Properties

Label 875.2.bb.c.768.6
Level $875$
Weight $2$
Character 875.768
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(82,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([27, 50]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 768.6
Character \(\chi\) \(=\) 875.768
Dual form 875.2.bb.c.507.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10783 + 0.719435i) q^{2} +(-1.46183 + 0.561145i) q^{3} +(-0.103766 + 0.233063i) q^{4} +(1.21576 - 1.67335i) q^{6} +(2.58371 + 0.569615i) q^{7} +(-0.465999 - 2.94220i) q^{8} +(-0.407366 + 0.366794i) q^{9} +(-0.320535 + 0.355990i) q^{11} +(0.0209068 - 0.398926i) q^{12} +(0.0993879 + 0.195060i) q^{13} +(-3.27212 + 1.22777i) q^{14} +(2.29156 + 2.54503i) q^{16} +(3.73011 - 3.02058i) q^{17} +(0.187409 - 0.699421i) q^{18} +(4.90486 - 2.18378i) q^{19} +(-4.09658 + 0.617151i) q^{21} +(0.0989874 - 0.624982i) q^{22} +(0.290280 + 0.446992i) q^{23} +(2.33221 + 4.03951i) q^{24} +(-0.250438 - 0.144591i) q^{26} +(2.52230 - 4.95029i) q^{27} +(-0.400858 + 0.543059i) q^{28} +(-2.22883 - 3.06772i) q^{29} +(3.33026 + 0.350024i) q^{31} +(1.38510 + 0.371137i) q^{32} +(0.268806 - 0.700264i) q^{33} +(-1.95922 + 6.02987i) q^{34} +(-0.0432152 - 0.133003i) q^{36} +(7.61066 + 0.398858i) q^{37} +(-3.86267 + 5.94800i) q^{38} +(-0.254745 - 0.229374i) q^{39} +(2.67924 + 0.870538i) q^{41} +(4.09433 - 3.63092i) q^{42} +(-6.03300 - 6.03300i) q^{43} +(-0.0497074 - 0.111645i) q^{44} +(-0.643164 - 0.286355i) q^{46} +(-4.70888 + 5.81498i) q^{47} +(-4.77800 - 2.43451i) q^{48} +(6.35108 + 2.94344i) q^{49} +(-3.75781 + 6.50871i) q^{51} +(-0.0557743 + 0.00292301i) q^{52} +(1.73588 + 4.52212i) q^{53} +(0.767126 + 7.29872i) q^{54} +(0.471919 - 7.86722i) q^{56} +(-5.94466 + 5.94466i) q^{57} +(4.67619 + 1.79502i) q^{58} +(-5.23631 + 1.11301i) q^{59} +(-1.85075 + 8.70710i) q^{61} +(-3.94119 + 2.00814i) q^{62} +(-1.26145 + 0.715647i) q^{63} +(-8.31559 + 2.70190i) q^{64} +(0.206002 + 0.969164i) q^{66} +(8.17589 + 10.0964i) q^{67} +(0.316926 + 1.18278i) q^{68} +(-0.675168 - 0.490538i) q^{69} +(3.80548 - 2.76485i) q^{71} +(1.26902 + 1.02763i) q^{72} +(0.686467 + 13.0986i) q^{73} +(-8.71829 + 5.03351i) q^{74} +1.36974i q^{76} +(-1.03095 + 0.737192i) q^{77} +(0.447234 + 0.0708350i) q^{78} +(9.21497 - 0.968533i) q^{79} +(-0.737450 + 7.01637i) q^{81} +(-3.59445 + 0.963129i) q^{82} +(-9.38322 + 1.48616i) q^{83} +(0.281252 - 1.01880i) q^{84} +(11.0239 + 2.34320i) q^{86} +(4.97960 + 3.23379i) q^{87} +(1.19676 + 0.777187i) q^{88} +(-5.72901 - 1.21774i) q^{89} +(0.145680 + 0.560590i) q^{91} +(-0.134299 + 0.0212708i) q^{92} +(-5.06469 + 1.35708i) q^{93} +(1.03315 - 9.82977i) q^{94} +(-2.23304 + 0.234702i) q^{96} +(-9.51421 - 1.50690i) q^{97} +(-9.15355 + 1.30835i) q^{98} -0.262589i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 8 q^{2} + 24 q^{3} - 10 q^{4} + 10 q^{7} + 36 q^{8} - 10 q^{9} - 6 q^{11} + 36 q^{12} - 20 q^{14} - 30 q^{16} + 42 q^{17} + 14 q^{18} - 30 q^{19} - 12 q^{21} - 32 q^{22} + 40 q^{23} - 48 q^{26}+ \cdots - 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10783 + 0.719435i −0.783356 + 0.508717i −0.873273 0.487232i \(-0.838007\pi\)
0.0899164 + 0.995949i \(0.471340\pi\)
\(3\) −1.46183 + 0.561145i −0.843989 + 0.323977i −0.741662 0.670774i \(-0.765962\pi\)
−0.102327 + 0.994751i \(0.532629\pi\)
\(4\) −0.103766 + 0.233063i −0.0518831 + 0.116531i
\(5\) 0 0
\(6\) 1.21576 1.67335i 0.496331 0.683141i
\(7\) 2.58371 + 0.569615i 0.976549 + 0.215294i
\(8\) −0.465999 2.94220i −0.164755 1.04023i
\(9\) −0.407366 + 0.366794i −0.135789 + 0.122265i
\(10\) 0 0
\(11\) −0.320535 + 0.355990i −0.0966449 + 0.107335i −0.789527 0.613716i \(-0.789674\pi\)
0.692882 + 0.721051i \(0.256341\pi\)
\(12\) 0.0209068 0.398926i 0.00603529 0.115160i
\(13\) 0.0993879 + 0.195060i 0.0275653 + 0.0540999i 0.904378 0.426731i \(-0.140335\pi\)
−0.876813 + 0.480831i \(0.840335\pi\)
\(14\) −3.27212 + 1.22777i −0.874510 + 0.328135i
\(15\) 0 0
\(16\) 2.29156 + 2.54503i 0.572889 + 0.636258i
\(17\) 3.73011 3.02058i 0.904684 0.732599i −0.0593890 0.998235i \(-0.518915\pi\)
0.964073 + 0.265636i \(0.0855819\pi\)
\(18\) 0.187409 0.699421i 0.0441728 0.164855i
\(19\) 4.90486 2.18378i 1.12525 0.500994i 0.242180 0.970231i \(-0.422138\pi\)
0.883072 + 0.469237i \(0.155471\pi\)
\(20\) 0 0
\(21\) −4.09658 + 0.617151i −0.893947 + 0.134673i
\(22\) 0.0989874 0.624982i 0.0211042 0.133247i
\(23\) 0.290280 + 0.446992i 0.0605276 + 0.0932044i 0.867639 0.497195i \(-0.165637\pi\)
−0.807111 + 0.590400i \(0.798970\pi\)
\(24\) 2.33221 + 4.03951i 0.476061 + 0.824561i
\(25\) 0 0
\(26\) −0.250438 0.144591i −0.0491150 0.0283565i
\(27\) 2.52230 4.95029i 0.485416 0.952683i
\(28\) −0.400858 + 0.543059i −0.0757550 + 0.102629i
\(29\) −2.22883 3.06772i −0.413883 0.569661i 0.550277 0.834982i \(-0.314522\pi\)
−0.964160 + 0.265321i \(0.914522\pi\)
\(30\) 0 0
\(31\) 3.33026 + 0.350024i 0.598132 + 0.0628662i 0.398756 0.917057i \(-0.369442\pi\)
0.199376 + 0.979923i \(0.436109\pi\)
\(32\) 1.38510 + 0.371137i 0.244853 + 0.0656083i
\(33\) 0.268806 0.700264i 0.0467932 0.121900i
\(34\) −1.95922 + 6.02987i −0.336004 + 1.03411i
\(35\) 0 0
\(36\) −0.0432152 0.133003i −0.00720254 0.0221671i
\(37\) 7.61066 + 0.398858i 1.25118 + 0.0655718i 0.666386 0.745607i \(-0.267840\pi\)
0.584799 + 0.811179i \(0.301174\pi\)
\(38\) −3.86267 + 5.94800i −0.626609 + 0.964893i
\(39\) −0.254745 0.229374i −0.0407919 0.0367292i
\(40\) 0 0
\(41\) 2.67924 + 0.870538i 0.418427 + 0.135955i 0.510661 0.859782i \(-0.329401\pi\)
−0.0922339 + 0.995737i \(0.529401\pi\)
\(42\) 4.09433 3.63092i 0.631768 0.560264i
\(43\) −6.03300 6.03300i −0.920024 0.920024i 0.0770067 0.997031i \(-0.475464\pi\)
−0.997031 + 0.0770067i \(0.975464\pi\)
\(44\) −0.0497074 0.111645i −0.00749367 0.0168310i
\(45\) 0 0
\(46\) −0.643164 0.286355i −0.0948294 0.0422208i
\(47\) −4.70888 + 5.81498i −0.686861 + 0.848203i −0.994655 0.103250i \(-0.967076\pi\)
0.307795 + 0.951453i \(0.400409\pi\)
\(48\) −4.77800 2.43451i −0.689645 0.351391i
\(49\) 6.35108 + 2.94344i 0.907297 + 0.420491i
\(50\) 0 0
\(51\) −3.75781 + 6.50871i −0.526198 + 0.911402i
\(52\) −0.0557743 + 0.00292301i −0.00773450 + 0.000405348i
\(53\) 1.73588 + 4.52212i 0.238442 + 0.621161i 0.999625 0.0273749i \(-0.00871478\pi\)
−0.761184 + 0.648536i \(0.775381\pi\)
\(54\) 0.767126 + 7.29872i 0.104393 + 0.993230i
\(55\) 0 0
\(56\) 0.471919 7.86722i 0.0630628 1.05130i
\(57\) −5.94466 + 5.94466i −0.787389 + 0.787389i
\(58\) 4.67619 + 1.79502i 0.614014 + 0.235698i
\(59\) −5.23631 + 1.11301i −0.681709 + 0.144902i −0.535735 0.844386i \(-0.679965\pi\)
−0.145975 + 0.989288i \(0.546632\pi\)
\(60\) 0 0
\(61\) −1.85075 + 8.70710i −0.236964 + 1.11483i 0.685297 + 0.728263i \(0.259672\pi\)
−0.922262 + 0.386566i \(0.873661\pi\)
\(62\) −3.94119 + 2.00814i −0.500532 + 0.255034i
\(63\) −1.26145 + 0.715647i −0.158927 + 0.0901630i
\(64\) −8.31559 + 2.70190i −1.03945 + 0.337737i
\(65\) 0 0
\(66\) 0.206002 + 0.969164i 0.0253571 + 0.119296i
\(67\) 8.17589 + 10.0964i 0.998844 + 1.23347i 0.972279 + 0.233822i \(0.0751234\pi\)
0.0265646 + 0.999647i \(0.491543\pi\)
\(68\) 0.316926 + 1.18278i 0.0384329 + 0.143434i
\(69\) −0.675168 0.490538i −0.0812807 0.0590539i
\(70\) 0 0
\(71\) 3.80548 2.76485i 0.451628 0.328127i −0.338610 0.940927i \(-0.609957\pi\)
0.790238 + 0.612800i \(0.209957\pi\)
\(72\) 1.26902 + 1.02763i 0.149555 + 0.121107i
\(73\) 0.686467 + 13.0986i 0.0803449 + 1.53307i 0.680238 + 0.732991i \(0.261876\pi\)
−0.599893 + 0.800080i \(0.704790\pi\)
\(74\) −8.71829 + 5.03351i −1.01348 + 0.585133i
\(75\) 0 0
\(76\) 1.36974i 0.157120i
\(77\) −1.03095 + 0.737192i −0.117487 + 0.0840109i
\(78\) 0.447234 + 0.0708350i 0.0506393 + 0.00802048i
\(79\) 9.21497 0.968533i 1.03677 0.108968i 0.429177 0.903220i \(-0.358804\pi\)
0.607588 + 0.794252i \(0.292137\pi\)
\(80\) 0 0
\(81\) −0.737450 + 7.01637i −0.0819389 + 0.779597i
\(82\) −3.59445 + 0.963129i −0.396940 + 0.106360i
\(83\) −9.38322 + 1.48616i −1.02994 + 0.163127i −0.648459 0.761249i \(-0.724586\pi\)
−0.381482 + 0.924376i \(0.624586\pi\)
\(84\) 0.281252 1.01880i 0.0306871 0.111160i
\(85\) 0 0
\(86\) 11.0239 + 2.34320i 1.18874 + 0.252674i
\(87\) 4.97960 + 3.23379i 0.533869 + 0.346699i
\(88\) 1.19676 + 0.777187i 0.127575 + 0.0828484i
\(89\) −5.72901 1.21774i −0.607274 0.129080i −0.105996 0.994367i \(-0.533803\pi\)
−0.501278 + 0.865286i \(0.667136\pi\)
\(90\) 0 0
\(91\) 0.145680 + 0.560590i 0.0152714 + 0.0587658i
\(92\) −0.134299 + 0.0212708i −0.0140016 + 0.00221764i
\(93\) −5.06469 + 1.35708i −0.525184 + 0.140723i
\(94\) 1.03315 9.82977i 0.106561 1.01386i
\(95\) 0 0
\(96\) −2.23304 + 0.234702i −0.227909 + 0.0239542i
\(97\) −9.51421 1.50690i −0.966022 0.153003i −0.346558 0.938028i \(-0.612650\pi\)
−0.619463 + 0.785026i \(0.712650\pi\)
\(98\) −9.15355 + 1.30835i −0.924648 + 0.132163i
\(99\) 0.262589i 0.0263912i
\(100\) 0 0
\(101\) 15.0410 8.68390i 1.49663 0.864080i 0.496638 0.867958i \(-0.334568\pi\)
0.999992 + 0.00387741i \(0.00123422\pi\)
\(102\) −0.519574 9.91407i −0.0514455 0.981639i
\(103\) 6.09966 + 4.93940i 0.601017 + 0.486694i 0.880876 0.473347i \(-0.156954\pi\)
−0.279859 + 0.960041i \(0.590288\pi\)
\(104\) 0.527590 0.383317i 0.0517345 0.0375873i
\(105\) 0 0
\(106\) −5.17644 3.76090i −0.502780 0.365291i
\(107\) 0.556205 + 2.07579i 0.0537704 + 0.200674i 0.987586 0.157082i \(-0.0502087\pi\)
−0.933815 + 0.357756i \(0.883542\pi\)
\(108\) 0.891998 + 1.10153i 0.0858326 + 0.105994i
\(109\) −2.27297 10.6935i −0.217711 1.02425i −0.942223 0.334988i \(-0.891268\pi\)
0.724511 0.689263i \(-0.242065\pi\)
\(110\) 0 0
\(111\) −11.3493 + 3.68762i −1.07723 + 0.350013i
\(112\) 4.47102 + 7.88092i 0.422472 + 0.744677i
\(113\) 15.8409 8.07135i 1.49019 0.759289i 0.496142 0.868241i \(-0.334750\pi\)
0.994047 + 0.108952i \(0.0347496\pi\)
\(114\) 2.30889 10.8625i 0.216248 1.01737i
\(115\) 0 0
\(116\) 0.946248 0.201131i 0.0878569 0.0186746i
\(117\) −0.112034 0.0430059i −0.0103576 0.00397589i
\(118\) 5.00022 5.00022i 0.460307 0.460307i
\(119\) 11.3581 5.67957i 1.04119 0.520646i
\(120\) 0 0
\(121\) 1.12583 + 10.7115i 0.102348 + 0.973775i
\(122\) −4.21387 10.9775i −0.381506 0.993857i
\(123\) −4.40510 + 0.230861i −0.397194 + 0.0208161i
\(124\) −0.427146 + 0.739839i −0.0383589 + 0.0664395i
\(125\) 0 0
\(126\) 0.882611 1.70035i 0.0786293 0.151479i
\(127\) −16.6373 8.47711i −1.47632 0.752222i −0.483899 0.875124i \(-0.660780\pi\)
−0.992419 + 0.122902i \(0.960780\pi\)
\(128\) 5.46360 6.74699i 0.482919 0.596355i
\(129\) 12.2046 + 5.43384i 1.07456 + 0.478423i
\(130\) 0 0
\(131\) 0.206928 + 0.464769i 0.0180794 + 0.0406070i 0.922360 0.386333i \(-0.126258\pi\)
−0.904280 + 0.426940i \(0.859592\pi\)
\(132\) 0.135313 + 0.135313i 0.0117774 + 0.0117774i
\(133\) 13.9166 2.84837i 1.20673 0.246985i
\(134\) −16.3212 5.30308i −1.40994 0.458117i
\(135\) 0 0
\(136\) −10.6254 9.56714i −0.911120 0.820376i
\(137\) 2.36953 3.64876i 0.202443 0.311734i −0.722838 0.691018i \(-0.757163\pi\)
0.925281 + 0.379283i \(0.123829\pi\)
\(138\) 1.10088 + 0.0576949i 0.0937135 + 0.00491132i
\(139\) 6.71334 + 20.6615i 0.569418 + 1.75249i 0.654444 + 0.756111i \(0.272903\pi\)
−0.0850255 + 0.996379i \(0.527097\pi\)
\(140\) 0 0
\(141\) 3.62054 11.1429i 0.304905 0.938401i
\(142\) −2.22671 + 5.80079i −0.186862 + 0.486791i
\(143\) −0.101297 0.0271424i −0.00847085 0.00226976i
\(144\) −1.86701 0.196230i −0.155584 0.0163525i
\(145\) 0 0
\(146\) −10.1841 14.0172i −0.842839 1.16007i
\(147\) −10.9359 0.738938i −0.901978 0.0609466i
\(148\) −0.882688 + 1.73237i −0.0725565 + 0.142400i
\(149\) −10.0097 5.77912i −0.820030 0.473444i 0.0303970 0.999538i \(-0.490323\pi\)
−0.850427 + 0.526094i \(0.823656\pi\)
\(150\) 0 0
\(151\) 8.08621 + 14.0057i 0.658046 + 1.13977i 0.981121 + 0.193396i \(0.0619502\pi\)
−0.323075 + 0.946373i \(0.604716\pi\)
\(152\) −8.71079 13.4134i −0.706538 1.08797i
\(153\) −0.411589 + 2.59867i −0.0332750 + 0.210090i
\(154\) 0.611754 1.55838i 0.0492965 0.125578i
\(155\) 0 0
\(156\) 0.0798924 0.0355704i 0.00639651 0.00284791i
\(157\) 1.04591 3.90339i 0.0834728 0.311525i −0.911548 0.411194i \(-0.865112\pi\)
0.995021 + 0.0996695i \(0.0317785\pi\)
\(158\) −9.51185 + 7.70255i −0.756723 + 0.612782i
\(159\) −5.07513 5.63650i −0.402484 0.447004i
\(160\) 0 0
\(161\) 0.495385 + 1.32025i 0.0390418 + 0.104050i
\(162\) −4.23085 8.30351i −0.332407 0.652386i
\(163\) 0.873876 16.6745i 0.0684472 1.30605i −0.721302 0.692621i \(-0.756456\pi\)
0.789749 0.613430i \(-0.210211\pi\)
\(164\) −0.480905 + 0.534099i −0.0375524 + 0.0417061i
\(165\) 0 0
\(166\) 9.32584 8.39703i 0.723826 0.651736i
\(167\) 3.73076 + 23.5551i 0.288695 + 1.82275i 0.525039 + 0.851078i \(0.324051\pi\)
−0.236344 + 0.971669i \(0.575949\pi\)
\(168\) 3.72478 + 11.7654i 0.287373 + 0.907718i
\(169\) 7.61304 10.4784i 0.585618 0.806034i
\(170\) 0 0
\(171\) −1.19708 + 2.68868i −0.0915427 + 0.205608i
\(172\) 2.03209 0.780046i 0.154945 0.0594780i
\(173\) 20.5286 13.3315i 1.56076 1.01357i 0.580883 0.813987i \(-0.302707\pi\)
0.979881 0.199585i \(-0.0639593\pi\)
\(174\) −7.84307 −0.594581
\(175\) 0 0
\(176\) −1.64053 −0.123660
\(177\) 7.03004 4.56536i 0.528410 0.343154i
\(178\) 7.22287 2.77260i 0.541377 0.207815i
\(179\) −7.19967 + 16.1707i −0.538129 + 1.20866i 0.416028 + 0.909352i \(0.363422\pi\)
−0.954157 + 0.299306i \(0.903245\pi\)
\(180\) 0 0
\(181\) −0.557581 + 0.767444i −0.0414447 + 0.0570437i −0.829236 0.558898i \(-0.811224\pi\)
0.787792 + 0.615942i \(0.211224\pi\)
\(182\) −0.564698 0.516233i −0.0418582 0.0382657i
\(183\) −2.18045 13.7668i −0.161184 1.01767i
\(184\) 1.17987 1.06236i 0.0869813 0.0783183i
\(185\) 0 0
\(186\) 4.63450 5.14714i 0.339818 0.377406i
\(187\) −0.120333 + 2.29609i −0.00879960 + 0.167906i
\(188\) −0.866634 1.70086i −0.0632058 0.124048i
\(189\) 9.33663 11.3533i 0.679140 0.825835i
\(190\) 0 0
\(191\) −7.00728 7.78237i −0.507029 0.563112i 0.434229 0.900803i \(-0.357021\pi\)
−0.941257 + 0.337690i \(0.890354\pi\)
\(192\) 10.6398 8.61597i 0.767864 0.621804i
\(193\) 5.09648 19.0203i 0.366852 1.36911i −0.498040 0.867154i \(-0.665947\pi\)
0.864892 0.501957i \(-0.167387\pi\)
\(194\) 11.6243 5.17546i 0.834574 0.371576i
\(195\) 0 0
\(196\) −1.34503 + 1.17477i −0.0960738 + 0.0839122i
\(197\) 2.23453 14.1083i 0.159204 1.00517i −0.770654 0.637254i \(-0.780070\pi\)
0.929858 0.367920i \(-0.119930\pi\)
\(198\) 0.188916 + 0.290905i 0.0134257 + 0.0206737i
\(199\) 3.58928 + 6.21681i 0.254437 + 0.440698i 0.964742 0.263196i \(-0.0847765\pi\)
−0.710305 + 0.703894i \(0.751443\pi\)
\(200\) 0 0
\(201\) −17.6173 10.1714i −1.24263 0.717432i
\(202\) −10.4154 + 20.4413i −0.732822 + 1.43824i
\(203\) −4.01121 9.19565i −0.281532 0.645408i
\(204\) −1.12701 1.55119i −0.0789062 0.108605i
\(205\) 0 0
\(206\) −10.3110 1.08373i −0.718400 0.0755069i
\(207\) −0.282205 0.0756165i −0.0196146 0.00525571i
\(208\) −0.268680 + 0.699936i −0.0186296 + 0.0485318i
\(209\) −0.794773 + 2.44606i −0.0549756 + 0.169198i
\(210\) 0 0
\(211\) −1.17257 3.60880i −0.0807231 0.248440i 0.902548 0.430590i \(-0.141694\pi\)
−0.983271 + 0.182150i \(0.941694\pi\)
\(212\) −1.23406 0.0646746i −0.0847559 0.00444187i
\(213\) −4.01150 + 6.17716i −0.274863 + 0.423252i
\(214\) −2.10958 1.89947i −0.144208 0.129845i
\(215\) 0 0
\(216\) −15.7401 5.11428i −1.07098 0.347982i
\(217\) 8.40503 + 2.80133i 0.570571 + 0.190166i
\(218\) 10.2113 + 10.2113i 0.691600 + 0.691600i
\(219\) −8.35369 18.7627i −0.564490 1.26787i
\(220\) 0 0
\(221\) 0.959922 + 0.427385i 0.0645714 + 0.0287490i
\(222\) 9.92015 12.2504i 0.665797 0.822190i
\(223\) −3.42142 1.74330i −0.229115 0.116740i 0.335665 0.941981i \(-0.391039\pi\)
−0.564780 + 0.825242i \(0.691039\pi\)
\(224\) 3.36729 + 1.74788i 0.224986 + 0.116785i
\(225\) 0 0
\(226\) −11.7423 + 20.3382i −0.781085 + 1.35288i
\(227\) −1.94977 + 0.102183i −0.129411 + 0.00678213i −0.116931 0.993140i \(-0.537306\pi\)
−0.0124794 + 0.999922i \(0.503972\pi\)
\(228\) −0.768624 2.00233i −0.0509034 0.132608i
\(229\) 1.15255 + 10.9658i 0.0761626 + 0.724639i 0.964255 + 0.264975i \(0.0853636\pi\)
−0.888093 + 0.459664i \(0.847970\pi\)
\(230\) 0 0
\(231\) 1.09340 1.65616i 0.0719403 0.108967i
\(232\) −7.98721 + 7.98721i −0.524386 + 0.524386i
\(233\) 18.2557 + 7.00772i 1.19597 + 0.459091i 0.873189 0.487382i \(-0.162048\pi\)
0.322784 + 0.946473i \(0.395381\pi\)
\(234\) 0.155055 0.0329580i 0.0101363 0.00215453i
\(235\) 0 0
\(236\) 0.283951 1.33588i 0.0184836 0.0869585i
\(237\) −12.9273 + 6.58676i −0.839715 + 0.427856i
\(238\) −8.49677 + 14.4634i −0.550764 + 0.937524i
\(239\) 9.20533 2.99099i 0.595443 0.193471i 0.00423616 0.999991i \(-0.498652\pi\)
0.591207 + 0.806520i \(0.298652\pi\)
\(240\) 0 0
\(241\) 2.60970 + 12.2777i 0.168106 + 0.790875i 0.978705 + 0.205274i \(0.0658084\pi\)
−0.810599 + 0.585602i \(0.800858\pi\)
\(242\) −8.95348 11.0566i −0.575551 0.710747i
\(243\) 1.45470 + 5.42901i 0.0933190 + 0.348271i
\(244\) −1.83726 1.33484i −0.117618 0.0854546i
\(245\) 0 0
\(246\) 4.71402 3.42494i 0.300555 0.218366i
\(247\) 0.913452 + 0.739699i 0.0581216 + 0.0470659i
\(248\) −0.522055 9.96140i −0.0331505 0.632550i
\(249\) 12.8827 7.43785i 0.816410 0.471354i
\(250\) 0 0
\(251\) 15.3215i 0.967086i −0.875321 0.483543i \(-0.839350\pi\)
0.875321 0.483543i \(-0.160650\pi\)
\(252\) −0.0358950 0.368256i −0.00226117 0.0231980i
\(253\) −0.252170 0.0399398i −0.0158538 0.00251099i
\(254\) 24.5300 2.57821i 1.53915 0.161771i
\(255\) 0 0
\(256\) 0.629156 5.98602i 0.0393223 0.374126i
\(257\) −5.05092 + 1.35339i −0.315068 + 0.0844221i −0.412888 0.910782i \(-0.635480\pi\)
0.0978199 + 0.995204i \(0.468813\pi\)
\(258\) −17.4300 + 2.76064i −1.08514 + 0.171870i
\(259\) 19.4365 + 5.36568i 1.20773 + 0.333407i
\(260\) 0 0
\(261\) 2.03317 + 0.432164i 0.125850 + 0.0267503i
\(262\) −0.563613 0.366015i −0.0348201 0.0226125i
\(263\) −9.76119 6.33899i −0.601901 0.390879i 0.207415 0.978253i \(-0.433495\pi\)
−0.809316 + 0.587374i \(0.800162\pi\)
\(264\) −2.18558 0.464560i −0.134513 0.0285917i
\(265\) 0 0
\(266\) −13.3681 + 13.1676i −0.819650 + 0.807360i
\(267\) 9.05817 1.43467i 0.554351 0.0878006i
\(268\) −3.20147 + 0.857832i −0.195561 + 0.0524004i
\(269\) 1.26000 11.9881i 0.0768234 0.730926i −0.886527 0.462678i \(-0.846889\pi\)
0.963350 0.268248i \(-0.0864446\pi\)
\(270\) 0 0
\(271\) 14.5617 1.53049i 0.884558 0.0929708i 0.348656 0.937251i \(-0.386638\pi\)
0.535902 + 0.844280i \(0.319972\pi\)
\(272\) 16.2352 + 2.57141i 0.984405 + 0.155915i
\(273\) −0.527532 0.737741i −0.0319277 0.0446501i
\(274\) 5.74694i 0.347185i
\(275\) 0 0
\(276\) 0.184386 0.106455i 0.0110987 0.00640785i
\(277\) 0.317200 + 6.05253i 0.0190587 + 0.363661i 0.991465 + 0.130370i \(0.0416164\pi\)
−0.972407 + 0.233292i \(0.925050\pi\)
\(278\) −22.3019 18.0597i −1.33758 1.08315i
\(279\) −1.48502 + 1.07893i −0.0889060 + 0.0645940i
\(280\) 0 0
\(281\) −3.73577 2.71420i −0.222857 0.161915i 0.470755 0.882264i \(-0.343982\pi\)
−0.693612 + 0.720349i \(0.743982\pi\)
\(282\) 4.00563 + 14.9492i 0.238532 + 0.890212i
\(283\) 2.43622 + 3.00848i 0.144818 + 0.178836i 0.844394 0.535723i \(-0.179961\pi\)
−0.699575 + 0.714559i \(0.746628\pi\)
\(284\) 0.249502 + 1.17381i 0.0148052 + 0.0696531i
\(285\) 0 0
\(286\) 0.131747 0.0428072i 0.00779036 0.00253124i
\(287\) 6.42650 + 3.77535i 0.379344 + 0.222852i
\(288\) −0.700374 + 0.356858i −0.0412699 + 0.0210281i
\(289\) 1.25530 5.90570i 0.0738410 0.347394i
\(290\) 0 0
\(291\) 14.7538 3.13601i 0.864881 0.183836i
\(292\) −3.12402 1.19920i −0.182820 0.0701778i
\(293\) −10.8232 + 10.8232i −0.632300 + 0.632300i −0.948644 0.316344i \(-0.897545\pi\)
0.316344 + 0.948644i \(0.397545\pi\)
\(294\) 12.6468 7.04905i 0.737574 0.411109i
\(295\) 0 0
\(296\) −2.37304 22.5780i −0.137930 1.31232i
\(297\) 0.953769 + 2.48465i 0.0553433 + 0.144174i
\(298\) 15.2468 0.799052i 0.883225 0.0462878i
\(299\) −0.0583399 + 0.101048i −0.00337388 + 0.00584374i
\(300\) 0 0
\(301\) −12.1510 19.0240i −0.700373 1.09652i
\(302\) −19.0344 9.69850i −1.09531 0.558086i
\(303\) −17.1144 + 21.1345i −0.983198 + 1.21415i
\(304\) 16.7976 + 7.47875i 0.963406 + 0.428936i
\(305\) 0 0
\(306\) −1.41360 3.17500i −0.0808102 0.181503i
\(307\) −3.99596 3.99596i −0.228061 0.228061i 0.583821 0.811882i \(-0.301557\pi\)
−0.811882 + 0.583821i \(0.801557\pi\)
\(308\) −0.0648348 0.316771i −0.00369430 0.0180497i
\(309\) −11.6884 3.79779i −0.664929 0.216049i
\(310\) 0 0
\(311\) −0.717211 0.645779i −0.0406693 0.0366188i 0.648545 0.761176i \(-0.275378\pi\)
−0.689215 + 0.724557i \(0.742044\pi\)
\(312\) −0.556152 + 0.856399i −0.0314859 + 0.0484841i
\(313\) −0.389843 0.0204308i −0.0220352 0.00115482i 0.0413152 0.999146i \(-0.486845\pi\)
−0.0633504 + 0.997991i \(0.520179\pi\)
\(314\) 1.64954 + 5.07677i 0.0930891 + 0.286499i
\(315\) 0 0
\(316\) −0.730474 + 2.24817i −0.0410924 + 0.126469i
\(317\) 10.7826 28.0896i 0.605611 1.57767i −0.196505 0.980503i \(-0.562959\pi\)
0.802116 0.597168i \(-0.203707\pi\)
\(318\) 9.67749 + 2.59308i 0.542687 + 0.145413i
\(319\) 1.80649 + 0.189870i 0.101144 + 0.0106307i
\(320\) 0 0
\(321\) −1.97789 2.72234i −0.110395 0.151946i
\(322\) −1.49864 1.10621i −0.0835157 0.0616469i
\(323\) 11.6994 22.9613i 0.650970 1.27760i
\(324\) −1.55873 0.899935i −0.0865962 0.0499964i
\(325\) 0 0
\(326\) 11.0281 + 19.1013i 0.610792 + 1.05792i
\(327\) 9.32329 + 14.3566i 0.515579 + 0.793923i
\(328\) 1.31277 8.28853i 0.0724859 0.457658i
\(329\) −15.4787 + 12.3420i −0.853367 + 0.680434i
\(330\) 0 0
\(331\) −8.09153 + 3.60258i −0.444751 + 0.198016i −0.616878 0.787059i \(-0.711603\pi\)
0.172127 + 0.985075i \(0.444936\pi\)
\(332\) 0.627294 2.34109i 0.0344272 0.128484i
\(333\) −3.24663 + 2.62907i −0.177914 + 0.144072i
\(334\) −21.0794 23.4111i −1.15341 1.28100i
\(335\) 0 0
\(336\) −10.9582 9.01168i −0.597819 0.491628i
\(337\) 9.00124 + 17.6659i 0.490329 + 0.962324i 0.995081 + 0.0990602i \(0.0315836\pi\)
−0.504753 + 0.863264i \(0.668416\pi\)
\(338\) −0.895411 + 17.0855i −0.0487039 + 0.929326i
\(339\) −18.6276 + 20.6880i −1.01171 + 1.12362i
\(340\) 0 0
\(341\) −1.19207 + 1.07334i −0.0645542 + 0.0581249i
\(342\) −0.608168 3.83982i −0.0328860 0.207634i
\(343\) 14.7327 + 11.2226i 0.795490 + 0.605966i
\(344\) −14.9389 + 20.5617i −0.805453 + 1.10861i
\(345\) 0 0
\(346\) −13.1512 + 29.5381i −0.707012 + 1.58798i
\(347\) 0.937932 0.360039i 0.0503509 0.0193279i −0.333062 0.942905i \(-0.608082\pi\)
0.383413 + 0.923577i \(0.374749\pi\)
\(348\) −1.27039 + 0.825001i −0.0681001 + 0.0442247i
\(349\) 22.8601 1.22367 0.611835 0.790985i \(-0.290431\pi\)
0.611835 + 0.790985i \(0.290431\pi\)
\(350\) 0 0
\(351\) 1.21629 0.0649206
\(352\) −0.576094 + 0.374120i −0.0307059 + 0.0199407i
\(353\) 16.3857 6.28989i 0.872124 0.334777i 0.119189 0.992872i \(-0.461971\pi\)
0.752935 + 0.658094i \(0.228637\pi\)
\(354\) −4.50363 + 10.1153i −0.239365 + 0.537623i
\(355\) 0 0
\(356\) 0.878288 1.20886i 0.0465491 0.0640694i
\(357\) −13.4165 + 14.6761i −0.710078 + 0.776742i
\(358\) −3.65776 23.0942i −0.193318 1.22056i
\(359\) −21.5239 + 19.3802i −1.13599 + 1.02285i −0.136506 + 0.990639i \(0.543587\pi\)
−0.999481 + 0.0322078i \(0.989746\pi\)
\(360\) 0 0
\(361\) 6.57525 7.30256i 0.346066 0.384345i
\(362\) 0.0655801 1.25134i 0.00344682 0.0657692i
\(363\) −7.65648 15.0267i −0.401861 0.788697i
\(364\) −0.145769 0.0242177i −0.00764039 0.00126935i
\(365\) 0 0
\(366\) 12.3199 + 13.6827i 0.643973 + 0.715205i
\(367\) −12.8863 + 10.4351i −0.672658 + 0.544708i −0.903663 0.428245i \(-0.859132\pi\)
0.231005 + 0.972953i \(0.425799\pi\)
\(368\) −0.472416 + 1.76308i −0.0246264 + 0.0919069i
\(369\) −1.41074 + 0.628103i −0.0734403 + 0.0326977i
\(370\) 0 0
\(371\) 1.90913 + 12.6726i 0.0991173 + 0.657930i
\(372\) 0.209259 1.32121i 0.0108496 0.0685016i
\(373\) 15.9710 + 24.5932i 0.826946 + 1.27339i 0.959358 + 0.282191i \(0.0910612\pi\)
−0.132412 + 0.991195i \(0.542272\pi\)
\(374\) −1.51858 2.63025i −0.0785237 0.136007i
\(375\) 0 0
\(376\) 19.3032 + 11.1447i 0.995486 + 0.574744i
\(377\) 0.376870 0.739648i 0.0194098 0.0380938i
\(378\) −2.17543 + 19.2947i −0.111892 + 0.992413i
\(379\) −10.6445 14.6509i −0.546773 0.752568i 0.442797 0.896622i \(-0.353986\pi\)
−0.989570 + 0.144054i \(0.953986\pi\)
\(380\) 0 0
\(381\) 29.0778 + 3.05620i 1.48970 + 0.156574i
\(382\) 13.3618 + 3.58028i 0.683649 + 0.183183i
\(383\) −10.6911 + 27.8513i −0.546291 + 1.42314i 0.331209 + 0.943557i \(0.392544\pi\)
−0.877499 + 0.479578i \(0.840790\pi\)
\(384\) −4.20083 + 12.9288i −0.214373 + 0.659771i
\(385\) 0 0
\(386\) 8.03783 + 24.7379i 0.409115 + 1.25913i
\(387\) 4.67051 + 0.244771i 0.237415 + 0.0124424i
\(388\) 1.33846 2.06104i 0.0679499 0.104634i
\(389\) −8.38594 7.55073i −0.425184 0.382837i 0.428575 0.903506i \(-0.359016\pi\)
−0.853759 + 0.520669i \(0.825683\pi\)
\(390\) 0 0
\(391\) 2.43296 + 0.790515i 0.123040 + 0.0399781i
\(392\) 5.70059 20.0578i 0.287923 1.01307i
\(393\) −0.563297 0.563297i −0.0284146 0.0284146i
\(394\) 7.67451 + 17.2372i 0.386636 + 0.868399i
\(395\) 0 0
\(396\) 0.0611997 + 0.0272479i 0.00307540 + 0.00136926i
\(397\) −3.12330 + 3.85695i −0.156754 + 0.193575i −0.849472 0.527633i \(-0.823080\pi\)
0.692719 + 0.721208i \(0.256413\pi\)
\(398\) −8.44891 4.30493i −0.423505 0.215787i
\(399\) −18.7454 + 11.9731i −0.938445 + 0.599404i
\(400\) 0 0
\(401\) 2.20052 3.81142i 0.109889 0.190333i −0.805836 0.592139i \(-0.798284\pi\)
0.915725 + 0.401805i \(0.131617\pi\)
\(402\) 26.8347 1.40634i 1.33839 0.0701421i
\(403\) 0.262712 + 0.684388i 0.0130866 + 0.0340918i
\(404\) 0.463150 + 4.40658i 0.0230426 + 0.219236i
\(405\) 0 0
\(406\) 11.0594 + 7.30144i 0.548870 + 0.362364i
\(407\) −2.58147 + 2.58147i −0.127959 + 0.127959i
\(408\) 20.9011 + 8.02317i 1.03476 + 0.397206i
\(409\) 0.210716 0.0447891i 0.0104192 0.00221468i −0.202699 0.979241i \(-0.564971\pi\)
0.213118 + 0.977026i \(0.431638\pi\)
\(410\) 0 0
\(411\) −1.41637 + 6.66352i −0.0698646 + 0.328687i
\(412\) −1.78413 + 0.909060i −0.0878978 + 0.0447862i
\(413\) −14.1631 0.106986i −0.696919 0.00526445i
\(414\) 0.367037 0.119258i 0.0180389 0.00586119i
\(415\) 0 0
\(416\) 0.0652684 + 0.307064i 0.00320005 + 0.0150550i
\(417\) −21.4079 26.4365i −1.04835 1.29460i
\(418\) −0.879306 3.28162i −0.0430083 0.160509i
\(419\) −28.0621 20.3883i −1.37092 0.996034i −0.997664 0.0683067i \(-0.978240\pi\)
−0.373259 0.927727i \(-0.621760\pi\)
\(420\) 0 0
\(421\) 24.3135 17.6648i 1.18497 0.860928i 0.192243 0.981347i \(-0.438424\pi\)
0.992723 + 0.120419i \(0.0384239\pi\)
\(422\) 3.89531 + 3.15436i 0.189621 + 0.153552i
\(423\) −0.214663 4.09602i −0.0104373 0.199155i
\(424\) 12.4961 7.21461i 0.606863 0.350373i
\(425\) 0 0
\(426\) 9.72928i 0.471385i
\(427\) −9.74149 + 21.4424i −0.471424 + 1.03767i
\(428\) −0.541504 0.0857658i −0.0261746 0.00414565i
\(429\) 0.163309 0.0171645i 0.00788465 0.000828711i
\(430\) 0 0
\(431\) −3.65977 + 34.8204i −0.176285 + 1.67724i 0.446453 + 0.894807i \(0.352687\pi\)
−0.622738 + 0.782431i \(0.713980\pi\)
\(432\) 18.3786 4.92453i 0.884241 0.236932i
\(433\) −5.71937 + 0.905859i −0.274855 + 0.0435328i −0.292340 0.956314i \(-0.594434\pi\)
0.0174852 + 0.999847i \(0.494434\pi\)
\(434\) −11.3267 + 2.94347i −0.543701 + 0.141291i
\(435\) 0 0
\(436\) 2.72811 + 0.579878i 0.130653 + 0.0277711i
\(437\) 2.39992 + 1.55853i 0.114804 + 0.0745544i
\(438\) 22.7530 + 14.7760i 1.08718 + 0.706024i
\(439\) −18.8155 3.99935i −0.898013 0.190879i −0.264294 0.964442i \(-0.585139\pi\)
−0.633719 + 0.773563i \(0.718472\pi\)
\(440\) 0 0
\(441\) −3.66685 + 1.13048i −0.174612 + 0.0538325i
\(442\) −1.37091 + 0.217131i −0.0652075 + 0.0103279i
\(443\) −14.8917 + 3.99023i −0.707527 + 0.189581i −0.594600 0.804022i \(-0.702689\pi\)
−0.112928 + 0.993603i \(0.536023\pi\)
\(444\) 0.318230 3.02775i 0.0151025 0.143691i
\(445\) 0 0
\(446\) 5.04455 0.530203i 0.238866 0.0251059i
\(447\) 17.8755 + 2.83120i 0.845481 + 0.133911i
\(448\) −23.0241 + 2.24423i −1.08779 + 0.106030i
\(449\) 14.1182i 0.666281i 0.942877 + 0.333140i \(0.108108\pi\)
−0.942877 + 0.333140i \(0.891892\pi\)
\(450\) 0 0
\(451\) −1.16869 + 0.674745i −0.0550316 + 0.0317725i
\(452\) 0.237379 + 4.52946i 0.0111654 + 0.213048i
\(453\) −19.6799 15.9365i −0.924643 0.748761i
\(454\) 2.08650 1.51593i 0.0979245 0.0711463i
\(455\) 0 0
\(456\) 20.2606 + 14.7202i 0.948789 + 0.689335i
\(457\) −7.49556 27.9738i −0.350627 1.30856i −0.885899 0.463879i \(-0.846457\pi\)
0.535271 0.844680i \(-0.320209\pi\)
\(458\) −9.16600 11.3191i −0.428299 0.528905i
\(459\) −5.54431 26.0839i −0.258786 1.21749i
\(460\) 0 0
\(461\) 30.3418 9.85863i 1.41316 0.459162i 0.499735 0.866178i \(-0.333431\pi\)
0.913421 + 0.407016i \(0.133431\pi\)
\(462\) −0.0198016 + 2.62138i −0.000921254 + 0.121958i
\(463\) −3.31433 + 1.68874i −0.154030 + 0.0784822i −0.529306 0.848431i \(-0.677548\pi\)
0.375276 + 0.926913i \(0.377548\pi\)
\(464\) 2.69995 12.7023i 0.125342 0.589688i
\(465\) 0 0
\(466\) −25.2659 + 5.37044i −1.17042 + 0.248781i
\(467\) −6.63789 2.54805i −0.307165 0.117910i 0.199903 0.979816i \(-0.435937\pi\)
−0.507068 + 0.861906i \(0.669271\pi\)
\(468\) 0.0216484 0.0216484i 0.00100070 0.00100070i
\(469\) 15.3730 + 30.7432i 0.709861 + 1.41959i
\(470\) 0 0
\(471\) 0.661422 + 6.29301i 0.0304767 + 0.289966i
\(472\) 5.71482 + 14.8876i 0.263046 + 0.685258i
\(473\) 4.08148 0.213901i 0.187666 0.00983518i
\(474\) 9.58249 16.5974i 0.440138 0.762342i
\(475\) 0 0
\(476\) 0.145112 + 3.23649i 0.00665119 + 0.148344i
\(477\) −2.36583 1.20545i −0.108324 0.0551938i
\(478\) −8.04614 + 9.93616i −0.368022 + 0.454469i
\(479\) −10.5264 4.68667i −0.480965 0.214140i 0.151908 0.988395i \(-0.451458\pi\)
−0.632874 + 0.774255i \(0.718125\pi\)
\(480\) 0 0
\(481\) 0.678607 + 1.52418i 0.0309418 + 0.0694964i
\(482\) −11.7241 11.7241i −0.534019 0.534019i
\(483\) −1.46502 1.65199i −0.0666606 0.0751683i
\(484\) −2.61328 0.849107i −0.118786 0.0385958i
\(485\) 0 0
\(486\) −5.51739 4.96788i −0.250274 0.225347i
\(487\) −2.38315 + 3.66973i −0.107991 + 0.166291i −0.888534 0.458810i \(-0.848276\pi\)
0.780543 + 0.625102i \(0.214942\pi\)
\(488\) 26.4805 + 1.38778i 1.19871 + 0.0628220i
\(489\) 8.07937 + 24.8657i 0.365362 + 1.12447i
\(490\) 0 0
\(491\) 2.98502 9.18693i 0.134712 0.414600i −0.860833 0.508887i \(-0.830057\pi\)
0.995545 + 0.0942867i \(0.0300570\pi\)
\(492\) 0.403295 1.05062i 0.0181819 0.0473656i
\(493\) −17.5801 4.71056i −0.791766 0.212153i
\(494\) −1.54412 0.162293i −0.0694732 0.00730192i
\(495\) 0 0
\(496\) 6.74065 + 9.27771i 0.302664 + 0.416582i
\(497\) 11.4071 4.97589i 0.511681 0.223199i
\(498\) −8.92087 + 17.5082i −0.399754 + 0.784561i
\(499\) 4.09112 + 2.36201i 0.183144 + 0.105738i 0.588769 0.808301i \(-0.299613\pi\)
−0.405625 + 0.914040i \(0.632946\pi\)
\(500\) 0 0
\(501\) −18.6716 32.3401i −0.834184 1.44485i
\(502\) 11.0228 + 16.9737i 0.491973 + 0.757573i
\(503\) −0.623100 + 3.93410i −0.0277826 + 0.175413i −0.997678 0.0681101i \(-0.978303\pi\)
0.969895 + 0.243523i \(0.0783031\pi\)
\(504\) 2.69341 + 3.37794i 0.119974 + 0.150465i
\(505\) 0 0
\(506\) 0.308096 0.137173i 0.0136965 0.00609810i
\(507\) −5.24905 + 19.5897i −0.233119 + 0.870011i
\(508\) 3.70209 2.99789i 0.164253 0.133010i
\(509\) 1.53153 + 1.70093i 0.0678838 + 0.0753926i 0.776130 0.630573i \(-0.217180\pi\)
−0.708246 + 0.705965i \(0.750513\pi\)
\(510\) 0 0
\(511\) −5.68752 + 34.2339i −0.251601 + 1.51442i
\(512\) 11.4924 + 22.5551i 0.507898 + 0.996806i
\(513\) 1.56116 29.7886i 0.0689267 1.31520i
\(514\) 4.62190 5.13314i 0.203863 0.226413i
\(515\) 0 0
\(516\) −2.53285 + 2.28059i −0.111503 + 0.100397i
\(517\) −0.560716 3.54022i −0.0246603 0.155699i
\(518\) −25.3927 + 8.03903i −1.11569 + 0.353215i
\(519\) −22.5285 + 31.0079i −0.988893 + 1.36109i
\(520\) 0 0
\(521\) −5.48334 + 12.3158i −0.240230 + 0.539565i −0.992917 0.118814i \(-0.962091\pi\)
0.752687 + 0.658379i \(0.228757\pi\)
\(522\) −2.56333 + 0.983969i −0.112194 + 0.0430672i
\(523\) −5.72408 + 3.71726i −0.250297 + 0.162545i −0.663689 0.748008i \(-0.731010\pi\)
0.413393 + 0.910553i \(0.364344\pi\)
\(524\) −0.129793 −0.00567001
\(525\) 0 0
\(526\) 15.3743 0.670350
\(527\) 13.4795 8.75370i 0.587177 0.381317i
\(528\) 2.39818 0.920574i 0.104367 0.0400629i
\(529\) 9.23940 20.7520i 0.401713 0.902263i
\(530\) 0 0
\(531\) 1.72485 2.37405i 0.0748521 0.103025i
\(532\) −0.780227 + 3.53902i −0.0338271 + 0.153436i
\(533\) 0.0964772 + 0.609133i 0.00417889 + 0.0263845i
\(534\) −9.00279 + 8.10615i −0.389589 + 0.350787i
\(535\) 0 0
\(536\) 25.8956 28.7600i 1.11852 1.24224i
\(537\) 1.45059 27.6789i 0.0625977 1.19443i
\(538\) 7.22877 + 14.1873i 0.311655 + 0.611657i
\(539\) −3.08358 + 1.31745i −0.132819 + 0.0567464i
\(540\) 0 0
\(541\) −5.10841 5.67347i −0.219628 0.243921i 0.623255 0.782019i \(-0.285810\pi\)
−0.842883 + 0.538097i \(0.819143\pi\)
\(542\) −15.0308 + 12.1717i −0.645628 + 0.522819i
\(543\) 0.384442 1.43476i 0.0164980 0.0615714i
\(544\) 6.28762 2.79943i 0.269580 0.120025i
\(545\) 0 0
\(546\) 1.11517 + 0.437768i 0.0477250 + 0.0187348i
\(547\) 6.49848 41.0298i 0.277855 1.75431i −0.315089 0.949062i \(-0.602034\pi\)
0.592944 0.805244i \(-0.297966\pi\)
\(548\) 0.604512 + 0.930867i 0.0258235 + 0.0397647i
\(549\) −2.43978 4.22582i −0.104127 0.180354i
\(550\) 0 0
\(551\) −17.6313 10.1794i −0.751119 0.433659i
\(552\) −1.12863 + 2.21507i −0.0480379 + 0.0942797i
\(553\) 24.3605 + 2.74659i 1.03591 + 0.116797i
\(554\) −4.70581 6.47699i −0.199931 0.275181i
\(555\) 0 0
\(556\) −5.51206 0.579340i −0.233763 0.0245695i
\(557\) −13.7087 3.67322i −0.580855 0.155640i −0.0435845 0.999050i \(-0.513878\pi\)
−0.537270 + 0.843410i \(0.680544\pi\)
\(558\) 0.868936 2.26365i 0.0367850 0.0958281i
\(559\) 0.577188 1.77640i 0.0244125 0.0751338i
\(560\) 0 0
\(561\) −1.11253 3.42401i −0.0469710 0.144562i
\(562\) 6.09130 + 0.319231i 0.256946 + 0.0134660i
\(563\) −22.8733 + 35.2219i −0.963997 + 1.48442i −0.0914994 + 0.995805i \(0.529166\pi\)
−0.872497 + 0.488619i \(0.837501\pi\)
\(564\) 2.22130 + 2.00007i 0.0935337 + 0.0842181i
\(565\) 0 0
\(566\) −4.86334 1.58019i −0.204421 0.0664205i
\(567\) −5.90199 + 17.7082i −0.247860 + 0.743673i
\(568\) −9.90808 9.90808i −0.415734 0.415734i
\(569\) 9.54513 + 21.4387i 0.400153 + 0.898758i 0.995453 + 0.0952543i \(0.0303664\pi\)
−0.595300 + 0.803503i \(0.702967\pi\)
\(570\) 0 0
\(571\) −8.83659 3.93430i −0.369800 0.164645i 0.213419 0.976961i \(-0.431540\pi\)
−0.583218 + 0.812315i \(0.698207\pi\)
\(572\) 0.0168371 0.0207920i 0.000703993 0.000869358i
\(573\) 14.6105 + 7.44442i 0.610362 + 0.310995i
\(574\) −9.83561 + 0.440991i −0.410530 + 0.0184066i
\(575\) 0 0
\(576\) 2.39645 4.15077i 0.0998521 0.172949i
\(577\) −1.66943 + 0.0874910i −0.0694992 + 0.00364230i −0.0870538 0.996204i \(-0.527745\pi\)
0.0175547 + 0.999846i \(0.494412\pi\)
\(578\) 2.85811 + 7.44564i 0.118882 + 0.309698i
\(579\) 3.22295 + 30.6643i 0.133941 + 1.27437i
\(580\) 0 0
\(581\) −25.0900 1.50503i −1.04091 0.0624394i
\(582\) −14.0886 + 14.0886i −0.583989 + 0.583989i
\(583\) −2.16624 0.831542i −0.0897166 0.0344390i
\(584\) 38.2187 8.12364i 1.58150 0.336159i
\(585\) 0 0
\(586\) 4.20372 19.7770i 0.173654 0.816978i
\(587\) 0.544273 0.277321i 0.0224646 0.0114463i −0.442722 0.896659i \(-0.645987\pi\)
0.465187 + 0.885213i \(0.345987\pi\)
\(588\) 1.30700 2.47207i 0.0538996 0.101947i
\(589\) 17.0988 5.55575i 0.704545 0.228921i
\(590\) 0 0
\(591\) 4.65028 + 21.8778i 0.191287 + 0.899934i
\(592\) 16.4251 + 20.2834i 0.675069 + 0.833641i
\(593\) −6.55597 24.4672i −0.269221 1.00475i −0.959616 0.281314i \(-0.909230\pi\)
0.690394 0.723433i \(-0.257437\pi\)
\(594\) −2.84416 2.06641i −0.116697 0.0847857i
\(595\) 0 0
\(596\) 2.38557 1.73322i 0.0977168 0.0709954i
\(597\) −8.73544 7.07382i −0.357518 0.289512i
\(598\) −0.00806638 0.153916i −0.000329859 0.00629408i
\(599\) 2.55964 1.47781i 0.104584 0.0603816i −0.446796 0.894636i \(-0.647435\pi\)
0.551380 + 0.834254i \(0.314102\pi\)
\(600\) 0 0
\(601\) 2.33505i 0.0952489i 0.998865 + 0.0476244i \(0.0151651\pi\)
−0.998865 + 0.0476244i \(0.984835\pi\)
\(602\) 27.1478 + 12.3335i 1.10646 + 0.502678i
\(603\) −7.03388 1.11406i −0.286442 0.0453679i
\(604\) −4.10329 + 0.431273i −0.166960 + 0.0175482i
\(605\) 0 0
\(606\) 3.75498 35.7263i 0.152536 1.45128i
\(607\) 18.6437 4.99555i 0.756723 0.202763i 0.140225 0.990120i \(-0.455218\pi\)
0.616498 + 0.787356i \(0.288551\pi\)
\(608\) 7.60420 1.20439i 0.308391 0.0488444i
\(609\) 11.0238 + 11.1916i 0.446707 + 0.453507i
\(610\) 0 0
\(611\) −1.60228 0.340574i −0.0648211 0.0137782i
\(612\) −0.562944 0.365580i −0.0227557 0.0147777i
\(613\) −8.30505 5.39337i −0.335438 0.217836i 0.365918 0.930647i \(-0.380755\pi\)
−0.701356 + 0.712811i \(0.747422\pi\)
\(614\) 7.30168 + 1.55202i 0.294672 + 0.0626345i
\(615\) 0 0
\(616\) 2.64939 + 2.68972i 0.106747 + 0.108372i
\(617\) −5.48345 + 0.868493i −0.220755 + 0.0349642i −0.265832 0.964019i \(-0.585647\pi\)
0.0450769 + 0.998984i \(0.485647\pi\)
\(618\) 15.6810 4.20172i 0.630784 0.169018i
\(619\) 3.98195 37.8857i 0.160048 1.52276i −0.559802 0.828626i \(-0.689123\pi\)
0.719850 0.694129i \(-0.244210\pi\)
\(620\) 0 0
\(621\) 2.94491 0.309523i 0.118175 0.0124207i
\(622\) 1.25915 + 0.199429i 0.0504872 + 0.00799638i
\(623\) −14.1084 6.40961i −0.565243 0.256796i
\(624\) 1.17396i 0.0469959i
\(625\) 0 0
\(626\) 0.446579 0.257833i 0.0178489 0.0103051i
\(627\) −0.210769 4.02171i −0.00841730 0.160612i
\(628\) 0.801205 + 0.648803i 0.0319716 + 0.0258901i
\(629\) 29.5934 21.5008i 1.17997 0.857295i
\(630\) 0 0
\(631\) −11.4331 8.30661i −0.455143 0.330681i 0.336480 0.941691i \(-0.390764\pi\)
−0.791623 + 0.611010i \(0.790764\pi\)
\(632\) −7.14378 26.6610i −0.284164 1.06052i
\(633\) 3.73916 + 4.61748i 0.148618 + 0.183528i
\(634\) 8.26335 + 38.8760i 0.328180 + 1.54396i
\(635\) 0 0
\(636\) 1.84029 0.597945i 0.0729721 0.0237101i
\(637\) 0.0570740 + 1.53138i 0.00226136 + 0.0606756i
\(638\) −2.13789 + 1.08931i −0.0846400 + 0.0431262i
\(639\) −0.536096 + 2.52213i −0.0212076 + 0.0997741i
\(640\) 0 0
\(641\) −7.58550 + 1.61235i −0.299609 + 0.0636839i −0.355263 0.934766i \(-0.615609\pi\)
0.0556544 + 0.998450i \(0.482276\pi\)
\(642\) 4.14972 + 1.59293i 0.163777 + 0.0628679i
\(643\) 16.8674 16.8674i 0.665185 0.665185i −0.291412 0.956598i \(-0.594125\pi\)
0.956598 + 0.291412i \(0.0941251\pi\)
\(644\) −0.359104 0.0215410i −0.0141507 0.000848835i
\(645\) 0 0
\(646\) 3.55822 + 33.8542i 0.139996 + 1.33198i
\(647\) 10.8463 + 28.2556i 0.426412 + 1.11084i 0.963593 + 0.267374i \(0.0861560\pi\)
−0.537181 + 0.843467i \(0.680511\pi\)
\(648\) 20.9872 1.09989i 0.824456 0.0432079i
\(649\) 1.28220 2.22083i 0.0503307 0.0871754i
\(650\) 0 0
\(651\) −13.8587 + 0.621370i −0.543165 + 0.0243534i
\(652\) 3.79554 + 1.93392i 0.148645 + 0.0757383i
\(653\) −21.1279 + 26.0908i −0.826800 + 1.02101i 0.172552 + 0.985000i \(0.444799\pi\)
−0.999351 + 0.0360120i \(0.988535\pi\)
\(654\) −20.6573 9.19723i −0.807765 0.359640i
\(655\) 0 0
\(656\) 3.92408 + 8.81364i 0.153210 + 0.344115i
\(657\) −5.08413 5.08413i −0.198351 0.198351i
\(658\) 8.26854 24.8087i 0.322341 0.967145i
\(659\) 45.9853 + 14.9415i 1.79133 + 0.582039i 0.999585 0.0288108i \(-0.00917203\pi\)
0.791747 + 0.610850i \(0.209172\pi\)
\(660\) 0 0
\(661\) −5.08370 4.57738i −0.197733 0.178040i 0.564316 0.825559i \(-0.309140\pi\)
−0.762049 + 0.647519i \(0.775807\pi\)
\(662\) 6.37224 9.81239i 0.247664 0.381369i
\(663\) −1.64307 0.0861096i −0.0638115 0.00334422i
\(664\) 8.74513 + 26.9148i 0.339377 + 1.04450i
\(665\) 0 0
\(666\) 1.70528 5.24830i 0.0660781 0.203368i
\(667\) 0.724262 1.88677i 0.0280435 0.0730559i
\(668\) −5.87694 1.57472i −0.227386 0.0609278i
\(669\) 5.97978 + 0.628500i 0.231192 + 0.0242992i
\(670\) 0 0
\(671\) −2.50641 3.44978i −0.0967589 0.133177i
\(672\) −5.90322 0.665574i −0.227722 0.0256751i
\(673\) −12.8780 + 25.2746i −0.496412 + 0.974263i 0.497847 + 0.867265i \(0.334124\pi\)
−0.994259 + 0.106999i \(0.965876\pi\)
\(674\) −22.6814 13.0951i −0.873653 0.504404i
\(675\) 0 0
\(676\) 1.65216 + 2.86163i 0.0635446 + 0.110063i
\(677\) 6.86510 + 10.5713i 0.263847 + 0.406289i 0.945619 0.325276i \(-0.105457\pi\)
−0.681772 + 0.731565i \(0.738790\pi\)
\(678\) 5.75255 36.3202i 0.220925 1.39487i
\(679\) −23.7236 9.31284i −0.910427 0.357394i
\(680\) 0 0
\(681\) 2.79289 1.24348i 0.107024 0.0476501i
\(682\) 0.548413 2.04670i 0.0209998 0.0783723i
\(683\) 3.95935 3.20622i 0.151500 0.122683i −0.550574 0.834787i \(-0.685591\pi\)
0.702074 + 0.712104i \(0.252258\pi\)
\(684\) −0.502414 0.557988i −0.0192103 0.0213352i
\(685\) 0 0
\(686\) −24.3953 1.83361i −0.931418 0.0700074i
\(687\) −7.83822 15.3834i −0.299047 0.586912i
\(688\) 1.52921 29.1791i 0.0583007 1.11244i
\(689\) −0.709559 + 0.788045i −0.0270320 + 0.0300221i
\(690\) 0 0
\(691\) −9.30768 + 8.38068i −0.354081 + 0.318816i −0.826906 0.562341i \(-0.809901\pi\)
0.472825 + 0.881156i \(0.343234\pi\)
\(692\) 0.976886 + 6.16782i 0.0371356 + 0.234465i
\(693\) 0.149575 0.678453i 0.00568187 0.0257723i
\(694\) −0.780048 + 1.07364i −0.0296102 + 0.0407550i
\(695\) 0 0
\(696\) 7.19397 16.1579i 0.272687 0.612465i
\(697\) 12.6234 4.84567i 0.478145 0.183543i
\(698\) −25.3251 + 16.4463i −0.958570 + 0.622503i
\(699\) −30.6192 −1.15812
\(700\) 0 0
\(701\) −38.5281 −1.45519 −0.727594 0.686008i \(-0.759361\pi\)
−0.727594 + 0.686008i \(0.759361\pi\)
\(702\) −1.34744 + 0.875040i −0.0508560 + 0.0330263i
\(703\) 38.2002 14.6637i 1.44075 0.553052i
\(704\) 1.70359 3.82632i 0.0642064 0.144210i
\(705\) 0 0
\(706\) −13.6275 + 18.7566i −0.512877 + 0.705915i
\(707\) 43.8079 13.8691i 1.64757 0.521601i
\(708\) 0.334535 + 2.11217i 0.0125726 + 0.0793803i
\(709\) 26.3654 23.7396i 0.990175 0.891558i −0.00392835 0.999992i \(-0.501250\pi\)
0.994104 + 0.108434i \(0.0345838\pi\)
\(710\) 0 0
\(711\) −3.39862 + 3.77455i −0.127458 + 0.141557i
\(712\) −0.913120 + 17.4234i −0.0342206 + 0.652968i
\(713\) 0.810250 + 1.59021i 0.0303441 + 0.0595537i
\(714\) 4.30478 25.9110i 0.161102 0.969695i
\(715\) 0 0
\(716\) −3.02171 3.35595i −0.112927 0.125418i
\(717\) −11.7783 + 9.53785i −0.439867 + 0.356197i
\(718\) 9.90207 36.9550i 0.369542 1.37915i
\(719\) −12.5161 + 5.57251i −0.466771 + 0.207820i −0.626625 0.779321i \(-0.715564\pi\)
0.159854 + 0.987141i \(0.448898\pi\)
\(720\) 0 0
\(721\) 12.9462 + 16.2364i 0.482140 + 0.604676i
\(722\) −2.03057 + 12.8205i −0.0755698 + 0.477129i
\(723\) −10.7045 16.4835i −0.398105 0.613027i
\(724\) −0.121005 0.209586i −0.00449710 0.00778921i
\(725\) 0 0
\(726\) 19.2928 + 11.1387i 0.716024 + 0.413397i
\(727\) 18.6979 36.6967i 0.693467 1.36101i −0.228425 0.973561i \(-0.573358\pi\)
0.921893 0.387445i \(-0.126642\pi\)
\(728\) 1.58148 0.689855i 0.0586136 0.0255677i
\(729\) −17.6135 24.2429i −0.652352 0.897885i
\(730\) 0 0
\(731\) −40.7269 4.28057i −1.50634 0.158323i
\(732\) 3.43480 + 0.920351i 0.126954 + 0.0340172i
\(733\) −10.3482 + 26.9579i −0.382218 + 0.995713i 0.598645 + 0.801015i \(0.295706\pi\)
−0.980863 + 0.194698i \(0.937627\pi\)
\(734\) 6.76846 20.8312i 0.249829 0.768893i
\(735\) 0 0
\(736\) 0.236172 + 0.726863i 0.00870542 + 0.0267925i
\(737\) −6.21487 0.325708i −0.228928 0.0119976i
\(738\) 1.11099 1.71077i 0.0408960 0.0629743i
\(739\) −13.5923 12.2385i −0.499999 0.450202i 0.380132 0.924932i \(-0.375879\pi\)
−0.880131 + 0.474731i \(0.842545\pi\)
\(740\) 0 0
\(741\) −1.75039 0.568737i −0.0643022 0.0208931i
\(742\) −11.2321 12.6657i −0.412345 0.464971i
\(743\) 18.6958 + 18.6958i 0.685883 + 0.685883i 0.961319 0.275437i \(-0.0888224\pi\)
−0.275437 + 0.961319i \(0.588822\pi\)
\(744\) 6.35294 + 14.2689i 0.232910 + 0.523125i
\(745\) 0 0
\(746\) −35.3864 15.7550i −1.29559 0.576833i
\(747\) 3.27729 4.04712i 0.119910 0.148076i
\(748\) −0.522646 0.266301i −0.0191098 0.00973694i
\(749\) 0.254671 + 5.68005i 0.00930549 + 0.207544i
\(750\) 0 0
\(751\) 14.6728 25.4141i 0.535418 0.927372i −0.463724 0.885979i \(-0.653487\pi\)
0.999143 0.0413925i \(-0.0131794\pi\)
\(752\) −25.5900 + 1.34111i −0.933170 + 0.0489054i
\(753\) 8.59759 + 22.3975i 0.313313 + 0.816210i
\(754\) 0.114620 + 1.09054i 0.00417423 + 0.0397151i
\(755\) 0 0
\(756\) 1.67722 + 3.35412i 0.0609997 + 0.121988i
\(757\) 26.5318 26.5318i 0.964316 0.964316i −0.0350687 0.999385i \(-0.511165\pi\)
0.999385 + 0.0350687i \(0.0111650\pi\)
\(758\) 22.3328 + 8.57275i 0.811163 + 0.311376i
\(759\) 0.391042 0.0831185i 0.0141939 0.00301701i
\(760\) 0 0
\(761\) 0.212683 1.00060i 0.00770976 0.0362716i −0.974125 0.226012i \(-0.927431\pi\)
0.981834 + 0.189740i \(0.0607646\pi\)
\(762\) −34.4120 + 17.5338i −1.24662 + 0.635183i
\(763\) 0.218485 28.9236i 0.00790970 1.04710i
\(764\) 2.54090 0.825588i 0.0919265 0.0298687i
\(765\) 0 0
\(766\) −8.19324 38.5462i −0.296034 1.39273i
\(767\) −0.737530 0.910774i −0.0266307 0.0328861i
\(768\) 2.43930 + 9.10360i 0.0880207 + 0.328498i
\(769\) 16.8522 + 12.2439i 0.607708 + 0.441525i 0.848606 0.529025i \(-0.177442\pi\)
−0.240899 + 0.970550i \(0.577442\pi\)
\(770\) 0 0
\(771\) 6.62415 4.81272i 0.238563 0.173326i
\(772\) 3.90408 + 3.16146i 0.140511 + 0.113784i
\(773\) −1.36051 25.9601i −0.0489342 0.933720i −0.907248 0.420595i \(-0.861821\pi\)
0.858314 0.513124i \(-0.171512\pi\)
\(774\) −5.35024 + 3.08897i −0.192311 + 0.111031i
\(775\) 0 0
\(776\) 28.6949i 1.03009i
\(777\) −31.4238 + 3.06297i −1.12732 + 0.109884i
\(778\) 14.7225 + 2.33181i 0.527827 + 0.0835995i
\(779\) 15.0424 1.58102i 0.538949 0.0566458i
\(780\) 0 0
\(781\) −0.235533 + 2.24094i −0.00842802 + 0.0801873i
\(782\) −3.26403 + 0.874595i −0.116722 + 0.0312754i
\(783\) −20.8078 + 3.29564i −0.743611 + 0.117776i
\(784\) 7.06271 + 22.9087i 0.252240 + 0.818169i
\(785\) 0 0
\(786\) 1.02929 + 0.218783i 0.0367137 + 0.00780374i
\(787\) −40.7153 26.4408i −1.45134 0.942514i −0.998708 0.0508190i \(-0.983817\pi\)
−0.452637 0.891695i \(-0.649517\pi\)
\(788\) 3.05625 + 1.98475i 0.108874 + 0.0707038i
\(789\) 17.8263 + 3.78910i 0.634633 + 0.134895i
\(790\) 0 0
\(791\) 45.5259 11.8308i 1.61871 0.420654i
\(792\) −0.772589 + 0.122366i −0.0274528 + 0.00434809i
\(793\) −1.88235 + 0.504373i −0.0668441 + 0.0179108i
\(794\) 0.685265 6.51986i 0.0243192 0.231381i
\(795\) 0 0
\(796\) −1.82135 + 0.191432i −0.0645561 + 0.00678512i
\(797\) −10.1052 1.60051i −0.357945 0.0566929i −0.0251277 0.999684i \(-0.507999\pi\)
−0.332817 + 0.942991i \(0.607999\pi\)
\(798\) 12.1529 26.7503i 0.430209 0.946950i
\(799\) 35.9141i 1.27055i
\(800\) 0 0
\(801\) 2.78047 1.60530i 0.0982429 0.0567206i
\(802\) 0.304256 + 5.80555i 0.0107437 + 0.205001i
\(803\) −4.88300 3.95417i −0.172317 0.139540i
\(804\) 4.19865 3.05049i 0.148075 0.107583i
\(805\) 0 0
\(806\) −0.783414 0.569183i −0.0275946 0.0200486i
\(807\) 4.88514 + 18.2316i 0.171965 + 0.641782i
\(808\) −32.5588 40.2068i −1.14542 1.41447i
\(809\) −8.76738 41.2473i −0.308245 1.45018i −0.810643 0.585540i \(-0.800882\pi\)
0.502399 0.864636i \(-0.332451\pi\)
\(810\) 0 0
\(811\) −30.4344 + 9.88872i −1.06869 + 0.347240i −0.789979 0.613134i \(-0.789909\pi\)
−0.278716 + 0.960374i \(0.589909\pi\)
\(812\) 2.55939 + 0.0193334i 0.0898171 + 0.000678468i
\(813\) −20.4279 + 10.4085i −0.716436 + 0.365043i
\(814\) 1.00264 4.71704i 0.0351425 0.165332i
\(815\) 0 0
\(816\) −25.1761 + 5.35135i −0.881340 + 0.187335i
\(817\) −42.7658 16.4162i −1.49619 0.574332i
\(818\) −0.201215 + 0.201215i −0.00703533 + 0.00703533i
\(819\) −0.264967 0.174931i −0.00925868 0.00611258i
\(820\) 0 0
\(821\) −5.08271 48.3588i −0.177388 1.68773i −0.614966 0.788553i \(-0.710830\pi\)
0.437578 0.899180i \(-0.355836\pi\)
\(822\) −3.22486 8.40105i −0.112480 0.293020i
\(823\) 1.79452 0.0940468i 0.0625531 0.00327827i −0.0210338 0.999779i \(-0.506696\pi\)
0.0835868 + 0.996500i \(0.473362\pi\)
\(824\) 11.6903 20.2482i 0.407250 0.705378i
\(825\) 0 0
\(826\) 15.7673 10.0709i 0.548614 0.350411i
\(827\) 15.8538 + 8.07790i 0.551290 + 0.280896i 0.707364 0.706849i \(-0.249884\pi\)
−0.156075 + 0.987745i \(0.549884\pi\)
\(828\) 0.0469067 0.0579250i 0.00163012 0.00201303i
\(829\) −46.2932 20.6110i −1.60783 0.715851i −0.610719 0.791847i \(-0.709120\pi\)
−0.997108 + 0.0759961i \(0.975786\pi\)
\(830\) 0 0
\(831\) −3.86004 8.66978i −0.133903 0.300752i
\(832\) −1.35350 1.35350i −0.0469242 0.0469242i
\(833\) 32.5811 8.20461i 1.12887 0.284273i
\(834\) 42.7357 + 13.8857i 1.47982 + 0.480822i
\(835\) 0 0
\(836\) −0.487615 0.439051i −0.0168645 0.0151849i
\(837\) 10.1326 15.6029i 0.350235 0.539314i
\(838\) 45.7562 + 2.39798i 1.58062 + 0.0828368i
\(839\) −2.38981 7.35507i −0.0825053 0.253925i 0.901291 0.433214i \(-0.142620\pi\)
−0.983797 + 0.179288i \(0.942620\pi\)
\(840\) 0 0
\(841\) 4.51828 13.9058i 0.155803 0.479511i
\(842\) −14.2266 + 37.0616i −0.490281 + 1.27723i
\(843\) 6.98412 + 1.87139i 0.240546 + 0.0644541i
\(844\) 0.962751 + 0.101189i 0.0331393 + 0.00348308i
\(845\) 0 0
\(846\) 3.18463 + 4.38327i 0.109490 + 0.150700i
\(847\) −3.19264 + 28.3167i −0.109701 + 0.972974i
\(848\) −7.53108 + 14.7806i −0.258618 + 0.507567i
\(849\) −5.24954 3.03082i −0.180164 0.104018i
\(850\) 0 0
\(851\) 2.03094 + 3.51769i 0.0696197 + 0.120585i
\(852\) −1.02341 1.57591i −0.0350614 0.0539899i
\(853\) −1.83983 + 11.6162i −0.0629946 + 0.397732i 0.935964 + 0.352097i \(0.114531\pi\)
−0.998958 + 0.0456353i \(0.985469\pi\)
\(854\) −4.63445 30.7629i −0.158587 1.05269i
\(855\) 0 0
\(856\) 5.84819 2.60378i 0.199887 0.0889954i
\(857\) 0.0986197 0.368054i 0.00336878 0.0125725i −0.964221 0.265100i \(-0.914595\pi\)
0.967590 + 0.252527i \(0.0812618\pi\)
\(858\) −0.168571 + 0.136506i −0.00575491 + 0.00466024i
\(859\) 6.46460 + 7.17966i 0.220569 + 0.244967i 0.843266 0.537496i \(-0.180630\pi\)
−0.622697 + 0.782463i \(0.713963\pi\)
\(860\) 0 0
\(861\) −11.5130 1.91273i −0.392361 0.0651858i
\(862\) −20.9966 41.2081i −0.715146 1.40355i
\(863\) −0.263310 + 5.02426i −0.00896318 + 0.171028i 0.990480 + 0.137658i \(0.0439573\pi\)
−0.999443 + 0.0333701i \(0.989376\pi\)
\(864\) 5.33087 5.92053i 0.181360 0.201420i
\(865\) 0 0
\(866\) 5.68440 5.11825i 0.193164 0.173925i
\(867\) 1.47892 + 9.33755i 0.0502268 + 0.317120i
\(868\) −1.52504 + 1.66822i −0.0517634 + 0.0566230i
\(869\) −2.60893 + 3.59089i −0.0885020 + 0.121813i
\(870\) 0 0
\(871\) −1.15681 + 2.59825i −0.0391971 + 0.0880382i
\(872\) −30.4032 + 11.6707i −1.02958 + 0.395219i
\(873\) 4.42849 2.87590i 0.149882 0.0973344i
\(874\) −3.77997 −0.127859
\(875\) 0 0
\(876\) 5.23972 0.177034
\(877\) −18.1362 + 11.7778i −0.612417 + 0.397708i −0.813248 0.581918i \(-0.802303\pi\)
0.200831 + 0.979626i \(0.435636\pi\)
\(878\) 23.7217 9.10590i 0.800568 0.307309i
\(879\) 9.74835 21.8951i 0.328804 0.738505i
\(880\) 0 0
\(881\) 15.8503 21.8160i 0.534009 0.735001i −0.453725 0.891142i \(-0.649905\pi\)
0.987735 + 0.156141i \(0.0499053\pi\)
\(882\) 3.24895 3.89045i 0.109398 0.130998i
\(883\) −0.103976 0.656476i −0.00349906 0.0220922i 0.985877 0.167471i \(-0.0535600\pi\)
−0.989376 + 0.145379i \(0.953560\pi\)
\(884\) −0.199215 + 0.179374i −0.00670033 + 0.00603300i
\(885\) 0 0
\(886\) 13.6268 15.1341i 0.457803 0.508441i
\(887\) 1.60164 30.5611i 0.0537778 1.02614i −0.829860 0.557971i \(-0.811580\pi\)
0.883638 0.468170i \(-0.155087\pi\)
\(888\) 16.1385 + 31.6735i 0.541572 + 1.06289i
\(889\) −38.1571 31.3792i −1.27975 1.05242i
\(890\) 0 0
\(891\) −2.26138 2.51152i −0.0757591 0.0841390i
\(892\) 0.761326 0.616509i 0.0254911 0.0206423i
\(893\) −10.3977 + 38.8049i −0.347947 + 1.29856i
\(894\) −21.8399 + 9.72375i −0.730436 + 0.325211i
\(895\) 0 0
\(896\) 17.9595 14.3201i 0.599986 0.478400i
\(897\) 0.0285808 0.180452i 0.000954284 0.00602511i
\(898\) −10.1572 15.6407i −0.338949 0.521935i
\(899\) −6.34879 10.9964i −0.211744 0.366752i
\(900\) 0 0
\(901\) 20.1345 + 11.6246i 0.670777 + 0.387273i
\(902\) 0.809282 1.58830i 0.0269461 0.0528848i
\(903\) 28.4379 + 20.9914i 0.946355 + 0.698550i
\(904\) −31.1294 42.8459i −1.03535 1.42503i
\(905\) 0 0
\(906\) 33.2673 + 3.49653i 1.10523 + 0.116165i
\(907\) −32.6459 8.74745i −1.08399 0.290454i −0.327760 0.944761i \(-0.606294\pi\)
−0.756229 + 0.654307i \(0.772961\pi\)
\(908\) 0.178505 0.465022i 0.00592390 0.0154323i
\(909\) −2.94197 + 9.05447i −0.0975791 + 0.300318i
\(910\) 0 0
\(911\) 6.27024 + 19.2978i 0.207742 + 0.639365i 0.999590 + 0.0286459i \(0.00911953\pi\)
−0.791847 + 0.610719i \(0.790880\pi\)
\(912\) −28.7519 1.50682i −0.952069 0.0498958i
\(913\) 2.47859 3.81670i 0.0820294 0.126314i
\(914\) 28.4292 + 25.5977i 0.940353 + 0.846697i
\(915\) 0 0
\(916\) −2.67531 0.869261i −0.0883948 0.0287212i
\(917\) 0.269903 + 1.31870i 0.00891298 + 0.0435472i
\(918\) 24.9079 + 24.9079i 0.822082 + 0.822082i
\(919\) −13.0177 29.2383i −0.429415 0.964481i −0.990600 0.136791i \(-0.956321\pi\)
0.561185 0.827690i \(-0.310346\pi\)
\(920\) 0 0
\(921\) 8.08372 + 3.59911i 0.266368 + 0.118595i
\(922\) −26.5210 + 32.7506i −0.873421 + 1.07859i
\(923\) 0.917529 + 0.467504i 0.0302008 + 0.0153881i
\(924\) 0.272532 + 0.426684i 0.00896563 + 0.0140369i
\(925\) 0 0
\(926\) 2.45679 4.25528i 0.0807351 0.139837i
\(927\) −4.29654 + 0.225172i −0.141117 + 0.00739563i
\(928\) −1.94861 5.07629i −0.0639661 0.166637i
\(929\) 4.40135 + 41.8761i 0.144404 + 1.37391i 0.791345 + 0.611369i \(0.209381\pi\)
−0.646942 + 0.762539i \(0.723952\pi\)
\(930\) 0 0
\(931\) 37.5790 + 0.567767i 1.23160 + 0.0186078i
\(932\) −3.52757 + 3.52757i −0.115549 + 0.115549i
\(933\) 1.41082 + 0.541562i 0.0461881 + 0.0177299i
\(934\) 9.18683 1.95272i 0.300602 0.0638950i
\(935\) 0 0
\(936\) −0.0743241 + 0.349668i −0.00242936 + 0.0114292i
\(937\) −14.8083 + 7.54518i −0.483765 + 0.246490i −0.678824 0.734301i \(-0.737510\pi\)
0.195059 + 0.980791i \(0.437510\pi\)
\(938\) −39.1485 22.9984i −1.27824 0.750925i
\(939\) 0.581349 0.188892i 0.0189716 0.00616425i
\(940\) 0 0
\(941\) −2.27250 10.6913i −0.0740814 0.348526i 0.925459 0.378848i \(-0.123680\pi\)
−0.999540 + 0.0303227i \(0.990347\pi\)
\(942\) −5.26016 6.49575i −0.171385 0.211643i
\(943\) 0.388607 + 1.45030i 0.0126548 + 0.0472283i
\(944\) −14.8319 10.7760i −0.482739 0.350730i
\(945\) 0 0
\(946\) −4.36771 + 3.17332i −0.142006 + 0.103174i
\(947\) 25.4529 + 20.6113i 0.827107 + 0.669778i 0.946370 0.323084i \(-0.104720\pi\)
−0.119263 + 0.992863i \(0.538053\pi\)
\(948\) −0.193717 3.69635i −0.00629164 0.120052i
\(949\) −2.48678 + 1.43574i −0.0807242 + 0.0466062i
\(950\) 0 0
\(951\) 47.1129i 1.52774i
\(952\) −22.0033 30.7711i −0.713131 0.997296i
\(953\) 30.6299 + 4.85130i 0.992200 + 0.157149i 0.631369 0.775482i \(-0.282493\pi\)
0.360831 + 0.932631i \(0.382493\pi\)
\(954\) 3.48819 0.366623i 0.112934 0.0118699i
\(955\) 0 0
\(956\) −0.258113 + 2.45578i −0.00834798 + 0.0794257i
\(957\) −2.74733 + 0.736146i −0.0888087 + 0.0237962i
\(958\) 15.0333 2.38104i 0.485704 0.0769279i
\(959\) 8.20056 8.07759i 0.264810 0.260839i
\(960\) 0 0
\(961\) −19.3545 4.11392i −0.624338 0.132707i
\(962\) −1.84833 1.20032i −0.0595925 0.0386998i
\(963\) −0.987966 0.641593i −0.0318368 0.0206750i
\(964\) −3.13227 0.665785i −0.100884 0.0214435i
\(965\) 0 0
\(966\) 2.81150 + 0.776147i 0.0904585 + 0.0249721i
\(967\) 32.8149 5.19736i 1.05525 0.167136i 0.395385 0.918516i \(-0.370611\pi\)
0.659870 + 0.751380i \(0.270611\pi\)
\(968\) 30.9908 8.30397i 0.996083 0.266900i
\(969\) −4.21789 + 40.1306i −0.135498 + 1.28918i
\(970\) 0 0
\(971\) −9.62205 + 1.01132i −0.308786 + 0.0324547i −0.257654 0.966237i \(-0.582950\pi\)
−0.0511320 + 0.998692i \(0.516283\pi\)
\(972\) −1.41625 0.224312i −0.0454262 0.00719481i
\(973\) 5.57617 + 57.2074i 0.178764 + 1.83398i
\(974\) 5.77998i 0.185202i
\(975\) 0 0
\(976\) −26.4009 + 15.2426i −0.845073 + 0.487903i
\(977\) 0.219005 + 4.17887i 0.00700660 + 0.133694i 0.999893 + 0.0146284i \(0.00465653\pi\)
−0.992886 + 0.119066i \(0.962010\pi\)
\(978\) −26.8399 21.7345i −0.858245 0.694993i
\(979\) 2.26985 1.64914i 0.0725448 0.0527069i
\(980\) 0 0
\(981\) 4.84824 + 3.52246i 0.154793 + 0.112463i
\(982\) 3.30250 + 12.3251i 0.105387 + 0.393310i
\(983\) 7.66884 + 9.47023i 0.244598 + 0.302053i 0.884629 0.466296i \(-0.154412\pi\)
−0.640031 + 0.768349i \(0.721078\pi\)
\(984\) 2.73201 + 12.8531i 0.0870933 + 0.409742i
\(985\) 0 0
\(986\) 22.8647 7.42920i 0.728161 0.236594i
\(987\) 15.7016 26.7276i 0.499787 0.850750i
\(988\) −0.267182 + 0.136136i −0.00850019 + 0.00433106i
\(989\) 0.945444 4.44797i 0.0300634 0.141437i
\(990\) 0 0
\(991\) 39.1306 8.31747i 1.24302 0.264213i 0.460966 0.887418i \(-0.347503\pi\)
0.782059 + 0.623205i \(0.214170\pi\)
\(992\) 4.48284 + 1.72080i 0.142330 + 0.0546354i
\(993\) 9.80688 9.80688i 0.311212 0.311212i
\(994\) −9.05739 + 13.7192i −0.287283 + 0.435145i
\(995\) 0 0
\(996\) 0.396693 + 3.77428i 0.0125697 + 0.119593i
\(997\) −0.138605 0.361077i −0.00438965 0.0114354i 0.931368 0.364079i \(-0.118616\pi\)
−0.935758 + 0.352644i \(0.885283\pi\)
\(998\) −6.23160 + 0.326584i −0.197258 + 0.0103378i
\(999\) 21.1708 36.6689i 0.669815 1.16015i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.c.768.6 288
5.2 odd 4 875.2.bb.a.607.6 288
5.3 odd 4 875.2.bb.b.607.13 288
5.4 even 2 175.2.x.a.33.13 288
7.3 odd 6 inner 875.2.bb.c.143.6 288
25.3 odd 20 175.2.x.a.47.13 yes 288
25.4 even 10 875.2.bb.b.243.6 288
25.21 even 5 875.2.bb.a.243.13 288
25.22 odd 20 inner 875.2.bb.c.257.6 288
35.3 even 12 875.2.bb.b.857.6 288
35.17 even 12 875.2.bb.a.857.13 288
35.24 odd 6 175.2.x.a.108.13 yes 288
175.3 even 60 175.2.x.a.122.13 yes 288
175.122 even 60 inner 875.2.bb.c.507.6 288
175.129 odd 30 875.2.bb.b.493.13 288
175.171 odd 30 875.2.bb.a.493.6 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.33.13 288 5.4 even 2
175.2.x.a.47.13 yes 288 25.3 odd 20
175.2.x.a.108.13 yes 288 35.24 odd 6
175.2.x.a.122.13 yes 288 175.3 even 60
875.2.bb.a.243.13 288 25.21 even 5
875.2.bb.a.493.6 288 175.171 odd 30
875.2.bb.a.607.6 288 5.2 odd 4
875.2.bb.a.857.13 288 35.17 even 12
875.2.bb.b.243.6 288 25.4 even 10
875.2.bb.b.493.13 288 175.129 odd 30
875.2.bb.b.607.13 288 5.3 odd 4
875.2.bb.b.857.6 288 35.3 even 12
875.2.bb.c.143.6 288 7.3 odd 6 inner
875.2.bb.c.257.6 288 25.22 odd 20 inner
875.2.bb.c.507.6 288 175.122 even 60 inner
875.2.bb.c.768.6 288 1.1 even 1 trivial