Properties

Label 875.2.bb.b.768.14
Level $875$
Weight $2$
Character 875.768
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(82,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([27, 50]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 768.14
Character \(\chi\) \(=\) 875.768
Dual form 875.2.bb.b.507.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35892 - 0.882496i) q^{2} +(2.55023 - 0.978941i) q^{3} +(0.254403 - 0.571398i) q^{4} +(2.60166 - 3.58087i) q^{6} +(-0.156130 + 2.64114i) q^{7} +(0.348409 + 2.19977i) q^{8} +(3.31591 - 2.98566i) q^{9} +(2.62811 - 2.91881i) q^{11} +(0.0894203 - 1.70624i) q^{12} +(0.0441012 + 0.0865535i) q^{13} +(2.11863 + 3.72689i) q^{14} +(3.25179 + 3.61148i) q^{16} +(2.60462 - 2.10918i) q^{17} +(1.87124 - 6.98356i) q^{18} +(-5.56832 + 2.47917i) q^{19} +(2.18736 + 6.88836i) q^{21} +(0.995562 - 6.28573i) q^{22} +(-2.85640 - 4.39848i) q^{23} +(3.04197 + 5.26884i) q^{24} +(0.136313 + 0.0787005i) q^{26} +(1.81310 - 3.55840i) q^{27} +(1.46942 + 0.761125i) q^{28} +(-2.51245 - 3.45809i) q^{29} +(-0.701840 - 0.0737664i) q^{31} +(3.30346 + 0.885159i) q^{32} +(3.84493 - 10.0164i) q^{33} +(1.67814 - 5.16477i) q^{34} +(-0.862422 - 2.65426i) q^{36} +(-7.70713 - 0.403914i) q^{37} +(-5.37906 + 8.28302i) q^{38} +(0.197199 + 0.177559i) q^{39} +(-0.124652 - 0.0405019i) q^{41} +(9.05139 + 7.43042i) q^{42} +(8.25770 + 8.25770i) q^{43} +(-0.999203 - 2.24425i) q^{44} +(-7.76327 - 3.45643i) q^{46} +(1.70482 - 2.10528i) q^{47} +(11.8282 + 6.02679i) q^{48} +(-6.95125 - 0.824720i) q^{49} +(4.57761 - 7.92865i) q^{51} +(0.0606759 - 0.00317989i) q^{52} +(-4.21462 - 10.9795i) q^{53} +(-0.676413 - 6.43564i) q^{54} +(-5.86430 + 0.576749i) q^{56} +(-11.7735 + 11.7735i) q^{57} +(-6.46598 - 2.48206i) q^{58} +(5.04772 - 1.07293i) q^{59} +(-1.48307 + 6.97731i) q^{61} +(-1.01885 + 0.519128i) q^{62} +(7.36783 + 9.22393i) q^{63} +(-3.97346 + 1.29105i) q^{64} +(-3.61445 - 17.0046i) q^{66} +(-0.351262 - 0.433773i) q^{67} +(-0.542557 - 2.02485i) q^{68} +(-11.5903 - 8.42087i) q^{69} +(0.818370 - 0.594581i) q^{71} +(7.72305 + 6.25400i) q^{72} +(-0.111673 - 2.13084i) q^{73} +(-10.8299 + 6.25262i) q^{74} +3.81243i q^{76} +(7.29866 + 7.39691i) q^{77} +(0.424673 + 0.0672616i) q^{78} +(-15.3675 + 1.61519i) q^{79} +(-0.258873 + 2.46301i) q^{81} +(-0.205136 + 0.0549659i) q^{82} +(-10.6837 + 1.69214i) q^{83} +(4.49246 + 0.502566i) q^{84} +(18.5090 + 3.93420i) q^{86} +(-9.79260 - 6.35939i) q^{87} +(7.33636 + 4.76429i) q^{88} +(0.981714 + 0.208670i) q^{89} +(-0.235485 + 0.102964i) q^{91} +(-3.23996 + 0.513159i) q^{92} +(-1.86207 + 0.498939i) q^{93} +(0.458824 - 4.36542i) q^{94} +(9.29110 - 0.976534i) q^{96} +(11.1837 + 1.77133i) q^{97} +(-10.1740 + 5.01371i) q^{98} -17.5251i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 2 q^{2} + 6 q^{3} + 10 q^{4} - 10 q^{7} + 64 q^{8} + 10 q^{9} - 6 q^{11} - 6 q^{12} + 20 q^{14} - 30 q^{16} - 12 q^{17} - 14 q^{18} + 30 q^{19} - 12 q^{21} - 8 q^{22} + 30 q^{23} - 48 q^{26} - 58 q^{28}+ \cdots + 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35892 0.882496i 0.960904 0.624019i 0.0340422 0.999420i \(-0.489162\pi\)
0.926862 + 0.375402i \(0.122495\pi\)
\(3\) 2.55023 0.978941i 1.47238 0.565192i 0.515808 0.856704i \(-0.327492\pi\)
0.956567 + 0.291512i \(0.0941583\pi\)
\(4\) 0.254403 0.571398i 0.127201 0.285699i
\(5\) 0 0
\(6\) 2.60166 3.58087i 1.06212 1.46189i
\(7\) −0.156130 + 2.64114i −0.0590114 + 0.998257i
\(8\) 0.348409 + 2.19977i 0.123181 + 0.777736i
\(9\) 3.31591 2.98566i 1.10530 0.995219i
\(10\) 0 0
\(11\) 2.62811 2.91881i 0.792404 0.880054i −0.202664 0.979248i \(-0.564960\pi\)
0.995068 + 0.0991947i \(0.0316267\pi\)
\(12\) 0.0894203 1.70624i 0.0258134 0.492549i
\(13\) 0.0441012 + 0.0865535i 0.0122315 + 0.0240056i 0.897041 0.441946i \(-0.145712\pi\)
−0.884810 + 0.465952i \(0.845712\pi\)
\(14\) 2.11863 + 3.72689i 0.566227 + 0.996054i
\(15\) 0 0
\(16\) 3.25179 + 3.61148i 0.812948 + 0.902871i
\(17\) 2.60462 2.10918i 0.631712 0.511550i −0.259142 0.965839i \(-0.583440\pi\)
0.890854 + 0.454289i \(0.150107\pi\)
\(18\) 1.87124 6.98356i 0.441055 1.64604i
\(19\) −5.56832 + 2.47917i −1.27746 + 0.568762i −0.929526 0.368757i \(-0.879783\pi\)
−0.347934 + 0.937519i \(0.613117\pi\)
\(20\) 0 0
\(21\) 2.18736 + 6.88836i 0.477320 + 1.50316i
\(22\) 0.995562 6.28573i 0.212254 1.34012i
\(23\) −2.85640 4.39848i −0.595601 0.917146i −0.999997 0.00256149i \(-0.999185\pi\)
0.404395 0.914584i \(-0.367482\pi\)
\(24\) 3.04197 + 5.26884i 0.620939 + 1.07550i
\(25\) 0 0
\(26\) 0.136313 + 0.0787005i 0.0267332 + 0.0154344i
\(27\) 1.81310 3.55840i 0.348930 0.684814i
\(28\) 1.46942 + 0.761125i 0.277695 + 0.143839i
\(29\) −2.51245 3.45809i −0.466550 0.642152i 0.509301 0.860589i \(-0.329904\pi\)
−0.975851 + 0.218437i \(0.929904\pi\)
\(30\) 0 0
\(31\) −0.701840 0.0737664i −0.126054 0.0132488i 0.0412913 0.999147i \(-0.486853\pi\)
−0.167345 + 0.985898i \(0.553520\pi\)
\(32\) 3.30346 + 0.885159i 0.583975 + 0.156475i
\(33\) 3.84493 10.0164i 0.669317 1.74363i
\(34\) 1.67814 5.16477i 0.287798 0.885751i
\(35\) 0 0
\(36\) −0.862422 2.65426i −0.143737 0.442377i
\(37\) −7.70713 0.403914i −1.26704 0.0664030i −0.593066 0.805154i \(-0.702083\pi\)
−0.673978 + 0.738751i \(0.735416\pi\)
\(38\) −5.37906 + 8.28302i −0.872599 + 1.34368i
\(39\) 0.197199 + 0.177559i 0.0315771 + 0.0284322i
\(40\) 0 0
\(41\) −0.124652 0.0405019i −0.0194674 0.00632534i 0.299267 0.954169i \(-0.403258\pi\)
−0.318735 + 0.947844i \(0.603258\pi\)
\(42\) 9.05139 + 7.43042i 1.39666 + 1.14654i
\(43\) 8.25770 + 8.25770i 1.25929 + 1.25929i 0.951434 + 0.307854i \(0.0996108\pi\)
0.307854 + 0.951434i \(0.400389\pi\)
\(44\) −0.999203 2.24425i −0.150636 0.338333i
\(45\) 0 0
\(46\) −7.76327 3.45643i −1.14463 0.509623i
\(47\) 1.70482 2.10528i 0.248674 0.307087i −0.637490 0.770459i \(-0.720027\pi\)
0.886164 + 0.463372i \(0.153361\pi\)
\(48\) 11.8282 + 6.02679i 1.70726 + 0.869893i
\(49\) −6.95125 0.824720i −0.993035 0.117817i
\(50\) 0 0
\(51\) 4.57761 7.92865i 0.640993 1.11023i
\(52\) 0.0606759 0.00317989i 0.00841424 0.000440972i
\(53\) −4.21462 10.9795i −0.578922 1.50814i −0.839868 0.542791i \(-0.817368\pi\)
0.260945 0.965354i \(-0.415966\pi\)
\(54\) −0.676413 6.43564i −0.0920482 0.875780i
\(55\) 0 0
\(56\) −5.86430 + 0.576749i −0.783649 + 0.0770713i
\(57\) −11.7735 + 11.7735i −1.55944 + 1.55944i
\(58\) −6.46598 2.48206i −0.849025 0.325910i
\(59\) 5.04772 1.07293i 0.657157 0.139683i 0.132748 0.991150i \(-0.457620\pi\)
0.524409 + 0.851467i \(0.324286\pi\)
\(60\) 0 0
\(61\) −1.48307 + 6.97731i −0.189888 + 0.893354i 0.775259 + 0.631644i \(0.217620\pi\)
−0.965147 + 0.261709i \(0.915714\pi\)
\(62\) −1.01885 + 0.519128i −0.129394 + 0.0659293i
\(63\) 7.36783 + 9.22393i 0.928260 + 1.16211i
\(64\) −3.97346 + 1.29105i −0.496682 + 0.161382i
\(65\) 0 0
\(66\) −3.61445 17.0046i −0.444908 2.09313i
\(67\) −0.351262 0.433773i −0.0429135 0.0529938i 0.755237 0.655451i \(-0.227522\pi\)
−0.798151 + 0.602458i \(0.794188\pi\)
\(68\) −0.542557 2.02485i −0.0657947 0.245549i
\(69\) −11.5903 8.42087i −1.39531 1.01375i
\(70\) 0 0
\(71\) 0.818370 0.594581i 0.0971227 0.0705637i −0.538164 0.842840i \(-0.680882\pi\)
0.635287 + 0.772276i \(0.280882\pi\)
\(72\) 7.72305 + 6.25400i 0.910170 + 0.737041i
\(73\) −0.111673 2.13084i −0.0130703 0.249396i −0.997349 0.0727716i \(-0.976816\pi\)
0.984278 0.176624i \(-0.0565178\pi\)
\(74\) −10.8299 + 6.25262i −1.25894 + 0.726852i
\(75\) 0 0
\(76\) 3.81243i 0.437316i
\(77\) 7.29866 + 7.39691i 0.831759 + 0.842956i
\(78\) 0.424673 + 0.0672616i 0.0480848 + 0.00761588i
\(79\) −15.3675 + 1.61519i −1.72898 + 0.181723i −0.916167 0.400797i \(-0.868733\pi\)
−0.812816 + 0.582521i \(0.802067\pi\)
\(80\) 0 0
\(81\) −0.258873 + 2.46301i −0.0287636 + 0.273668i
\(82\) −0.205136 + 0.0549659i −0.0226534 + 0.00606997i
\(83\) −10.6837 + 1.69214i −1.17269 + 0.185736i −0.712232 0.701944i \(-0.752316\pi\)
−0.460461 + 0.887680i \(0.652316\pi\)
\(84\) 4.49246 + 0.502566i 0.490168 + 0.0548345i
\(85\) 0 0
\(86\) 18.5090 + 3.93420i 1.99587 + 0.424236i
\(87\) −9.79260 6.35939i −1.04988 0.681798i
\(88\) 7.33636 + 4.76429i 0.782058 + 0.507875i
\(89\) 0.981714 + 0.208670i 0.104061 + 0.0221190i 0.259648 0.965703i \(-0.416393\pi\)
−0.155587 + 0.987822i \(0.549727\pi\)
\(90\) 0 0
\(91\) −0.235485 + 0.102964i −0.0246856 + 0.0107936i
\(92\) −3.23996 + 0.513159i −0.337789 + 0.0535005i
\(93\) −1.86207 + 0.498939i −0.193087 + 0.0517376i
\(94\) 0.458824 4.36542i 0.0473241 0.450259i
\(95\) 0 0
\(96\) 9.29110 0.976534i 0.948269 0.0996670i
\(97\) 11.1837 + 1.77133i 1.13554 + 0.179851i 0.695773 0.718262i \(-0.255062\pi\)
0.439764 + 0.898113i \(0.355062\pi\)
\(98\) −10.1740 + 5.01371i −1.02773 + 0.506461i
\(99\) 17.5251i 1.76134i
\(100\) 0 0
\(101\) −10.1623 + 5.86718i −1.01118 + 0.583807i −0.911538 0.411216i \(-0.865104\pi\)
−0.0996449 + 0.995023i \(0.531771\pi\)
\(102\) −0.776377 14.8141i −0.0768727 1.46682i
\(103\) 7.82705 + 6.33822i 0.771222 + 0.624523i 0.931996 0.362468i \(-0.118066\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(104\) −0.175032 + 0.127168i −0.0171633 + 0.0124699i
\(105\) 0 0
\(106\) −15.4167 11.2009i −1.49740 1.08792i
\(107\) −0.292999 1.09349i −0.0283253 0.105711i 0.950316 0.311287i \(-0.100760\pi\)
−0.978641 + 0.205576i \(0.934093\pi\)
\(108\) −1.57201 1.94126i −0.151266 0.186798i
\(109\) 0.608654 + 2.86349i 0.0582985 + 0.274273i 0.997636 0.0687217i \(-0.0218921\pi\)
−0.939337 + 0.342995i \(0.888559\pi\)
\(110\) 0 0
\(111\) −20.0504 + 6.51476i −1.90310 + 0.618353i
\(112\) −10.0461 + 8.02458i −0.949271 + 0.758252i
\(113\) 4.16270 2.12100i 0.391594 0.199527i −0.247097 0.968991i \(-0.579477\pi\)
0.638690 + 0.769464i \(0.279477\pi\)
\(114\) −5.60924 + 26.3894i −0.525353 + 2.47159i
\(115\) 0 0
\(116\) −2.61512 + 0.555861i −0.242808 + 0.0516104i
\(117\) 0.404655 + 0.155332i 0.0374103 + 0.0143605i
\(118\) 5.91261 5.91261i 0.544300 0.544300i
\(119\) 5.16397 + 7.20846i 0.473381 + 0.660798i
\(120\) 0 0
\(121\) −0.462683 4.40213i −0.0420621 0.400194i
\(122\) 4.14206 + 10.7904i 0.375005 + 0.976921i
\(123\) −0.357541 + 0.0187379i −0.0322383 + 0.00168954i
\(124\) −0.220700 + 0.382263i −0.0198194 + 0.0343283i
\(125\) 0 0
\(126\) 18.1524 + 6.03254i 1.61714 + 0.537422i
\(127\) 14.7555 + 7.51832i 1.30934 + 0.667143i 0.962628 0.270829i \(-0.0872976\pi\)
0.346713 + 0.937971i \(0.387298\pi\)
\(128\) −8.56482 + 10.5767i −0.757030 + 0.934854i
\(129\) 29.1428 + 12.9752i 2.56588 + 1.14240i
\(130\) 0 0
\(131\) −0.163724 0.367729i −0.0143046 0.0321287i 0.906252 0.422738i \(-0.138931\pi\)
−0.920557 + 0.390609i \(0.872264\pi\)
\(132\) −4.74518 4.74518i −0.413015 0.413015i
\(133\) −5.67847 15.0938i −0.492386 1.30880i
\(134\) −0.860142 0.279477i −0.0743049 0.0241431i
\(135\) 0 0
\(136\) 5.54717 + 4.99470i 0.475666 + 0.428292i
\(137\) 6.89895 10.6234i 0.589417 0.907623i −0.410574 0.911827i \(-0.634672\pi\)
0.999991 + 0.00420463i \(0.00133838\pi\)
\(138\) −23.1818 1.21491i −1.97336 0.103420i
\(139\) 4.44619 + 13.6840i 0.377121 + 1.16066i 0.942036 + 0.335511i \(0.108909\pi\)
−0.564915 + 0.825149i \(0.691091\pi\)
\(140\) 0 0
\(141\) 2.28674 7.03788i 0.192579 0.592696i
\(142\) 0.587388 1.53020i 0.0492925 0.128411i
\(143\) 0.368536 + 0.0987488i 0.0308185 + 0.00825779i
\(144\) 21.5653 + 2.26661i 1.79711 + 0.188884i
\(145\) 0 0
\(146\) −2.03221 2.79710i −0.168187 0.231489i
\(147\) −18.5346 + 4.70164i −1.52871 + 0.387785i
\(148\) −2.19151 + 4.30108i −0.180141 + 0.353547i
\(149\) 9.24670 + 5.33859i 0.757519 + 0.437354i 0.828404 0.560131i \(-0.189249\pi\)
−0.0708851 + 0.997484i \(0.522582\pi\)
\(150\) 0 0
\(151\) −10.4396 18.0820i −0.849565 1.47149i −0.881597 0.472003i \(-0.843531\pi\)
0.0320315 0.999487i \(-0.489802\pi\)
\(152\) −7.39366 11.3852i −0.599705 0.923465i
\(153\) 2.33939 14.7703i 0.189128 1.19411i
\(154\) 16.4461 + 3.61081i 1.32526 + 0.290967i
\(155\) 0 0
\(156\) 0.151625 0.0675076i 0.0121397 0.00540494i
\(157\) 3.09395 11.5468i 0.246924 0.921533i −0.725483 0.688241i \(-0.758383\pi\)
0.972407 0.233293i \(-0.0749500\pi\)
\(158\) −19.4579 + 15.7567i −1.54799 + 1.25354i
\(159\) −21.4965 23.8743i −1.70478 1.89335i
\(160\) 0 0
\(161\) 12.0630 6.85743i 0.950695 0.540441i
\(162\) 1.82181 + 3.57550i 0.143135 + 0.280918i
\(163\) 0.758967 14.4820i 0.0594469 1.13431i −0.792222 0.610234i \(-0.791076\pi\)
0.851668 0.524081i \(-0.175591\pi\)
\(164\) −0.0548546 + 0.0609222i −0.00428342 + 0.00475722i
\(165\) 0 0
\(166\) −13.0251 + 11.7278i −1.01094 + 0.910257i
\(167\) 0.261681 + 1.65219i 0.0202495 + 0.127850i 0.995742 0.0921813i \(-0.0293839\pi\)
−0.975493 + 0.220032i \(0.929384\pi\)
\(168\) −14.3907 + 7.21164i −1.11027 + 0.556390i
\(169\) 7.63566 10.5096i 0.587359 0.808430i
\(170\) 0 0
\(171\) −11.0621 + 24.8458i −0.845937 + 1.90001i
\(172\) 6.81921 2.61765i 0.519960 0.199594i
\(173\) 0.235876 0.153180i 0.0179333 0.0116460i −0.535641 0.844446i \(-0.679930\pi\)
0.553575 + 0.832800i \(0.313263\pi\)
\(174\) −18.9195 −1.43429
\(175\) 0 0
\(176\) 19.0873 1.43876
\(177\) 11.8225 7.67763i 0.888634 0.577086i
\(178\) 1.51822 0.582792i 0.113796 0.0436821i
\(179\) 5.33375 11.9798i 0.398663 0.895412i −0.596988 0.802250i \(-0.703636\pi\)
0.995651 0.0931620i \(-0.0296975\pi\)
\(180\) 0 0
\(181\) −13.5383 + 18.6338i −1.00629 + 1.38504i −0.0849076 + 0.996389i \(0.527060\pi\)
−0.921384 + 0.388653i \(0.872940\pi\)
\(182\) −0.229142 + 0.347735i −0.0169851 + 0.0257758i
\(183\) 3.04820 + 19.2456i 0.225330 + 1.42268i
\(184\) 8.68043 7.81590i 0.639930 0.576196i
\(185\) 0 0
\(186\) −2.09009 + 2.32129i −0.153253 + 0.170205i
\(187\) 0.688927 13.1455i 0.0503793 0.961295i
\(188\) −0.769242 1.50972i −0.0561027 0.110108i
\(189\) 9.11516 + 5.34421i 0.663030 + 0.388734i
\(190\) 0 0
\(191\) 2.70749 + 3.00698i 0.195907 + 0.217577i 0.833093 0.553133i \(-0.186568\pi\)
−0.637185 + 0.770711i \(0.719901\pi\)
\(192\) −8.86936 + 7.18227i −0.640091 + 0.518335i
\(193\) 0.795745 2.96976i 0.0572790 0.213768i −0.931355 0.364114i \(-0.881372\pi\)
0.988634 + 0.150346i \(0.0480386\pi\)
\(194\) 16.7611 7.46250i 1.20337 0.535776i
\(195\) 0 0
\(196\) −2.23966 + 3.76212i −0.159976 + 0.268723i
\(197\) 1.97286 12.4561i 0.140560 0.887464i −0.812120 0.583490i \(-0.801687\pi\)
0.952681 0.303973i \(-0.0983134\pi\)
\(198\) −15.4658 23.8153i −1.09911 1.69248i
\(199\) −2.17496 3.76715i −0.154179 0.267046i 0.778581 0.627545i \(-0.215940\pi\)
−0.932760 + 0.360498i \(0.882607\pi\)
\(200\) 0 0
\(201\) −1.32044 0.762355i −0.0931365 0.0537724i
\(202\) −8.63198 + 16.9412i −0.607344 + 1.19198i
\(203\) 9.52558 6.09583i 0.668564 0.427843i
\(204\) −3.36586 4.63270i −0.235657 0.324354i
\(205\) 0 0
\(206\) 16.2298 + 1.70582i 1.13078 + 0.118850i
\(207\) −22.6039 6.05670i −1.57108 0.420970i
\(208\) −0.169178 + 0.440725i −0.0117304 + 0.0305588i
\(209\) −7.39789 + 22.7684i −0.511723 + 1.57492i
\(210\) 0 0
\(211\) 2.05986 + 6.33961i 0.141807 + 0.436437i 0.996587 0.0825543i \(-0.0263078\pi\)
−0.854780 + 0.518991i \(0.826308\pi\)
\(212\) −7.34585 0.384980i −0.504515 0.0264405i
\(213\) 1.50497 2.31745i 0.103119 0.158789i
\(214\) −1.36316 1.22740i −0.0931838 0.0839031i
\(215\) 0 0
\(216\) 8.45936 + 2.74861i 0.575586 + 0.187019i
\(217\) 0.304405 1.84214i 0.0206644 0.125053i
\(218\) 3.35413 + 3.35413i 0.227171 + 0.227171i
\(219\) −2.37076 5.32481i −0.160201 0.359817i
\(220\) 0 0
\(221\) 0.297423 + 0.132421i 0.0200069 + 0.00890762i
\(222\) −21.4977 + 26.5474i −1.44283 + 1.78175i
\(223\) 13.7309 + 6.99626i 0.919491 + 0.468504i 0.848633 0.528982i \(-0.177426\pi\)
0.0708583 + 0.997486i \(0.477426\pi\)
\(224\) −2.85360 + 8.58670i −0.190664 + 0.573723i
\(225\) 0 0
\(226\) 3.78502 6.55584i 0.251776 0.436088i
\(227\) 13.2319 0.693452i 0.878229 0.0460260i 0.392110 0.919918i \(-0.371745\pi\)
0.486119 + 0.873892i \(0.338412\pi\)
\(228\) 3.73215 + 9.72258i 0.247168 + 0.643893i
\(229\) 0.433550 + 4.12495i 0.0286498 + 0.272584i 0.999464 + 0.0327499i \(0.0104265\pi\)
−0.970814 + 0.239834i \(0.922907\pi\)
\(230\) 0 0
\(231\) 25.8544 + 11.7189i 1.70109 + 0.771044i
\(232\) 6.73164 6.73164i 0.441954 0.441954i
\(233\) 24.0569 + 9.23458i 1.57602 + 0.604977i 0.980177 0.198124i \(-0.0634848\pi\)
0.595843 + 0.803101i \(0.296818\pi\)
\(234\) 0.686975 0.146021i 0.0449090 0.00954570i
\(235\) 0 0
\(236\) 0.671086 3.15721i 0.0436840 0.205517i
\(237\) −37.6096 + 19.1630i −2.44300 + 1.24477i
\(238\) 13.3789 + 5.23857i 0.867224 + 0.339566i
\(239\) 0.618920 0.201099i 0.0400346 0.0130080i −0.288931 0.957350i \(-0.593300\pi\)
0.328966 + 0.944342i \(0.393300\pi\)
\(240\) 0 0
\(241\) 0.238703 + 1.12301i 0.0153762 + 0.0723393i 0.985167 0.171600i \(-0.0548936\pi\)
−0.969791 + 0.243939i \(0.921560\pi\)
\(242\) −4.51361 5.57385i −0.290146 0.358300i
\(243\) 4.85188 + 18.1075i 0.311248 + 1.16159i
\(244\) 3.60952 + 2.62247i 0.231076 + 0.167887i
\(245\) 0 0
\(246\) −0.469334 + 0.340991i −0.0299237 + 0.0217408i
\(247\) −0.460151 0.372623i −0.0292787 0.0237094i
\(248\) −0.0822585 1.56959i −0.00522342 0.0996688i
\(249\) −25.5895 + 14.7741i −1.62167 + 0.936270i
\(250\) 0 0
\(251\) 13.8492i 0.874153i 0.899424 + 0.437076i \(0.143986\pi\)
−0.899424 + 0.437076i \(0.856014\pi\)
\(252\) 7.14493 1.86337i 0.450088 0.117381i
\(253\) −20.3452 3.22237i −1.27909 0.202589i
\(254\) 26.6865 2.80487i 1.67446 0.175993i
\(255\) 0 0
\(256\) −1.43165 + 13.6212i −0.0894778 + 0.851325i
\(257\) −0.352213 + 0.0943752i −0.0219704 + 0.00588696i −0.269788 0.962920i \(-0.586953\pi\)
0.247817 + 0.968807i \(0.420287\pi\)
\(258\) 51.0535 8.08608i 3.17845 0.503417i
\(259\) 2.27010 20.2925i 0.141057 1.26092i
\(260\) 0 0
\(261\) −18.6557 3.96540i −1.15476 0.245452i
\(262\) −0.547007 0.355231i −0.0337942 0.0219462i
\(263\) −24.9486 16.2018i −1.53839 0.999045i −0.986243 0.165301i \(-0.947141\pi\)
−0.552151 0.833744i \(-0.686193\pi\)
\(264\) 23.3734 + 4.96816i 1.43853 + 0.305769i
\(265\) 0 0
\(266\) −21.0368 15.5001i −1.28985 0.950371i
\(267\) 2.70787 0.428885i 0.165719 0.0262473i
\(268\) −0.337219 + 0.0903576i −0.0205989 + 0.00551947i
\(269\) −2.16638 + 20.6117i −0.132087 + 1.25672i 0.704825 + 0.709381i \(0.251026\pi\)
−0.836911 + 0.547338i \(0.815641\pi\)
\(270\) 0 0
\(271\) −5.57572 + 0.586032i −0.338701 + 0.0355989i −0.272352 0.962198i \(-0.587802\pi\)
−0.0663487 + 0.997796i \(0.521135\pi\)
\(272\) 16.0869 + 2.54792i 0.975413 + 0.154490i
\(273\) −0.499746 + 0.493108i −0.0302460 + 0.0298443i
\(274\) 20.5248i 1.23995i
\(275\) 0 0
\(276\) −7.76028 + 4.48040i −0.467114 + 0.269688i
\(277\) −0.309378 5.90329i −0.0185887 0.354694i −0.992050 0.125843i \(-0.959836\pi\)
0.973461 0.228851i \(-0.0734969\pi\)
\(278\) 18.1181 + 14.6717i 1.08665 + 0.879953i
\(279\) −2.54748 + 1.85085i −0.152514 + 0.110808i
\(280\) 0 0
\(281\) −6.92124 5.02858i −0.412887 0.299980i 0.361883 0.932224i \(-0.382134\pi\)
−0.774769 + 0.632244i \(0.782134\pi\)
\(282\) −3.10338 11.5820i −0.184804 0.689697i
\(283\) 9.49677 + 11.7275i 0.564525 + 0.697130i 0.976855 0.213905i \(-0.0686182\pi\)
−0.412330 + 0.911035i \(0.635285\pi\)
\(284\) −0.131547 0.618878i −0.00780585 0.0367236i
\(285\) 0 0
\(286\) 0.587957 0.191039i 0.0347666 0.0112964i
\(287\) 0.126433 0.322900i 0.00746312 0.0190602i
\(288\) 13.5968 6.92789i 0.801196 0.408230i
\(289\) −1.19910 + 5.64132i −0.0705353 + 0.331843i
\(290\) 0 0
\(291\) 30.2551 6.43093i 1.77359 0.376988i
\(292\) −1.24597 0.478282i −0.0729147 0.0279893i
\(293\) −7.80680 + 7.80680i −0.456078 + 0.456078i −0.897366 0.441288i \(-0.854522\pi\)
0.441288 + 0.897366i \(0.354522\pi\)
\(294\) −21.0380 + 22.7459i −1.22696 + 1.32657i
\(295\) 0 0
\(296\) −1.79672 17.0946i −0.104432 0.993605i
\(297\) −5.62128 14.6439i −0.326180 0.849727i
\(298\) 17.2768 0.905441i 1.00082 0.0524508i
\(299\) 0.254733 0.441210i 0.0147316 0.0255158i
\(300\) 0 0
\(301\) −23.0990 + 20.5205i −1.33141 + 1.18278i
\(302\) −30.1439 15.3591i −1.73459 0.883817i
\(303\) −20.1725 + 24.9109i −1.15888 + 1.43109i
\(304\) −27.0605 12.0481i −1.55203 0.691007i
\(305\) 0 0
\(306\) −9.85570 22.1363i −0.563413 1.26545i
\(307\) −8.14095 8.14095i −0.464628 0.464628i 0.435541 0.900169i \(-0.356557\pi\)
−0.900169 + 0.435541i \(0.856557\pi\)
\(308\) 6.08338 2.28864i 0.346632 0.130407i
\(309\) 26.1655 + 8.50169i 1.48850 + 0.483644i
\(310\) 0 0
\(311\) −21.3562 19.2292i −1.21100 1.09039i −0.993442 0.114339i \(-0.963525\pi\)
−0.217556 0.976048i \(-0.569808\pi\)
\(312\) −0.321882 + 0.495655i −0.0182230 + 0.0280610i
\(313\) 9.50493 + 0.498133i 0.537251 + 0.0281561i 0.319032 0.947744i \(-0.396642\pi\)
0.218218 + 0.975900i \(0.429975\pi\)
\(314\) −5.98554 18.4216i −0.337783 1.03959i
\(315\) 0 0
\(316\) −2.98662 + 9.19189i −0.168011 + 0.517084i
\(317\) 2.79733 7.28729i 0.157114 0.409295i −0.832317 0.554299i \(-0.812986\pi\)
0.989431 + 0.145004i \(0.0463196\pi\)
\(318\) −50.2810 13.4728i −2.81962 0.755515i
\(319\) −16.6965 1.75487i −0.934824 0.0982540i
\(320\) 0 0
\(321\) −1.81768 2.50182i −0.101453 0.139638i
\(322\) 10.3410 19.9642i 0.576281 1.11256i
\(323\) −9.27431 + 18.2019i −0.516036 + 1.01278i
\(324\) 1.34150 + 0.774516i 0.0745278 + 0.0430287i
\(325\) 0 0
\(326\) −11.7489 20.3497i −0.650711 1.12706i
\(327\) 4.35540 + 6.70673i 0.240854 + 0.370883i
\(328\) 0.0456650 0.288317i 0.00252143 0.0159197i
\(329\) 5.29417 + 4.83138i 0.291877 + 0.266362i
\(330\) 0 0
\(331\) 0.945325 0.420886i 0.0519597 0.0231340i −0.380592 0.924743i \(-0.624280\pi\)
0.432552 + 0.901609i \(0.357613\pi\)
\(332\) −1.75109 + 6.53515i −0.0961035 + 0.358663i
\(333\) −26.7621 + 21.6715i −1.46655 + 1.18759i
\(334\) 1.81366 + 2.01427i 0.0992388 + 0.110216i
\(335\) 0 0
\(336\) −17.7644 + 30.2991i −0.969125 + 1.65295i
\(337\) 0.849753 + 1.66773i 0.0462890 + 0.0908472i 0.912992 0.407977i \(-0.133765\pi\)
−0.866703 + 0.498824i \(0.833765\pi\)
\(338\) 1.10162 21.0202i 0.0599202 1.14335i
\(339\) 8.53950 9.48407i 0.463802 0.515104i
\(340\) 0 0
\(341\) −2.05982 + 1.85467i −0.111545 + 0.100436i
\(342\) 6.89381 + 43.5258i 0.372774 + 2.35361i
\(343\) 3.26350 18.2305i 0.176212 0.984352i
\(344\) −15.2880 + 21.0421i −0.824272 + 1.13451i
\(345\) 0 0
\(346\) 0.185357 0.416319i 0.00996486 0.0223814i
\(347\) 1.85615 0.712508i 0.0996431 0.0382494i −0.308036 0.951375i \(-0.599672\pi\)
0.407679 + 0.913125i \(0.366338\pi\)
\(348\) −6.12500 + 3.97762i −0.328335 + 0.213223i
\(349\) −4.37015 −0.233929 −0.116964 0.993136i \(-0.537316\pi\)
−0.116964 + 0.993136i \(0.537316\pi\)
\(350\) 0 0
\(351\) 0.387952 0.0207073
\(352\) 11.2654 7.31587i 0.600450 0.389937i
\(353\) −17.4347 + 6.69256i −0.927957 + 0.356209i −0.774955 0.632017i \(-0.782227\pi\)
−0.153002 + 0.988226i \(0.548894\pi\)
\(354\) 9.29042 20.8666i 0.493780 1.10905i
\(355\) 0 0
\(356\) 0.368984 0.507863i 0.0195561 0.0269167i
\(357\) 20.2260 + 13.3280i 1.07047 + 0.705393i
\(358\) −3.32396 20.9867i −0.175677 1.10918i
\(359\) 12.4207 11.1836i 0.655539 0.590250i −0.272761 0.962082i \(-0.587937\pi\)
0.928300 + 0.371832i \(0.121270\pi\)
\(360\) 0 0
\(361\) 12.1464 13.4899i 0.639282 0.709995i
\(362\) −1.95321 + 37.2694i −0.102658 + 1.95884i
\(363\) −5.48937 10.7735i −0.288117 0.565462i
\(364\) −0.00107477 + 0.160750i −5.63332e−5 + 0.00842560i
\(365\) 0 0
\(366\) 21.1264 + 23.4633i 1.10430 + 1.22644i
\(367\) −7.50742 + 6.07938i −0.391884 + 0.317341i −0.804931 0.593368i \(-0.797798\pi\)
0.413047 + 0.910710i \(0.364464\pi\)
\(368\) 6.59659 24.6188i 0.343871 1.28334i
\(369\) −0.534260 + 0.237868i −0.0278125 + 0.0123829i
\(370\) 0 0
\(371\) 29.6563 9.41718i 1.53968 0.488916i
\(372\) −0.188622 + 1.19091i −0.00977959 + 0.0617459i
\(373\) −2.67853 4.12458i −0.138689 0.213563i 0.762500 0.646988i \(-0.223972\pi\)
−0.901190 + 0.433425i \(0.857305\pi\)
\(374\) −10.6647 18.4717i −0.551456 0.955150i
\(375\) 0 0
\(376\) 5.22511 + 3.01672i 0.269465 + 0.155575i
\(377\) 0.188508 0.369967i 0.00970865 0.0190543i
\(378\) 17.1030 0.781708i 0.879686 0.0402067i
\(379\) −7.39900 10.1839i −0.380061 0.523109i 0.575540 0.817774i \(-0.304792\pi\)
−0.955601 + 0.294665i \(0.904792\pi\)
\(380\) 0 0
\(381\) 44.9900 + 4.72864i 2.30491 + 0.242255i
\(382\) 6.33292 + 1.69690i 0.324020 + 0.0868210i
\(383\) 6.42601 16.7403i 0.328354 0.855391i −0.665672 0.746245i \(-0.731855\pi\)
0.994026 0.109146i \(-0.0348117\pi\)
\(384\) −11.4883 + 35.3574i −0.586260 + 1.80432i
\(385\) 0 0
\(386\) −1.53944 4.73792i −0.0783556 0.241154i
\(387\) 52.0365 + 2.72712i 2.64516 + 0.138627i
\(388\) 3.85731 5.93974i 0.195825 0.301544i
\(389\) 8.86329 + 7.98055i 0.449387 + 0.404630i 0.862506 0.506047i \(-0.168894\pi\)
−0.413119 + 0.910677i \(0.635561\pi\)
\(390\) 0 0
\(391\) −16.7170 5.43168i −0.845415 0.274692i
\(392\) −0.607684 15.5785i −0.0306927 0.786832i
\(393\) −0.777518 0.777518i −0.0392206 0.0392206i
\(394\) −8.31153 18.6680i −0.418729 0.940480i
\(395\) 0 0
\(396\) −10.0138 4.45844i −0.503213 0.224045i
\(397\) 23.6125 29.1590i 1.18508 1.46345i 0.330750 0.943719i \(-0.392698\pi\)
0.854329 0.519732i \(-0.173968\pi\)
\(398\) −6.28010 3.19987i −0.314793 0.160395i
\(399\) −29.2573 32.9337i −1.46470 1.64875i
\(400\) 0 0
\(401\) 0.106730 0.184861i 0.00532982 0.00923152i −0.863348 0.504609i \(-0.831637\pi\)
0.868678 + 0.495377i \(0.164970\pi\)
\(402\) −2.46715 + 0.129298i −0.123050 + 0.00644879i
\(403\) −0.0245673 0.0639999i −0.00122378 0.00318806i
\(404\) 0.767189 + 7.29932i 0.0381691 + 0.363155i
\(405\) 0 0
\(406\) 7.56499 16.6900i 0.375444 0.828313i
\(407\) −21.4341 + 21.4341i −1.06245 + 1.06245i
\(408\) 19.0361 + 7.30726i 0.942426 + 0.361763i
\(409\) −31.2443 + 6.64117i −1.54493 + 0.328385i −0.900011 0.435867i \(-0.856442\pi\)
−0.644918 + 0.764252i \(0.723109\pi\)
\(410\) 0 0
\(411\) 7.19417 33.8459i 0.354862 1.66950i
\(412\) 5.61287 2.85990i 0.276526 0.140897i
\(413\) 2.04565 + 13.4992i 0.100660 + 0.664255i
\(414\) −36.0620 + 11.7173i −1.77235 + 0.575872i
\(415\) 0 0
\(416\) 0.0690729 + 0.324962i 0.00338658 + 0.0159326i
\(417\) 24.7346 + 30.5447i 1.21126 + 1.49578i
\(418\) 10.0398 + 37.4691i 0.491063 + 1.83267i
\(419\) 8.57555 + 6.23050i 0.418943 + 0.304380i 0.777212 0.629238i \(-0.216633\pi\)
−0.358269 + 0.933618i \(0.616633\pi\)
\(420\) 0 0
\(421\) 7.12732 5.17830i 0.347364 0.252375i −0.400398 0.916341i \(-0.631128\pi\)
0.747762 + 0.663966i \(0.231128\pi\)
\(422\) 8.39388 + 6.79723i 0.408608 + 0.330884i
\(423\) −0.632612 12.0710i −0.0307586 0.586910i
\(424\) 22.6839 13.0965i 1.10163 0.636024i
\(425\) 0 0
\(426\) 4.47737i 0.216929i
\(427\) −18.1965 5.00637i −0.880591 0.242275i
\(428\) −0.699356 0.110767i −0.0338047 0.00535413i
\(429\) 1.03652 0.108943i 0.0500436 0.00525980i
\(430\) 0 0
\(431\) −0.640581 + 6.09472i −0.0308557 + 0.293572i 0.968202 + 0.250170i \(0.0804864\pi\)
−0.999058 + 0.0434025i \(0.986180\pi\)
\(432\) 18.7469 5.02322i 0.901961 0.241680i
\(433\) −35.2854 + 5.58866i −1.69571 + 0.268574i −0.928097 0.372339i \(-0.878556\pi\)
−0.767613 + 0.640913i \(0.778556\pi\)
\(434\) −1.21202 2.77197i −0.0581787 0.133059i
\(435\) 0 0
\(436\) 1.79104 + 0.380697i 0.0857751 + 0.0182321i
\(437\) 26.8100 + 17.4106i 1.28249 + 0.832861i
\(438\) −7.92080 5.14383i −0.378470 0.245782i
\(439\) 25.5065 + 5.42157i 1.21736 + 0.258757i 0.771431 0.636312i \(-0.219541\pi\)
0.445926 + 0.895070i \(0.352874\pi\)
\(440\) 0 0
\(441\) −25.5120 + 18.0194i −1.21486 + 0.858064i
\(442\) 0.521037 0.0825241i 0.0247832 0.00392527i
\(443\) 32.7161 8.76626i 1.55439 0.416498i 0.623508 0.781817i \(-0.285707\pi\)
0.930882 + 0.365319i \(0.119040\pi\)
\(444\) −1.37835 + 13.1141i −0.0654135 + 0.622368i
\(445\) 0 0
\(446\) 24.8335 2.61010i 1.17590 0.123592i
\(447\) 28.8074 + 4.56264i 1.36254 + 0.215805i
\(448\) −2.78948 10.6960i −0.131791 0.505340i
\(449\) 17.8247i 0.841199i −0.907246 0.420600i \(-0.861820\pi\)
0.907246 0.420600i \(-0.138180\pi\)
\(450\) 0 0
\(451\) −0.445816 + 0.257392i −0.0209927 + 0.0121201i
\(452\) −0.152933 2.91814i −0.00719338 0.137258i
\(453\) −44.3247 35.8934i −2.08255 1.68642i
\(454\) 17.3691 12.6194i 0.815173 0.592258i
\(455\) 0 0
\(456\) −30.0010 21.7970i −1.40493 1.02074i
\(457\) −2.20826 8.24133i −0.103298 0.385513i 0.894849 0.446370i \(-0.147283\pi\)
−0.998147 + 0.0608568i \(0.980617\pi\)
\(458\) 4.22941 + 5.22289i 0.197627 + 0.244050i
\(459\) −2.78288 13.0924i −0.129893 0.611101i
\(460\) 0 0
\(461\) 25.2246 8.19596i 1.17483 0.381724i 0.344384 0.938829i \(-0.388088\pi\)
0.830442 + 0.557105i \(0.188088\pi\)
\(462\) 45.4760 6.89134i 2.11573 0.320614i
\(463\) 20.3912 10.3899i 0.947661 0.482857i 0.0893575 0.996000i \(-0.471519\pi\)
0.858304 + 0.513142i \(0.171519\pi\)
\(464\) 4.31887 20.3187i 0.200498 0.943271i
\(465\) 0 0
\(466\) 40.8410 8.68102i 1.89192 0.402140i
\(467\) −8.32450 3.19548i −0.385212 0.147869i 0.158052 0.987431i \(-0.449479\pi\)
−0.543264 + 0.839562i \(0.682812\pi\)
\(468\) 0.191702 0.191702i 0.00886142 0.00886142i
\(469\) 1.20050 0.860009i 0.0554338 0.0397115i
\(470\) 0 0
\(471\) −3.41334 32.4757i −0.157278 1.49640i
\(472\) 4.11886 + 10.7300i 0.189586 + 0.493888i
\(473\) 45.8047 2.40053i 2.10610 0.110376i
\(474\) −34.1972 + 59.2314i −1.57073 + 2.72059i
\(475\) 0 0
\(476\) 5.43263 1.11683i 0.249004 0.0511899i
\(477\) −46.7562 23.8235i −2.14082 1.09080i
\(478\) 0.663596 0.819472i 0.0303522 0.0374818i
\(479\) 2.18656 + 0.973518i 0.0999064 + 0.0444812i 0.456081 0.889938i \(-0.349253\pi\)
−0.356175 + 0.934419i \(0.615919\pi\)
\(480\) 0 0
\(481\) −0.304934 0.684892i −0.0139038 0.0312284i
\(482\) 1.31543 + 1.31543i 0.0599161 + 0.0599161i
\(483\) 24.0503 29.2970i 1.09433 1.33306i
\(484\) −2.63308 0.855538i −0.119685 0.0388881i
\(485\) 0 0
\(486\) 22.5731 + 20.3249i 1.02394 + 0.921957i
\(487\) −2.63929 + 4.06415i −0.119598 + 0.184164i −0.893399 0.449264i \(-0.851686\pi\)
0.773801 + 0.633428i \(0.218353\pi\)
\(488\) −15.8652 0.831460i −0.718184 0.0376384i
\(489\) −12.2414 37.6753i −0.553577 1.70374i
\(490\) 0 0
\(491\) −9.20020 + 28.3153i −0.415199 + 1.27785i 0.496874 + 0.867823i \(0.334481\pi\)
−0.912073 + 0.410029i \(0.865519\pi\)
\(492\) −0.0802525 + 0.209065i −0.00361806 + 0.00942537i
\(493\) −13.8377 3.70780i −0.623218 0.166991i
\(494\) −0.954148 0.100285i −0.0429291 0.00451203i
\(495\) 0 0
\(496\) −2.01583 2.77456i −0.0905136 0.124581i
\(497\) 1.44260 + 2.25426i 0.0647094 + 0.101117i
\(498\) −21.7361 + 42.6595i −0.974018 + 1.91162i
\(499\) 33.6862 + 19.4488i 1.50800 + 0.870646i 0.999957 + 0.00931623i \(0.00296549\pi\)
0.508046 + 0.861330i \(0.330368\pi\)
\(500\) 0 0
\(501\) 2.28474 + 3.95729i 0.102075 + 0.176799i
\(502\) 12.2218 + 18.8200i 0.545488 + 0.839977i
\(503\) −5.93752 + 37.4880i −0.264741 + 1.67151i 0.393979 + 0.919120i \(0.371098\pi\)
−0.658719 + 0.752389i \(0.728902\pi\)
\(504\) −17.7235 + 19.4212i −0.789467 + 0.865090i
\(505\) 0 0
\(506\) −30.4914 + 13.5756i −1.35551 + 0.603510i
\(507\) 9.18442 34.2767i 0.407894 1.52228i
\(508\) 8.04979 6.51859i 0.357152 0.289216i
\(509\) 6.94597 + 7.71429i 0.307875 + 0.341930i 0.877149 0.480218i \(-0.159442\pi\)
−0.569274 + 0.822148i \(0.692776\pi\)
\(510\) 0 0
\(511\) 5.64528 + 0.0377441i 0.249733 + 0.00166970i
\(512\) −2.28214 4.47894i −0.100857 0.197943i
\(513\) −1.27400 + 24.3093i −0.0562483 + 1.07328i
\(514\) −0.395345 + 0.439075i −0.0174379 + 0.0193668i
\(515\) 0 0
\(516\) 14.8280 13.3512i 0.652768 0.587755i
\(517\) −1.66446 10.5090i −0.0732027 0.462184i
\(518\) −14.8232 29.5794i −0.651293 1.29964i
\(519\) 0.451584 0.621552i 0.0198223 0.0272831i
\(520\) 0 0
\(521\) −4.89041 + 10.9840i −0.214253 + 0.481219i −0.988416 0.151766i \(-0.951504\pi\)
0.774164 + 0.632985i \(0.218171\pi\)
\(522\) −28.8512 + 11.0749i −1.26278 + 0.484737i
\(523\) 20.1088 13.0588i 0.879298 0.571023i −0.0241556 0.999708i \(-0.507690\pi\)
0.903454 + 0.428685i \(0.141023\pi\)
\(524\) −0.251771 −0.0109987
\(525\) 0 0
\(526\) −48.2012 −2.10167
\(527\) −1.98361 + 1.28817i −0.0864074 + 0.0561136i
\(528\) 48.6769 18.6853i 2.11839 0.813175i
\(529\) −1.83261 + 4.11611i −0.0796787 + 0.178961i
\(530\) 0 0
\(531\) 13.5344 18.6285i 0.587342 0.808407i
\(532\) −10.0692 0.595233i −0.436554 0.0258066i
\(533\) −0.00199173 0.0125753i −8.62712e−5 0.000544695i
\(534\) 3.30130 2.97251i 0.142861 0.128633i
\(535\) 0 0
\(536\) 0.831817 0.923827i 0.0359290 0.0399032i
\(537\) 1.87477 35.7727i 0.0809021 1.54370i
\(538\) 15.2458 + 29.9216i 0.657294 + 1.29001i
\(539\) −20.6758 + 18.1219i −0.890570 + 0.780565i
\(540\) 0 0
\(541\) −12.8091 14.2259i −0.550705 0.611620i 0.401954 0.915660i \(-0.368331\pi\)
−0.952659 + 0.304040i \(0.901664\pi\)
\(542\) −7.05982 + 5.71693i −0.303245 + 0.245563i
\(543\) −16.2843 + 60.7737i −0.698825 + 2.60805i
\(544\) 10.4712 4.66208i 0.448949 0.199885i
\(545\) 0 0
\(546\) −0.243952 + 1.11112i −0.0104402 + 0.0475516i
\(547\) −1.95187 + 12.3236i −0.0834558 + 0.526919i 0.910174 + 0.414226i \(0.135948\pi\)
−0.993630 + 0.112693i \(0.964052\pi\)
\(548\) −4.31510 6.64468i −0.184332 0.283847i
\(549\) 15.9141 + 27.5641i 0.679199 + 1.17641i
\(550\) 0 0
\(551\) 22.5633 + 13.0269i 0.961230 + 0.554967i
\(552\) 14.4858 28.4300i 0.616556 1.21006i
\(553\) −1.86663 40.8400i −0.0793770 1.73669i
\(554\) −5.63005 7.74910i −0.239198 0.329228i
\(555\) 0 0
\(556\) 8.95012 + 0.940695i 0.379570 + 0.0398944i
\(557\) 21.9963 + 5.89390i 0.932014 + 0.249732i 0.692713 0.721213i \(-0.256415\pi\)
0.239301 + 0.970946i \(0.423082\pi\)
\(558\) −1.82846 + 4.76331i −0.0774050 + 0.201647i
\(559\) −0.350558 + 1.07891i −0.0148270 + 0.0456329i
\(560\) 0 0
\(561\) −11.1118 34.1985i −0.469139 1.44386i
\(562\) −13.8431 0.725488i −0.583937 0.0306029i
\(563\) 15.8945 24.4754i 0.669874 1.03152i −0.326397 0.945233i \(-0.605835\pi\)
0.996271 0.0862825i \(-0.0274988\pi\)
\(564\) −3.43967 3.09710i −0.144836 0.130411i
\(565\) 0 0
\(566\) 23.2549 + 7.55597i 0.977476 + 0.317601i
\(567\) −6.46474 1.06827i −0.271494 0.0448631i
\(568\) 1.59307 + 1.59307i 0.0668436 + 0.0668436i
\(569\) −0.645950 1.45083i −0.0270796 0.0608218i 0.899499 0.436922i \(-0.143931\pi\)
−0.926579 + 0.376100i \(0.877265\pi\)
\(570\) 0 0
\(571\) 3.28341 + 1.46187i 0.137406 + 0.0611773i 0.474288 0.880370i \(-0.342706\pi\)
−0.336882 + 0.941547i \(0.609372\pi\)
\(572\) 0.150181 0.185458i 0.00627940 0.00775441i
\(573\) 9.84838 + 5.01800i 0.411422 + 0.209630i
\(574\) −0.113145 0.550374i −0.00472258 0.0229722i
\(575\) 0 0
\(576\) −9.32098 + 16.1444i −0.388374 + 0.672683i
\(577\) −22.3066 + 1.16904i −0.928634 + 0.0486677i −0.510652 0.859788i \(-0.670596\pi\)
−0.417982 + 0.908455i \(0.637263\pi\)
\(578\) 3.34896 + 8.72433i 0.139298 + 0.362884i
\(579\) −0.877889 8.35256i −0.0364838 0.347121i
\(580\) 0 0
\(581\) −2.80113 28.4815i −0.116210 1.18161i
\(582\) 35.4392 35.4392i 1.46900 1.46900i
\(583\) −43.1234 16.5535i −1.78599 0.685577i
\(584\) 4.64845 0.988058i 0.192354 0.0408861i
\(585\) 0 0
\(586\) −3.71938 + 17.4983i −0.153646 + 0.722848i
\(587\) −38.6684 + 19.7026i −1.59602 + 0.813211i −0.596070 + 0.802933i \(0.703272\pi\)
−0.999947 + 0.0102788i \(0.996728\pi\)
\(588\) −2.02875 + 11.7868i −0.0836644 + 0.486078i
\(589\) 4.09095 1.32923i 0.168565 0.0547699i
\(590\) 0 0
\(591\) −7.16259 33.6973i −0.294630 1.38612i
\(592\) −23.6033 29.1476i −0.970088 1.19796i
\(593\) −3.34701 12.4912i −0.137445 0.512953i −0.999976 0.00694789i \(-0.997788\pi\)
0.862531 0.506005i \(-0.168878\pi\)
\(594\) −20.5621 14.9392i −0.843673 0.612964i
\(595\) 0 0
\(596\) 5.40284 3.92539i 0.221309 0.160790i
\(597\) −9.23448 7.47793i −0.377942 0.306051i
\(598\) −0.0432035 0.824371i −0.00176672 0.0337110i
\(599\) −19.9444 + 11.5149i −0.814905 + 0.470485i −0.848656 0.528945i \(-0.822588\pi\)
0.0337516 + 0.999430i \(0.489255\pi\)
\(600\) 0 0
\(601\) 14.0409i 0.572740i −0.958119 0.286370i \(-0.907551\pi\)
0.958119 0.286370i \(-0.0924486\pi\)
\(602\) −13.2806 + 48.2705i −0.541276 + 1.96736i
\(603\) −2.45985 0.389602i −0.100173 0.0158658i
\(604\) −12.9879 + 1.36508i −0.528469 + 0.0555443i
\(605\) 0 0
\(606\) −5.42907 + 51.6542i −0.220541 + 2.09831i
\(607\) 38.2415 10.2468i 1.55218 0.415904i 0.622000 0.783017i \(-0.286320\pi\)
0.930176 + 0.367113i \(0.119654\pi\)
\(608\) −20.5892 + 3.26100i −0.835001 + 0.132251i
\(609\) 18.3249 24.8707i 0.742564 1.00781i
\(610\) 0 0
\(611\) 0.257404 + 0.0547130i 0.0104135 + 0.00221345i
\(612\) −7.84459 5.09433i −0.317099 0.205926i
\(613\) 3.25467 + 2.11361i 0.131455 + 0.0853679i 0.608691 0.793407i \(-0.291695\pi\)
−0.477236 + 0.878775i \(0.658361\pi\)
\(614\) −18.2473 3.87858i −0.736400 0.156527i
\(615\) 0 0
\(616\) −13.7286 + 18.6325i −0.553140 + 0.750725i
\(617\) −27.5463 + 4.36290i −1.10897 + 0.175644i −0.683943 0.729536i \(-0.739736\pi\)
−0.425029 + 0.905180i \(0.639736\pi\)
\(618\) 43.0597 11.5378i 1.73211 0.464118i
\(619\) 2.82187 26.8483i 0.113421 1.07913i −0.778721 0.627370i \(-0.784131\pi\)
0.892142 0.451755i \(-0.149202\pi\)
\(620\) 0 0
\(621\) −20.8305 + 2.18937i −0.835898 + 0.0878564i
\(622\) −45.9911 7.28427i −1.84408 0.292073i
\(623\) −0.704401 + 2.56027i −0.0282212 + 0.102575i
\(624\) 1.28957i 0.0516239i
\(625\) 0 0
\(626\) 13.3561 7.71114i 0.533816 0.308199i
\(627\) 3.42258 + 65.3067i 0.136685 + 2.60810i
\(628\) −5.81069 4.70541i −0.231872 0.187766i
\(629\) −20.9260 + 15.2037i −0.834376 + 0.606209i
\(630\) 0 0
\(631\) 8.70119 + 6.32178i 0.346389 + 0.251666i 0.747353 0.664428i \(-0.231325\pi\)
−0.400964 + 0.916094i \(0.631325\pi\)
\(632\) −8.90724 33.2423i −0.354311 1.32231i
\(633\) 11.4592 + 14.1510i 0.455464 + 0.562451i
\(634\) −2.62964 12.3715i −0.104436 0.491335i
\(635\) 0 0
\(636\) −19.1105 + 6.20937i −0.757780 + 0.246217i
\(637\) −0.235176 0.638026i −0.00931801 0.0252795i
\(638\) −24.2379 + 12.3498i −0.959589 + 0.488935i
\(639\) 0.938426 4.41495i 0.0371236 0.174653i
\(640\) 0 0
\(641\) −29.4673 + 6.26346i −1.16389 + 0.247392i −0.749056 0.662506i \(-0.769493\pi\)
−0.414831 + 0.909898i \(0.636159\pi\)
\(642\) −4.67792 1.79569i −0.184623 0.0708701i
\(643\) 20.4056 20.4056i 0.804720 0.804720i −0.179110 0.983829i \(-0.557322\pi\)
0.983829 + 0.179110i \(0.0573217\pi\)
\(644\) −0.849471 8.63730i −0.0334739 0.340357i
\(645\) 0 0
\(646\) 3.45998 + 32.9195i 0.136131 + 1.29520i
\(647\) 6.86034 + 17.8718i 0.269708 + 0.702613i 0.999814 + 0.0192794i \(0.00613721\pi\)
−0.730106 + 0.683334i \(0.760529\pi\)
\(648\) −5.50825 + 0.288675i −0.216384 + 0.0113402i
\(649\) 10.1343 17.5531i 0.397805 0.689019i
\(650\) 0 0
\(651\) −1.02704 4.99588i −0.0402531 0.195804i
\(652\) −8.08188 4.11792i −0.316511 0.161270i
\(653\) −7.59612 + 9.38043i −0.297259 + 0.367084i −0.903791 0.427975i \(-0.859227\pi\)
0.606531 + 0.795060i \(0.292560\pi\)
\(654\) 11.8373 + 5.27031i 0.462876 + 0.206086i
\(655\) 0 0
\(656\) −0.259071 0.581883i −0.0101150 0.0227187i
\(657\) −6.73225 6.73225i −0.262650 0.262650i
\(658\) 11.4580 + 1.89339i 0.446681 + 0.0738120i
\(659\) −15.5052 5.03793i −0.603995 0.196250i −0.00897383 0.999960i \(-0.502856\pi\)
−0.595022 + 0.803710i \(0.702856\pi\)
\(660\) 0 0
\(661\) 10.4225 + 9.38450i 0.405390 + 0.365015i 0.846455 0.532460i \(-0.178732\pi\)
−0.441065 + 0.897475i \(0.645399\pi\)
\(662\) 0.913195 1.40620i 0.0354923 0.0546534i
\(663\) 0.888130 + 0.0465449i 0.0344921 + 0.00180766i
\(664\) −7.44463 22.9122i −0.288908 0.889166i
\(665\) 0 0
\(666\) −17.2426 + 53.0674i −0.668138 + 2.05632i
\(667\) −8.03376 + 20.9287i −0.311069 + 0.810361i
\(668\) 1.01063 + 0.270798i 0.0391025 + 0.0104775i
\(669\) 41.8660 + 4.40029i 1.61863 + 0.170125i
\(670\) 0 0
\(671\) 16.4678 + 22.6659i 0.635731 + 0.875008i
\(672\) 1.12855 + 24.6916i 0.0435347 + 0.952498i
\(673\) 0.128682 0.252552i 0.00496031 0.00973515i −0.888513 0.458851i \(-0.848261\pi\)
0.893473 + 0.449116i \(0.148261\pi\)
\(674\) 2.62652 + 1.51642i 0.101170 + 0.0584103i
\(675\) 0 0
\(676\) −4.06262 7.03667i −0.156255 0.270641i
\(677\) 18.2427 + 28.0912i 0.701123 + 1.07963i 0.992407 + 0.122998i \(0.0392508\pi\)
−0.291284 + 0.956637i \(0.594083\pi\)
\(678\) 3.23488 20.4242i 0.124235 0.784387i
\(679\) −6.42445 + 29.2613i −0.246548 + 1.12295i
\(680\) 0 0
\(681\) 33.0654 14.7217i 1.26707 0.564136i
\(682\) −1.16240 + 4.33814i −0.0445106 + 0.166116i
\(683\) 17.5831 14.2385i 0.672798 0.544821i −0.230907 0.972976i \(-0.574169\pi\)
0.903706 + 0.428155i \(0.140836\pi\)
\(684\) 11.3826 + 12.6417i 0.435225 + 0.483367i
\(685\) 0 0
\(686\) −11.6535 27.6538i −0.444931 1.05583i
\(687\) 5.14374 + 10.0951i 0.196246 + 0.385154i
\(688\) −2.97020 + 56.6749i −0.113238 + 2.16071i
\(689\) 0.764441 0.848997i 0.0291229 0.0323442i
\(690\) 0 0
\(691\) 21.1493 19.0429i 0.804557 0.724427i −0.160338 0.987062i \(-0.551258\pi\)
0.964895 + 0.262636i \(0.0845917\pi\)
\(692\) −0.0275190 0.173748i −0.00104612 0.00660492i
\(693\) 46.2863 + 2.73619i 1.75827 + 0.103939i
\(694\) 1.89358 2.60628i 0.0718792 0.0989332i
\(695\) 0 0
\(696\) 10.5773 23.7571i 0.400933 0.900511i
\(697\) −0.410097 + 0.157421i −0.0155335 + 0.00596276i
\(698\) −5.93870 + 3.85664i −0.224783 + 0.145976i
\(699\) 70.3907 2.66242
\(700\) 0 0
\(701\) 29.7376 1.12317 0.561587 0.827418i \(-0.310191\pi\)
0.561587 + 0.827418i \(0.310191\pi\)
\(702\) 0.527197 0.342366i 0.0198978 0.0129218i
\(703\) 43.9171 16.8582i 1.65637 0.635819i
\(704\) −6.67433 + 14.9908i −0.251548 + 0.564986i
\(705\) 0 0
\(706\) −17.7863 + 24.4807i −0.669396 + 0.921345i
\(707\) −13.9094 27.7560i −0.523118 1.04387i
\(708\) −1.37930 8.70856i −0.0518373 0.327288i
\(709\) 6.43362 5.79286i 0.241620 0.217555i −0.539420 0.842037i \(-0.681356\pi\)
0.781039 + 0.624482i \(0.214690\pi\)
\(710\) 0 0
\(711\) −46.1349 + 51.2380i −1.73020 + 1.92158i
\(712\) −0.116987 + 2.23225i −0.00438428 + 0.0836570i
\(713\) 1.68028 + 3.29773i 0.0629269 + 0.123501i
\(714\) 39.2475 + 0.262407i 1.46880 + 0.00982033i
\(715\) 0 0
\(716\) −5.48831 6.09539i −0.205108 0.227795i
\(717\) 1.38152 1.11873i 0.0515939 0.0417799i
\(718\) 7.00926 26.1589i 0.261583 0.976242i
\(719\) 24.7026 10.9983i 0.921251 0.410167i 0.109377 0.994000i \(-0.465114\pi\)
0.811874 + 0.583833i \(0.198448\pi\)
\(720\) 0 0
\(721\) −17.9622 + 19.6828i −0.668946 + 0.733024i
\(722\) 4.60121 29.0509i 0.171239 1.08116i
\(723\) 1.70811 + 2.63025i 0.0635251 + 0.0978201i
\(724\) 7.20316 + 12.4762i 0.267703 + 0.463676i
\(725\) 0 0
\(726\) −16.9672 9.79602i −0.629712 0.363565i
\(727\) 7.90873 15.5218i 0.293318 0.575670i −0.696575 0.717484i \(-0.745294\pi\)
0.989893 + 0.141814i \(0.0452936\pi\)
\(728\) −0.308542 0.482140i −0.0114353 0.0178693i
\(729\) 25.7325 + 35.4177i 0.953055 + 1.31177i
\(730\) 0 0
\(731\) 38.9251 + 4.09119i 1.43970 + 0.151318i
\(732\) 11.7724 + 3.15439i 0.435119 + 0.116590i
\(733\) −16.4531 + 42.8618i −0.607709 + 1.58314i 0.191113 + 0.981568i \(0.438790\pi\)
−0.798822 + 0.601567i \(0.794543\pi\)
\(734\) −4.83698 + 14.8867i −0.178536 + 0.549477i
\(735\) 0 0
\(736\) −5.54266 17.0586i −0.204305 0.628787i
\(737\) −2.18925 0.114734i −0.0806422 0.00422628i
\(738\) −0.516102 + 0.794727i −0.0189980 + 0.0292543i
\(739\) 18.2915 + 16.4697i 0.672864 + 0.605849i 0.933066 0.359705i \(-0.117123\pi\)
−0.260202 + 0.965554i \(0.583789\pi\)
\(740\) 0 0
\(741\) −1.53827 0.499813i −0.0565096 0.0183611i
\(742\) 31.9901 38.9688i 1.17439 1.43059i
\(743\) −10.2323 10.2323i −0.375388 0.375388i 0.494047 0.869435i \(-0.335517\pi\)
−0.869435 + 0.494047i \(0.835517\pi\)
\(744\) −1.74631 3.92228i −0.0640229 0.143798i
\(745\) 0 0
\(746\) −7.27985 3.24120i −0.266534 0.118669i
\(747\) −30.3742 + 37.5090i −1.11133 + 1.37238i
\(748\) −7.33605 3.73790i −0.268233 0.136671i
\(749\) 2.93380 0.603126i 0.107199 0.0220377i
\(750\) 0 0
\(751\) 5.60583 9.70959i 0.204560 0.354308i −0.745433 0.666581i \(-0.767757\pi\)
0.949992 + 0.312273i \(0.101090\pi\)
\(752\) 13.1469 0.689001i 0.479419 0.0251253i
\(753\) 13.5575 + 35.3186i 0.494064 + 1.28708i
\(754\) −0.0703268 0.669115i −0.00256115 0.0243677i
\(755\) 0 0
\(756\) 5.37259 3.84880i 0.195399 0.139979i
\(757\) −34.2009 + 34.2009i −1.24305 + 1.24305i −0.284326 + 0.958728i \(0.591770\pi\)
−0.958728 + 0.284326i \(0.908230\pi\)
\(758\) −19.0419 7.30949i −0.691632 0.265493i
\(759\) −55.0395 + 11.6990i −1.99781 + 0.424647i
\(760\) 0 0
\(761\) −3.57175 + 16.8038i −0.129476 + 0.609135i 0.864784 + 0.502144i \(0.167455\pi\)
−0.994260 + 0.106992i \(0.965878\pi\)
\(762\) 65.3109 33.2776i 2.36597 1.20552i
\(763\) −7.65792 + 1.16047i −0.277235 + 0.0420117i
\(764\) 2.40697 0.782073i 0.0870812 0.0282944i
\(765\) 0 0
\(766\) −6.04081 28.4198i −0.218263 1.02685i
\(767\) 0.315476 + 0.389580i 0.0113912 + 0.0140669i
\(768\) 9.68333 + 36.1387i 0.349417 + 1.30404i
\(769\) −15.2142 11.0538i −0.548638 0.398609i 0.278645 0.960394i \(-0.410115\pi\)
−0.827283 + 0.561785i \(0.810115\pi\)
\(770\) 0 0
\(771\) −0.805836 + 0.585474i −0.0290215 + 0.0210853i
\(772\) −1.49448 1.21020i −0.0537873 0.0435561i
\(773\) 1.69120 + 32.2701i 0.0608283 + 1.16067i 0.843107 + 0.537745i \(0.180724\pi\)
−0.782279 + 0.622928i \(0.785943\pi\)
\(774\) 73.1203 42.2160i 2.62825 1.51742i
\(775\) 0 0
\(776\) 25.2188i 0.905302i
\(777\) −14.0759 53.9730i −0.504971 1.93627i
\(778\) 19.0873 + 3.02314i 0.684314 + 0.108385i
\(779\) 0.794514 0.0835068i 0.0284664 0.00299194i
\(780\) 0 0
\(781\) 0.415297 3.95129i 0.0148605 0.141388i
\(782\) −27.5106 + 7.37143i −0.983776 + 0.263602i
\(783\) −16.8606 + 2.67045i −0.602548 + 0.0954343i
\(784\) −19.6256 27.7861i −0.700913 0.992362i
\(785\) 0 0
\(786\) −1.74274 0.370432i −0.0621616 0.0132129i
\(787\) 11.1430 + 7.23632i 0.397204 + 0.257947i 0.727750 0.685843i \(-0.240566\pi\)
−0.330546 + 0.943790i \(0.607233\pi\)
\(788\) −6.61551 4.29616i −0.235668 0.153045i
\(789\) −79.4852 16.8951i −2.82975 0.601481i
\(790\) 0 0
\(791\) 4.95194 + 11.3254i 0.176071 + 0.402686i
\(792\) 38.5512 6.10592i 1.36986 0.216964i
\(793\) −0.669316 + 0.179343i −0.0237681 + 0.00636865i
\(794\) 6.35491 60.4629i 0.225527 2.14575i
\(795\) 0 0
\(796\) −2.70586 + 0.284397i −0.0959066 + 0.0100802i
\(797\) −37.9724 6.01424i −1.34505 0.213035i −0.557959 0.829869i \(-0.688415\pi\)
−0.787094 + 0.616833i \(0.788415\pi\)
\(798\) −68.8223 18.9350i −2.43628 0.670290i
\(799\) 9.07923i 0.321200i
\(800\) 0 0
\(801\) 3.87829 2.23913i 0.137033 0.0791159i
\(802\) −0.0181017 0.345401i −0.000639192 0.0121965i
\(803\) −6.51300 5.27412i −0.229839 0.186120i
\(804\) −0.771531 + 0.560550i −0.0272098 + 0.0197691i
\(805\) 0 0
\(806\) −0.0898647 0.0652905i −0.00316535 0.00229976i
\(807\) 14.6529 + 54.6854i 0.515807 + 1.92502i
\(808\) −16.4471 20.3104i −0.578606 0.714519i
\(809\) 0.240260 + 1.13033i 0.00844708 + 0.0397404i 0.982169 0.187999i \(-0.0602000\pi\)
−0.973722 + 0.227739i \(0.926867\pi\)
\(810\) 0 0
\(811\) 11.7589 3.82070i 0.412911 0.134163i −0.0951926 0.995459i \(-0.530347\pi\)
0.508104 + 0.861296i \(0.330347\pi\)
\(812\) −1.05981 6.99369i −0.0371920 0.245430i
\(813\) −13.6457 + 6.95282i −0.478575 + 0.243846i
\(814\) −10.2118 + 48.0428i −0.357924 + 1.68390i
\(815\) 0 0
\(816\) 43.5196 9.25038i 1.52349 0.323828i
\(817\) −66.4538 25.5092i −2.32492 0.892454i
\(818\) −36.5978 + 36.5978i −1.27961 + 1.27961i
\(819\) −0.473433 + 1.04450i −0.0165431 + 0.0364977i
\(820\) 0 0
\(821\) 3.87750 + 36.8920i 0.135326 + 1.28754i 0.825710 + 0.564095i \(0.190775\pi\)
−0.690384 + 0.723443i \(0.742558\pi\)
\(822\) −20.0925 52.3428i −0.700807 1.82567i
\(823\) −50.2235 + 2.63210i −1.75068 + 0.0917494i −0.900532 0.434790i \(-0.856823\pi\)
−0.850151 + 0.526539i \(0.823489\pi\)
\(824\) −11.2156 + 19.4260i −0.390714 + 0.676737i
\(825\) 0 0
\(826\) 14.6929 + 16.5392i 0.511232 + 0.575472i
\(827\) 17.5564 + 8.94542i 0.610495 + 0.311063i 0.731765 0.681557i \(-0.238697\pi\)
−0.121270 + 0.992620i \(0.538697\pi\)
\(828\) −9.21129 + 11.3750i −0.320114 + 0.395308i
\(829\) −20.7157 9.22321i −0.719485 0.320335i 0.0141306 0.999900i \(-0.495502\pi\)
−0.733615 + 0.679565i \(0.762169\pi\)
\(830\) 0 0
\(831\) −6.56796 14.7519i −0.227840 0.511737i
\(832\) −0.286979 0.286979i −0.00994922 0.00994922i
\(833\) −19.8448 + 12.5133i −0.687582 + 0.433561i
\(834\) 60.5681 + 19.6798i 2.09730 + 0.681454i
\(835\) 0 0
\(836\) 11.1278 + 10.0195i 0.384862 + 0.346531i
\(837\) −1.53499 + 2.36368i −0.0530571 + 0.0817008i
\(838\) 17.1519 + 0.898893i 0.592503 + 0.0310518i
\(839\) 5.77620 + 17.7773i 0.199417 + 0.613742i 0.999897 + 0.0143819i \(0.00457805\pi\)
−0.800480 + 0.599360i \(0.795422\pi\)
\(840\) 0 0
\(841\) 3.31550 10.2041i 0.114328 0.351864i
\(842\) 5.11566 13.3267i 0.176297 0.459270i
\(843\) −22.5734 6.04853i −0.777470 0.208323i
\(844\) 4.14647 + 0.435812i 0.142728 + 0.0150013i
\(845\) 0 0
\(846\) −11.5122 15.8452i −0.395799 0.544770i
\(847\) 11.6989 0.534707i 0.401978 0.0183727i
\(848\) 25.9471 50.9240i 0.891025 1.74874i
\(849\) 35.6995 + 20.6111i 1.22520 + 0.707372i
\(850\) 0 0
\(851\) 20.2381 + 35.0534i 0.693752 + 1.20161i
\(852\) −0.941319 1.44950i −0.0322491 0.0496592i
\(853\) 5.30806 33.5138i 0.181744 1.14749i −0.713084 0.701079i \(-0.752702\pi\)
0.894828 0.446410i \(-0.147298\pi\)
\(854\) −29.1458 + 9.25507i −0.997348 + 0.316702i
\(855\) 0 0
\(856\) 2.30334 1.02551i 0.0787264 0.0350513i
\(857\) −2.31682 + 8.64649i −0.0791410 + 0.295358i −0.994140 0.108097i \(-0.965524\pi\)
0.914999 + 0.403455i \(0.132191\pi\)
\(858\) 1.31241 1.06277i 0.0448049 0.0362823i
\(859\) 15.4543 + 17.1638i 0.527295 + 0.585621i 0.946675 0.322190i \(-0.104419\pi\)
−0.419380 + 0.907811i \(0.637752\pi\)
\(860\) 0 0
\(861\) 0.00633321 0.947241i 0.000215835 0.0322819i
\(862\) 4.50806 + 8.84757i 0.153545 + 0.301349i
\(863\) −0.192954 + 3.68178i −0.00656823 + 0.125329i 0.993377 + 0.114897i \(0.0366539\pi\)
−0.999946 + 0.0104318i \(0.996679\pi\)
\(864\) 9.13923 10.1501i 0.310923 0.345315i
\(865\) 0 0
\(866\) −43.0183 + 38.7338i −1.46182 + 1.31623i
\(867\) 2.46454 + 15.5605i 0.0837003 + 0.528463i
\(868\) −0.975154 0.642582i −0.0330989 0.0218107i
\(869\) −35.6731 + 49.0998i −1.21013 + 1.66560i
\(870\) 0 0
\(871\) 0.0220535 0.0495329i 0.000747253 0.00167836i
\(872\) −6.08696 + 2.33657i −0.206131 + 0.0791261i
\(873\) 42.3729 27.5173i 1.43410 0.931318i
\(874\) 51.7975 1.75208
\(875\) 0 0
\(876\) −3.64571 −0.123177
\(877\) −25.2117 + 16.3727i −0.851339 + 0.552866i −0.894942 0.446183i \(-0.852783\pi\)
0.0436027 + 0.999049i \(0.486116\pi\)
\(878\) 39.4459 15.1418i 1.33123 0.511013i
\(879\) −12.2667 + 27.5515i −0.413746 + 0.929290i
\(880\) 0 0
\(881\) −26.3597 + 36.2810i −0.888079 + 1.22234i 0.0860376 + 0.996292i \(0.472579\pi\)
−0.974117 + 0.226045i \(0.927421\pi\)
\(882\) −18.7669 + 47.0012i −0.631915 + 1.58261i
\(883\) −4.53057 28.6049i −0.152466 0.962631i −0.938708 0.344713i \(-0.887976\pi\)
0.786242 0.617918i \(-0.212024\pi\)
\(884\) 0.151331 0.136259i 0.00508980 0.00458287i
\(885\) 0 0
\(886\) 36.7226 40.7845i 1.23372 1.37018i
\(887\) 1.26056 24.0529i 0.0423254 0.807616i −0.892183 0.451674i \(-0.850827\pi\)
0.934508 0.355942i \(-0.115840\pi\)
\(888\) −21.3167 41.8363i −0.715341 1.40394i
\(889\) −22.1607 + 37.7976i −0.743246 + 1.26769i
\(890\) 0 0
\(891\) 6.50871 + 7.22865i 0.218050 + 0.242169i
\(892\) 7.49083 6.06596i 0.250812 0.203103i
\(893\) −4.27364 + 15.9494i −0.143012 + 0.533728i
\(894\) 43.1735 19.2221i 1.44394 0.642883i
\(895\) 0 0
\(896\) −26.5972 24.2722i −0.888552 0.810878i
\(897\) 0.217708 1.37455i 0.00726906 0.0458950i
\(898\) −15.7302 24.2224i −0.524924 0.808312i
\(899\) 1.50825 + 2.61236i 0.0503029 + 0.0871271i
\(900\) 0 0
\(901\) −34.1351 19.7079i −1.13720 0.656565i
\(902\) −0.378683 + 0.743207i −0.0126088 + 0.0247461i
\(903\) −38.8195 + 74.9445i −1.29183 + 2.49400i
\(904\) 6.11603 + 8.41800i 0.203416 + 0.279978i
\(905\) 0 0
\(906\) −91.9096 9.66009i −3.05349 0.320935i
\(907\) −3.49857 0.937438i −0.116168 0.0311271i 0.200267 0.979741i \(-0.435819\pi\)
−0.316435 + 0.948614i \(0.602486\pi\)
\(908\) 2.96998 7.73707i 0.0985623 0.256764i
\(909\) −16.1797 + 49.7961i −0.536648 + 1.65163i
\(910\) 0 0
\(911\) 2.97054 + 9.14238i 0.0984183 + 0.302900i 0.988129 0.153623i \(-0.0490943\pi\)
−0.889711 + 0.456524i \(0.849094\pi\)
\(912\) −80.8049 4.23481i −2.67572 0.140228i
\(913\) −23.1390 + 35.6309i −0.765788 + 1.17921i
\(914\) −10.2738 9.25056i −0.339827 0.305981i
\(915\) 0 0
\(916\) 2.46728 + 0.801669i 0.0815213 + 0.0264879i
\(917\) 0.996787 0.375004i 0.0329168 0.0123837i
\(918\) −15.3357 15.3357i −0.506154 0.506154i
\(919\) −2.99431 6.72533i −0.0987732 0.221848i 0.857400 0.514651i \(-0.172079\pi\)
−0.956173 + 0.292803i \(0.905412\pi\)
\(920\) 0 0
\(921\) −28.7308 12.7918i −0.946712 0.421503i
\(922\) 27.0454 33.3983i 0.890693 1.09991i
\(923\) 0.0875541 + 0.0446111i 0.00288188 + 0.00146839i
\(924\) 13.2736 11.7918i 0.436668 0.387923i
\(925\) 0 0
\(926\) 18.5411 32.1142i 0.609300 1.05534i
\(927\) 44.8776 2.35193i 1.47397 0.0772476i
\(928\) −5.23882 13.6476i −0.171973 0.448004i
\(929\) −6.12235 58.2502i −0.200868 1.91113i −0.376062 0.926595i \(-0.622722\pi\)
0.175194 0.984534i \(-0.443945\pi\)
\(930\) 0 0
\(931\) 40.7514 12.6411i 1.33557 0.414294i
\(932\) 11.3968 11.3968i 0.373313 0.373313i
\(933\) −73.2874 28.1324i −2.39932 0.921013i
\(934\) −14.1324 + 3.00393i −0.462425 + 0.0982914i
\(935\) 0 0
\(936\) −0.200710 + 0.944266i −0.00656041 + 0.0308643i
\(937\) 4.14402 2.11148i 0.135379 0.0689791i −0.384989 0.922921i \(-0.625795\pi\)
0.520368 + 0.853942i \(0.325795\pi\)
\(938\) 0.872432 2.22812i 0.0284859 0.0727507i
\(939\) 24.7274 8.03442i 0.806948 0.262193i
\(940\) 0 0
\(941\) −6.07308 28.5716i −0.197977 0.931408i −0.959159 0.282869i \(-0.908714\pi\)
0.761182 0.648539i \(-0.224619\pi\)
\(942\) −33.2981 41.1198i −1.08491 1.33976i
\(943\) 0.177910 + 0.663969i 0.00579355 + 0.0216218i
\(944\) 20.2890 + 14.7408i 0.660350 + 0.479773i
\(945\) 0 0
\(946\) 60.1267 43.6846i 1.95489 1.42031i
\(947\) −4.73472 3.83410i −0.153858 0.124592i 0.549301 0.835625i \(-0.314894\pi\)
−0.703158 + 0.711033i \(0.748228\pi\)
\(948\) 1.38174 + 26.3651i 0.0448768 + 0.856300i
\(949\) 0.179507 0.103638i 0.00582703 0.00336424i
\(950\) 0 0
\(951\) 21.3227i 0.691435i
\(952\) −14.0578 + 13.8710i −0.455615 + 0.449563i
\(953\) −5.50713 0.872243i −0.178393 0.0282547i 0.0665986 0.997780i \(-0.478785\pi\)
−0.244992 + 0.969525i \(0.578785\pi\)
\(954\) −84.5622 + 8.88785i −2.73780 + 0.287755i
\(955\) 0 0
\(956\) 0.0425472 0.404809i 0.00137607 0.0130925i
\(957\) −44.2978 + 11.8696i −1.43194 + 0.383688i
\(958\) 3.83049 0.606690i 0.123758 0.0196013i
\(959\) 26.9809 + 19.8797i 0.871259 + 0.641950i
\(960\) 0 0
\(961\) −29.8354 6.34172i −0.962433 0.204572i
\(962\) −1.01880 0.661614i −0.0328473 0.0213313i
\(963\) −4.23634 2.75111i −0.136514 0.0886533i
\(964\) 0.702411 + 0.149302i 0.0226231 + 0.00480869i
\(965\) 0 0
\(966\) 6.82809 61.0366i 0.219690 1.96382i
\(967\) 58.4215 9.25305i 1.87871 0.297558i 0.891016 0.453972i \(-0.149993\pi\)
0.987692 + 0.156414i \(0.0499934\pi\)
\(968\) 9.52247 2.55154i 0.306064 0.0820095i
\(969\) −5.83307 + 55.4979i −0.187385 + 1.78285i
\(970\) 0 0
\(971\) −52.4895 + 5.51687i −1.68447 + 0.177045i −0.897822 0.440359i \(-0.854851\pi\)
−0.786647 + 0.617404i \(0.788185\pi\)
\(972\) 11.5809 + 1.83423i 0.371458 + 0.0588331i
\(973\) −36.8355 + 9.60655i −1.18089 + 0.307972i
\(974\) 7.85203i 0.251595i
\(975\) 0 0
\(976\) −30.0211 + 17.3327i −0.960952 + 0.554806i
\(977\) −0.689886 13.1638i −0.0220714 0.421148i −0.987212 0.159415i \(-0.949039\pi\)
0.965140 0.261733i \(-0.0842940\pi\)
\(978\) −49.8835 40.3949i −1.59510 1.29168i
\(979\) 3.18912 2.31703i 0.101925 0.0740525i
\(980\) 0 0
\(981\) 10.5677 + 7.67785i 0.337399 + 0.245135i
\(982\) 12.4858 + 46.5975i 0.398436 + 1.48699i
\(983\) 33.7893 + 41.7263i 1.07771 + 1.33086i 0.940299 + 0.340350i \(0.110546\pi\)
0.137413 + 0.990514i \(0.456121\pi\)
\(984\) −0.165789 0.779978i −0.00528518 0.0248648i
\(985\) 0 0
\(986\) −22.0765 + 7.17309i −0.703059 + 0.228438i
\(987\) 18.2310 + 7.13844i 0.580299 + 0.227219i
\(988\) −0.329979 + 0.168133i −0.0104980 + 0.00534902i
\(989\) 12.7340 59.9086i 0.404917 1.90498i
\(990\) 0 0
\(991\) −10.3254 + 2.19474i −0.327998 + 0.0697182i −0.368968 0.929442i \(-0.620289\pi\)
0.0409694 + 0.999160i \(0.486955\pi\)
\(992\) −2.25320 0.864924i −0.0715393 0.0274614i
\(993\) 1.99877 1.99877i 0.0634291 0.0634291i
\(994\) 3.94976 + 1.79028i 0.125279 + 0.0567843i
\(995\) 0 0
\(996\) 1.93185 + 18.3803i 0.0612131 + 0.582404i
\(997\) 21.4543 + 55.8904i 0.679465 + 1.77007i 0.636867 + 0.770974i \(0.280230\pi\)
0.0425978 + 0.999092i \(0.486437\pi\)
\(998\) 62.9405 3.29857i 1.99235 0.104414i
\(999\) −15.4110 + 26.6927i −0.487584 + 0.844520i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.b.768.14 288
5.2 odd 4 175.2.x.a.117.14 yes 288
5.3 odd 4 875.2.bb.c.607.5 288
5.4 even 2 875.2.bb.a.768.5 288
7.3 odd 6 inner 875.2.bb.b.143.14 288
25.3 odd 20 875.2.bb.a.257.5 288
25.4 even 10 875.2.bb.c.243.14 288
25.21 even 5 175.2.x.a.103.5 yes 288
25.22 odd 20 inner 875.2.bb.b.257.14 288
35.3 even 12 875.2.bb.c.857.14 288
35.17 even 12 175.2.x.a.17.5 yes 288
35.24 odd 6 875.2.bb.a.143.5 288
175.3 even 60 875.2.bb.a.507.5 288
175.122 even 60 inner 875.2.bb.b.507.14 288
175.129 odd 30 875.2.bb.c.493.5 288
175.171 odd 30 175.2.x.a.3.14 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.3.14 288 175.171 odd 30
175.2.x.a.17.5 yes 288 35.17 even 12
175.2.x.a.103.5 yes 288 25.21 even 5
175.2.x.a.117.14 yes 288 5.2 odd 4
875.2.bb.a.143.5 288 35.24 odd 6
875.2.bb.a.257.5 288 25.3 odd 20
875.2.bb.a.507.5 288 175.3 even 60
875.2.bb.a.768.5 288 5.4 even 2
875.2.bb.b.143.14 288 7.3 odd 6 inner
875.2.bb.b.257.14 288 25.22 odd 20 inner
875.2.bb.b.507.14 288 175.122 even 60 inner
875.2.bb.b.768.14 288 1.1 even 1 trivial
875.2.bb.c.243.14 288 25.4 even 10
875.2.bb.c.493.5 288 175.129 odd 30
875.2.bb.c.607.5 288 5.3 odd 4
875.2.bb.c.857.14 288 35.3 even 12