Properties

Label 875.2.bb.a.857.13
Level $875$
Weight $2$
Character 875.857
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(82,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([27, 50]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 857.13
Character \(\chi\) \(=\) 875.857
Dual form 875.2.bb.a.243.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.31913 - 0.0691326i) q^{2} +(-0.985411 + 1.21688i) q^{3} +(-0.253721 + 0.0266672i) q^{4} +(-1.21576 + 1.67335i) q^{6} +(2.58371 - 0.569615i) q^{7} +(-2.94220 + 0.465999i) q^{8} +(0.113970 + 0.536187i) q^{9} +(0.468564 + 0.0995964i) q^{11} +(0.217569 - 0.335027i) q^{12} +(-0.195060 + 0.0993879i) q^{13} +(3.36886 - 0.930015i) q^{14} +(-3.34984 + 0.712030i) q^{16} +(-1.72008 + 4.48096i) q^{17} +(0.187409 + 0.699421i) q^{18} +(-0.561217 + 5.33963i) q^{19} +(-1.85286 + 3.70537i) q^{21} +(0.624982 + 0.0989874i) q^{22} +(0.0278939 + 0.532247i) q^{23} +(2.33221 - 4.03951i) q^{24} +(-0.250438 + 0.144591i) q^{26} +(-4.95029 - 2.52230i) q^{27} +(-0.640352 + 0.213424i) q^{28} +(2.22883 + 3.06772i) q^{29} +(1.36200 + 3.05910i) q^{31} +(1.38510 - 0.371137i) q^{32} +(-0.582925 + 0.472043i) q^{33} +(-1.95922 + 6.02987i) q^{34} +(-0.0432152 - 0.133003i) q^{36} +(-6.39160 - 4.15075i) q^{37} +(-0.371176 + 7.08245i) q^{38} +(0.0712708 - 0.335303i) q^{39} +(-2.67924 - 0.870538i) q^{41} +(-2.18800 + 5.01595i) q^{42} +(-6.03300 + 6.03300i) q^{43} +(-0.121541 - 0.0127744i) q^{44} +(0.0735913 + 0.700174i) q^{46} +(-6.98550 + 2.68148i) q^{47} +(2.43451 - 4.77800i) q^{48} +(6.35108 - 2.94344i) q^{49} +(-3.75781 - 6.50871i) q^{51} +(0.0468405 - 0.0304185i) q^{52} +(-3.76438 - 3.04833i) q^{53} +(-6.70444 - 2.98501i) q^{54} +(-7.33634 + 2.87993i) q^{56} +(-5.94466 - 5.94466i) q^{57} +(3.15219 + 3.89263i) q^{58} +(3.58205 + 3.97827i) q^{59} +(6.61519 + 5.95635i) q^{61} +(2.00814 + 3.94119i) q^{62} +(0.599885 + 1.32043i) q^{63} +(8.31559 - 2.70190i) q^{64} +(-0.736320 + 0.662985i) q^{66} +(12.1287 + 4.65578i) q^{67} +(0.316926 - 1.18278i) q^{68} +(-0.675168 - 0.490538i) q^{69} +(3.80548 - 2.76485i) q^{71} +(-0.585185 - 1.52446i) q^{72} +(7.14378 + 11.0005i) q^{73} +(-8.71829 - 5.03351i) q^{74} -1.36974i q^{76} +(1.26736 - 0.00957352i) q^{77} +(0.0708350 - 0.447234i) q^{78} +(3.76871 - 8.46467i) q^{79} +(6.44508 - 2.86953i) q^{81} +(-3.59445 - 0.963129i) q^{82} +(-1.48616 - 9.38322i) q^{83} +(0.371298 - 0.989542i) q^{84} +(-7.54123 + 8.37538i) q^{86} +(-5.92936 - 0.310744i) q^{87} +(-1.42502 - 0.0746822i) q^{88} +(3.91910 - 4.35260i) q^{89} +(-0.447364 + 0.367898i) q^{91} +(-0.0212708 - 0.134299i) q^{92} +(-5.06469 - 1.35708i) q^{93} +(-9.02940 + 4.02015i) q^{94} +(-0.913264 + 2.05122i) q^{96} +(-1.50690 + 9.51421i) q^{97} +(8.17440 - 4.32184i) q^{98} +0.262589i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 2 q^{2} - 6 q^{3} + 10 q^{4} + 10 q^{7} - 64 q^{8} + 10 q^{9} - 6 q^{11} + 6 q^{12} + 20 q^{14} - 30 q^{16} + 12 q^{17} + 14 q^{18} + 30 q^{19} - 12 q^{21} + 8 q^{22} - 30 q^{23} - 48 q^{26} + 58 q^{28}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.31913 0.0691326i 0.932765 0.0488842i 0.420105 0.907476i \(-0.361993\pi\)
0.512660 + 0.858591i \(0.328660\pi\)
\(3\) −0.985411 + 1.21688i −0.568927 + 0.702567i −0.977685 0.210076i \(-0.932629\pi\)
0.408758 + 0.912643i \(0.365962\pi\)
\(4\) −0.253721 + 0.0266672i −0.126861 + 0.0133336i
\(5\) 0 0
\(6\) −1.21576 + 1.67335i −0.496331 + 0.683141i
\(7\) 2.58371 0.569615i 0.976549 0.215294i
\(8\) −2.94220 + 0.465999i −1.04023 + 0.164755i
\(9\) 0.113970 + 0.536187i 0.0379900 + 0.178729i
\(10\) 0 0
\(11\) 0.468564 + 0.0995964i 0.141277 + 0.0300294i 0.278008 0.960579i \(-0.410326\pi\)
−0.136730 + 0.990608i \(0.543659\pi\)
\(12\) 0.217569 0.335027i 0.0628068 0.0967140i
\(13\) −0.195060 + 0.0993879i −0.0540999 + 0.0275653i −0.480831 0.876813i \(-0.659665\pi\)
0.426731 + 0.904378i \(0.359665\pi\)
\(14\) 3.36886 0.930015i 0.900367 0.248557i
\(15\) 0 0
\(16\) −3.34984 + 0.712030i −0.837460 + 0.178008i
\(17\) −1.72008 + 4.48096i −0.417180 + 1.08679i 0.550550 + 0.834802i \(0.314418\pi\)
−0.967730 + 0.251989i \(0.918915\pi\)
\(18\) 0.187409 + 0.699421i 0.0441728 + 0.164855i
\(19\) −0.561217 + 5.33963i −0.128752 + 1.22499i 0.719155 + 0.694849i \(0.244529\pi\)
−0.847907 + 0.530145i \(0.822138\pi\)
\(20\) 0 0
\(21\) −1.85286 + 3.70537i −0.404327 + 0.808578i
\(22\) 0.624982 + 0.0989874i 0.133247 + 0.0211042i
\(23\) 0.0278939 + 0.532247i 0.00581628 + 0.110981i 0.999995 + 0.00323548i \(0.00102989\pi\)
−0.994178 + 0.107746i \(0.965637\pi\)
\(24\) 2.33221 4.03951i 0.476061 0.824561i
\(25\) 0 0
\(26\) −0.250438 + 0.144591i −0.0491150 + 0.0283565i
\(27\) −4.95029 2.52230i −0.952683 0.485416i
\(28\) −0.640352 + 0.213424i −0.121015 + 0.0403333i
\(29\) 2.22883 + 3.06772i 0.413883 + 0.569661i 0.964160 0.265321i \(-0.0854780\pi\)
−0.550277 + 0.834982i \(0.685478\pi\)
\(30\) 0 0
\(31\) 1.36200 + 3.05910i 0.244622 + 0.549431i 0.993573 0.113195i \(-0.0361086\pi\)
−0.748950 + 0.662626i \(0.769442\pi\)
\(32\) 1.38510 0.371137i 0.244853 0.0656083i
\(33\) −0.582925 + 0.472043i −0.101474 + 0.0821722i
\(34\) −1.95922 + 6.02987i −0.336004 + 1.03411i
\(35\) 0 0
\(36\) −0.0432152 0.133003i −0.00720254 0.0221671i
\(37\) −6.39160 4.15075i −1.05077 0.682379i −0.100861 0.994901i \(-0.532160\pi\)
−0.949911 + 0.312521i \(0.898826\pi\)
\(38\) −0.371176 + 7.08245i −0.0602126 + 1.14893i
\(39\) 0.0712708 0.335303i 0.0114125 0.0536914i
\(40\) 0 0
\(41\) −2.67924 0.870538i −0.418427 0.135955i 0.0922339 0.995737i \(-0.470599\pi\)
−0.510661 + 0.859782i \(0.670599\pi\)
\(42\) −2.18800 + 5.01595i −0.337615 + 0.773978i
\(43\) −6.03300 + 6.03300i −0.920024 + 0.920024i −0.997031 0.0770067i \(-0.975464\pi\)
0.0770067 + 0.997031i \(0.475464\pi\)
\(44\) −0.121541 0.0127744i −0.0183229 0.00192582i
\(45\) 0 0
\(46\) 0.0735913 + 0.700174i 0.0108504 + 0.103235i
\(47\) −6.98550 + 2.68148i −1.01894 + 0.391135i −0.809772 0.586745i \(-0.800409\pi\)
−0.209169 + 0.977880i \(0.567076\pi\)
\(48\) 2.43451 4.77800i 0.351391 0.689645i
\(49\) 6.35108 2.94344i 0.907297 0.420491i
\(50\) 0 0
\(51\) −3.75781 6.50871i −0.526198 0.911402i
\(52\) 0.0468405 0.0304185i 0.00649560 0.00421829i
\(53\) −3.76438 3.04833i −0.517077 0.418721i 0.334936 0.942241i \(-0.391285\pi\)
−0.852013 + 0.523520i \(0.824619\pi\)
\(54\) −6.70444 2.98501i −0.912359 0.406208i
\(55\) 0 0
\(56\) −7.33634 + 2.87993i −0.980360 + 0.384846i
\(57\) −5.94466 5.94466i −0.787389 0.787389i
\(58\) 3.15219 + 3.89263i 0.413903 + 0.511127i
\(59\) 3.58205 + 3.97827i 0.466343 + 0.517927i 0.929736 0.368226i \(-0.120035\pi\)
−0.463393 + 0.886153i \(0.653368\pi\)
\(60\) 0 0
\(61\) 6.61519 + 5.95635i 0.846989 + 0.762632i 0.973343 0.229353i \(-0.0736611\pi\)
−0.126355 + 0.991985i \(0.540328\pi\)
\(62\) 2.00814 + 3.94119i 0.255034 + 0.500532i
\(63\) 0.599885 + 1.32043i 0.0755785 + 0.166359i
\(64\) 8.31559 2.70190i 1.03945 0.337737i
\(65\) 0 0
\(66\) −0.736320 + 0.662985i −0.0906347 + 0.0816079i
\(67\) 12.1287 + 4.65578i 1.48176 + 0.568794i 0.958930 0.283644i \(-0.0915432\pi\)
0.522829 + 0.852437i \(0.324877\pi\)
\(68\) 0.316926 1.18278i 0.0384329 0.143434i
\(69\) −0.675168 0.490538i −0.0812807 0.0590539i
\(70\) 0 0
\(71\) 3.80548 2.76485i 0.451628 0.328127i −0.338610 0.940927i \(-0.609957\pi\)
0.790238 + 0.612800i \(0.209957\pi\)
\(72\) −0.585185 1.52446i −0.0689647 0.179659i
\(73\) 7.14378 + 11.0005i 0.836117 + 1.28751i 0.955599 + 0.294670i \(0.0952098\pi\)
−0.119482 + 0.992836i \(0.538124\pi\)
\(74\) −8.71829 5.03351i −1.01348 0.585133i
\(75\) 0 0
\(76\) 1.36974i 0.157120i
\(77\) 1.26736 0.00957352i 0.144429 0.00109100i
\(78\) 0.0708350 0.447234i 0.00802048 0.0506393i
\(79\) 3.76871 8.46467i 0.424013 0.952349i −0.567623 0.823288i \(-0.692137\pi\)
0.991637 0.129061i \(-0.0411963\pi\)
\(80\) 0 0
\(81\) 6.44508 2.86953i 0.716120 0.318837i
\(82\) −3.59445 0.963129i −0.396940 0.106360i
\(83\) −1.48616 9.38322i −0.163127 1.02994i −0.924376 0.381482i \(-0.875414\pi\)
0.761249 0.648459i \(-0.224586\pi\)
\(84\) 0.371298 0.989542i 0.0405119 0.107968i
\(85\) 0 0
\(86\) −7.54123 + 8.37538i −0.813192 + 0.903141i
\(87\) −5.92936 0.310744i −0.635694 0.0333153i
\(88\) −1.42502 0.0746822i −0.151908 0.00796115i
\(89\) 3.91910 4.35260i 0.415424 0.461375i −0.498721 0.866762i \(-0.666197\pi\)
0.914145 + 0.405388i \(0.132864\pi\)
\(90\) 0 0
\(91\) −0.447364 + 0.367898i −0.0468965 + 0.0385662i
\(92\) −0.0212708 0.134299i −0.00221764 0.0140016i
\(93\) −5.06469 1.35708i −0.525184 0.140723i
\(94\) −9.02940 + 4.02015i −0.931312 + 0.414647i
\(95\) 0 0
\(96\) −0.913264 + 2.05122i −0.0932096 + 0.209352i
\(97\) −1.50690 + 9.51421i −0.153003 + 0.966022i 0.785026 + 0.619463i \(0.212650\pi\)
−0.938028 + 0.346558i \(0.887350\pi\)
\(98\) 8.17440 4.32184i 0.825739 0.436572i
\(99\) 0.262589i 0.0263912i
\(100\) 0 0
\(101\) 15.0410 + 8.68390i 1.49663 + 0.864080i 0.999992 0.00387741i \(-0.00123422\pi\)
0.496638 + 0.867958i \(0.334568\pi\)
\(102\) −5.40700 8.32605i −0.535373 0.824402i
\(103\) −2.81276 7.32748i −0.277149 0.721998i −0.999535 0.0305073i \(-0.990288\pi\)
0.722386 0.691491i \(-0.243046\pi\)
\(104\) 0.527590 0.383317i 0.0517345 0.0375873i
\(105\) 0 0
\(106\) −5.17644 3.76090i −0.502780 0.365291i
\(107\) 0.556205 2.07579i 0.0537704 0.200674i −0.933815 0.357756i \(-0.883542\pi\)
0.987586 + 0.157082i \(0.0502087\pi\)
\(108\) 1.32326 + 0.507951i 0.127330 + 0.0488776i
\(109\) 8.12435 7.31520i 0.778171 0.700669i −0.181003 0.983482i \(-0.557935\pi\)
0.959175 + 0.282814i \(0.0912678\pi\)
\(110\) 0 0
\(111\) 11.3493 3.68762i 1.07723 0.350013i
\(112\) −8.24942 + 3.74780i −0.779497 + 0.354133i
\(113\) −8.07135 15.8409i −0.759289 1.49019i −0.868241 0.496142i \(-0.834750\pi\)
0.108952 0.994047i \(-0.465250\pi\)
\(114\) −8.25274 7.43080i −0.772940 0.695959i
\(115\) 0 0
\(116\) −0.647308 0.718909i −0.0601011 0.0667490i
\(117\) −0.0755215 0.0932613i −0.00698196 0.00862201i
\(118\) 5.00022 + 5.00022i 0.460307 + 0.460307i
\(119\) −1.89175 + 12.5573i −0.173417 + 1.15112i
\(120\) 0 0
\(121\) −9.83937 4.38077i −0.894488 0.398252i
\(122\) 9.13807 + 7.39986i 0.827322 + 0.669952i
\(123\) 3.69949 2.40248i 0.333572 0.216624i
\(124\) −0.427146 0.739839i −0.0383589 0.0664395i
\(125\) 0 0
\(126\) 0.882611 + 1.70035i 0.0786293 + 0.151479i
\(127\) 8.47711 16.6373i 0.752222 1.47632i −0.122902 0.992419i \(-0.539220\pi\)
0.875124 0.483899i \(-0.160780\pi\)
\(128\) 8.10511 3.11126i 0.716397 0.274999i
\(129\) −1.39646 13.2864i −0.122951 1.16980i
\(130\) 0 0
\(131\) 0.505966 + 0.0531792i 0.0442064 + 0.00464628i 0.126606 0.991953i \(-0.459592\pi\)
−0.0823994 + 0.996599i \(0.526258\pi\)
\(132\) 0.135313 0.135313i 0.0117774 0.0117774i
\(133\) 1.59151 + 14.1157i 0.138002 + 1.22399i
\(134\) 16.3212 + 5.30308i 1.40994 + 0.458117i
\(135\) 0 0
\(136\) 2.97269 13.9854i 0.254906 1.19924i
\(137\) 0.227695 4.34468i 0.0194533 0.371191i −0.971505 0.237020i \(-0.923829\pi\)
0.990958 0.134171i \(-0.0428373\pi\)
\(138\) −0.924546 0.600407i −0.0787026 0.0511101i
\(139\) 6.71334 + 20.6615i 0.569418 + 1.75249i 0.654444 + 0.756111i \(0.272903\pi\)
−0.0850255 + 0.996379i \(0.527097\pi\)
\(140\) 0 0
\(141\) 3.62054 11.1429i 0.304905 0.938401i
\(142\) 4.82878 3.91027i 0.405222 0.328143i
\(143\) −0.101297 + 0.0271424i −0.00847085 + 0.00226976i
\(144\) −0.763563 1.71499i −0.0636302 0.142916i
\(145\) 0 0
\(146\) 10.1841 + 14.0172i 0.842839 + 1.16007i
\(147\) −2.67661 + 10.6290i −0.220763 + 0.876665i
\(148\) 1.73237 + 0.882688i 0.142400 + 0.0725565i
\(149\) −10.0097 + 5.77912i −0.820030 + 0.473444i −0.850427 0.526094i \(-0.823656\pi\)
0.0303970 + 0.999538i \(0.490323\pi\)
\(150\) 0 0
\(151\) 8.08621 14.0057i 0.658046 1.13977i −0.323075 0.946373i \(-0.604716\pi\)
0.981121 0.193396i \(-0.0619502\pi\)
\(152\) −0.837045 15.9718i −0.0678933 1.29548i
\(153\) −2.59867 0.411589i −0.210090 0.0332750i
\(154\) 1.67115 0.100245i 0.134665 0.00807796i
\(155\) 0 0
\(156\) −0.00914134 + 0.0869740i −0.000731893 + 0.00696350i
\(157\) 1.04591 + 3.90339i 0.0834728 + 0.311525i 0.995021 0.0996695i \(-0.0317785\pi\)
−0.911548 + 0.411194i \(0.865112\pi\)
\(158\) 4.38623 11.4265i 0.348950 0.909046i
\(159\) 7.41892 1.57694i 0.588359 0.125059i
\(160\) 0 0
\(161\) 0.375246 + 1.35928i 0.0295735 + 0.107126i
\(162\) 8.30351 4.23085i 0.652386 0.332407i
\(163\) 9.09407 14.0036i 0.712303 1.09685i −0.278355 0.960478i \(-0.589789\pi\)
0.990658 0.136372i \(-0.0435441\pi\)
\(164\) 0.702996 + 0.149426i 0.0548947 + 0.0116682i
\(165\) 0 0
\(166\) −2.60912 12.2749i −0.202507 0.952719i
\(167\) 23.5551 3.73076i 1.82275 0.288695i 0.851078 0.525039i \(-0.175949\pi\)
0.971669 + 0.236344i \(0.0759492\pi\)
\(168\) 3.72478 11.7654i 0.287373 0.907718i
\(169\) −7.61304 + 10.4784i −0.585618 + 0.806034i
\(170\) 0 0
\(171\) −2.92700 + 0.307640i −0.223833 + 0.0235258i
\(172\) 1.36982 1.69158i 0.104448 0.128982i
\(173\) −24.4441 + 1.28106i −1.85845 + 0.0973971i −0.948394 0.317095i \(-0.897293\pi\)
−0.910053 + 0.414492i \(0.863959\pi\)
\(174\) −7.84307 −0.594581
\(175\) 0 0
\(176\) −1.64053 −0.123660
\(177\) −8.37088 + 0.438699i −0.629194 + 0.0329746i
\(178\) 4.86889 6.01258i 0.364939 0.450662i
\(179\) −17.6041 + 1.85027i −1.31579 + 0.138295i −0.736285 0.676672i \(-0.763422\pi\)
−0.579507 + 0.814967i \(0.696755\pi\)
\(180\) 0 0
\(181\) 0.557581 0.767444i 0.0414447 0.0570437i −0.787792 0.615942i \(-0.788776\pi\)
0.829236 + 0.558898i \(0.188776\pi\)
\(182\) −0.564698 + 0.516233i −0.0418582 + 0.0382657i
\(183\) −13.7668 + 2.18045i −1.01767 + 0.161184i
\(184\) −0.330096 1.55298i −0.0243350 0.114487i
\(185\) 0 0
\(186\) −6.77480 1.44003i −0.496753 0.105588i
\(187\) −1.25225 + 1.92830i −0.0915739 + 0.141011i
\(188\) 1.70086 0.866634i 0.124048 0.0632058i
\(189\) −14.2268 3.69712i −1.03485 0.268926i
\(190\) 0 0
\(191\) 10.2434 2.17730i 0.741184 0.157544i 0.178180 0.983998i \(-0.442979\pi\)
0.563004 + 0.826454i \(0.309646\pi\)
\(192\) −4.90638 + 12.7816i −0.354088 + 0.922430i
\(193\) 5.09648 + 19.0203i 0.366852 + 1.36911i 0.864892 + 0.501957i \(0.167387\pi\)
−0.498040 + 0.867154i \(0.665947\pi\)
\(194\) −1.33006 + 12.6546i −0.0954925 + 0.908551i
\(195\) 0 0
\(196\) −1.53291 + 0.916179i −0.109494 + 0.0654413i
\(197\) 14.1083 + 2.23453i 1.00517 + 0.159204i 0.637254 0.770654i \(-0.280070\pi\)
0.367920 + 0.929858i \(0.380070\pi\)
\(198\) 0.0181535 + 0.346389i 0.00129011 + 0.0246168i
\(199\) 3.58928 6.21681i 0.254437 0.440698i −0.710305 0.703894i \(-0.751443\pi\)
0.964742 + 0.263196i \(0.0847765\pi\)
\(200\) 0 0
\(201\) −17.6173 + 10.1714i −1.24263 + 0.717432i
\(202\) 20.4413 + 10.4154i 1.43824 + 0.732822i
\(203\) 7.50605 + 6.65650i 0.526821 + 0.467195i
\(204\) 1.12701 + 1.55119i 0.0789062 + 0.108605i
\(205\) 0 0
\(206\) −4.21696 9.47144i −0.293809 0.659906i
\(207\) −0.282205 + 0.0756165i −0.0196146 + 0.00525571i
\(208\) 0.582652 0.471822i 0.0403996 0.0327150i
\(209\) −0.794773 + 2.44606i −0.0549756 + 0.169198i
\(210\) 0 0
\(211\) −1.17257 3.60880i −0.0807231 0.248440i 0.902548 0.430590i \(-0.141694\pi\)
−0.983271 + 0.182150i \(0.941694\pi\)
\(212\) 1.03639 + 0.673042i 0.0711798 + 0.0462247i
\(213\) −0.385476 + 7.35533i −0.0264124 + 0.503979i
\(214\) 0.590202 2.77668i 0.0403454 0.189810i
\(215\) 0 0
\(216\) 15.7401 + 5.11428i 1.07098 + 0.347982i
\(217\) 5.26152 + 7.12800i 0.357175 + 0.483880i
\(218\) 10.2113 10.2113i 0.691600 0.691600i
\(219\) −20.4258 2.14684i −1.38025 0.145070i
\(220\) 0 0
\(221\) −0.109835 1.04501i −0.00738830 0.0702949i
\(222\) 14.7163 5.64905i 0.987692 0.379139i
\(223\) 1.74330 3.42142i 0.116740 0.229115i −0.825242 0.564780i \(-0.808961\pi\)
0.941981 + 0.335665i \(0.108961\pi\)
\(224\) 3.36729 1.74788i 0.224986 0.116785i
\(225\) 0 0
\(226\) −11.7423 20.3382i −0.781085 1.35288i
\(227\) 1.63746 1.06338i 0.108682 0.0705788i −0.489154 0.872198i \(-0.662694\pi\)
0.597836 + 0.801619i \(0.296028\pi\)
\(228\) 1.66682 + 1.34976i 0.110388 + 0.0893901i
\(229\) −10.0729 4.48475i −0.665637 0.296361i 0.0459653 0.998943i \(-0.485364\pi\)
−0.711603 + 0.702582i \(0.752030\pi\)
\(230\) 0 0
\(231\) −1.23722 + 1.55166i −0.0814034 + 0.102092i
\(232\) −7.98721 7.98721i −0.524386 0.524386i
\(233\) 12.3061 + 15.1967i 0.806198 + 0.995571i 0.999895 + 0.0145098i \(0.00461877\pi\)
−0.193697 + 0.981061i \(0.562048\pi\)
\(234\) −0.106070 0.117803i −0.00693401 0.00770100i
\(235\) 0 0
\(236\) −1.01493 0.913849i −0.0660665 0.0594865i
\(237\) 6.58676 + 12.9273i 0.427856 + 0.839715i
\(238\) −1.62735 + 16.6954i −0.105486 + 1.08220i
\(239\) −9.20533 + 2.99099i −0.595443 + 0.193471i −0.591207 0.806520i \(-0.701348\pi\)
−0.00423616 + 0.999991i \(0.501348\pi\)
\(240\) 0 0
\(241\) −9.32794 + 8.39891i −0.600865 + 0.541021i −0.912445 0.409198i \(-0.865808\pi\)
0.311580 + 0.950220i \(0.399142\pi\)
\(242\) −13.2822 5.09858i −0.853815 0.327749i
\(243\) 1.45470 5.42901i 0.0933190 0.348271i
\(244\) −1.83726 1.33484i −0.117618 0.0854546i
\(245\) 0 0
\(246\) 4.71402 3.42494i 0.300555 0.218366i
\(247\) −0.421223 1.09732i −0.0268018 0.0698211i
\(248\) −5.43281 8.36580i −0.344984 0.531229i
\(249\) 12.8827 + 7.43785i 0.816410 + 0.471354i
\(250\) 0 0
\(251\) 15.3215i 0.967086i 0.875321 + 0.483543i \(0.160650\pi\)
−0.875321 + 0.483543i \(0.839350\pi\)
\(252\) −0.187416 0.319024i −0.0118061 0.0200966i
\(253\) −0.0399398 + 0.252170i −0.00251099 + 0.0158538i
\(254\) 10.0322 22.5327i 0.629478 1.41383i
\(255\) 0 0
\(256\) −5.49862 + 2.44814i −0.343664 + 0.153009i
\(257\) −5.05092 1.35339i −0.315068 0.0844221i 0.0978199 0.995204i \(-0.468813\pi\)
−0.412888 + 0.910782i \(0.635480\pi\)
\(258\) −2.76064 17.4300i −0.171870 1.08514i
\(259\) −18.8783 7.08357i −1.17304 0.440152i
\(260\) 0 0
\(261\) −1.39085 + 1.54470i −0.0860914 + 0.0956142i
\(262\) 0.671111 + 0.0351714i 0.0414614 + 0.00217290i
\(263\) 11.6229 + 0.609132i 0.716701 + 0.0375607i 0.407201 0.913339i \(-0.366505\pi\)
0.309500 + 0.950899i \(0.399838\pi\)
\(264\) 1.49511 1.66049i 0.0920177 0.102196i
\(265\) 0 0
\(266\) 3.07527 + 18.5104i 0.188557 + 1.13495i
\(267\) 1.43467 + 9.05817i 0.0878006 + 0.554351i
\(268\) −3.20147 0.857832i −0.195561 0.0524004i
\(269\) −11.0120 + 4.90285i −0.671412 + 0.298932i −0.713984 0.700162i \(-0.753111\pi\)
0.0425725 + 0.999093i \(0.486445\pi\)
\(270\) 0 0
\(271\) 5.95538 13.3760i 0.361764 0.812535i −0.637355 0.770570i \(-0.719972\pi\)
0.999119 0.0419648i \(-0.0133617\pi\)
\(272\) 2.57141 16.2352i 0.155915 0.984405i
\(273\) −0.00685078 0.906920i −0.000414628 0.0548893i
\(274\) 5.74694i 0.347185i
\(275\) 0 0
\(276\) 0.184386 + 0.106455i 0.0110987 + 0.00640785i
\(277\) 3.30097 + 5.08305i 0.198336 + 0.305411i 0.923819 0.382829i \(-0.125050\pi\)
−0.725483 + 0.688240i \(0.758384\pi\)
\(278\) 10.2842 + 26.7911i 0.616803 + 1.60683i
\(279\) −1.48502 + 1.07893i −0.0889060 + 0.0645940i
\(280\) 0 0
\(281\) −3.73577 2.71420i −0.222857 0.161915i 0.470755 0.882264i \(-0.343982\pi\)
−0.693612 + 0.720349i \(0.743982\pi\)
\(282\) 4.00563 14.9492i 0.238532 0.890212i
\(283\) 3.61407 + 1.38731i 0.214834 + 0.0824672i 0.463405 0.886147i \(-0.346628\pi\)
−0.248571 + 0.968614i \(0.579961\pi\)
\(284\) −0.891802 + 0.802982i −0.0529187 + 0.0476482i
\(285\) 0 0
\(286\) −0.131747 + 0.0428072i −0.00779036 + 0.00253124i
\(287\) −7.41824 0.723078i −0.437885 0.0426820i
\(288\) 0.356858 + 0.700374i 0.0210281 + 0.0412699i
\(289\) −4.48684 4.03997i −0.263932 0.237645i
\(290\) 0 0
\(291\) −10.0927 11.2091i −0.591647 0.657091i
\(292\) −2.10588 2.60055i −0.123237 0.152186i
\(293\) −10.8232 10.8232i −0.632300 0.632300i 0.316344 0.948644i \(-0.397545\pi\)
−0.948644 + 0.316344i \(0.897545\pi\)
\(294\) −2.79598 + 14.2061i −0.163065 + 0.828515i
\(295\) 0 0
\(296\) 20.7396 + 9.23387i 1.20546 + 0.536708i
\(297\) −2.06831 1.67489i −0.120016 0.0971869i
\(298\) −12.8046 + 8.31541i −0.741751 + 0.481699i
\(299\) −0.0583399 0.101048i −0.00337388 0.00584374i
\(300\) 0 0
\(301\) −12.1510 + 19.0240i −0.700373 + 1.09652i
\(302\) 9.69850 19.0344i 0.558086 1.09531i
\(303\) −25.3888 + 9.74584i −1.45855 + 0.559884i
\(304\) −1.92199 18.2865i −0.110234 1.04880i
\(305\) 0 0
\(306\) −3.45643 0.363286i −0.197591 0.0207677i
\(307\) −3.99596 + 3.99596i −0.228061 + 0.228061i −0.811882 0.583821i \(-0.801557\pi\)
0.583821 + 0.811882i \(0.301557\pi\)
\(308\) −0.321302 + 0.0362260i −0.0183079 + 0.00206417i
\(309\) 11.6884 + 3.79779i 0.664929 + 0.216049i
\(310\) 0 0
\(311\) 0.200656 0.944012i 0.0113782 0.0535300i −0.972092 0.234599i \(-0.924622\pi\)
0.983470 + 0.181069i \(0.0579557\pi\)
\(312\) −0.0534423 + 1.01974i −0.00302557 + 0.0577314i
\(313\) 0.327398 + 0.212615i 0.0185056 + 0.0120177i 0.553859 0.832611i \(-0.313155\pi\)
−0.535353 + 0.844628i \(0.679821\pi\)
\(314\) 1.64954 + 5.07677i 0.0930891 + 0.286499i
\(315\) 0 0
\(316\) −0.730474 + 2.24817i −0.0410924 + 0.126469i
\(317\) −23.3828 + 18.9350i −1.31331 + 1.06350i −0.320073 + 0.947393i \(0.603707\pi\)
−0.993237 + 0.116105i \(0.962959\pi\)
\(318\) 9.67749 2.59308i 0.542687 0.145413i
\(319\) 0.738814 + 1.65940i 0.0413657 + 0.0929088i
\(320\) 0 0
\(321\) 1.97789 + 2.72234i 0.110395 + 0.151946i
\(322\) 0.588968 + 1.76713i 0.0328219 + 0.0984781i
\(323\) −22.9613 11.6994i −1.27760 0.650970i
\(324\) −1.55873 + 0.899935i −0.0865962 + 0.0499964i
\(325\) 0 0
\(326\) 11.0281 19.1013i 0.610792 1.05792i
\(327\) 0.895903 + 17.0948i 0.0495435 + 0.945347i
\(328\) 8.28853 + 1.31277i 0.457658 + 0.0724859i
\(329\) −16.5211 + 10.9072i −0.910836 + 0.601334i
\(330\) 0 0
\(331\) 0.925838 8.80876i 0.0508887 0.484173i −0.939163 0.343471i \(-0.888397\pi\)
0.990052 0.140702i \(-0.0449360\pi\)
\(332\) 0.627294 + 2.34109i 0.0344272 + 0.128484i
\(333\) 1.49713 3.90015i 0.0820421 0.213727i
\(334\) 30.8143 6.54978i 1.68608 0.358388i
\(335\) 0 0
\(336\) 3.56844 13.7317i 0.194674 0.749125i
\(337\) −17.6659 + 9.00124i −0.962324 + 0.490329i −0.863264 0.504753i \(-0.831584\pi\)
−0.0990602 + 0.995081i \(0.531584\pi\)
\(338\) −9.31818 + 14.3487i −0.506842 + 0.780468i
\(339\) 27.2301 + 5.78794i 1.47894 + 0.314358i
\(340\) 0 0
\(341\) 0.333509 + 1.56903i 0.0180605 + 0.0849680i
\(342\) −3.83982 + 0.608168i −0.207634 + 0.0328860i
\(343\) 14.7327 11.2226i 0.795490 0.605966i
\(344\) 14.9389 20.5617i 0.805453 1.10861i
\(345\) 0 0
\(346\) −32.1563 + 3.37976i −1.72873 + 0.181697i
\(347\) 0.632254 0.780769i 0.0339412 0.0419139i −0.759893 0.650048i \(-0.774749\pi\)
0.793834 + 0.608135i \(0.208082\pi\)
\(348\) 1.51269 0.0792768i 0.0810888 0.00424968i
\(349\) 22.8601 1.22367 0.611835 0.790985i \(-0.290431\pi\)
0.611835 + 0.790985i \(0.290431\pi\)
\(350\) 0 0
\(351\) 1.21629 0.0649206
\(352\) 0.685972 0.0359503i 0.0365624 0.00191616i
\(353\) 11.0455 13.6401i 0.587893 0.725988i −0.393215 0.919447i \(-0.628637\pi\)
0.981108 + 0.193459i \(0.0619705\pi\)
\(354\) −11.0119 + 1.15740i −0.585278 + 0.0615152i
\(355\) 0 0
\(356\) −0.878288 + 1.20886i −0.0465491 + 0.0640694i
\(357\) −13.4165 14.6761i −0.710078 0.776742i
\(358\) −23.0942 + 3.65776i −1.22056 + 0.193318i
\(359\) 6.02179 + 28.3303i 0.317818 + 1.49522i 0.789666 + 0.613537i \(0.210254\pi\)
−0.471848 + 0.881680i \(0.656413\pi\)
\(360\) 0 0
\(361\) −9.61183 2.04306i −0.505886 0.107529i
\(362\) 0.682466 1.05091i 0.0358696 0.0552344i
\(363\) 15.0267 7.65648i 0.788697 0.401861i
\(364\) 0.103695 0.105274i 0.00543510 0.00551784i
\(365\) 0 0
\(366\) −18.0095 + 3.82804i −0.941372 + 0.200095i
\(367\) 5.94229 15.4802i 0.310185 0.808060i −0.686532 0.727099i \(-0.740868\pi\)
0.996717 0.0809605i \(-0.0257987\pi\)
\(368\) −0.472416 1.76308i −0.0246264 0.0919069i
\(369\) 0.161418 1.53579i 0.00840308 0.0799500i
\(370\) 0 0
\(371\) −11.4624 5.73175i −0.595100 0.297578i
\(372\) 1.32121 + 0.209259i 0.0685016 + 0.0108496i
\(373\) 1.53470 + 29.2838i 0.0794637 + 1.51626i 0.689733 + 0.724064i \(0.257728\pi\)
−0.610269 + 0.792194i \(0.708939\pi\)
\(374\) −1.51858 + 2.63025i −0.0785237 + 0.136007i
\(375\) 0 0
\(376\) 19.3032 11.1447i 0.995486 0.574744i
\(377\) −0.739648 0.376870i −0.0380938 0.0194098i
\(378\) −19.0226 3.89343i −0.978418 0.200257i
\(379\) 10.6445 + 14.6509i 0.546773 + 0.752568i 0.989570 0.144054i \(-0.0460137\pi\)
−0.442797 + 0.896622i \(0.646014\pi\)
\(380\) 0 0
\(381\) 11.8921 + 26.7102i 0.609253 + 1.36840i
\(382\) 13.3618 3.58028i 0.683649 0.183183i
\(383\) 23.1844 18.7744i 1.18467 0.959326i 0.184944 0.982749i \(-0.440790\pi\)
0.999726 + 0.0234230i \(0.00745644\pi\)
\(384\) −4.20083 + 12.9288i −0.214373 + 0.659771i
\(385\) 0 0
\(386\) 8.03783 + 24.7379i 0.409115 + 1.25913i
\(387\) −3.92240 2.54723i −0.199387 0.129483i
\(388\) 0.128616 2.45414i 0.00652950 0.124590i
\(389\) 2.34616 11.0378i 0.118955 0.559639i −0.877792 0.479042i \(-0.840984\pi\)
0.996747 0.0805966i \(-0.0256826\pi\)
\(390\) 0 0
\(391\) −2.43296 0.790515i −0.123040 0.0399781i
\(392\) −17.3145 + 11.6198i −0.874515 + 0.586887i
\(393\) −0.563297 + 0.563297i −0.0284146 + 0.0284146i
\(394\) 18.7651 + 1.97230i 0.945374 + 0.0993628i
\(395\) 0 0
\(396\) −0.00700251 0.0666244i −0.000351889 0.00334800i
\(397\) −4.63333 + 1.77857i −0.232540 + 0.0892638i −0.471848 0.881680i \(-0.656413\pi\)
0.239308 + 0.970944i \(0.423080\pi\)
\(398\) 4.30493 8.44891i 0.215787 0.423505i
\(399\) −18.7454 11.9731i −0.938445 0.599404i
\(400\) 0 0
\(401\) 2.20052 + 3.81142i 0.109889 + 0.190333i 0.915725 0.401805i \(-0.131617\pi\)
−0.805836 + 0.592139i \(0.798284\pi\)
\(402\) −22.5363 + 14.6353i −1.12401 + 0.729940i
\(403\) −0.569709 0.461341i −0.0283792 0.0229810i
\(404\) −4.04779 1.80219i −0.201385 0.0896624i
\(405\) 0 0
\(406\) 10.3616 + 8.26188i 0.514239 + 0.410030i
\(407\) −2.58147 2.58147i −0.127959 0.127959i
\(408\) 14.0893 + 17.3988i 0.697523 + 0.861369i
\(409\) −0.144146 0.160091i −0.00712759 0.00791599i 0.739570 0.673079i \(-0.235029\pi\)
−0.746698 + 0.665163i \(0.768362\pi\)
\(410\) 0 0
\(411\) 5.06259 + 4.55837i 0.249719 + 0.224848i
\(412\) 0.909060 + 1.78413i 0.0447862 + 0.0878978i
\(413\) 11.5211 + 8.23829i 0.566914 + 0.405380i
\(414\) −0.367037 + 0.119258i −0.0180389 + 0.00586119i
\(415\) 0 0
\(416\) −0.233291 + 0.210056i −0.0114380 + 0.0102988i
\(417\) −31.7580 12.1908i −1.55520 0.596985i
\(418\) −0.879306 + 3.28162i −0.0430083 + 0.160509i
\(419\) −28.0621 20.3883i −1.37092 0.996034i −0.997664 0.0683067i \(-0.978240\pi\)
−0.373259 0.927727i \(-0.621760\pi\)
\(420\) 0 0
\(421\) 24.3135 17.6648i 1.18497 0.860928i 0.192243 0.981347i \(-0.438424\pi\)
0.992723 + 0.120419i \(0.0384239\pi\)
\(422\) −1.79626 4.67942i −0.0874405 0.227790i
\(423\) −2.23391 3.43993i −0.108617 0.167255i
\(424\) 12.4961 + 7.21461i 0.606863 + 0.350373i
\(425\) 0 0
\(426\) 9.72928i 0.471385i
\(427\) 20.4845 + 11.6213i 0.991316 + 0.562396i
\(428\) −0.0857658 + 0.541504i −0.00414565 + 0.0261746i
\(429\) 0.0667898 0.150012i 0.00322464 0.00724267i
\(430\) 0 0
\(431\) 31.9852 14.2407i 1.54067 0.685952i 0.551699 0.834043i \(-0.313980\pi\)
0.988974 + 0.148092i \(0.0473130\pi\)
\(432\) 18.3786 + 4.92453i 0.884241 + 0.236932i
\(433\) −0.905859 5.71937i −0.0435328 0.274855i 0.956314 0.292340i \(-0.0944340\pi\)
−0.999847 + 0.0174852i \(0.994434\pi\)
\(434\) 7.43340 + 9.03901i 0.356815 + 0.433887i
\(435\) 0 0
\(436\) −1.86625 + 2.07268i −0.0893770 + 0.0992632i
\(437\) −2.85765 0.149763i −0.136700 0.00716415i
\(438\) −27.0927 1.41987i −1.29454 0.0678439i
\(439\) 12.8713 14.2950i 0.614312 0.682263i −0.353066 0.935598i \(-0.614861\pi\)
0.967379 + 0.253335i \(0.0815276\pi\)
\(440\) 0 0
\(441\) 2.30207 + 3.06990i 0.109622 + 0.146186i
\(442\) −0.217131 1.37091i −0.0103279 0.0652075i
\(443\) −14.8917 3.99023i −0.707527 0.189581i −0.112928 0.993603i \(-0.536023\pi\)
−0.594600 + 0.804022i \(0.702689\pi\)
\(444\) −2.78123 + 1.23828i −0.131991 + 0.0587663i
\(445\) 0 0
\(446\) 2.06310 4.63381i 0.0976908 0.219417i
\(447\) 2.83120 17.8755i 0.133911 0.845481i
\(448\) 19.9460 11.7176i 0.942360 0.553605i
\(449\) 14.1182i 0.666281i −0.942877 0.333140i \(-0.891892\pi\)
0.942877 0.333140i \(-0.108108\pi\)
\(450\) 0 0
\(451\) −1.16869 0.674745i −0.0550316 0.0317725i
\(452\) 2.47031 + 3.80394i 0.116194 + 0.178922i
\(453\) 9.07506 + 23.6413i 0.426384 + 1.11077i
\(454\) 2.08650 1.51593i 0.0979245 0.0711463i
\(455\) 0 0
\(456\) 20.2606 + 14.7202i 0.948789 + 0.689335i
\(457\) −7.49556 + 27.9738i −0.350627 + 1.30856i 0.535271 + 0.844680i \(0.320209\pi\)
−0.885899 + 0.463879i \(0.846457\pi\)
\(458\) −13.5975 5.21960i −0.635371 0.243896i
\(459\) 19.8172 17.8435i 0.924987 0.832862i
\(460\) 0 0
\(461\) −30.3418 + 9.85863i −1.41316 + 0.459162i −0.913421 0.407016i \(-0.866569\pi\)
−0.499735 + 0.866178i \(0.666569\pi\)
\(462\) −1.52479 + 2.13238i −0.0709395 + 0.0992072i
\(463\) 1.68874 + 3.31433i 0.0784822 + 0.154030i 0.926913 0.375276i \(-0.122452\pi\)
−0.848431 + 0.529306i \(0.822452\pi\)
\(464\) −9.65052 8.68936i −0.448014 0.403394i
\(465\) 0 0
\(466\) 17.2839 + 19.1957i 0.800661 + 0.889224i
\(467\) −4.47456 5.52562i −0.207058 0.255695i 0.663029 0.748594i \(-0.269271\pi\)
−0.870087 + 0.492899i \(0.835937\pi\)
\(468\) 0.0216484 + 0.0216484i 0.00100070 + 0.00100070i
\(469\) 33.9891 + 5.12046i 1.56947 + 0.236441i
\(470\) 0 0
\(471\) −5.78062 2.57370i −0.266357 0.118590i
\(472\) −12.3930 10.0356i −0.570433 0.461928i
\(473\) −3.42771 + 2.22598i −0.157606 + 0.102351i
\(474\) 9.58249 + 16.5974i 0.440138 + 0.762342i
\(475\) 0 0
\(476\) 0.145112 3.23649i 0.00665119 0.148344i
\(477\) 1.20545 2.36583i 0.0551938 0.108324i
\(478\) −11.9362 + 4.58189i −0.545951 + 0.209571i
\(479\) 1.20444 + 11.4595i 0.0550324 + 0.523598i 0.986961 + 0.160957i \(0.0514581\pi\)
−0.931929 + 0.362641i \(0.881875\pi\)
\(480\) 0 0
\(481\) 1.65928 + 0.174397i 0.0756566 + 0.00795182i
\(482\) −11.7241 + 11.7241i −0.534019 + 0.534019i
\(483\) −2.02385 0.882821i −0.0920886 0.0401697i
\(484\) 2.61328 + 0.849107i 0.118786 + 0.0385958i
\(485\) 0 0
\(486\) 1.54361 7.26214i 0.0700198 0.329417i
\(487\) −0.229004 + 4.36966i −0.0103772 + 0.198008i 0.988521 + 0.151082i \(0.0482758\pi\)
−0.998898 + 0.0469259i \(0.985058\pi\)
\(488\) −22.2389 14.4421i −1.00671 0.653763i
\(489\) 8.07937 + 24.8657i 0.365362 + 1.12447i
\(490\) 0 0
\(491\) 2.98502 9.18693i 0.134712 0.414600i −0.860833 0.508887i \(-0.830057\pi\)
0.995545 + 0.0942867i \(0.0300570\pi\)
\(492\) −0.874574 + 0.708216i −0.0394288 + 0.0319288i
\(493\) −17.5801 + 4.71056i −0.791766 + 0.212153i
\(494\) −0.631509 1.41839i −0.0284129 0.0638165i
\(495\) 0 0
\(496\) −6.74065 9.27771i −0.302664 0.416582i
\(497\) 8.25735 9.31121i 0.370393 0.417665i
\(498\) 17.5082 + 8.92087i 0.784561 + 0.399754i
\(499\) 4.09112 2.36201i 0.183144 0.105738i −0.405625 0.914040i \(-0.632946\pi\)
0.588769 + 0.808301i \(0.299613\pi\)
\(500\) 0 0
\(501\) −18.6716 + 32.3401i −0.834184 + 1.44485i
\(502\) 1.05922 + 20.2111i 0.0472752 + 0.902064i
\(503\) −3.93410 0.623100i −0.175413 0.0277826i 0.0681101 0.997678i \(-0.478303\pi\)
−0.243523 + 0.969895i \(0.578303\pi\)
\(504\) −2.38030 3.60543i −0.106027 0.160598i
\(505\) 0 0
\(506\) −0.0352526 + 0.335406i −0.00156717 + 0.0149106i
\(507\) −5.24905 19.5897i −0.233119 0.870011i
\(508\) −1.70716 + 4.44729i −0.0757428 + 0.197317i
\(509\) −2.23882 + 0.475875i −0.0992337 + 0.0210928i −0.257261 0.966342i \(-0.582820\pi\)
0.158027 + 0.987435i \(0.449487\pi\)
\(510\) 0 0
\(511\) 24.7235 + 24.3528i 1.09370 + 1.07730i
\(512\) −22.5551 + 11.4924i −0.996806 + 0.507898i
\(513\) 16.2463 25.0171i 0.717292 1.10453i
\(514\) −6.75638 1.43611i −0.298011 0.0633442i
\(515\) 0 0
\(516\) 0.708624 + 3.33381i 0.0311954 + 0.146763i
\(517\) −3.54022 + 0.560716i −0.155699 + 0.0246603i
\(518\) −25.3927 8.03903i −1.11569 0.353215i
\(519\) 22.5285 31.0079i 0.988893 1.36109i
\(520\) 0 0
\(521\) −13.4075 + 1.40918i −0.587391 + 0.0617373i −0.393562 0.919298i \(-0.628757\pi\)
−0.193829 + 0.981035i \(0.562091\pi\)
\(522\) −1.72792 + 2.13381i −0.0756291 + 0.0933941i
\(523\) 6.81583 0.357203i 0.298036 0.0156194i 0.0972678 0.995258i \(-0.468990\pi\)
0.200768 + 0.979639i \(0.435656\pi\)
\(524\) −0.129793 −0.00567001
\(525\) 0 0
\(526\) 15.3743 0.670350
\(527\) −16.0504 + 0.841168i −0.699168 + 0.0366419i
\(528\) 1.61660 1.99633i 0.0703533 0.0868791i
\(529\) 22.5915 2.37446i 0.982239 0.103237i
\(530\) 0 0
\(531\) −1.72485 + 2.37405i −0.0748521 + 0.103025i
\(532\) −0.780227 3.53902i −0.0338271 0.153436i
\(533\) 0.609133 0.0964772i 0.0263845 0.00417889i
\(534\) 2.51874 + 11.8497i 0.108996 + 0.512788i
\(535\) 0 0
\(536\) −37.8547 8.04627i −1.63507 0.347546i
\(537\) 15.0957 23.2454i 0.651428 1.00311i
\(538\) −14.1873 + 7.22877i −0.611657 + 0.311655i
\(539\) 3.26904 0.746645i 0.140808 0.0321603i
\(540\) 0 0
\(541\) 7.46757 1.58728i 0.321056 0.0682425i −0.0445647 0.999006i \(-0.514190\pi\)
0.365621 + 0.930764i \(0.380857\pi\)
\(542\) 6.93120 18.0564i 0.297721 0.775589i
\(543\) 0.384442 + 1.43476i 0.0164980 + 0.0615714i
\(544\) −0.719434 + 6.84496i −0.0308455 + 0.293475i
\(545\) 0 0
\(546\) −0.0717348 1.19587i −0.00306997 0.0511786i
\(547\) 41.0298 + 6.49848i 1.75431 + 0.277855i 0.949062 0.315089i \(-0.102034\pi\)
0.805244 + 0.592944i \(0.202034\pi\)
\(548\) 0.0580893 + 1.10841i 0.00248145 + 0.0473490i
\(549\) −2.43978 + 4.22582i −0.104127 + 0.180354i
\(550\) 0 0
\(551\) −17.6313 + 10.1794i −0.751119 + 0.433659i
\(552\) 2.21507 + 1.12863i 0.0942797 + 0.0480379i
\(553\) 4.91564 24.0169i 0.209034 1.02130i
\(554\) 4.70581 + 6.47699i 0.199931 + 0.275181i
\(555\) 0 0
\(556\) −2.25430 5.06325i −0.0956038 0.214730i
\(557\) −13.7087 + 3.67322i −0.580855 + 0.155640i −0.537270 0.843410i \(-0.680544\pi\)
−0.0435845 + 0.999050i \(0.513878\pi\)
\(558\) −1.88435 + 1.52591i −0.0797708 + 0.0645971i
\(559\) 0.577188 1.77640i 0.0244125 0.0751338i
\(560\) 0 0
\(561\) −1.11253 3.42401i −0.0469710 0.144562i
\(562\) −5.11560 3.32211i −0.215789 0.140135i
\(563\) −2.19797 + 41.9397i −0.0926332 + 1.76755i 0.418662 + 0.908142i \(0.362499\pi\)
−0.511295 + 0.859405i \(0.670834\pi\)
\(564\) −0.621460 + 2.92374i −0.0261682 + 0.123112i
\(565\) 0 0
\(566\) 4.86334 + 1.58019i 0.204421 + 0.0664205i
\(567\) 15.0177 11.0852i 0.630682 0.465537i
\(568\) −9.90808 + 9.90808i −0.415734 + 0.415734i
\(569\) 23.3390 + 2.45303i 0.978423 + 0.102836i 0.580219 0.814460i \(-0.302967\pi\)
0.398204 + 0.917297i \(0.369634\pi\)
\(570\) 0 0
\(571\) 1.01109 + 9.61986i 0.0423127 + 0.402579i 0.995095 + 0.0989242i \(0.0315401\pi\)
−0.952782 + 0.303654i \(0.901793\pi\)
\(572\) 0.0249773 0.00958790i 0.00104435 0.000400890i
\(573\) −7.44442 + 14.6105i −0.310995 + 0.610362i
\(574\) −9.83561 0.440991i −0.410530 0.0184066i
\(575\) 0 0
\(576\) 2.39645 + 4.15077i 0.0998521 + 0.172949i
\(577\) 1.40202 0.910483i 0.0583669 0.0379039i −0.515126 0.857115i \(-0.672255\pi\)
0.573493 + 0.819211i \(0.305588\pi\)
\(578\) −6.19802 5.01906i −0.257804 0.208765i
\(579\) −28.1676 12.5410i −1.17060 0.521187i
\(580\) 0 0
\(581\) −9.18461 23.3969i −0.381042 0.970668i
\(582\) −14.0886 14.0886i −0.583989 0.583989i
\(583\) −1.46025 1.80326i −0.0604774 0.0746833i
\(584\) −26.1446 29.0366i −1.08187 1.20154i
\(585\) 0 0
\(586\) −15.0255 13.5290i −0.620697 0.558878i
\(587\) −0.277321 0.544273i −0.0114463 0.0224646i 0.885213 0.465187i \(-0.154013\pi\)
−0.896659 + 0.442722i \(0.854013\pi\)
\(588\) 0.395667 2.76818i 0.0163170 0.114158i
\(589\) −17.0988 + 5.55575i −0.704545 + 0.228921i
\(590\) 0 0
\(591\) −16.6216 + 14.9662i −0.683722 + 0.615626i
\(592\) 24.3663 + 9.35334i 1.00145 + 0.384420i
\(593\) −6.55597 + 24.4672i −0.269221 + 1.00475i 0.690394 + 0.723433i \(0.257437\pi\)
−0.959616 + 0.281314i \(0.909230\pi\)
\(594\) −2.84416 2.06641i −0.116697 0.0847857i
\(595\) 0 0
\(596\) 2.38557 1.73322i 0.0977168 0.0709954i
\(597\) 4.02820 + 10.4938i 0.164863 + 0.429484i
\(598\) −0.0839435 0.129262i −0.00343271 0.00528591i
\(599\) 2.55964 + 1.47781i 0.104584 + 0.0603816i 0.551380 0.834254i \(-0.314102\pi\)
−0.446796 + 0.894636i \(0.647435\pi\)
\(600\) 0 0
\(601\) 2.33505i 0.0952489i −0.998865 0.0476244i \(-0.984835\pi\)
0.998865 0.0476244i \(-0.0151651\pi\)
\(602\) −14.7136 + 25.9351i −0.599681 + 1.05704i
\(603\) −1.11406 + 7.03388i −0.0453679 + 0.286442i
\(604\) −1.67815 + 3.76919i −0.0682830 + 0.153366i
\(605\) 0 0
\(606\) −32.8173 + 14.6112i −1.33311 + 0.593540i
\(607\) 18.6437 + 4.99555i 0.756723 + 0.202763i 0.616498 0.787356i \(-0.288551\pi\)
0.140225 + 0.990120i \(0.455218\pi\)
\(608\) 1.20439 + 7.60420i 0.0488444 + 0.308391i
\(609\) −15.4967 + 2.57458i −0.627959 + 0.104327i
\(610\) 0 0
\(611\) 1.09608 1.21732i 0.0443428 0.0492477i
\(612\) 0.670314 + 0.0351296i 0.0270958 + 0.00142003i
\(613\) 9.88907 + 0.518264i 0.399416 + 0.0209325i 0.250987 0.967991i \(-0.419245\pi\)
0.148429 + 0.988923i \(0.452578\pi\)
\(614\) −4.99493 + 5.54743i −0.201579 + 0.223876i
\(615\) 0 0
\(616\) −3.72438 + 0.618757i −0.150059 + 0.0249304i
\(617\) −0.868493 5.48345i −0.0349642 0.220755i 0.964019 0.265832i \(-0.0856467\pi\)
−0.998984 + 0.0450769i \(0.985647\pi\)
\(618\) 15.6810 + 4.20172i 0.630784 + 0.169018i
\(619\) −34.8010 + 15.4944i −1.39877 + 0.622772i −0.961059 0.276344i \(-0.910877\pi\)
−0.437710 + 0.899116i \(0.644210\pi\)
\(620\) 0 0
\(621\) 1.20440 2.70513i 0.0483310 0.108553i
\(622\) 0.199429 1.25915i 0.00799638 0.0504872i
\(623\) 7.64649 13.4782i 0.306350 0.539993i
\(624\) 1.17396i 0.0469959i
\(625\) 0 0
\(626\) 0.446579 + 0.257833i 0.0178489 + 0.0103051i
\(627\) −2.19339 3.37752i −0.0875954 0.134885i
\(628\) −0.369462 0.962483i −0.0147432 0.0384072i
\(629\) 29.5934 21.5008i 1.17997 0.857295i
\(630\) 0 0
\(631\) −11.4331 8.30661i −0.455143 0.330681i 0.336480 0.941691i \(-0.390764\pi\)
−0.791623 + 0.611010i \(0.790764\pi\)
\(632\) −7.14378 + 26.6610i −0.284164 + 1.06052i
\(633\) 5.54695 + 2.12927i 0.220471 + 0.0846311i
\(634\) −29.5359 + 26.5943i −1.17302 + 1.05619i
\(635\) 0 0
\(636\) −1.84029 + 0.597945i −0.0729721 + 0.0237101i
\(637\) −0.946298 + 1.20537i −0.0374937 + 0.0477584i
\(638\) 1.08931 + 2.13789i 0.0431262 + 0.0846400i
\(639\) 1.91618 + 1.72534i 0.0758031 + 0.0682534i
\(640\) 0 0
\(641\) 5.18908 + 5.76306i 0.204956 + 0.227627i 0.836856 0.547423i \(-0.184391\pi\)
−0.631900 + 0.775050i \(0.717724\pi\)
\(642\) 2.79730 + 3.45438i 0.110401 + 0.136333i
\(643\) 16.8674 + 16.8674i 0.665185 + 0.665185i 0.956598 0.291412i \(-0.0941251\pi\)
−0.291412 + 0.956598i \(0.594125\pi\)
\(644\) −0.131456 0.334872i −0.00518010 0.0131958i
\(645\) 0 0
\(646\) −31.0977 13.8456i −1.22352 0.544748i
\(647\) −23.5210 19.0469i −0.924704 0.748811i 0.0434786 0.999054i \(-0.486156\pi\)
−0.968183 + 0.250244i \(0.919489\pi\)
\(648\) −17.6255 + 11.4461i −0.692396 + 0.449647i
\(649\) 1.28220 + 2.22083i 0.0503307 + 0.0871754i
\(650\) 0 0
\(651\) −13.8587 0.621370i −0.543165 0.0243534i
\(652\) −1.93392 + 3.79554i −0.0757383 + 0.148645i
\(653\) −31.3427 + 12.0313i −1.22654 + 0.470823i −0.883470 0.468488i \(-0.844799\pi\)
−0.343066 + 0.939311i \(0.611465\pi\)
\(654\) 2.36362 + 22.4884i 0.0924250 + 0.879365i
\(655\) 0 0
\(656\) 9.59487 + 1.00846i 0.374617 + 0.0393738i
\(657\) −5.08413 + 5.08413i −0.198351 + 0.198351i
\(658\) −21.0394 + 15.5302i −0.820201 + 0.605429i
\(659\) −45.9853 14.9415i −1.79133 0.582039i −0.791747 0.610850i \(-0.790828\pi\)
−0.999585 + 0.0288108i \(0.990828\pi\)
\(660\) 0 0
\(661\) 1.42228 6.69130i 0.0553203 0.260262i −0.941793 0.336194i \(-0.890860\pi\)
0.997113 + 0.0759328i \(0.0241934\pi\)
\(662\) 0.612327 11.6839i 0.0237988 0.454108i
\(663\) 1.37988 + 0.896108i 0.0535903 + 0.0348019i
\(664\) 8.74513 + 26.9148i 0.339377 + 1.04450i
\(665\) 0 0
\(666\) 1.70528 5.24830i 0.0660781 0.203368i
\(667\) −1.57061 + 1.27186i −0.0608143 + 0.0492465i
\(668\) −5.87694 + 1.57472i −0.227386 + 0.0609278i
\(669\) 2.44559 + 5.49289i 0.0945520 + 0.212367i
\(670\) 0 0
\(671\) 2.50641 + 3.44978i 0.0967589 + 0.133177i
\(672\) −1.19120 + 5.81997i −0.0459514 + 0.224510i
\(673\) 25.2746 + 12.8780i 0.974263 + 0.496412i 0.867265 0.497847i \(-0.165876\pi\)
0.106999 + 0.994259i \(0.465876\pi\)
\(674\) −22.6814 + 13.0951i −0.873653 + 0.504404i
\(675\) 0 0
\(676\) 1.65216 2.86163i 0.0635446 0.110063i
\(677\) 0.659688 + 12.5876i 0.0253539 + 0.483780i 0.981568 + 0.191113i \(0.0612096\pi\)
−0.956214 + 0.292668i \(0.905457\pi\)
\(678\) 36.3202 + 5.75255i 1.39487 + 0.220925i
\(679\) 1.52605 + 25.4403i 0.0585643 + 0.976308i
\(680\) 0 0
\(681\) −0.319565 + 3.04046i −0.0122457 + 0.116510i
\(682\) 0.548413 + 2.04670i 0.0209998 + 0.0783723i
\(683\) −1.82579 + 4.75634i −0.0698619 + 0.181996i −0.964066 0.265663i \(-0.914409\pi\)
0.894204 + 0.447660i \(0.147742\pi\)
\(684\) 0.734439 0.156110i 0.0280820 0.00596900i
\(685\) 0 0
\(686\) 18.6585 15.8226i 0.712384 0.604111i
\(687\) 15.3834 7.83822i 0.586912 0.299047i
\(688\) 15.9139 24.5053i 0.606712 0.934254i
\(689\) 1.03725 + 0.220474i 0.0395159 + 0.00839937i
\(690\) 0 0
\(691\) 2.60404 + 12.2510i 0.0990622 + 0.466051i 0.999516 + 0.0310999i \(0.00990101\pi\)
−0.900454 + 0.434951i \(0.856766\pi\)
\(692\) 6.16782 0.976886i 0.234465 0.0371356i
\(693\) 0.149575 + 0.678453i 0.00568187 + 0.0257723i
\(694\) 0.780048 1.07364i 0.0296102 0.0407550i
\(695\) 0 0
\(696\) 17.5902 1.84880i 0.666753 0.0700786i
\(697\) 8.50935 10.5082i 0.322315 0.398025i
\(698\) 30.1554 1.58038i 1.14140 0.0598181i
\(699\) −30.6192 −1.15812
\(700\) 0 0
\(701\) −38.5281 −1.45519 −0.727594 0.686008i \(-0.759361\pi\)
−0.727594 + 0.686008i \(0.759361\pi\)
\(702\) 1.60444 0.0840852i 0.0605557 0.00317359i
\(703\) 25.7505 31.7993i 0.971199 1.19933i
\(704\) 4.16549 0.437810i 0.156993 0.0165006i
\(705\) 0 0
\(706\) 13.6275 18.7566i 0.512877 0.705915i
\(707\) 43.8079 + 13.8691i 1.64757 + 0.521601i
\(708\) 2.11217 0.334535i 0.0793803 0.0125726i
\(709\) −7.37634 34.7029i −0.277024 1.30330i −0.867983 0.496594i \(-0.834584\pi\)
0.590959 0.806702i \(-0.298750\pi\)
\(710\) 0 0
\(711\) 4.96816 + 1.05602i 0.186321 + 0.0396037i
\(712\) −9.50247 + 14.6325i −0.356120 + 0.548377i
\(713\) −1.59021 + 0.810250i −0.0595537 + 0.0303441i
\(714\) −18.7127 18.4322i −0.700307 0.689806i
\(715\) 0 0
\(716\) 4.41720 0.938904i 0.165078 0.0350885i
\(717\) 5.43135 14.1491i 0.202837 0.528410i
\(718\) 9.90207 + 36.9550i 0.369542 + 1.37915i
\(719\) 1.43210 13.6255i 0.0534082 0.508145i −0.934816 0.355132i \(-0.884436\pi\)
0.988224 0.153013i \(-0.0488975\pi\)
\(720\) 0 0
\(721\) −11.4412 17.3299i −0.426092 0.645398i
\(722\) −12.8205 2.03057i −0.477129 0.0755698i
\(723\) −1.02863 19.6274i −0.0382550 0.729950i
\(724\) −0.121005 + 0.209586i −0.00449710 + 0.00778921i
\(725\) 0 0
\(726\) 19.2928 11.1387i 0.716024 0.413397i
\(727\) −36.6967 18.6979i −1.36101 0.693467i −0.387445 0.921893i \(-0.626642\pi\)
−0.973561 + 0.228425i \(0.926642\pi\)
\(728\) 1.14480 1.29090i 0.0424289 0.0478440i
\(729\) 17.6135 + 24.2429i 0.652352 + 0.897885i
\(730\) 0 0
\(731\) −16.6564 37.4108i −0.616058 1.38369i
\(732\) 3.43480 0.920351i 0.126954 0.0340172i
\(733\) 22.4407 18.1721i 0.828867 0.671203i −0.117934 0.993021i \(-0.537627\pi\)
0.946802 + 0.321818i \(0.104294\pi\)
\(734\) 6.76846 20.8312i 0.249829 0.768893i
\(735\) 0 0
\(736\) 0.236172 + 0.726863i 0.00870542 + 0.0267925i
\(737\) 5.21938 + 3.38951i 0.192258 + 0.124854i
\(738\) 0.106758 2.03706i 0.00392982 0.0749853i
\(739\) 3.80274 17.8905i 0.139886 0.658113i −0.851195 0.524850i \(-0.824121\pi\)
0.991081 0.133263i \(-0.0425454\pi\)
\(740\) 0 0
\(741\) 1.75039 + 0.568737i 0.0643022 + 0.0208931i
\(742\) −15.5167 6.76849i −0.569635 0.248479i
\(743\) 18.6958 18.6958i 0.685883 0.685883i −0.275437 0.961319i \(-0.588822\pi\)
0.961319 + 0.275437i \(0.0888224\pi\)
\(744\) 15.5337 + 1.63266i 0.569494 + 0.0598563i
\(745\) 0 0
\(746\) 4.04893 + 38.5230i 0.148242 + 1.41043i
\(747\) 4.86178 1.86626i 0.177883 0.0682830i
\(748\) 0.266301 0.522646i 0.00973694 0.0191098i
\(749\) 0.254671 5.68005i 0.00930549 0.207544i
\(750\) 0 0
\(751\) 14.6728 + 25.4141i 0.535418 + 0.927372i 0.999143 + 0.0413925i \(0.0131794\pi\)
−0.463724 + 0.885979i \(0.653487\pi\)
\(752\) 21.4910 13.9564i 0.783697 0.508938i
\(753\) −18.6445 15.0980i −0.679442 0.550201i
\(754\) −1.00175 0.446006i −0.0364814 0.0162426i
\(755\) 0 0
\(756\) 3.70824 + 0.558648i 0.134867 + 0.0203178i
\(757\) 26.5318 + 26.5318i 0.964316 + 0.964316i 0.999385 0.0350687i \(-0.0111650\pi\)
−0.0350687 + 0.999385i \(0.511165\pi\)
\(758\) 15.0544 + 18.5906i 0.546799 + 0.675241i
\(759\) −0.267504 0.297093i −0.00970977 0.0107838i
\(760\) 0 0
\(761\) −0.760199 0.684487i −0.0275572 0.0248126i 0.655237 0.755423i \(-0.272569\pi\)
−0.682794 + 0.730611i \(0.739235\pi\)
\(762\) 17.5338 + 34.4120i 0.635183 + 1.24662i
\(763\) 16.8241 23.5281i 0.609073 0.851773i
\(764\) −2.54090 + 0.825588i −0.0919265 + 0.0298687i
\(765\) 0 0
\(766\) 29.2853 26.3686i 1.05812 0.952738i
\(767\) −1.09411 0.419988i −0.0395059 0.0151649i
\(768\) 2.43930 9.10360i 0.0880207 0.328498i
\(769\) 16.8522 + 12.2439i 0.607708 + 0.441525i 0.848606 0.529025i \(-0.177442\pi\)
−0.240899 + 0.970550i \(0.577442\pi\)
\(770\) 0 0
\(771\) 6.62415 4.81272i 0.238563 0.173326i
\(772\) −1.80030 4.68995i −0.0647943 0.168795i
\(773\) −14.1583 21.8018i −0.509238 0.784158i 0.486760 0.873536i \(-0.338179\pi\)
−0.995998 + 0.0893781i \(0.971512\pi\)
\(774\) −5.35024 3.08897i −0.192311 0.111031i
\(775\) 0 0
\(776\) 28.6949i 1.03009i
\(777\) 27.2228 15.9925i 0.976612 0.573726i
\(778\) 2.33181 14.7225i 0.0835995 0.527827i
\(779\) 6.15198 13.8176i 0.220418 0.495066i
\(780\) 0 0
\(781\) 2.05848 0.916495i 0.0736582 0.0327948i
\(782\) −3.26403 0.874595i −0.116722 0.0312754i
\(783\) −3.29564 20.8078i −0.117776 0.743611i
\(784\) −19.1793 + 14.3822i −0.684974 + 0.513650i
\(785\) 0 0
\(786\) −0.704119 + 0.782004i −0.0251151 + 0.0278931i
\(787\) 48.4809 + 2.54078i 1.72816 + 0.0905689i 0.890316 0.455343i \(-0.150483\pi\)
0.837842 + 0.545912i \(0.183817\pi\)
\(788\) −3.63916 0.190721i −0.129640 0.00679414i
\(789\) −12.1946 + 13.5435i −0.434140 + 0.482161i
\(790\) 0 0
\(791\) −29.8772 36.3307i −1.06231 1.29177i
\(792\) −0.122366 0.772589i −0.00434809 0.0274528i
\(793\) −1.88235 0.504373i −0.0668441 0.0179108i
\(794\) −5.98900 + 2.66647i −0.212542 + 0.0946296i
\(795\) 0 0
\(796\) −0.744891 + 1.67305i −0.0264020 + 0.0592998i
\(797\) −1.60051 + 10.1052i −0.0566929 + 0.357945i 0.942991 + 0.332817i \(0.107999\pi\)
−0.999684 + 0.0251277i \(0.992001\pi\)
\(798\) −25.5554 14.4981i −0.904650 0.513228i
\(799\) 35.9141i 1.27055i
\(800\) 0 0
\(801\) 2.78047 + 1.60530i 0.0982429 + 0.0567206i
\(802\) 3.16627 + 4.87563i 0.111805 + 0.172164i
\(803\) 2.25171 + 5.86591i 0.0794613 + 0.207004i
\(804\) 4.19865 3.05049i 0.148075 0.107583i
\(805\) 0 0
\(806\) −0.783414 0.569183i −0.0275946 0.0200486i
\(807\) 4.88514 18.2316i 0.171965 0.641782i
\(808\) −48.3002 18.5407i −1.69919 0.652260i
\(809\) 31.3375 28.2164i 1.10177 0.992036i 0.101771 0.994808i \(-0.467549\pi\)
0.999996 + 0.00277189i \(0.000882320\pi\)
\(810\) 0 0
\(811\) 30.4344 9.88872i 1.06869 0.347240i 0.278716 0.960374i \(-0.410091\pi\)
0.789979 + 0.613134i \(0.210091\pi\)
\(812\) −2.08196 1.48873i −0.0730623 0.0522443i
\(813\) 10.4085 + 20.4279i 0.365043 + 0.716436i
\(814\) −3.58376 3.22683i −0.125611 0.113100i
\(815\) 0 0
\(816\) 17.2225 + 19.1275i 0.602906 + 0.669595i
\(817\) −28.8281 35.5998i −1.00857 1.24548i
\(818\) −0.201215 0.201215i −0.00703533 0.00703533i
\(819\) −0.248248 0.197942i −0.00867450 0.00691664i
\(820\) 0 0
\(821\) 44.4213 + 19.7776i 1.55031 + 0.690244i 0.990390 0.138300i \(-0.0441638\pi\)
0.559924 + 0.828544i \(0.310830\pi\)
\(822\) 6.99334 + 5.66309i 0.243921 + 0.197523i
\(823\) −1.50708 + 0.978707i −0.0525334 + 0.0341156i −0.570639 0.821201i \(-0.693304\pi\)
0.518105 + 0.855317i \(0.326638\pi\)
\(824\) 11.6903 + 20.2482i 0.407250 + 0.705378i
\(825\) 0 0
\(826\) 15.7673 + 10.0709i 0.548614 + 0.350411i
\(827\) −8.07790 + 15.8538i −0.280896 + 0.551290i −0.987745 0.156075i \(-0.950116\pi\)
0.706849 + 0.707364i \(0.250116\pi\)
\(828\) 0.0695849 0.0267111i 0.00241824 0.000928277i
\(829\) 5.29689 + 50.3966i 0.183969 + 1.75035i 0.564369 + 0.825523i \(0.309120\pi\)
−0.380400 + 0.924822i \(0.624214\pi\)
\(830\) 0 0
\(831\) −9.43827 0.992002i −0.327410 0.0344122i
\(832\) −1.35350 + 1.35350i −0.0469242 + 0.0469242i
\(833\) 2.26507 + 33.5218i 0.0784800 + 1.16146i
\(834\) −42.7357 13.8857i −1.47982 0.480822i
\(835\) 0 0
\(836\) 0.136421 0.641813i 0.00471824 0.0221976i
\(837\) 0.973673 18.5788i 0.0336551 0.642177i
\(838\) −38.4270 24.9548i −1.32744 0.862049i
\(839\) −2.38981 7.35507i −0.0825053 0.253925i 0.901291 0.433214i \(-0.142620\pi\)
−0.983797 + 0.179288i \(0.942620\pi\)
\(840\) 0 0
\(841\) 4.51828 13.9058i 0.155803 0.479511i
\(842\) 30.8514 24.9830i 1.06321 0.860970i
\(843\) 6.98412 1.87139i 0.240546 0.0644541i
\(844\) 0.393743 + 0.884362i 0.0135532 + 0.0304410i
\(845\) 0 0
\(846\) −3.18463 4.38327i −0.109490 0.150700i
\(847\) −27.9174 5.71396i −0.959253 0.196334i
\(848\) 14.7806 + 7.53108i 0.507567 + 0.258618i
\(849\) −5.24954 + 3.03082i −0.180164 + 0.104018i
\(850\) 0 0
\(851\) 2.03094 3.51769i 0.0696197 0.120585i
\(852\) −0.0983424 1.87648i −0.00336915 0.0642873i
\(853\) −11.6162 1.83983i −0.397732 0.0629946i −0.0456353 0.998958i \(-0.514531\pi\)
−0.352097 + 0.935964i \(0.614531\pi\)
\(854\) 27.8252 + 13.9139i 0.952158 + 0.476124i
\(855\) 0 0
\(856\) −0.669154 + 6.36657i −0.0228712 + 0.217605i
\(857\) 0.0986197 + 0.368054i 0.00336878 + 0.0125725i 0.967590 0.252527i \(-0.0812618\pi\)
−0.964221 + 0.265100i \(0.914595\pi\)
\(858\) 0.0777336 0.202503i 0.00265378 0.00691334i
\(859\) −9.45007 + 2.00867i −0.322432 + 0.0685351i −0.366284 0.930503i \(-0.619370\pi\)
0.0438522 + 0.999038i \(0.486037\pi\)
\(860\) 0 0
\(861\) 8.18992 8.31459i 0.279112 0.283361i
\(862\) 41.2081 20.9966i 1.40355 0.715146i
\(863\) −2.74016 + 4.21948i −0.0932762 + 0.143633i −0.882228 0.470822i \(-0.843957\pi\)
0.788952 + 0.614455i \(0.210624\pi\)
\(864\) −7.79276 1.65640i −0.265115 0.0563519i
\(865\) 0 0
\(866\) −1.59034 7.48196i −0.0540419 0.254247i
\(867\) 9.33755 1.47892i 0.317120 0.0502268i
\(868\) −1.52504 1.66822i −0.0517634 0.0566230i
\(869\) 2.60893 3.59089i 0.0885020 0.121813i
\(870\) 0 0
\(871\) −2.82855 + 0.297293i −0.0958419 + 0.0100734i
\(872\) −20.4946 + 25.3087i −0.694034 + 0.857061i
\(873\) −5.27314 + 0.276353i −0.178469 + 0.00935315i
\(874\) −3.77997 −0.127859
\(875\) 0 0
\(876\) 5.23972 0.177034
\(877\) 21.5953 1.13176i 0.729223 0.0382169i 0.315888 0.948796i \(-0.397697\pi\)
0.413334 + 0.910579i \(0.364364\pi\)
\(878\) 15.9906 19.7468i 0.539657 0.666421i
\(879\) 23.8359 2.50526i 0.803966 0.0845002i
\(880\) 0 0
\(881\) −15.8503 + 21.8160i −0.534009 + 0.735001i −0.987735 0.156141i \(-0.950095\pi\)
0.453725 + 0.891142i \(0.350095\pi\)
\(882\) 3.24895 + 3.89045i 0.109398 + 0.130998i
\(883\) −0.656476 + 0.103976i −0.0220922 + 0.00349906i −0.167471 0.985877i \(-0.553560\pi\)
0.145379 + 0.989376i \(0.453560\pi\)
\(884\) 0.0557349 + 0.262212i 0.00187457 + 0.00881915i
\(885\) 0 0
\(886\) −19.9200 4.23412i −0.669224 0.142248i
\(887\) 16.6676 25.6659i 0.559644 0.861775i −0.439695 0.898147i \(-0.644913\pi\)
0.999338 + 0.0363718i \(0.0115801\pi\)
\(888\) −31.6735 + 16.1385i −1.06289 + 0.541572i
\(889\) 12.4255 47.8145i 0.416739 1.60365i
\(890\) 0 0
\(891\) 3.30573 0.702654i 0.110746 0.0235398i
\(892\) −0.351073 + 0.914576i −0.0117548 + 0.0306223i
\(893\) −10.3977 38.8049i −0.347947 1.29856i
\(894\) 2.49894 23.7758i 0.0835769 0.795181i
\(895\) 0 0
\(896\) 19.1690 12.6554i 0.640391 0.422787i
\(897\) 0.180452 + 0.0285808i 0.00602511 + 0.000954284i
\(898\) −0.976031 18.6238i −0.0325706 0.621484i
\(899\) −6.34879 + 10.9964i −0.211744 + 0.366752i
\(900\) 0 0
\(901\) 20.1345 11.6246i 0.670777 0.387273i
\(902\) −1.58830 0.809282i −0.0528848 0.0269461i
\(903\) −11.1762 33.5328i −0.371921 1.11590i
\(904\) 31.1294 + 42.8459i 1.03535 + 1.42503i
\(905\) 0 0
\(906\) 13.6056 + 30.5586i 0.452015 + 1.01524i
\(907\) −32.6459 + 8.74745i −1.08399 + 0.290454i −0.756229 0.654307i \(-0.772961\pi\)
−0.327760 + 0.944761i \(0.606294\pi\)
\(908\) −0.387101 + 0.313468i −0.0128464 + 0.0104028i
\(909\) −2.94197 + 9.05447i −0.0975791 + 0.300318i
\(910\) 0 0
\(911\) 6.27024 + 19.2978i 0.207742 + 0.639365i 0.999590 + 0.0286459i \(0.00911953\pi\)
−0.791847 + 0.610719i \(0.790880\pi\)
\(912\) 24.1464 + 15.6809i 0.799568 + 0.519246i
\(913\) 0.238175 4.54465i 0.00788245 0.150406i
\(914\) −7.95370 + 37.4192i −0.263085 + 1.23772i
\(915\) 0 0
\(916\) 2.67531 + 0.869261i 0.0883948 + 0.0287212i
\(917\) 1.33756 0.150807i 0.0441701 0.00498007i
\(918\) 24.9079 24.9079i 0.822082 0.822082i
\(919\) −31.8299 3.34546i −1.04997 0.110357i −0.436208 0.899846i \(-0.643679\pi\)
−0.613764 + 0.789489i \(0.710346\pi\)
\(920\) 0 0
\(921\) −0.924945 8.80026i −0.0304780 0.289979i
\(922\) −39.3431 + 15.1024i −1.29570 + 0.497372i
\(923\) −0.467504 + 0.917529i −0.0153881 + 0.0302008i
\(924\) 0.272532 0.426684i 0.00896563 0.0140369i
\(925\) 0 0
\(926\) 2.45679 + 4.25528i 0.0807351 + 0.139837i
\(927\) 3.60833 2.34328i 0.118513 0.0769633i
\(928\) 4.22569 + 3.42190i 0.138715 + 0.112329i
\(929\) −38.4664 17.1263i −1.26204 0.561897i −0.336908 0.941538i \(-0.609381\pi\)
−0.925134 + 0.379641i \(0.876048\pi\)
\(930\) 0 0
\(931\) 12.1525 + 35.5643i 0.398283 + 1.16557i
\(932\) −3.52757 3.52757i −0.115549 0.115549i
\(933\) 0.951022 + 1.17441i 0.0311351 + 0.0384486i
\(934\) −6.28452 6.97967i −0.205636 0.228382i
\(935\) 0 0
\(936\) 0.265659 + 0.239200i 0.00868334 + 0.00781851i
\(937\) 7.54518 + 14.8083i 0.246490 + 0.483765i 0.980791 0.195059i \(-0.0624900\pi\)
−0.734301 + 0.678824i \(0.762490\pi\)
\(938\) 45.1899 + 4.40480i 1.47550 + 0.143822i
\(939\) −0.581349 + 0.188892i −0.0189716 + 0.00616425i
\(940\) 0 0
\(941\) 8.12267 7.31369i 0.264791 0.238419i −0.526030 0.850466i \(-0.676320\pi\)
0.790822 + 0.612047i \(0.209653\pi\)
\(942\) −7.80330 2.99541i −0.254245 0.0975957i
\(943\) 0.388607 1.45030i 0.0126548 0.0472283i
\(944\) −14.8319 10.7760i −0.482739 0.350730i
\(945\) 0 0
\(946\) −4.36771 + 3.17332i −0.142006 + 0.103174i
\(947\) −11.7372 30.5764i −0.381407 0.993599i −0.981123 0.193386i \(-0.938053\pi\)
0.599716 0.800213i \(-0.295280\pi\)
\(948\) −2.01594 3.10427i −0.0654746 0.100822i
\(949\) −2.48678 1.43574i −0.0807242 0.0466062i
\(950\) 0 0
\(951\) 47.1129i 1.52774i
\(952\) −0.285745 37.8275i −0.00926105 1.22600i
\(953\) 4.85130 30.6299i 0.157149 0.992200i −0.775482 0.631369i \(-0.782493\pi\)
0.932631 0.360831i \(-0.117507\pi\)
\(954\) 1.42659 3.20417i 0.0461875 0.103739i
\(955\) 0 0
\(956\) 2.25583 1.00436i 0.0729587 0.0324833i
\(957\) −2.74733 0.736146i −0.0888087 0.0237962i
\(958\) 2.38104 + 15.0333i 0.0769279 + 0.485704i
\(959\) −1.88650 11.3551i −0.0609182 0.366675i
\(960\) 0 0
\(961\) 13.2400 14.7045i 0.427097 0.474339i
\(962\) 2.20086 + 0.115342i 0.0709585 + 0.00371878i
\(963\) 1.17640 + 0.0616525i 0.0379090 + 0.00198673i
\(964\) 2.14272 2.37973i 0.0690124 0.0766461i
\(965\) 0 0
\(966\) −2.73076 1.02464i −0.0878607 0.0329673i
\(967\) 5.19736 + 32.8149i 0.167136 + 1.05525i 0.918516 + 0.395385i \(0.129389\pi\)
−0.751380 + 0.659870i \(0.770611\pi\)
\(968\) 30.9908 + 8.30397i 0.996083 + 0.266900i
\(969\) 36.8630 16.4125i 1.18421 0.527245i
\(970\) 0 0
\(971\) −3.93520 + 8.83860i −0.126287 + 0.283644i −0.965613 0.259983i \(-0.916283\pi\)
0.839327 + 0.543628i \(0.182950\pi\)
\(972\) −0.224312 + 1.41625i −0.00719481 + 0.0454262i
\(973\) 29.1144 + 49.5593i 0.933366 + 1.58880i
\(974\) 5.77998i 0.185202i
\(975\) 0 0
\(976\) −26.4009 15.2426i −0.845073 0.487903i
\(977\) 2.27910 + 3.50951i 0.0729149 + 0.112279i 0.873247 0.487278i \(-0.162010\pi\)
−0.800332 + 0.599557i \(0.795343\pi\)
\(978\) 12.3768 + 32.2426i 0.395765 + 1.03100i
\(979\) 2.26985 1.64914i 0.0725448 0.0527069i
\(980\) 0 0
\(981\) 4.84824 + 3.52246i 0.154793 + 0.112463i
\(982\) 3.30250 12.3251i 0.105387 0.393310i
\(983\) 11.3765 + 4.36704i 0.362855 + 0.139287i 0.532963 0.846138i \(-0.321078\pi\)
−0.170108 + 0.985425i \(0.554412\pi\)
\(984\) −9.76510 + 8.79254i −0.311300 + 0.280296i
\(985\) 0 0
\(986\) −22.8647 + 7.42920i −0.728161 + 0.236594i
\(987\) 3.00726 30.8523i 0.0957222 0.982039i
\(988\) 0.136136 + 0.267182i 0.00433106 + 0.00850019i
\(989\) −3.37933 3.04276i −0.107456 0.0967542i
\(990\) 0 0
\(991\) −26.7684 29.7294i −0.850327 0.944384i 0.148682 0.988885i \(-0.452497\pi\)
−0.999009 + 0.0445008i \(0.985830\pi\)
\(992\) 3.02185 + 3.73167i 0.0959438 + 0.118481i
\(993\) 9.80688 + 9.80688i 0.311212 + 0.311212i
\(994\) 10.2488 12.8535i 0.325072 0.407690i
\(995\) 0 0
\(996\) −3.46697 1.54360i −0.109855 0.0489107i
\(997\) 0.300574 + 0.243400i 0.00951926 + 0.00770855i 0.634068 0.773277i \(-0.281384\pi\)
−0.624549 + 0.780986i \(0.714717\pi\)
\(998\) 5.23343 3.39863i 0.165661 0.107582i
\(999\) 21.1708 + 36.6689i 0.669815 + 1.16015i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.a.857.13 288
5.2 odd 4 175.2.x.a.108.13 yes 288
5.3 odd 4 875.2.bb.c.143.6 288
5.4 even 2 875.2.bb.b.857.6 288
7.5 odd 6 inner 875.2.bb.a.607.6 288
25.3 odd 20 inner 875.2.bb.a.493.6 288
25.4 even 10 175.2.x.a.122.13 yes 288
25.21 even 5 875.2.bb.c.507.6 288
25.22 odd 20 875.2.bb.b.493.13 288
35.12 even 12 175.2.x.a.33.13 288
35.19 odd 6 875.2.bb.b.607.13 288
35.33 even 12 875.2.bb.c.768.6 288
175.47 even 60 875.2.bb.b.243.6 288
175.54 odd 30 175.2.x.a.47.13 yes 288
175.96 odd 30 875.2.bb.c.257.6 288
175.103 even 60 inner 875.2.bb.a.243.13 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.33.13 288 35.12 even 12
175.2.x.a.47.13 yes 288 175.54 odd 30
175.2.x.a.108.13 yes 288 5.2 odd 4
175.2.x.a.122.13 yes 288 25.4 even 10
875.2.bb.a.243.13 288 175.103 even 60 inner
875.2.bb.a.493.6 288 25.3 odd 20 inner
875.2.bb.a.607.6 288 7.5 odd 6 inner
875.2.bb.a.857.13 288 1.1 even 1 trivial
875.2.bb.b.243.6 288 175.47 even 60
875.2.bb.b.493.13 288 25.22 odd 20
875.2.bb.b.607.13 288 35.19 odd 6
875.2.bb.b.857.6 288 5.4 even 2
875.2.bb.c.143.6 288 5.3 odd 4
875.2.bb.c.257.6 288 175.96 odd 30
875.2.bb.c.507.6 288 25.21 even 5
875.2.bb.c.768.6 288 35.33 even 12