i −0.171435 0.985195i \(-0.554840\pi\)
0.961879 + 0.273477i \(0.0881736\pi\)
\(942\) −15.2050 + 39.6104i −0.495407 + 1.29058i
\(943\) −35.4682 9.50367i −1.15500 0.309482i
\(944\) −3.86527 2.80828i −0.125804 0.0914018i
\(945\) 0 0
\(946\) −13.9324 + 10.1225i −0.452983 + 0.329111i
\(947\) 34.2262 13.1382i 1.11220 0.426934i 0.268248 0.963350i \(-0.413555\pi\)
0.843954 + 0.536415i \(0.180222\pi\)
\(948\) −17.3328 + 11.2560i −0.562942 + 0.365579i
\(949\) −0.957429 0.552772i −0.0310795 0.0179437i
\(950\) 0 0
\(951\) 21.5823i 0.699854i
\(952\) 3.68093 0.335907i 0.119300 0.0108868i
\(953\) 46.1551 + 7.31025i 1.49511 + 0.236802i 0.849795 0.527113i \(-0.176726\pi\)
0.645316 + 0.763916i \(0.276726\pi\)
\(954\) 13.1205 29.4691i 0.424791 0.954096i
\(955\) 0 0
\(956\) −18.6756 + 8.31490i −0.604011 + 0.268923i
\(957\) 23.5439 87.8669i 0.761065 2.84034i
\(958\) 28.9779 4.58964i 0.936232 0.148285i
\(959\) 2.80853 + 11.0877i 0.0906920 + 0.358040i
\(960\) 0 0
\(961\) 20.6646 22.9504i 0.666600 0.740335i
\(962\) 0.246060 4.69511i 0.00793331 0.151377i
\(963\) −0.559045 + 10.6672i −0.0180150 + 0.343746i
\(964\) −21.0351 + 23.3618i −0.677493 + 0.752433i
\(965\) 0 0
\(966\) 33.1731 + 9.37819i 1.06733 + 0.301738i
\(967\) 7.10565 1.12542i 0.228502 0.0361912i −0.0411332 0.999154i \(-0.513097\pi\)
0.269635 + 0.962962i \(0.413097\pi\)
\(968\) 9.87561 36.8563i 0.317414 1.18461i
\(969\) 1.65446 0.736612i 0.0531488 0.0236634i
\(970\) 0 0
\(971\) 9.07173 20.3754i 0.291126 0.653879i −0.707476 0.706737i \(-0.750166\pi\)
0.998602 + 0.0528579i \(0.0168330\pi\)
\(972\) −24.3826 3.86183i −0.782074 0.123868i
\(973\) 13.9299 9.83163i 0.446573 0.315188i
\(974\) 28.9792i 0.928555i
\(975\) 0 0
\(976\) −0.681341 0.393372i −0.0218092 0.0125915i
\(977\) −48.1113 + 31.2438i −1.53922 + 0.999579i −0.553178 + 0.833063i \(0.686585\pi\)
−0.986039 + 0.166516i \(0.946748\pi\)
\(978\) 42.8390 16.4444i 1.36984 0.525832i
\(979\) −12.7512 + 9.26427i −0.407529 + 0.296087i
\(980\) 0 0
\(981\) 33.1024 + 24.0503i 1.05688 + 0.767867i
\(982\) −7.26776 1.94739i −0.231924 0.0621438i
\(983\) −6.67425 + 17.3870i −0.212875 + 0.554560i −0.997891 0.0649169i \(-0.979322\pi\)
0.785015 + 0.619477i \(0.212655\pi\)
\(984\) −44.6644 + 40.2160i −1.42385 + 1.28204i
\(985\) 0 0
\(986\) 2.28915 0.743790i 0.0729014 0.0236871i
\(987\) 105.969 + 1.45355i 3.37302 + 0.0462671i
\(988\) 1.23167 0.627566i 0.0391846 0.0199655i
\(989\) 16.4102 + 14.7758i 0.521813 + 0.469843i
\(990\) 0 0
\(991\) −28.2917 31.4211i −0.898714 0.998123i −0.999995 0.00326534i \(-0.998961\pi\)
0.101280 0.994858i \(-0.467706\pi\)
\(992\) −1.55043 + 1.25552i −0.0492263 + 0.0398626i
\(993\) −40.8565 + 40.8565i −1.29654 + 1.29654i
\(994\) −9.00652 + 13.4610i −0.285670 + 0.426956i
\(995\) 0 0
\(996\) 13.4786 + 6.00106i 0.427086 + 0.190151i
\(997\) −10.7426 + 13.2661i −0.340223 + 0.420140i −0.918327 0.395823i \(-0.870459\pi\)
0.578104 + 0.815963i \(0.303793\pi\)
\(998\) −14.0499 21.6349i −0.444741 0.684841i
\(999\) 38.5417 + 66.7562i 1.21941 + 2.11207i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.a.143.8 288
5.2 odd 4 875.2.bb.c.857.11 288
5.3 odd 4 175.2.x.a.17.8 yes 288
5.4 even 2 875.2.bb.b.143.11 288
7.5 odd 6 inner 875.2.bb.a.768.8 288
25.3 odd 20 875.2.bb.b.507.11 288
25.4 even 10 175.2.x.a.3.11 288
25.21 even 5 875.2.bb.c.493.8 288
25.22 odd 20 inner 875.2.bb.a.507.8 288
35.12 even 12 875.2.bb.c.607.8 288
35.19 odd 6 875.2.bb.b.768.11 288
35.33 even 12 175.2.x.a.117.11 yes 288
175.47 even 60 inner 875.2.bb.a.257.8 288
175.54 odd 30 175.2.x.a.103.8 yes 288
175.96 odd 30 875.2.bb.c.243.11 288
175.103 even 60 875.2.bb.b.257.11 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.3.11 288 25.4 even 10
175.2.x.a.17.8 yes 288 5.3 odd 4
175.2.x.a.103.8 yes 288 175.54 odd 30
175.2.x.a.117.11 yes 288 35.33 even 12
875.2.bb.a.143.8 288 1.1 even 1 trivial
875.2.bb.a.257.8 288 175.47 even 60 inner
875.2.bb.a.507.8 288 25.22 odd 20 inner
875.2.bb.a.768.8 288 7.5 odd 6 inner
875.2.bb.b.143.11 288 5.4 even 2
875.2.bb.b.257.11 288 175.103 even 60
875.2.bb.b.507.11 288 25.3 odd 20
875.2.bb.b.768.11 288 35.19 odd 6
875.2.bb.c.243.11 288 175.96 odd 30
875.2.bb.c.493.8 288 25.21 even 5
875.2.bb.c.607.8 288 35.12 even 12
875.2.bb.c.857.11 288 5.2 odd 4