Properties

Label 875.2.bb.a.257.8
Level $875$
Weight $2$
Character 875.257
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(82,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([27, 50]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 257.8
Character \(\chi\) \(=\) 875.257
Dual form 875.2.bb.a.143.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0420512 + 0.802384i) q^{2} +(2.43882 - 1.97492i) q^{3} +(1.34699 + 0.141575i) q^{4} +(1.48209 + 2.03992i) q^{6} +(0.782993 - 2.52724i) q^{7} +(-0.421625 + 2.66204i) q^{8} +(1.42381 - 6.69848i) q^{9} +(-4.90608 + 1.04282i) q^{11} +(3.56467 - 2.31492i) q^{12} +(0.416175 - 0.816789i) q^{13} +(1.99489 + 0.734535i) q^{14} +(0.531383 + 0.112949i) q^{16} +(0.483913 - 0.185757i) q^{17} +(5.31488 + 1.42412i) q^{18} +(0.116377 + 1.10725i) q^{19} +(-3.08150 - 7.70982i) q^{21} +(-0.630435 - 3.98041i) q^{22} +(5.16039 + 0.270445i) q^{23} +(4.22903 + 7.32490i) q^{24} +(0.637878 + 0.368279i) q^{26} +(-5.48243 - 10.7599i) q^{27} +(1.41248 - 3.29331i) q^{28} +(3.39698 - 4.67555i) q^{29} +(-0.139259 + 0.312781i) q^{31} +(-1.50812 + 5.62839i) q^{32} +(-9.90555 + 12.2323i) q^{33} +(0.128699 + 0.396095i) q^{34} +(2.86619 - 8.82122i) q^{36} +(3.47651 + 5.35336i) q^{37} +(-0.893337 + 0.0468178i) q^{38} +(-0.598115 - 2.81391i) q^{39} +(-6.75808 + 2.19583i) q^{41} +(6.31581 - 2.14834i) q^{42} +(3.02167 - 3.02167i) q^{43} +(-6.75609 + 0.710093i) q^{44} +(-0.434001 + 4.12924i) q^{46} +(-4.57426 + 11.9164i) q^{47} +(1.51901 - 0.773974i) q^{48} +(-5.77384 - 3.95762i) q^{49} +(0.813322 - 1.40871i) q^{51} +(0.676221 - 1.04129i) q^{52} +(3.68942 + 4.55606i) q^{53} +(8.86410 - 3.94655i) q^{54} +(6.39747 + 3.14990i) q^{56} +(2.47056 + 2.47056i) q^{57} +(3.60874 + 2.92230i) q^{58} +(-5.88478 + 6.53571i) q^{59} +(-1.07623 + 0.969040i) q^{61} +(-0.245114 - 0.124892i) q^{62} +(-15.8138 - 8.84316i) q^{63} +(-3.41938 - 1.11102i) q^{64} +(-9.39849 - 8.46244i) q^{66} +(-0.504146 - 1.31334i) q^{67} +(0.678125 - 0.181703i) q^{68} +(13.1194 - 9.53177i) q^{69} +(-6.16371 - 4.47820i) q^{71} +(17.2313 + 6.61447i) q^{72} +(-1.01144 - 0.656834i) q^{73} +(-4.44164 + 2.56438i) q^{74} +1.50794i q^{76} +(-1.20598 + 13.2153i) q^{77} +(2.28299 - 0.361590i) q^{78} +(-1.97771 - 4.44201i) q^{79} +(-15.8523 - 7.05789i) q^{81} +(-1.47772 - 5.51491i) q^{82} +(3.42852 + 0.543025i) q^{83} +(-3.05924 - 10.8213i) q^{84} +(2.29747 + 2.55160i) q^{86} +(-0.949187 - 18.1116i) q^{87} +(-0.707497 - 13.4998i) q^{88} +(2.10268 + 2.33526i) q^{89} +(-1.73836 - 1.69131i) q^{91} +(6.91272 + 1.09487i) q^{92} +(0.278088 + 1.03784i) q^{93} +(-9.36915 - 4.17141i) q^{94} +(7.43756 + 16.7050i) q^{96} +(3.51689 - 0.557021i) q^{97} +(3.41833 - 4.46642i) q^{98} +34.3480i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 2 q^{2} - 6 q^{3} + 10 q^{4} + 10 q^{7} - 64 q^{8} + 10 q^{9} - 6 q^{11} + 6 q^{12} + 20 q^{14} - 30 q^{16} + 12 q^{17} + 14 q^{18} + 30 q^{19} - 12 q^{21} + 8 q^{22} - 30 q^{23} - 48 q^{26} + 58 q^{28}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0420512 + 0.802384i −0.0297347 + 0.567371i 0.942621 + 0.333865i \(0.108353\pi\)
−0.972355 + 0.233506i \(0.924980\pi\)
\(3\) 2.43882 1.97492i 1.40805 1.14022i 0.437531 0.899203i \(-0.355853\pi\)
0.970521 0.241015i \(-0.0774803\pi\)
\(4\) 1.34699 + 0.141575i 0.673496 + 0.0707873i
\(5\) 0 0
\(6\) 1.48209 + 2.03992i 0.605059 + 0.832792i
\(7\) 0.782993 2.52724i 0.295944 0.955205i
\(8\) −0.421625 + 2.66204i −0.149067 + 0.941172i
\(9\) 1.42381 6.69848i 0.474602 2.23283i
\(10\) 0 0
\(11\) −4.90608 + 1.04282i −1.47924 + 0.314422i −0.875678 0.482895i \(-0.839585\pi\)
−0.603560 + 0.797317i \(0.706252\pi\)
\(12\) 3.56467 2.31492i 1.02903 0.668260i
\(13\) 0.416175 0.816789i 0.115426 0.226536i −0.826065 0.563575i \(-0.809425\pi\)
0.941491 + 0.337039i \(0.109425\pi\)
\(14\) 1.99489 + 0.734535i 0.533156 + 0.196313i
\(15\) 0 0
\(16\) 0.531383 + 0.112949i 0.132846 + 0.0282372i
\(17\) 0.483913 0.185757i 0.117366 0.0450526i −0.298976 0.954261i \(-0.596645\pi\)
0.416342 + 0.909208i \(0.363312\pi\)
\(18\) 5.31488 + 1.42412i 1.25273 + 0.335668i
\(19\) 0.116377 + 1.10725i 0.0266987 + 0.254022i 0.999728 + 0.0233383i \(0.00742947\pi\)
−0.973029 + 0.230683i \(0.925904\pi\)
\(20\) 0 0
\(21\) −3.08150 7.70982i −0.672439 1.68242i
\(22\) −0.630435 3.98041i −0.134409 0.848626i
\(23\) 5.16039 + 0.270445i 1.07602 + 0.0563916i 0.582099 0.813118i \(-0.302232\pi\)
0.493916 + 0.869509i \(0.335565\pi\)
\(24\) 4.22903 + 7.32490i 0.863248 + 1.49519i
\(25\) 0 0
\(26\) 0.637878 + 0.368279i 0.125098 + 0.0722254i
\(27\) −5.48243 10.7599i −1.05509 2.07074i
\(28\) 1.41248 3.29331i 0.266933 0.622378i
\(29\) 3.39698 4.67555i 0.630804 0.868227i −0.367279 0.930111i \(-0.619711\pi\)
0.998083 + 0.0618834i \(0.0197107\pi\)
\(30\) 0 0
\(31\) −0.139259 + 0.312781i −0.0250116 + 0.0561771i −0.925619 0.378456i \(-0.876455\pi\)
0.900608 + 0.434633i \(0.143122\pi\)
\(32\) −1.50812 + 5.62839i −0.266601 + 0.994968i
\(33\) −9.90555 + 12.2323i −1.72434 + 2.12938i
\(34\) 0.128699 + 0.396095i 0.0220717 + 0.0679298i
\(35\) 0 0
\(36\) 2.86619 8.82122i 0.477698 1.47020i
\(37\) 3.47651 + 5.35336i 0.571535 + 0.880086i 0.999721 0.0236039i \(-0.00751406\pi\)
−0.428187 + 0.903690i \(0.640847\pi\)
\(38\) −0.893337 + 0.0468178i −0.144918 + 0.00759485i
\(39\) −0.598115 2.81391i −0.0957751 0.450586i
\(40\) 0 0
\(41\) −6.75808 + 2.19583i −1.05543 + 0.342931i −0.784799 0.619750i \(-0.787234\pi\)
−0.270635 + 0.962682i \(0.587234\pi\)
\(42\) 6.31581 2.14834i 0.974551 0.331496i
\(43\) 3.02167 3.02167i 0.460800 0.460800i −0.438118 0.898918i \(-0.644355\pi\)
0.898918 + 0.438118i \(0.144355\pi\)
\(44\) −6.75609 + 0.710093i −1.01852 + 0.107051i
\(45\) 0 0
\(46\) −0.434001 + 4.12924i −0.0639899 + 0.608824i
\(47\) −4.57426 + 11.9164i −0.667225 + 1.73818i 0.00734880 + 0.999973i \(0.497661\pi\)
−0.674574 + 0.738207i \(0.735673\pi\)
\(48\) 1.51901 0.773974i 0.219250 0.111714i
\(49\) −5.77384 3.95762i −0.824835 0.565374i
\(50\) 0 0
\(51\) 0.813322 1.40871i 0.113888 0.197260i
\(52\) 0.676221 1.04129i 0.0937749 0.144401i
\(53\) 3.68942 + 4.55606i 0.506781 + 0.625822i 0.964757 0.263142i \(-0.0847588\pi\)
−0.457976 + 0.888965i \(0.651425\pi\)
\(54\) 8.86410 3.94655i 1.20625 0.537057i
\(55\) 0 0
\(56\) 6.39747 + 3.14990i 0.854897 + 0.420924i
\(57\) 2.47056 + 2.47056i 0.327233 + 0.327233i
\(58\) 3.60874 + 2.92230i 0.473850 + 0.383717i
\(59\) −5.88478 + 6.53571i −0.766133 + 0.850876i −0.992383 0.123193i \(-0.960687\pi\)
0.226250 + 0.974069i \(0.427353\pi\)
\(60\) 0 0
\(61\) −1.07623 + 0.969040i −0.137797 + 0.124073i −0.735147 0.677908i \(-0.762887\pi\)
0.597350 + 0.801981i \(0.296220\pi\)
\(62\) −0.245114 0.124892i −0.0311295 0.0158613i
\(63\) −15.8138 8.84316i −1.99235 1.11413i
\(64\) −3.41938 1.11102i −0.427422 0.138878i
\(65\) 0 0
\(66\) −9.39849 8.46244i −1.15687 1.04165i
\(67\) −0.504146 1.31334i −0.0615912 0.160451i 0.899331 0.437268i \(-0.144054\pi\)
−0.960923 + 0.276817i \(0.910720\pi\)
\(68\) 0.678125 0.181703i 0.0822348 0.0220347i
\(69\) 13.1194 9.53177i 1.57939 1.14749i
\(70\) 0 0
\(71\) −6.16371 4.47820i −0.731498 0.531465i 0.158539 0.987353i \(-0.449322\pi\)
−0.890037 + 0.455888i \(0.849322\pi\)
\(72\) 17.2313 + 6.61447i 2.03073 + 0.779523i
\(73\) −1.01144 0.656834i −0.118380 0.0768766i 0.484091 0.875018i \(-0.339150\pi\)
−0.602471 + 0.798141i \(0.705817\pi\)
\(74\) −4.44164 + 2.56438i −0.516330 + 0.298103i
\(75\) 0 0
\(76\) 1.50794i 0.172972i
\(77\) −1.20598 + 13.2153i −0.137434 + 1.50603i
\(78\) 2.28299 0.361590i 0.258497 0.0409420i
\(79\) −1.97771 4.44201i −0.222510 0.499765i 0.767451 0.641107i \(-0.221525\pi\)
−0.989961 + 0.141343i \(0.954858\pi\)
\(80\) 0 0
\(81\) −15.8523 7.05789i −1.76136 0.784210i
\(82\) −1.47772 5.51491i −0.163186 0.609020i
\(83\) 3.42852 + 0.543025i 0.376329 + 0.0596047i 0.341734 0.939797i \(-0.388986\pi\)
0.0345952 + 0.999401i \(0.488986\pi\)
\(84\) −3.05924 10.8213i −0.333791 1.18070i
\(85\) 0 0
\(86\) 2.29747 + 2.55160i 0.247743 + 0.275146i
\(87\) −0.949187 18.1116i −0.101764 1.94176i
\(88\) −0.707497 13.4998i −0.0754194 1.43909i
\(89\) 2.10268 + 2.33526i 0.222884 + 0.247537i 0.844208 0.536016i \(-0.180071\pi\)
−0.621324 + 0.783554i \(0.713405\pi\)
\(90\) 0 0
\(91\) −1.73836 1.69131i −0.182229 0.177298i
\(92\) 6.91272 + 1.09487i 0.720700 + 0.114148i
\(93\) 0.278088 + 1.03784i 0.0288364 + 0.107619i
\(94\) −9.36915 4.17141i −0.966354 0.430248i
\(95\) 0 0
\(96\) 7.43756 + 16.7050i 0.759093 + 1.70495i
\(97\) 3.51689 0.557021i 0.357086 0.0565569i 0.0246858 0.999695i \(-0.492141\pi\)
0.332400 + 0.943138i \(0.392141\pi\)
\(98\) 3.41833 4.46642i 0.345303 0.451176i
\(99\) 34.3480i 3.45211i
\(100\) 0 0
\(101\) −8.57568 + 4.95117i −0.853312 + 0.492660i −0.861767 0.507304i \(-0.830642\pi\)
0.00845468 + 0.999964i \(0.497309\pi\)
\(102\) 1.09613 + 0.711834i 0.108533 + 0.0704821i
\(103\) 6.93326 + 2.66143i 0.683154 + 0.262238i 0.675097 0.737729i \(-0.264102\pi\)
0.00805736 + 0.999968i \(0.497435\pi\)
\(104\) 1.99885 + 1.45225i 0.196004 + 0.142405i
\(105\) 0 0
\(106\) −3.81085 + 2.76875i −0.370143 + 0.268924i
\(107\) 1.50667 0.403711i 0.145655 0.0390282i −0.185255 0.982691i \(-0.559311\pi\)
0.330910 + 0.943662i \(0.392644\pi\)
\(108\) −5.86147 15.2696i −0.564020 1.46932i
\(109\) 4.44021 + 3.99798i 0.425295 + 0.382937i 0.853799 0.520603i \(-0.174293\pi\)
−0.428504 + 0.903540i \(0.640959\pi\)
\(110\) 0 0
\(111\) 19.0510 + 6.19005i 1.80824 + 0.587533i
\(112\) 0.701517 1.25449i 0.0662872 0.118538i
\(113\) 2.24970 + 1.14628i 0.211634 + 0.107833i 0.556595 0.830784i \(-0.312108\pi\)
−0.344960 + 0.938617i \(0.612108\pi\)
\(114\) −2.08623 + 1.87845i −0.195393 + 0.175933i
\(115\) 0 0
\(116\) 5.23765 5.81700i 0.486303 0.540095i
\(117\) −4.87869 3.95069i −0.451035 0.365241i
\(118\) −4.99668 4.99668i −0.459982 0.459982i
\(119\) −0.0905506 1.36841i −0.00830076 0.125442i
\(120\) 0 0
\(121\) 12.9331 5.75820i 1.17574 0.523473i
\(122\) −0.732286 0.904298i −0.0662981 0.0818713i
\(123\) −12.1451 + 18.7019i −1.09509 + 1.68629i
\(124\) −0.231863 + 0.401598i −0.0208219 + 0.0360645i
\(125\) 0 0
\(126\) 7.76060 12.3169i 0.691369 1.09728i
\(127\) −8.21389 + 4.18519i −0.728865 + 0.371375i −0.778712 0.627381i \(-0.784127\pi\)
0.0498468 + 0.998757i \(0.484127\pi\)
\(128\) −3.14112 + 8.18289i −0.277638 + 0.723272i
\(129\) 1.40176 13.3368i 0.123418 1.17424i
\(130\) 0 0
\(131\) 5.58590 0.587102i 0.488043 0.0512953i 0.142688 0.989768i \(-0.454425\pi\)
0.345354 + 0.938472i \(0.387759\pi\)
\(132\) −15.0745 + 15.0745i −1.31207 + 1.31207i
\(133\) 2.88942 + 0.572860i 0.250544 + 0.0496733i
\(134\) 1.07501 0.349291i 0.0928664 0.0301741i
\(135\) 0 0
\(136\) 0.290462 + 1.36651i 0.0249069 + 0.117178i
\(137\) 4.31718 0.226254i 0.368841 0.0193302i 0.132985 0.991118i \(-0.457544\pi\)
0.235857 + 0.971788i \(0.424210\pi\)
\(138\) 7.09646 + 10.9276i 0.604091 + 0.930218i
\(139\) −1.99140 + 6.12890i −0.168908 + 0.519847i −0.999303 0.0373290i \(-0.988115\pi\)
0.830395 + 0.557176i \(0.188115\pi\)
\(140\) 0 0
\(141\) 12.3780 + 38.0956i 1.04242 + 3.20823i
\(142\) 3.85243 4.75735i 0.323289 0.399228i
\(143\) −1.19002 + 4.44123i −0.0995147 + 0.371394i
\(144\) 1.51317 3.39864i 0.126098 0.283220i
\(145\) 0 0
\(146\) 0.569565 0.783939i 0.0471376 0.0648793i
\(147\) −21.8973 + 1.75094i −1.80606 + 0.144415i
\(148\) 3.92493 + 7.70311i 0.322627 + 0.633192i
\(149\) −1.92554 1.11171i −0.157746 0.0910749i 0.419049 0.907964i \(-0.362364\pi\)
−0.576795 + 0.816889i \(0.695697\pi\)
\(150\) 0 0
\(151\) 6.19286 + 10.7263i 0.503968 + 0.872897i 0.999989 + 0.00458736i \(0.00146021\pi\)
−0.496022 + 0.868310i \(0.665206\pi\)
\(152\) −2.99662 0.157046i −0.243058 0.0127381i
\(153\) −0.555290 3.50596i −0.0448925 0.283440i
\(154\) −10.5531 1.52338i −0.850390 0.122757i
\(155\) 0 0
\(156\) −0.407278 3.87499i −0.0326083 0.310248i
\(157\) −16.2535 4.35511i −1.29717 0.347576i −0.456791 0.889574i \(-0.651001\pi\)
−0.840380 + 0.541998i \(0.817668\pi\)
\(158\) 3.64736 1.40009i 0.290168 0.111385i
\(159\) 17.9957 + 3.82509i 1.42715 + 0.303350i
\(160\) 0 0
\(161\) 4.72403 12.8298i 0.372306 1.01113i
\(162\) 6.32974 12.4228i 0.497312 0.976029i
\(163\) 15.2625 9.91155i 1.19545 0.776333i 0.215679 0.976464i \(-0.430804\pi\)
0.979769 + 0.200132i \(0.0641370\pi\)
\(164\) −9.41395 + 2.00100i −0.735106 + 0.156252i
\(165\) 0 0
\(166\) −0.579888 + 2.72816i −0.0450080 + 0.211746i
\(167\) 0.0529161 0.334099i 0.00409477 0.0258534i −0.985556 0.169348i \(-0.945834\pi\)
0.989651 + 0.143494i \(0.0458339\pi\)
\(168\) 21.8231 4.95242i 1.68369 0.382087i
\(169\) 7.14727 + 9.83737i 0.549790 + 0.756721i
\(170\) 0 0
\(171\) 7.58262 + 0.796965i 0.579857 + 0.0609455i
\(172\) 4.49795 3.64237i 0.342966 0.277728i
\(173\) 0.931608 17.7761i 0.0708288 1.35149i −0.699859 0.714281i \(-0.746754\pi\)
0.770687 0.637213i \(-0.219913\pi\)
\(174\) 14.5723 1.10473
\(175\) 0 0
\(176\) −2.72479 −0.205389
\(177\) −1.44443 + 27.5613i −0.108570 + 2.07164i
\(178\) −1.96220 + 1.58896i −0.147073 + 0.119097i
\(179\) 9.80573 + 1.03062i 0.732915 + 0.0770324i 0.463631 0.886028i \(-0.346546\pi\)
0.269284 + 0.963061i \(0.413213\pi\)
\(180\) 0 0
\(181\) −12.6158 17.3642i −0.937727 1.29067i −0.956768 0.290852i \(-0.906061\pi\)
0.0190405 0.999819i \(-0.493939\pi\)
\(182\) 1.43018 1.32371i 0.106012 0.0981197i
\(183\) −0.710952 + 4.48877i −0.0525551 + 0.331820i
\(184\) −2.89568 + 13.6231i −0.213473 + 1.00431i
\(185\) 0 0
\(186\) −0.844440 + 0.179491i −0.0619174 + 0.0131609i
\(187\) −2.18040 + 1.41597i −0.159447 + 0.103546i
\(188\) −7.84855 + 15.4036i −0.572414 + 1.12343i
\(189\) −31.4855 + 5.43048i −2.29023 + 0.395010i
\(190\) 0 0
\(191\) −0.709623 0.150835i −0.0513465 0.0109140i 0.182167 0.983268i \(-0.441689\pi\)
−0.233513 + 0.972354i \(0.575022\pi\)
\(192\) −10.5334 + 4.04340i −0.760185 + 0.291807i
\(193\) −14.2145 3.80877i −1.02318 0.274161i −0.292055 0.956401i \(-0.594339\pi\)
−0.731128 + 0.682240i \(0.761006\pi\)
\(194\) 0.299055 + 2.84532i 0.0214709 + 0.204282i
\(195\) 0 0
\(196\) −7.21702 6.14831i −0.515502 0.439165i
\(197\) −3.82227 24.1329i −0.272326 1.71940i −0.622420 0.782683i \(-0.713851\pi\)
0.350095 0.936714i \(-0.386149\pi\)
\(198\) −27.5603 1.44438i −1.95863 0.102647i
\(199\) −0.487743 0.844796i −0.0345752 0.0598860i 0.848220 0.529644i \(-0.177674\pi\)
−0.882795 + 0.469758i \(0.844341\pi\)
\(200\) 0 0
\(201\) −3.82326 2.20736i −0.269672 0.155695i
\(202\) −3.61212 7.08919i −0.254148 0.498794i
\(203\) −9.15640 12.2459i −0.642653 0.859494i
\(204\) 1.29498 1.78238i 0.0906665 0.124792i
\(205\) 0 0
\(206\) −2.42704 + 5.45122i −0.169100 + 0.379804i
\(207\) 9.15896 34.1817i 0.636592 2.37579i
\(208\) 0.313403 0.387021i 0.0217306 0.0268351i
\(209\) −1.72562 5.31092i −0.119364 0.367364i
\(210\) 0 0
\(211\) −8.83060 + 27.1778i −0.607923 + 1.87100i −0.132636 + 0.991165i \(0.542344\pi\)
−0.475287 + 0.879831i \(0.657656\pi\)
\(212\) 4.32460 + 6.65930i 0.297015 + 0.457363i
\(213\) −23.8762 + 1.25130i −1.63597 + 0.0857377i
\(214\) 0.260574 + 1.22591i 0.0178125 + 0.0838012i
\(215\) 0 0
\(216\) 30.9547 10.0578i 2.10620 0.684347i
\(217\) 0.681432 + 0.596846i 0.0462586 + 0.0405165i
\(218\) −3.39463 + 3.39463i −0.229913 + 0.229913i
\(219\) −3.76390 + 0.395602i −0.254341 + 0.0267323i
\(220\) 0 0
\(221\) 0.0496683 0.472562i 0.00334105 0.0317880i
\(222\) −5.76791 + 15.0259i −0.387117 + 1.00847i
\(223\) 19.9284 10.1540i 1.33450 0.679963i 0.366385 0.930463i \(-0.380595\pi\)
0.968116 + 0.250501i \(0.0805952\pi\)
\(224\) 13.0434 + 8.21837i 0.871500 + 0.549113i
\(225\) 0 0
\(226\) −1.01436 + 1.75692i −0.0674742 + 0.116869i
\(227\) −3.03877 + 4.67929i −0.201690 + 0.310575i −0.925014 0.379934i \(-0.875947\pi\)
0.723324 + 0.690509i \(0.242613\pi\)
\(228\) 2.97805 + 3.67759i 0.197226 + 0.243554i
\(229\) −14.5622 + 6.48351i −0.962298 + 0.428443i −0.826900 0.562349i \(-0.809898\pi\)
−0.135398 + 0.990791i \(0.543231\pi\)
\(230\) 0 0
\(231\) 23.1580 + 34.6115i 1.52369 + 2.27727i
\(232\) 11.0142 + 11.0142i 0.723119 + 0.723119i
\(233\) −9.54478 7.72921i −0.625299 0.506357i 0.263497 0.964660i \(-0.415124\pi\)
−0.888796 + 0.458303i \(0.848458\pi\)
\(234\) 3.37512 3.74845i 0.220639 0.245044i
\(235\) 0 0
\(236\) −8.85204 + 7.97041i −0.576218 + 0.518829i
\(237\) −13.5959 6.92744i −0.883146 0.449985i
\(238\) 1.10180 0.0151132i 0.0714189 0.000979641i
\(239\) −14.3549 4.66418i −0.928540 0.301701i −0.194574 0.980888i \(-0.562333\pi\)
−0.733965 + 0.679187i \(0.762333\pi\)
\(240\) 0 0
\(241\) −17.2487 15.5308i −1.11108 1.00042i −0.999978 0.00661623i \(-0.997894\pi\)
−0.111106 0.993809i \(-0.535439\pi\)
\(242\) 4.07644 + 10.6195i 0.262043 + 0.682646i
\(243\) −17.6057 + 4.71744i −1.12941 + 0.302624i
\(244\) −1.58686 + 1.15292i −0.101588 + 0.0738083i
\(245\) 0 0
\(246\) −14.4954 10.5315i −0.924191 0.671464i
\(247\) 0.952826 + 0.365756i 0.0606269 + 0.0232725i
\(248\) −0.773919 0.502589i −0.0491439 0.0319144i
\(249\) 9.43397 5.44671i 0.597854 0.345171i
\(250\) 0 0
\(251\) 22.1623i 1.39887i 0.714697 + 0.699434i \(0.246565\pi\)
−0.714697 + 0.699434i \(0.753435\pi\)
\(252\) −20.0491 14.1505i −1.26298 0.891398i
\(253\) −25.5993 + 4.05453i −1.60941 + 0.254906i
\(254\) −3.01272 6.76669i −0.189035 0.424580i
\(255\) 0 0
\(256\) −13.0028 5.78920i −0.812673 0.361825i
\(257\) −0.0610358 0.227789i −0.00380731 0.0142091i 0.963996 0.265917i \(-0.0856746\pi\)
−0.967803 + 0.251708i \(0.919008\pi\)
\(258\) 10.6423 + 1.68558i 0.662562 + 0.104939i
\(259\) 16.2513 4.59432i 1.00981 0.285477i
\(260\) 0 0
\(261\) −26.4824 29.4117i −1.63922 1.82054i
\(262\) 0.236188 + 4.50673i 0.0145917 + 0.278427i
\(263\) 1.19862 + 22.8710i 0.0739099 + 1.41029i 0.744086 + 0.668083i \(0.232885\pi\)
−0.670176 + 0.742202i \(0.733782\pi\)
\(264\) −28.3865 31.5264i −1.74707 1.94032i
\(265\) 0 0
\(266\) −0.581157 + 2.29433i −0.0356330 + 0.140674i
\(267\) 9.74001 + 1.54267i 0.596079 + 0.0944096i
\(268\) −0.493144 1.84044i −0.0301236 0.112423i
\(269\) −9.75209 4.34191i −0.594596 0.264731i 0.0872981 0.996182i \(-0.472177\pi\)
−0.681894 + 0.731451i \(0.738843\pi\)
\(270\) 0 0
\(271\) −7.51186 16.8719i −0.456313 1.02490i −0.984438 0.175730i \(-0.943772\pi\)
0.528125 0.849166i \(-0.322895\pi\)
\(272\) 0.278124 0.0440505i 0.0168637 0.00267095i
\(273\) −7.57973 0.691695i −0.458746 0.0418633i
\(274\) 3.47355i 0.209845i
\(275\) 0 0
\(276\) 19.0211 10.9819i 1.14494 0.661030i
\(277\) 8.75448 + 5.68523i 0.526006 + 0.341592i 0.780169 0.625569i \(-0.215133\pi\)
−0.254163 + 0.967161i \(0.581800\pi\)
\(278\) −4.83399 1.85560i −0.289924 0.111291i
\(279\) 1.89688 + 1.37816i 0.113563 + 0.0825084i
\(280\) 0 0
\(281\) 23.9465 17.3981i 1.42853 1.03789i 0.438239 0.898858i \(-0.355602\pi\)
0.990288 0.139028i \(-0.0443978\pi\)
\(282\) −31.0878 + 8.32996i −1.85125 + 0.496042i
\(283\) −9.98669 26.0162i −0.593647 1.54650i −0.819943 0.572445i \(-0.805995\pi\)
0.226296 0.974059i \(-0.427338\pi\)
\(284\) −7.66847 6.90472i −0.455040 0.409720i
\(285\) 0 0
\(286\) −3.51353 1.14161i −0.207759 0.0675051i
\(287\) 0.257857 + 18.7986i 0.0152208 + 1.10965i
\(288\) 35.5544 + 18.1159i 2.09506 + 1.06749i
\(289\) −12.4338 + 11.1954i −0.731400 + 0.658555i
\(290\) 0 0
\(291\) 7.47699 8.30404i 0.438309 0.486791i
\(292\) −1.26940 1.02794i −0.0742863 0.0601559i
\(293\) −4.85076 4.85076i −0.283385 0.283385i 0.551073 0.834457i \(-0.314219\pi\)
−0.834457 + 0.551073i \(0.814219\pi\)
\(294\) −0.484122 17.6437i −0.0282346 1.02900i
\(295\) 0 0
\(296\) −15.7166 + 6.99749i −0.913510 + 0.406721i
\(297\) 38.1178 + 47.0716i 2.21182 + 2.73137i
\(298\) 0.972990 1.49827i 0.0563638 0.0867926i
\(299\) 2.36852 4.10240i 0.136975 0.237248i
\(300\) 0 0
\(301\) −5.27052 10.0024i −0.303788 0.576529i
\(302\) −8.86706 + 4.51799i −0.510242 + 0.259981i
\(303\) −11.1364 + 29.0113i −0.639768 + 1.66665i
\(304\) −0.0632223 + 0.601520i −0.00362605 + 0.0344996i
\(305\) 0 0
\(306\) 2.83648 0.298126i 0.162151 0.0170427i
\(307\) −4.10345 + 4.10345i −0.234196 + 0.234196i −0.814442 0.580245i \(-0.802957\pi\)
0.580245 + 0.814442i \(0.302957\pi\)
\(308\) −3.49540 + 17.6302i −0.199169 + 1.00457i
\(309\) 22.1650 7.20186i 1.26093 0.409700i
\(310\) 0 0
\(311\) 5.14856 + 24.2220i 0.291948 + 1.37351i 0.842496 + 0.538703i \(0.181085\pi\)
−0.550548 + 0.834804i \(0.685581\pi\)
\(312\) 7.74291 0.405789i 0.438356 0.0229733i
\(313\) 3.89322 + 5.99503i 0.220058 + 0.338859i 0.931407 0.363980i \(-0.118582\pi\)
−0.711349 + 0.702839i \(0.751916\pi\)
\(314\) 4.17795 12.8584i 0.235776 0.725642i
\(315\) 0 0
\(316\) −2.03508 6.26334i −0.114482 0.352340i
\(317\) 4.32805 5.34470i 0.243088 0.300188i −0.640970 0.767566i \(-0.721468\pi\)
0.884058 + 0.467378i \(0.154801\pi\)
\(318\) −3.82593 + 14.2786i −0.214548 + 0.800703i
\(319\) −11.7901 + 26.4810i −0.660120 + 1.48265i
\(320\) 0 0
\(321\) 2.87720 3.96013i 0.160590 0.221033i
\(322\) 10.0957 + 4.32999i 0.562614 + 0.241301i
\(323\) 0.261996 + 0.514197i 0.0145779 + 0.0286107i
\(324\) −20.3537 11.7512i −1.13076 0.652844i
\(325\) 0 0
\(326\) 7.31107 + 12.6631i 0.404923 + 0.701347i
\(327\) 18.7245 + 0.981311i 1.03547 + 0.0542666i
\(328\) −2.99601 18.9161i −0.165427 1.04447i
\(329\) 26.5338 + 20.8907i 1.46286 + 1.15174i
\(330\) 0 0
\(331\) −1.92457 18.3111i −0.105784 1.00647i −0.910697 0.413074i \(-0.864455\pi\)
0.804913 0.593392i \(-0.202212\pi\)
\(332\) 4.54131 + 1.21684i 0.249237 + 0.0667828i
\(333\) 40.8092 15.6652i 2.23633 0.858447i
\(334\) 0.265851 + 0.0565083i 0.0145467 + 0.00309200i
\(335\) 0 0
\(336\) −0.766641 4.44491i −0.0418237 0.242490i
\(337\) 5.72591 11.2377i 0.311910 0.612158i −0.680829 0.732442i \(-0.738380\pi\)
0.992740 + 0.120284i \(0.0383805\pi\)
\(338\) −8.19390 + 5.32118i −0.445689 + 0.289434i
\(339\) 7.75043 1.64740i 0.420945 0.0894747i
\(340\) 0 0
\(341\) 0.357042 1.67975i 0.0193349 0.0909635i
\(342\) −0.958330 + 6.05066i −0.0518206 + 0.327182i
\(343\) −14.5227 + 11.4931i −0.784153 + 0.620568i
\(344\) 6.76978 + 9.31780i 0.365002 + 0.502382i
\(345\) 0 0
\(346\) 14.2241 + 1.49501i 0.764693 + 0.0803725i
\(347\) −7.99918 + 6.47761i −0.429418 + 0.347736i −0.819535 0.573029i \(-0.805768\pi\)
0.390117 + 0.920766i \(0.372435\pi\)
\(348\) 1.28559 24.5305i 0.0689149 1.31497i
\(349\) −11.2771 −0.603650 −0.301825 0.953363i \(-0.597596\pi\)
−0.301825 + 0.953363i \(0.597596\pi\)
\(350\) 0 0
\(351\) −11.0702 −0.590883
\(352\) 1.52957 29.1860i 0.0815266 1.55562i
\(353\) 12.9303 10.4707i 0.688208 0.557300i −0.220164 0.975463i \(-0.570659\pi\)
0.908372 + 0.418163i \(0.137326\pi\)
\(354\) −22.0540 2.31797i −1.17216 0.123199i
\(355\) 0 0
\(356\) 2.50168 + 3.44327i 0.132589 + 0.182493i
\(357\) −2.92333 3.15847i −0.154719 0.167164i
\(358\) −1.23930 + 7.82462i −0.0654990 + 0.413544i
\(359\) 3.60963 16.9820i 0.190509 0.896275i −0.774197 0.632945i \(-0.781846\pi\)
0.964706 0.263330i \(-0.0848208\pi\)
\(360\) 0 0
\(361\) 17.3723 3.69260i 0.914333 0.194348i
\(362\) 14.4633 9.39256i 0.760173 0.493662i
\(363\) 20.1696 39.5851i 1.05863 2.07768i
\(364\) −2.10211 2.52429i −0.110180 0.132309i
\(365\) 0 0
\(366\) −3.57182 0.759215i −0.186702 0.0396848i
\(367\) 6.96747 2.67456i 0.363699 0.139611i −0.169654 0.985504i \(-0.554265\pi\)
0.533353 + 0.845893i \(0.320932\pi\)
\(368\) 2.71160 + 0.726570i 0.141352 + 0.0378751i
\(369\) 5.08655 + 48.3953i 0.264795 + 2.51936i
\(370\) 0 0
\(371\) 14.4030 5.75668i 0.747768 0.298872i
\(372\) 0.227651 + 1.43733i 0.0118032 + 0.0745222i
\(373\) −29.4741 1.54467i −1.52611 0.0799802i −0.729295 0.684199i \(-0.760152\pi\)
−0.796818 + 0.604219i \(0.793485\pi\)
\(374\) −1.04446 1.80906i −0.0540080 0.0935445i
\(375\) 0 0
\(376\) −29.7932 17.2011i −1.53647 0.887079i
\(377\) −2.40520 4.72046i −0.123874 0.243116i
\(378\) −3.03333 25.4918i −0.156018 1.31116i
\(379\) 0.558890 0.769246i 0.0287082 0.0395135i −0.794422 0.607367i \(-0.792226\pi\)
0.823130 + 0.567853i \(0.192226\pi\)
\(380\) 0 0
\(381\) −11.7668 + 26.4287i −0.602831 + 1.35398i
\(382\) 0.150868 0.563048i 0.00771909 0.0288080i
\(383\) 6.38001 7.87866i 0.326003 0.402581i −0.587623 0.809135i \(-0.699936\pi\)
0.913627 + 0.406554i \(0.133270\pi\)
\(384\) 8.49991 + 26.1600i 0.433759 + 1.33497i
\(385\) 0 0
\(386\) 3.65383 11.2453i 0.185975 0.572373i
\(387\) −15.9383 24.5428i −0.810190 1.24758i
\(388\) 4.81608 0.252400i 0.244500 0.0128137i
\(389\) −2.79772 13.1622i −0.141850 0.667352i −0.990399 0.138235i \(-0.955857\pi\)
0.848549 0.529116i \(-0.177476\pi\)
\(390\) 0 0
\(391\) 2.54742 0.827706i 0.128828 0.0418589i
\(392\) 12.9697 13.7016i 0.655070 0.692033i
\(393\) 12.4635 12.4635i 0.628702 0.628702i
\(394\) 19.5246 2.05212i 0.983634 0.103384i
\(395\) 0 0
\(396\) −4.86281 + 46.2665i −0.244365 + 2.32498i
\(397\) 9.66717 25.1838i 0.485181 1.26394i −0.444567 0.895745i \(-0.646643\pi\)
0.929749 0.368195i \(-0.120024\pi\)
\(398\) 0.698361 0.355833i 0.0350057 0.0178363i
\(399\) 8.17811 4.30925i 0.409418 0.215732i
\(400\) 0 0
\(401\) −7.65133 + 13.2525i −0.382089 + 0.661798i −0.991361 0.131164i \(-0.958129\pi\)
0.609271 + 0.792962i \(0.291462\pi\)
\(402\) 1.93193 2.97490i 0.0963557 0.148375i
\(403\) 0.197520 + 0.243917i 0.00983916 + 0.0121504i
\(404\) −12.2523 + 5.45509i −0.609577 + 0.271401i
\(405\) 0 0
\(406\) 10.2110 6.83199i 0.506761 0.339066i
\(407\) −22.6386 22.6386i −1.12215 1.12215i
\(408\) 3.40713 + 2.75904i 0.168678 + 0.136593i
\(409\) 8.68351 9.64401i 0.429372 0.476866i −0.489171 0.872188i \(-0.662700\pi\)
0.918542 + 0.395322i \(0.129367\pi\)
\(410\) 0 0
\(411\) 10.0820 9.07786i 0.497308 0.447778i
\(412\) 8.96225 + 4.56649i 0.441538 + 0.224975i
\(413\) 11.9095 + 19.9896i 0.586030 + 0.983625i
\(414\) 27.0417 + 8.78639i 1.32903 + 0.431827i
\(415\) 0 0
\(416\) 3.96956 + 3.57421i 0.194624 + 0.175240i
\(417\) 7.24740 + 18.8801i 0.354907 + 0.924564i
\(418\) 4.33396 1.16128i 0.211981 0.0568001i
\(419\) 14.8800 10.8109i 0.726935 0.528149i −0.161658 0.986847i \(-0.551684\pi\)
0.888592 + 0.458698i \(0.151684\pi\)
\(420\) 0 0
\(421\) 19.9632 + 14.5041i 0.972947 + 0.706887i 0.956121 0.292971i \(-0.0946441\pi\)
0.0168253 + 0.999858i \(0.494644\pi\)
\(422\) −21.4357 8.22839i −1.04347 0.400552i
\(423\) 73.3087 + 47.6072i 3.56439 + 2.31474i
\(424\) −13.6839 + 7.90043i −0.664551 + 0.383679i
\(425\) 0 0
\(426\) 19.2105i 0.930754i
\(427\) 1.60631 + 3.47864i 0.0777350 + 0.168343i
\(428\) 2.08663 0.330490i 0.100861 0.0159748i
\(429\) 5.86880 + 13.1815i 0.283348 + 0.636411i
\(430\) 0 0
\(431\) −27.9846 12.4596i −1.34797 0.600156i −0.399417 0.916769i \(-0.630787\pi\)
−0.948555 + 0.316614i \(0.897454\pi\)
\(432\) −1.69795 6.33685i −0.0816928 0.304882i
\(433\) 25.6195 + 4.05772i 1.23119 + 0.195002i 0.737929 0.674878i \(-0.235804\pi\)
0.493263 + 0.869880i \(0.335804\pi\)
\(434\) −0.507554 + 0.521672i −0.0243634 + 0.0250411i
\(435\) 0 0
\(436\) 5.41491 + 6.01387i 0.259327 + 0.288012i
\(437\) 0.301100 + 5.74534i 0.0144036 + 0.274837i
\(438\) −0.159148 3.03673i −0.00760440 0.145101i
\(439\) 8.91058 + 9.89620i 0.425279 + 0.472320i 0.917262 0.398285i \(-0.130394\pi\)
−0.491983 + 0.870605i \(0.663728\pi\)
\(440\) 0 0
\(441\) −34.7309 + 33.0411i −1.65385 + 1.57339i
\(442\) 0.377088 + 0.0597248i 0.0179362 + 0.00284082i
\(443\) 3.88763 + 14.5088i 0.184707 + 0.689335i 0.994693 + 0.102886i \(0.0328077\pi\)
−0.809986 + 0.586449i \(0.800526\pi\)
\(444\) 24.7852 + 11.0351i 1.17625 + 0.523702i
\(445\) 0 0
\(446\) 7.30940 + 16.4172i 0.346110 + 0.777376i
\(447\) −6.89157 + 1.09152i −0.325960 + 0.0516270i
\(448\) −5.48517 + 7.77166i −0.259150 + 0.367176i
\(449\) 3.87012i 0.182642i 0.995822 + 0.0913211i \(0.0291090\pi\)
−0.995822 + 0.0913211i \(0.970891\pi\)
\(450\) 0 0
\(451\) 30.8658 17.8204i 1.45341 0.839129i
\(452\) 2.86805 + 1.86253i 0.134902 + 0.0876062i
\(453\) 36.2869 + 13.9292i 1.70491 + 0.654452i
\(454\) −3.62680 2.63503i −0.170214 0.123668i
\(455\) 0 0
\(456\) −7.61836 + 5.53507i −0.356763 + 0.259203i
\(457\) 40.9235 10.9654i 1.91432 0.512941i 0.922371 0.386304i \(-0.126249\pi\)
0.991949 0.126636i \(-0.0404181\pi\)
\(458\) −4.58991 11.9571i −0.214472 0.558720i
\(459\) −4.65174 4.18845i −0.217125 0.195500i
\(460\) 0 0
\(461\) −21.8890 7.11217i −1.01947 0.331247i −0.248852 0.968541i \(-0.580053\pi\)
−0.770620 + 0.637295i \(0.780053\pi\)
\(462\) −28.7455 + 17.1262i −1.33736 + 0.796782i
\(463\) 16.0881 + 8.19728i 0.747676 + 0.380960i 0.785936 0.618308i \(-0.212182\pi\)
−0.0382600 + 0.999268i \(0.512182\pi\)
\(464\) 2.33320 2.10082i 0.108316 0.0975281i
\(465\) 0 0
\(466\) 6.60317 7.33356i 0.305886 0.339721i
\(467\) 21.3103 + 17.2567i 0.986121 + 0.798545i 0.979502 0.201433i \(-0.0645599\pi\)
0.00661861 + 0.999978i \(0.497893\pi\)
\(468\) −6.01224 6.01224i −0.277916 0.277916i
\(469\) −3.71387 + 0.245755i −0.171491 + 0.0113479i
\(470\) 0 0
\(471\) −48.2403 + 21.4780i −2.22280 + 0.989653i
\(472\) −14.9171 18.4211i −0.686616 0.847900i
\(473\) −11.6735 + 17.9756i −0.536747 + 0.826518i
\(474\) 6.13019 10.6178i 0.281569 0.487691i
\(475\) 0 0
\(476\) 0.0717609 1.85606i 0.00328916 0.0850721i
\(477\) 35.7717 18.2266i 1.63787 0.834538i
\(478\) 4.34610 11.3220i 0.198786 0.517856i
\(479\) 3.81683 36.3147i 0.174396 1.65926i −0.461242 0.887275i \(-0.652596\pi\)
0.635637 0.771988i \(-0.280737\pi\)
\(480\) 0 0
\(481\) 5.81940 0.611643i 0.265342 0.0278885i
\(482\) 13.1870 13.1870i 0.600650 0.600650i
\(483\) −13.8167 40.6190i −0.628680 1.84823i
\(484\) 18.2360 5.92525i 0.828911 0.269330i
\(485\) 0 0
\(486\) −3.04486 14.3249i −0.138118 0.649792i
\(487\) −36.0175 + 1.88760i −1.63211 + 0.0855352i −0.846220 0.532833i \(-0.821127\pi\)
−0.785888 + 0.618368i \(0.787794\pi\)
\(488\) −2.12586 3.27353i −0.0962330 0.148186i
\(489\) 17.6479 54.3145i 0.798064 2.45619i
\(490\) 0 0
\(491\) 2.89375 + 8.90606i 0.130593 + 0.401925i 0.994879 0.101077i \(-0.0322289\pi\)
−0.864285 + 0.503002i \(0.832229\pi\)
\(492\) −19.0071 + 23.4718i −0.856907 + 1.05819i
\(493\) 0.775330 2.89357i 0.0349191 0.130320i
\(494\) −0.333544 + 0.749152i −0.0150069 + 0.0337060i
\(495\) 0 0
\(496\) −0.109328 + 0.150477i −0.00490897 + 0.00675662i
\(497\) −16.1436 + 12.0708i −0.724140 + 0.541447i
\(498\) 3.97364 + 7.79871i 0.178063 + 0.349468i
\(499\) 27.8046 + 16.0530i 1.24470 + 0.718630i 0.970048 0.242912i \(-0.0781027\pi\)
0.274656 + 0.961543i \(0.411436\pi\)
\(500\) 0 0
\(501\) −0.530765 0.919313i −0.0237128 0.0410719i
\(502\) −17.7826 0.931948i −0.793678 0.0415949i
\(503\) 5.06296 + 31.9663i 0.225746 + 1.42531i 0.796725 + 0.604342i \(0.206564\pi\)
−0.570979 + 0.820965i \(0.693436\pi\)
\(504\) 30.2083 38.3685i 1.34559 1.70907i
\(505\) 0 0
\(506\) −2.17681 20.7110i −0.0967710 0.920715i
\(507\) 36.8589 + 9.87630i 1.63696 + 0.438622i
\(508\) −11.6566 + 4.47454i −0.517177 + 0.198525i
\(509\) −25.8085 5.48576i −1.14394 0.243152i −0.403309 0.915064i \(-0.632140\pi\)
−0.740631 + 0.671912i \(0.765473\pi\)
\(510\) 0 0
\(511\) −2.45192 + 2.04184i −0.108467 + 0.0903257i
\(512\) −2.76657 + 5.42969i −0.122266 + 0.239961i
\(513\) 11.2759 7.32265i 0.497843 0.323303i
\(514\) 0.185341 0.0393954i 0.00817502 0.00173765i
\(515\) 0 0
\(516\) 3.77631 17.7662i 0.166243 0.782111i
\(517\) 10.0151 63.2328i 0.440463 2.78097i
\(518\) 3.00302 + 13.2330i 0.131945 + 0.581423i
\(519\) −32.8344 45.1926i −1.44127 1.98374i
\(520\) 0 0
\(521\) 8.94847 + 0.940522i 0.392039 + 0.0412050i 0.298498 0.954410i \(-0.403514\pi\)
0.0935417 + 0.995615i \(0.470181\pi\)
\(522\) 24.7131 20.0123i 1.08166 0.875913i
\(523\) 0.356503 6.80248i 0.0155888 0.297452i −0.979698 0.200478i \(-0.935750\pi\)
0.995287 0.0969736i \(-0.0309162\pi\)
\(524\) 7.60728 0.332326
\(525\) 0 0
\(526\) −18.4017 −0.802353
\(527\) −0.00928807 + 0.177227i −0.000404595 + 0.00772013i
\(528\) −6.64527 + 5.38123i −0.289198 + 0.234188i
\(529\) 3.68248 + 0.387044i 0.160108 + 0.0168280i
\(530\) 0 0
\(531\) 35.4005 + 48.7246i 1.53625 + 2.11447i
\(532\) 3.81092 + 1.18071i 0.165224 + 0.0511901i
\(533\) −1.01901 + 6.43377i −0.0441382 + 0.278678i
\(534\) −1.64739 + 7.75036i −0.0712895 + 0.335391i
\(535\) 0 0
\(536\) 3.70873 0.788315i 0.160193 0.0340500i
\(537\) 25.9498 16.8520i 1.11982 0.727217i
\(538\) 3.89397 7.64234i 0.167881 0.329485i
\(539\) 32.4540 + 13.3953i 1.39789 + 0.576977i
\(540\) 0 0
\(541\) −3.42812 0.728670i −0.147387 0.0313280i 0.133628 0.991032i \(-0.457337\pi\)
−0.281014 + 0.959704i \(0.590671\pi\)
\(542\) 13.8536 5.31791i 0.595065 0.228424i
\(543\) −65.0606 17.4329i −2.79202 0.748118i
\(544\) 0.315711 + 3.00379i 0.0135360 + 0.128787i
\(545\) 0 0
\(546\) 0.873742 6.05277i 0.0373927 0.259035i
\(547\) 4.73400 + 29.8893i 0.202411 + 1.27798i 0.854348 + 0.519702i \(0.173957\pi\)
−0.651936 + 0.758274i \(0.726043\pi\)
\(548\) 5.84724 + 0.306441i 0.249782 + 0.0130905i
\(549\) 4.95876 + 8.58882i 0.211635 + 0.366562i
\(550\) 0 0
\(551\) 5.57235 + 3.21720i 0.237390 + 0.137057i
\(552\) 19.8425 + 38.9431i 0.844552 + 1.65753i
\(553\) −12.7745 + 1.52007i −0.543228 + 0.0646402i
\(554\) −4.92987 + 6.78539i −0.209450 + 0.288283i
\(555\) 0 0
\(556\) −3.55010 + 7.97365i −0.150558 + 0.338158i
\(557\) −3.91007 + 14.5926i −0.165675 + 0.618307i 0.832278 + 0.554358i \(0.187036\pi\)
−0.997953 + 0.0639490i \(0.979630\pi\)
\(558\) −1.18558 + 1.46407i −0.0501897 + 0.0619791i
\(559\) −1.21052 3.72561i −0.0511997 0.157576i
\(560\) 0 0
\(561\) −2.52119 + 7.75941i −0.106445 + 0.327603i
\(562\) 12.9530 + 19.9459i 0.546390 + 0.841367i
\(563\) −35.0459 + 1.83668i −1.47701 + 0.0774067i −0.773734 0.633511i \(-0.781613\pi\)
−0.703275 + 0.710918i \(0.748280\pi\)
\(564\) 11.2797 + 53.0669i 0.474962 + 2.23452i
\(565\) 0 0
\(566\) 21.2950 6.91915i 0.895094 0.290834i
\(567\) −30.2492 + 34.5362i −1.27035 + 1.45038i
\(568\) 14.5199 14.5199i 0.609242 0.609242i
\(569\) 2.55943 0.269006i 0.107297 0.0112773i −0.0507279 0.998713i \(-0.516154\pi\)
0.158025 + 0.987435i \(0.449487\pi\)
\(570\) 0 0
\(571\) 2.11736 20.1454i 0.0886089 0.843058i −0.856466 0.516204i \(-0.827345\pi\)
0.945075 0.326854i \(-0.105989\pi\)
\(572\) −2.23172 + 5.81382i −0.0933127 + 0.243088i
\(573\) −2.02853 + 1.03359i −0.0847430 + 0.0431787i
\(574\) −15.0945 0.583602i −0.630033 0.0243591i
\(575\) 0 0
\(576\) −12.3107 + 21.3228i −0.512946 + 0.888449i
\(577\) −21.8264 + 33.6097i −0.908645 + 1.39919i 0.00820794 + 0.999966i \(0.497387\pi\)
−0.916853 + 0.399225i \(0.869279\pi\)
\(578\) −8.46019 10.4475i −0.351897 0.434557i
\(579\) −42.1886 + 18.7836i −1.75330 + 0.780619i
\(580\) 0 0
\(581\) 4.05686 8.23950i 0.168307 0.341832i
\(582\) 6.34861 + 6.34861i 0.263158 + 0.263158i
\(583\) −22.8517 18.5050i −0.946422 0.766397i
\(584\) 2.17496 2.41554i 0.0900006 0.0999558i
\(585\) 0 0
\(586\) 4.09615 3.68819i 0.169211 0.152358i
\(587\) −17.2988 8.81418i −0.713998 0.363800i 0.0589574 0.998261i \(-0.481222\pi\)
−0.772955 + 0.634460i \(0.781222\pi\)
\(588\) −29.7434 0.741595i −1.22660 0.0305829i
\(589\) −0.362534 0.117795i −0.0149380 0.00485364i
\(590\) 0 0
\(591\) −56.9823 51.3071i −2.34394 2.11049i
\(592\) 1.24270 + 3.23735i 0.0510747 + 0.133054i
\(593\) 17.2078 4.61082i 0.706640 0.189344i 0.112437 0.993659i \(-0.464134\pi\)
0.594203 + 0.804315i \(0.297468\pi\)
\(594\) −39.3724 + 28.6057i −1.61547 + 1.17371i
\(595\) 0 0
\(596\) −2.43630 1.77007i −0.0997945 0.0725050i
\(597\) −2.85792 1.09705i −0.116967 0.0448994i
\(598\) 3.19210 + 2.07297i 0.130535 + 0.0847702i
\(599\) −12.9831 + 7.49578i −0.530474 + 0.306269i −0.741209 0.671274i \(-0.765747\pi\)
0.210735 + 0.977543i \(0.432414\pi\)
\(600\) 0 0
\(601\) 20.7383i 0.845932i −0.906145 0.422966i \(-0.860989\pi\)
0.906145 0.422966i \(-0.139011\pi\)
\(602\) 8.24741 3.80837i 0.336139 0.155217i
\(603\) −9.51522 + 1.50706i −0.387490 + 0.0613723i
\(604\) 6.82315 + 15.3250i 0.277630 + 0.623567i
\(605\) 0 0
\(606\) −22.8099 10.1556i −0.926588 0.412544i
\(607\) −5.62452 20.9910i −0.228292 0.851999i −0.981059 0.193711i \(-0.937948\pi\)
0.752766 0.658288i \(-0.228719\pi\)
\(608\) −6.40757 1.01486i −0.259861 0.0411580i
\(609\) −46.5154 11.7824i −1.88490 0.477448i
\(610\) 0 0
\(611\) 7.82946 + 8.69550i 0.316746 + 0.351782i
\(612\) −0.251616 4.80112i −0.0101710 0.194074i
\(613\) −0.370639 7.07221i −0.0149700 0.285644i −0.995849 0.0910239i \(-0.970986\pi\)
0.980879 0.194620i \(-0.0623473\pi\)
\(614\) −3.11999 3.46510i −0.125913 0.139840i
\(615\) 0 0
\(616\) −34.6713 8.78228i −1.39694 0.353848i
\(617\) −12.2737 1.94396i −0.494119 0.0782608i −0.0955982 0.995420i \(-0.530476\pi\)
−0.398521 + 0.917159i \(0.630476\pi\)
\(618\) 4.84659 + 18.0877i 0.194959 + 0.727595i
\(619\) −25.0310 11.1445i −1.00608 0.447937i −0.163522 0.986540i \(-0.552286\pi\)
−0.842560 + 0.538603i \(0.818952\pi\)
\(620\) 0 0
\(621\) −25.3815 57.0079i −1.01853 2.28765i
\(622\) −19.6519 + 3.11255i −0.787969 + 0.124802i
\(623\) 7.54815 3.48548i 0.302410 0.139643i
\(624\) 1.56282i 0.0625628i
\(625\) 0 0
\(626\) −4.97403 + 2.87176i −0.198802 + 0.114778i
\(627\) −14.6971 9.54440i −0.586945 0.381167i
\(628\) −21.2768 8.16739i −0.849036 0.325914i
\(629\) 2.67675 + 1.94477i 0.106729 + 0.0775432i
\(630\) 0 0
\(631\) 29.5709 21.4845i 1.17720 0.855286i 0.185347 0.982673i \(-0.440659\pi\)
0.991853 + 0.127387i \(0.0406590\pi\)
\(632\) 12.6586 3.39187i 0.503534 0.134921i
\(633\) 32.1376 + 83.7214i 1.27736 + 3.32762i
\(634\) 4.10650 + 3.69751i 0.163090 + 0.146847i
\(635\) 0 0
\(636\) 23.6985 + 7.70010i 0.939705 + 0.305329i
\(637\) −5.63547 + 3.06895i −0.223285 + 0.121596i
\(638\) −20.7522 10.5738i −0.821587 0.418619i
\(639\) −38.7731 + 34.9114i −1.53384 + 1.38107i
\(640\) 0 0
\(641\) 29.7244 33.0123i 1.17404 1.30391i 0.230339 0.973110i \(-0.426016\pi\)
0.943703 0.330795i \(-0.107317\pi\)
\(642\) 3.05655 + 2.47515i 0.120633 + 0.0976863i
\(643\) 9.86123 + 9.86123i 0.388889 + 0.388889i 0.874291 0.485402i \(-0.161327\pi\)
−0.485402 + 0.874291i \(0.661327\pi\)
\(644\) 8.17960 16.6128i 0.322321 0.654636i
\(645\) 0 0
\(646\) −0.423601 + 0.188599i −0.0166663 + 0.00742033i
\(647\) −30.5289 37.7000i −1.20021 1.48214i −0.834139 0.551554i \(-0.814035\pi\)
−0.366074 0.930586i \(-0.619298\pi\)
\(648\) 25.4721 39.2236i 1.00064 1.54085i
\(649\) 22.0556 38.2014i 0.865759 1.49954i
\(650\) 0 0
\(651\) 2.84061 + 0.109827i 0.111332 + 0.00430445i
\(652\) 21.9616 11.1900i 0.860084 0.438235i
\(653\) 16.2632 42.3671i 0.636428 1.65795i −0.111171 0.993801i \(-0.535460\pi\)
0.747599 0.664151i \(-0.231207\pi\)
\(654\) −1.57478 + 14.9830i −0.0615786 + 0.585882i
\(655\) 0 0
\(656\) −3.83914 + 0.403510i −0.149893 + 0.0157544i
\(657\) −5.83988 + 5.83988i −0.227835 + 0.227835i
\(658\) −17.8781 + 20.4119i −0.696962 + 0.795737i
\(659\) −22.0985 + 7.18025i −0.860837 + 0.279703i −0.705978 0.708234i \(-0.749492\pi\)
−0.154859 + 0.987937i \(0.549492\pi\)
\(660\) 0 0
\(661\) −2.48937 11.7116i −0.0968254 0.455528i −0.999673 0.0255671i \(-0.991861\pi\)
0.902848 0.429960i \(-0.141472\pi\)
\(662\) 14.7734 0.774242i 0.574186 0.0300918i
\(663\) −0.812139 1.25058i −0.0315408 0.0485686i
\(664\) −2.89110 + 8.89790i −0.112197 + 0.345306i
\(665\) 0 0
\(666\) 10.8534 + 33.4034i 0.420562 + 1.29436i
\(667\) 18.7942 23.2090i 0.727716 0.898654i
\(668\) 0.118578 0.442538i 0.00458790 0.0171223i
\(669\) 28.5483 64.1206i 1.10374 2.47905i
\(670\) 0 0
\(671\) 4.26953 5.87650i 0.164823 0.226860i
\(672\) 48.0411 5.71654i 1.85323 0.220520i
\(673\) −10.4791 20.5664i −0.403939 0.792775i 0.596009 0.802978i \(-0.296752\pi\)
−0.999948 + 0.0102030i \(0.996752\pi\)
\(674\) 8.77620 + 5.06694i 0.338046 + 0.195171i
\(675\) 0 0
\(676\) 8.23459 + 14.2627i 0.316715 + 0.548566i
\(677\) −11.5308 0.604301i −0.443163 0.0232252i −0.170550 0.985349i \(-0.554554\pi\)
−0.272613 + 0.962124i \(0.587888\pi\)
\(678\) 0.995936 + 6.28809i 0.0382487 + 0.241493i
\(679\) 1.34598 9.32416i 0.0516539 0.357828i
\(680\) 0 0
\(681\) 1.83021 + 17.4132i 0.0701336 + 0.667277i
\(682\) 1.33279 + 0.357120i 0.0510352 + 0.0136748i
\(683\) −13.5163 + 5.18841i −0.517186 + 0.198529i −0.602939 0.797787i \(-0.706004\pi\)
0.0857529 + 0.996316i \(0.472670\pi\)
\(684\) 10.1009 + 2.14701i 0.386217 + 0.0820931i
\(685\) 0 0
\(686\) −8.61116 12.1361i −0.328776 0.463358i
\(687\) −22.7102 + 44.5713i −0.866448 + 1.70050i
\(688\) 1.94695 1.26437i 0.0742270 0.0482036i
\(689\) 5.25678 1.11736i 0.200267 0.0425681i
\(690\) 0 0
\(691\) −9.11485 + 42.8820i −0.346745 + 1.63131i 0.366518 + 0.930411i \(0.380550\pi\)
−0.713263 + 0.700896i \(0.752784\pi\)
\(692\) 3.77152 23.8124i 0.143372 0.905213i
\(693\) 86.8056 + 26.8943i 3.29747 + 1.02163i
\(694\) −4.86115 6.69080i −0.184527 0.253979i
\(695\) 0 0
\(696\) 48.6139 + 5.10952i 1.84270 + 0.193676i
\(697\) −2.86243 + 2.31795i −0.108422 + 0.0877986i
\(698\) 0.474216 9.04857i 0.0179493 0.342494i
\(699\) −38.5425 −1.45781
\(700\) 0 0
\(701\) −30.4358 −1.14955 −0.574773 0.818313i \(-0.694910\pi\)
−0.574773 + 0.818313i \(0.694910\pi\)
\(702\) 0.465515 8.88255i 0.0175697 0.335250i
\(703\) −5.52294 + 4.47239i −0.208302 + 0.168679i
\(704\) 17.9343 + 1.88498i 0.675926 + 0.0710427i
\(705\) 0 0
\(706\) 7.85780 + 10.8153i 0.295732 + 0.407041i
\(707\) 5.79808 + 25.5495i 0.218059 + 0.960888i
\(708\) −5.84762 + 36.9204i −0.219767 + 1.38755i
\(709\) 0.889983 4.18704i 0.0334240 0.157248i −0.958271 0.285863i \(-0.907720\pi\)
0.991695 + 0.128615i \(0.0410532\pi\)
\(710\) 0 0
\(711\) −32.5706 + 6.92309i −1.22149 + 0.259636i
\(712\) −7.10310 + 4.61281i −0.266200 + 0.172872i
\(713\) −0.803220 + 1.57641i −0.0300808 + 0.0590370i
\(714\) 2.65724 2.21281i 0.0994445 0.0828125i
\(715\) 0 0
\(716\) 13.0623 + 2.77648i 0.488162 + 0.103762i
\(717\) −44.2203 + 16.9746i −1.65144 + 0.633927i
\(718\) 13.4743 + 3.61042i 0.502856 + 0.134740i
\(719\) −1.92780 18.3418i −0.0718947 0.684033i −0.969810 0.243864i \(-0.921585\pi\)
0.897915 0.440169i \(-0.145082\pi\)
\(720\) 0 0
\(721\) 12.1547 15.4381i 0.452667 0.574945i
\(722\) 2.23236 + 14.0946i 0.0830798 + 0.524545i
\(723\) −72.7383 3.81205i −2.70517 0.141772i
\(724\) −14.5351 25.1755i −0.540193 0.935641i
\(725\) 0 0
\(726\) 30.9143 + 17.8484i 1.14734 + 0.662415i
\(727\) 15.6762 + 30.7663i 0.581398 + 1.14106i 0.975089 + 0.221816i \(0.0711983\pi\)
−0.393690 + 0.919243i \(0.628802\pi\)
\(728\) 5.23527 3.91447i 0.194032 0.145080i
\(729\) −3.02204 + 4.15948i −0.111927 + 0.154055i
\(730\) 0 0
\(731\) 0.900929 2.02352i 0.0333221 0.0748426i
\(732\) −1.59314 + 5.94569i −0.0588843 + 0.219759i
\(733\) −17.6104 + 21.7471i −0.650456 + 0.803247i −0.990551 0.137144i \(-0.956208\pi\)
0.340095 + 0.940391i \(0.389541\pi\)
\(734\) 1.85303 + 5.70305i 0.0683967 + 0.210504i
\(735\) 0 0
\(736\) −9.30467 + 28.6368i −0.342975 + 1.05557i
\(737\) 3.84296 + 5.91764i 0.141557 + 0.217979i
\(738\) −39.0455 + 2.04629i −1.43728 + 0.0753249i
\(739\) −1.73453 8.16031i −0.0638056 0.300182i 0.934661 0.355540i \(-0.115703\pi\)
−0.998467 + 0.0553586i \(0.982370\pi\)
\(740\) 0 0
\(741\) 3.04611 0.989740i 0.111902 0.0363590i
\(742\) 4.01340 + 11.7988i 0.147337 + 0.433149i
\(743\) 31.5650 31.5650i 1.15801 1.15801i 0.173106 0.984903i \(-0.444620\pi\)
0.984903 0.173106i \(-0.0553802\pi\)
\(744\) −2.88002 + 0.302702i −0.105587 + 0.0110976i
\(745\) 0 0
\(746\) 2.47884 23.5846i 0.0907569 0.863495i
\(747\) 8.51899 22.1927i 0.311694 0.811989i
\(748\) −3.13745 + 1.59861i −0.114717 + 0.0584510i
\(749\) 0.159440 4.12382i 0.00582580 0.150681i
\(750\) 0 0
\(751\) 22.8072 39.5032i 0.832247 1.44149i −0.0640055 0.997950i \(-0.520388\pi\)
0.896252 0.443544i \(-0.146279\pi\)
\(752\) −3.77662 + 5.81549i −0.137719 + 0.212069i
\(753\) 43.7686 + 54.0497i 1.59502 + 1.96968i
\(754\) 3.88877 1.73139i 0.141621 0.0630535i
\(755\) 0 0
\(756\) −43.1795 + 2.85728i −1.57042 + 0.103918i
\(757\) −11.9819 11.9819i −0.435488 0.435488i 0.455002 0.890490i \(-0.349638\pi\)
−0.890490 + 0.455002i \(0.849638\pi\)
\(758\) 0.593728 + 0.480792i 0.0215652 + 0.0174631i
\(759\) −54.4247 + 60.4447i −1.97549 + 2.19401i
\(760\) 0 0
\(761\) −17.1557 + 15.4470i −0.621892 + 0.559954i −0.918687 0.394987i \(-0.870749\pi\)
0.296794 + 0.954941i \(0.404082\pi\)
\(762\) −20.7111 10.5528i −0.750285 0.382289i
\(763\) 13.5805 8.09106i 0.491647 0.292916i
\(764\) −0.934503 0.303638i −0.0338091 0.0109852i
\(765\) 0 0
\(766\) 6.05342 + 5.45053i 0.218719 + 0.196936i
\(767\) 2.88920 + 7.52662i 0.104323 + 0.271770i
\(768\) −43.1446 + 11.5606i −1.55685 + 0.417155i
\(769\) 33.2899 24.1865i 1.20046 0.872188i 0.206133 0.978524i \(-0.433912\pi\)
0.994330 + 0.106336i \(0.0339120\pi\)
\(770\) 0 0
\(771\) −0.598719 0.434994i −0.0215623 0.0156659i
\(772\) −18.6076 7.14280i −0.669703 0.257075i
\(773\) 15.1818 + 9.85916i 0.546050 + 0.354609i 0.787996 0.615681i \(-0.211119\pi\)
−0.241945 + 0.970290i \(0.577785\pi\)
\(774\) 20.3630 11.7566i 0.731933 0.422582i
\(775\) 0 0
\(776\) 9.59695i 0.344510i
\(777\) 30.5605 43.2996i 1.09635 1.55337i
\(778\) 10.6788 1.69136i 0.382854 0.0606381i
\(779\) −3.21783 7.22737i −0.115291 0.258947i
\(780\) 0 0
\(781\) 34.9096 + 15.5428i 1.24916 + 0.556164i
\(782\) 0.557016 + 2.07881i 0.0199189 + 0.0743382i
\(783\) −68.9320 10.9178i −2.46343 0.390169i
\(784\) −2.62111 2.75516i −0.0936111 0.0983985i
\(785\) 0 0
\(786\) 9.47643 + 10.5246i 0.338013 + 0.375401i
\(787\) 0.803521 + 15.3321i 0.0286424 + 0.546530i 0.974835 + 0.222927i \(0.0715610\pi\)
−0.946193 + 0.323603i \(0.895106\pi\)
\(788\) −1.73197 33.0480i −0.0616989 1.17728i
\(789\) 48.0915 + 53.4110i 1.71210 + 1.90148i
\(790\) 0 0
\(791\) 4.65843 4.78800i 0.165635 0.170242i
\(792\) −91.4358 14.4820i −3.24903 0.514596i
\(793\) 0.343602 + 1.28234i 0.0122017 + 0.0455373i
\(794\) 19.8006 + 8.81579i 0.702697 + 0.312861i
\(795\) 0 0
\(796\) −0.537385 1.20699i −0.0190471 0.0427805i
\(797\) 15.1507 2.39964i 0.536667 0.0849997i 0.117783 0.993039i \(-0.462421\pi\)
0.418884 + 0.908040i \(0.362421\pi\)
\(798\) 3.11377 + 6.74319i 0.110226 + 0.238706i
\(799\) 6.61618i 0.234064i
\(800\) 0 0
\(801\) 18.6365 10.7598i 0.658489 0.380179i
\(802\) −10.3118 6.69659i −0.364124 0.236465i
\(803\) 5.64714 + 2.16773i 0.199283 + 0.0764977i
\(804\) −4.83740 3.51458i −0.170602 0.123950i
\(805\) 0 0
\(806\) −0.204021 + 0.148230i −0.00718632 + 0.00522117i
\(807\) −32.3585 + 8.67043i −1.13907 + 0.305214i
\(808\) −9.56448 24.9163i −0.336477 0.876553i
\(809\) 15.3954 + 13.8621i 0.541275 + 0.487366i 0.893818 0.448430i \(-0.148016\pi\)
−0.352544 + 0.935795i \(0.614683\pi\)
\(810\) 0 0
\(811\) −27.8184 9.03875i −0.976837 0.317394i −0.223264 0.974758i \(-0.571671\pi\)
−0.753573 + 0.657364i \(0.771671\pi\)
\(812\) −10.5999 17.7914i −0.371983 0.624357i
\(813\) −51.6407 26.3122i −1.81112 0.922811i
\(814\) 19.1168 17.2129i 0.670045 0.603311i
\(815\) 0 0
\(816\) 0.591298 0.656703i 0.0206996 0.0229892i
\(817\) 3.69741 + 2.99410i 0.129356 + 0.104750i
\(818\) 7.37305 + 7.37305i 0.257793 + 0.257793i
\(819\) −13.8043 + 9.23625i −0.482361 + 0.322741i
\(820\) 0 0
\(821\) 27.1109 12.0706i 0.946179 0.421266i 0.125140 0.992139i \(-0.460062\pi\)
0.821038 + 0.570873i \(0.193395\pi\)
\(822\) 6.85997 + 8.47136i 0.239269 + 0.295472i
\(823\) −8.10388 + 12.4789i −0.282484 + 0.434986i −0.951220 0.308513i \(-0.900169\pi\)
0.668737 + 0.743499i \(0.266835\pi\)
\(824\) −10.0081 + 17.3345i −0.348647 + 0.603875i
\(825\) 0 0
\(826\) −16.5402 + 8.71543i −0.575506 + 0.303249i
\(827\) 32.9522 16.7900i 1.14586 0.583844i 0.225239 0.974304i \(-0.427684\pi\)
0.920620 + 0.390459i \(0.127684\pi\)
\(828\) 17.1763 44.7458i 0.596918 1.55502i
\(829\) −4.28022 + 40.7236i −0.148658 + 1.41439i 0.624920 + 0.780689i \(0.285131\pi\)
−0.773579 + 0.633700i \(0.781535\pi\)
\(830\) 0 0
\(831\) 32.5784 3.42413i 1.13013 0.118782i
\(832\) −2.33053 + 2.33053i −0.0807967 + 0.0807967i
\(833\) −3.52919 0.842612i −0.122279 0.0291948i
\(834\) −15.4539 + 5.02127i −0.535124 + 0.173872i
\(835\) 0 0
\(836\) −1.57251 7.39807i −0.0543863 0.255867i
\(837\) 4.12896 0.216390i 0.142718 0.00747952i
\(838\) 8.04880 + 12.3941i 0.278041 + 0.428146i
\(839\) 6.83090 21.0234i 0.235829 0.725807i −0.761181 0.648539i \(-0.775380\pi\)
0.997010 0.0772679i \(-0.0246197\pi\)
\(840\) 0 0
\(841\) −1.35975 4.18488i −0.0468879 0.144306i
\(842\) −12.4773 + 15.4082i −0.429998 + 0.531003i
\(843\) 24.0413 89.7232i 0.828025 3.09023i
\(844\) −15.7424 + 35.3581i −0.541877 + 1.21707i
\(845\) 0 0
\(846\) −41.2820 + 56.8198i −1.41930 + 1.95350i
\(847\) −4.42578 37.1937i −0.152072 1.27799i
\(848\) 1.44589 + 2.83772i 0.0496522 + 0.0974479i
\(849\) −75.7356 43.7260i −2.59924 1.50067i
\(850\) 0 0
\(851\) 16.4924 + 28.5656i 0.565351 + 0.979217i
\(852\) −32.3383 1.69478i −1.10789 0.0580621i
\(853\) 2.30932 + 14.5805i 0.0790697 + 0.499226i 0.995161 + 0.0982567i \(0.0313266\pi\)
−0.916091 + 0.400969i \(0.868673\pi\)
\(854\) −2.85875 + 1.14260i −0.0978244 + 0.0390990i
\(855\) 0 0
\(856\) 0.439444 + 4.18103i 0.0150199 + 0.142905i
\(857\) −18.6322 4.99249i −0.636465 0.170540i −0.0738633 0.997268i \(-0.523533\pi\)
−0.562602 + 0.826728i \(0.690200\pi\)
\(858\) −10.8234 + 4.15473i −0.369506 + 0.141840i
\(859\) −29.3200 6.23216i −1.00039 0.212639i −0.321522 0.946902i \(-0.604194\pi\)
−0.678864 + 0.734264i \(0.737528\pi\)
\(860\) 0 0
\(861\) 37.7545 + 45.3371i 1.28667 + 1.54508i
\(862\) 11.1741 21.9305i 0.380592 0.746955i
\(863\) 21.6157 14.0374i 0.735807 0.477839i −0.121534 0.992587i \(-0.538781\pi\)
0.857341 + 0.514749i \(0.172115\pi\)
\(864\) 68.8289 14.6300i 2.34161 0.497724i
\(865\) 0 0
\(866\) −4.33318 + 20.3860i −0.147247 + 0.692745i
\(867\) −8.21371 + 51.8593i −0.278952 + 1.76124i
\(868\) 0.833385 + 0.900420i 0.0282869 + 0.0305622i
\(869\) 14.3350 + 19.7304i 0.486282 + 0.669309i
\(870\) 0 0
\(871\) −1.28254 0.134800i −0.0434571 0.00456753i
\(872\) −12.5149 + 10.1343i −0.423807 + 0.343192i
\(873\) 1.27618 24.3509i 0.0431921 0.824154i
\(874\) −4.62263 −0.156363
\(875\) 0 0
\(876\) −5.12595 −0.173190
\(877\) −1.12967 + 21.5554i −0.0381463 + 0.727876i 0.910879 + 0.412674i \(0.135405\pi\)
−0.949025 + 0.315201i \(0.897928\pi\)
\(878\) −8.31526 + 6.73356i −0.280626 + 0.227247i
\(879\) −21.4100 2.25028i −0.722141 0.0759000i
\(880\) 0 0
\(881\) −18.9856 26.1314i −0.639640 0.880388i 0.358957 0.933354i \(-0.383133\pi\)
−0.998596 + 0.0529657i \(0.983133\pi\)
\(882\) −25.0512 29.2569i −0.843517 0.985131i
\(883\) 2.76060 17.4297i 0.0929015 0.586557i −0.896691 0.442657i \(-0.854036\pi\)
0.989592 0.143899i \(-0.0459642\pi\)
\(884\) 0.133806 0.629506i 0.00450037 0.0211726i
\(885\) 0 0
\(886\) −11.8051 + 2.50926i −0.396601 + 0.0843001i
\(887\) −19.3404 + 12.5598i −0.649387 + 0.421717i −0.826859 0.562409i \(-0.809875\pi\)
0.177472 + 0.984126i \(0.443208\pi\)
\(888\) −24.5105 + 48.1046i −0.822519 + 1.61429i
\(889\) 4.14553 + 24.0354i 0.139037 + 0.806122i
\(890\) 0 0
\(891\) 85.1326 + 18.0955i 2.85205 + 0.606222i
\(892\) 28.2809 10.8560i 0.946914 0.363486i
\(893\) −13.7268 3.67808i −0.459349 0.123082i
\(894\) −0.586018 5.57559i −0.0195994 0.186476i
\(895\) 0 0
\(896\) 18.2206 + 14.3455i 0.608708 + 0.479249i
\(897\) −2.32550 14.6826i −0.0776462 0.490239i
\(898\) −3.10532 0.162743i −0.103626 0.00543080i
\(899\) 0.989361 + 1.71362i 0.0329970 + 0.0571525i
\(900\) 0 0
\(901\) 2.63168 + 1.51940i 0.0876739 + 0.0506185i
\(902\) 13.0008 + 25.5156i 0.432881 + 0.849576i
\(903\) −32.6078 13.9852i −1.08512 0.465399i
\(904\) −3.99998 + 5.50549i −0.133037 + 0.183110i
\(905\) 0 0
\(906\) −12.7025 + 28.5303i −0.422012 + 0.947855i
\(907\) −10.6692 + 39.8182i −0.354266 + 1.32214i 0.527139 + 0.849779i \(0.323265\pi\)
−0.881405 + 0.472361i \(0.843402\pi\)
\(908\) −4.75566 + 5.87275i −0.157822 + 0.194894i
\(909\) 20.9552 + 64.4936i 0.695041 + 2.13912i
\(910\) 0 0
\(911\) 0.709840 2.18466i 0.0235181 0.0723812i −0.938609 0.344984i \(-0.887884\pi\)
0.962127 + 0.272603i \(0.0878844\pi\)
\(912\) 1.03376 + 1.59186i 0.0342314 + 0.0527117i
\(913\) −17.3869 + 0.911208i −0.575422 + 0.0301566i
\(914\) 7.07760 + 33.2975i 0.234106 + 1.10138i
\(915\) 0 0
\(916\) −20.5331 + 6.67160i −0.678432 + 0.220436i
\(917\) 2.88998 14.5766i 0.0954355 0.481361i
\(918\) 3.55635 3.55635i 0.117377 0.117377i
\(919\) 25.3891 2.66851i 0.837511 0.0880259i 0.323945 0.946076i \(-0.394991\pi\)
0.513566 + 0.858050i \(0.328324\pi\)
\(920\) 0 0
\(921\) −1.90360 + 18.1116i −0.0627258 + 0.596796i
\(922\) 6.62715 17.2643i 0.218254 0.568570i
\(923\) −6.22293 + 3.17074i −0.204830 + 0.104366i
\(924\) 26.2936 + 49.9000i 0.864995 + 1.64159i
\(925\) 0 0
\(926\) −7.25389 + 12.5641i −0.238378 + 0.412882i
\(927\) 27.6991 42.6529i 0.909759 1.40091i
\(928\) 21.1927 + 26.1708i 0.695685 + 0.859100i
\(929\) 41.0517 18.2774i 1.34686 0.599662i 0.398593 0.917128i \(-0.369499\pi\)
0.948270 + 0.317466i \(0.102832\pi\)
\(930\) 0 0
\(931\) 3.71015 6.85369i 0.121595 0.224621i
\(932\) −11.7625 11.7625i −0.385293 0.385293i
\(933\) 60.3929 + 48.9052i 1.97718 + 1.60108i
\(934\) −14.7426 + 16.3733i −0.482393 + 0.535752i
\(935\) 0 0
\(936\) 12.5739 11.3216i 0.410989 0.370057i
\(937\) 50.8942 + 25.9319i 1.66264 + 0.847158i 0.994686 + 0.102956i \(0.0328301\pi\)
0.667955 + 0.744202i \(0.267170\pi\)
\(938\) −0.0410173 2.99029i −0.00133926 0.0976363i
\(939\) 21.3345 + 6.93200i 0.696226 + 0.226217i
\(940\) 0 0
\(941\) 24.2474 + 21.8325i 0.790444 + 0.711719i 0.961879 0.273477i \(-0.0881736\pi\)
−0.171435 + 0.985195i \(0.554840\pi\)
\(942\) −15.2050 39.6104i −0.495407 1.29058i
\(943\) −35.4682 + 9.50367i −1.15500 + 0.309482i
\(944\) −3.86527 + 2.80828i −0.125804 + 0.0914018i
\(945\) 0 0
\(946\) −13.9324 10.1225i −0.452983 0.329111i
\(947\) 34.2262 + 13.1382i 1.11220 + 0.426934i 0.843954 0.536415i \(-0.180222\pi\)
0.268248 + 0.963350i \(0.413555\pi\)
\(948\) −17.3328 11.2560i −0.562942 0.365579i
\(949\) −0.957429 + 0.552772i −0.0310795 + 0.0179437i
\(950\) 0 0
\(951\) 21.5823i 0.699854i
\(952\) 3.68093 + 0.335907i 0.119300 + 0.0108868i
\(953\) 46.1551 7.31025i 1.49511 0.236802i 0.645316 0.763916i \(-0.276726\pi\)
0.849795 + 0.527113i \(0.176726\pi\)
\(954\) 13.1205 + 29.4691i 0.424791 + 0.954096i
\(955\) 0 0
\(956\) −18.6756 8.31490i −0.604011 0.268923i
\(957\) 23.5439 + 87.8669i 0.761065 + 2.84034i
\(958\) 28.9779 + 4.58964i 0.936232 + 0.148285i
\(959\) 2.80853 11.0877i 0.0906920 0.358040i
\(960\) 0 0
\(961\) 20.6646 + 22.9504i 0.666600 + 0.740335i
\(962\) 0.246060 + 4.69511i 0.00793331 + 0.151377i
\(963\) −0.559045 10.6672i −0.0180150 0.343746i
\(964\) −21.0351 23.3618i −0.677493 0.752433i
\(965\) 0 0
\(966\) 33.1731 9.37819i 1.06733 0.301738i
\(967\) 7.10565 + 1.12542i 0.228502 + 0.0361912i 0.269635 0.962962i \(-0.413097\pi\)
−0.0411332 + 0.999154i \(0.513097\pi\)
\(968\) 9.87561 + 36.8563i 0.317414 + 1.18461i
\(969\) 1.65446 + 0.736612i 0.0531488 + 0.0236634i
\(970\) 0 0
\(971\) 9.07173 + 20.3754i 0.291126 + 0.653879i 0.998602 0.0528579i \(-0.0168330\pi\)
−0.707476 + 0.706737i \(0.750166\pi\)
\(972\) −24.3826 + 3.86183i −0.782074 + 0.123868i
\(973\) 13.9299 + 9.83163i 0.446573 + 0.315188i
\(974\) 28.9792i 0.928555i
\(975\) 0 0
\(976\) −0.681341 + 0.393372i −0.0218092 + 0.0125915i
\(977\) −48.1113 31.2438i −1.53922 0.999579i −0.986039 0.166516i \(-0.946748\pi\)
−0.553178 0.833063i \(-0.686585\pi\)
\(978\) 42.8390 + 16.4444i 1.36984 + 0.525832i
\(979\) −12.7512 9.26427i −0.407529 0.296087i
\(980\) 0 0
\(981\) 33.1024 24.0503i 1.05688 0.767867i
\(982\) −7.26776 + 1.94739i −0.231924 + 0.0621438i
\(983\) −6.67425 17.3870i −0.212875 0.554560i 0.785015 0.619477i \(-0.212655\pi\)
−0.997891 + 0.0649169i \(0.979322\pi\)
\(984\) −44.6644 40.2160i −1.42385 1.28204i
\(985\) 0 0
\(986\) 2.28915 + 0.743790i 0.0729014 + 0.0236871i
\(987\) 105.969 1.45355i 3.37302 0.0462671i
\(988\) 1.23167 + 0.627566i 0.0391846 + 0.0199655i
\(989\) 16.4102 14.7758i 0.521813 0.469843i
\(990\) 0 0
\(991\) −28.2917 + 31.4211i −0.898714 + 0.998123i 0.101280 + 0.994858i \(0.467706\pi\)
−0.999995 + 0.00326534i \(0.998961\pi\)
\(992\) −1.55043 1.25552i −0.0492263 0.0398626i
\(993\) −40.8565 40.8565i −1.29654 1.29654i
\(994\) −9.00652 13.4610i −0.285670 0.426956i
\(995\) 0 0
\(996\) 13.4786 6.00106i 0.427086 0.190151i
\(997\) −10.7426 13.2661i −0.340223 0.420140i 0.578104 0.815963i \(-0.303793\pi\)
−0.918327 + 0.395823i \(0.870459\pi\)
\(998\) −14.0499 + 21.6349i −0.444741 + 0.684841i
\(999\) 38.5417 66.7562i 1.21941 2.11207i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.a.257.8 288
5.2 odd 4 175.2.x.a.103.8 yes 288
5.3 odd 4 875.2.bb.c.243.11 288
5.4 even 2 875.2.bb.b.257.11 288
7.3 odd 6 inner 875.2.bb.a.507.8 288
25.6 even 5 875.2.bb.c.607.8 288
25.8 odd 20 inner 875.2.bb.a.768.8 288
25.17 odd 20 875.2.bb.b.768.11 288
25.19 even 10 175.2.x.a.117.11 yes 288
35.3 even 12 875.2.bb.c.493.8 288
35.17 even 12 175.2.x.a.3.11 288
35.24 odd 6 875.2.bb.b.507.11 288
175.17 even 60 875.2.bb.b.143.11 288
175.31 odd 30 875.2.bb.c.857.11 288
175.94 odd 30 175.2.x.a.17.8 yes 288
175.108 even 60 inner 875.2.bb.a.143.8 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.3.11 288 35.17 even 12
175.2.x.a.17.8 yes 288 175.94 odd 30
175.2.x.a.103.8 yes 288 5.2 odd 4
175.2.x.a.117.11 yes 288 25.19 even 10
875.2.bb.a.143.8 288 175.108 even 60 inner
875.2.bb.a.257.8 288 1.1 even 1 trivial
875.2.bb.a.507.8 288 7.3 odd 6 inner
875.2.bb.a.768.8 288 25.8 odd 20 inner
875.2.bb.b.143.11 288 175.17 even 60
875.2.bb.b.257.11 288 5.4 even 2
875.2.bb.b.507.11 288 35.24 odd 6
875.2.bb.b.768.11 288 25.17 odd 20
875.2.bb.c.243.11 288 5.3 odd 4
875.2.bb.c.493.8 288 35.3 even 12
875.2.bb.c.607.8 288 25.6 even 5
875.2.bb.c.857.11 288 175.31 odd 30