Properties

Label 875.2.bb.c.607.5
Level $875$
Weight $2$
Character 875.607
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(82,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([27, 50]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 607.5
Character \(\chi\) \(=\) 875.607
Dual form 875.2.bb.c.493.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.882496 - 1.35892i) q^{2} +(0.978941 + 2.55023i) q^{3} +(-0.254403 + 0.571398i) q^{4} +(2.60166 - 3.58087i) q^{6} +(2.64114 + 0.156130i) q^{7} +(-2.19977 + 0.348409i) q^{8} +(-3.31591 + 2.98566i) q^{9} +(2.62811 - 2.91881i) q^{11} +(-1.70624 - 0.0894203i) q^{12} +(-0.0865535 + 0.0441012i) q^{13} +(-2.11863 - 3.72689i) q^{14} +(3.25179 + 3.61148i) q^{16} +(-2.10918 - 2.60462i) q^{17} +(6.98356 + 1.87124i) q^{18} +(5.56832 - 2.47917i) q^{19} +(2.18736 + 6.88836i) q^{21} +(-6.28573 - 0.995562i) q^{22} +(4.39848 - 2.85640i) q^{23} +(-3.04197 - 5.26884i) q^{24} +(0.136313 + 0.0787005i) q^{26} +(-3.55840 - 1.81310i) q^{27} +(-0.761125 + 1.46942i) q^{28} +(2.51245 + 3.45809i) q^{29} +(-0.701840 - 0.0737664i) q^{31} +(0.885159 - 3.30346i) q^{32} +(10.0164 + 3.84493i) q^{33} +(-1.67814 + 5.16477i) q^{34} +(-0.862422 - 2.65426i) q^{36} +(-0.403914 + 7.70713i) q^{37} +(-8.28302 - 5.37906i) q^{38} +(-0.197199 - 0.177559i) q^{39} +(-0.124652 - 0.0405019i) q^{41} +(7.43042 - 9.05139i) q^{42} +(-8.25770 + 8.25770i) q^{43} +(0.999203 + 2.24425i) q^{44} +(-7.76327 - 3.45643i) q^{46} +(-2.10528 - 1.70482i) q^{47} +(-6.02679 + 11.8282i) q^{48} +(6.95125 + 0.824720i) q^{49} +(4.57761 - 7.92865i) q^{51} +(-0.00317989 - 0.0606759i) q^{52} +(10.9795 - 4.21462i) q^{53} +(0.676413 + 6.43564i) q^{54} +(-5.86430 + 0.576749i) q^{56} +(11.7735 + 11.7735i) q^{57} +(2.48206 - 6.46598i) q^{58} +(-5.04772 + 1.07293i) q^{59} +(-1.48307 + 6.97731i) q^{61} +(0.519128 + 1.01885i) q^{62} +(-9.22393 + 7.36783i) q^{63} +(3.97346 - 1.29105i) q^{64} +(-3.61445 - 17.0046i) q^{66} +(-0.433773 + 0.351262i) q^{67} +(2.02485 - 0.542557i) q^{68} +(11.5903 + 8.42087i) q^{69} +(0.818370 - 0.594581i) q^{71} +(6.25400 - 7.72305i) q^{72} +(2.13084 - 0.111673i) q^{73} +(10.8299 - 6.25262i) q^{74} +3.81243i q^{76} +(7.39691 - 7.29866i) q^{77} +(-0.0672616 + 0.424673i) q^{78} +(15.3675 - 1.61519i) q^{79} +(-0.258873 + 2.46301i) q^{81} +(0.0549659 + 0.205136i) q^{82} +(-1.69214 - 10.6837i) q^{83} +(-4.49246 - 0.502566i) q^{84} +(18.5090 + 3.93420i) q^{86} +(-6.35939 + 9.79260i) q^{87} +(-4.76429 + 7.33636i) q^{88} +(-0.981714 - 0.208670i) q^{89} +(-0.235485 + 0.102964i) q^{91} +(0.513159 + 3.23996i) q^{92} +(-0.498939 - 1.86207i) q^{93} +(-0.458824 + 4.36542i) q^{94} +(9.29110 - 0.976534i) q^{96} +(1.77133 - 11.1837i) q^{97} +(-5.01371 - 10.1740i) q^{98} +17.5251i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 8 q^{2} + 24 q^{3} - 10 q^{4} + 10 q^{7} + 36 q^{8} - 10 q^{9} - 6 q^{11} + 36 q^{12} - 20 q^{14} - 30 q^{16} + 42 q^{17} + 14 q^{18} - 30 q^{19} - 12 q^{21} - 32 q^{22} + 40 q^{23} - 48 q^{26}+ \cdots - 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.882496 1.35892i −0.624019 0.960904i −0.999420 0.0340422i \(-0.989162\pi\)
0.375402 0.926862i \(-0.377505\pi\)
\(3\) 0.978941 + 2.55023i 0.565192 + 1.47238i 0.856704 + 0.515808i \(0.172508\pi\)
−0.291512 + 0.956567i \(0.594158\pi\)
\(4\) −0.254403 + 0.571398i −0.127201 + 0.285699i
\(5\) 0 0
\(6\) 2.60166 3.58087i 1.06212 1.46189i
\(7\) 2.64114 + 0.156130i 0.998257 + 0.0590114i
\(8\) −2.19977 + 0.348409i −0.777736 + 0.123181i
\(9\) −3.31591 + 2.98566i −1.10530 + 0.995219i
\(10\) 0 0
\(11\) 2.62811 2.91881i 0.792404 0.880054i −0.202664 0.979248i \(-0.564960\pi\)
0.995068 + 0.0991947i \(0.0316267\pi\)
\(12\) −1.70624 0.0894203i −0.492549 0.0258134i
\(13\) −0.0865535 + 0.0441012i −0.0240056 + 0.0122315i −0.465952 0.884810i \(-0.654288\pi\)
0.441946 + 0.897041i \(0.354288\pi\)
\(14\) −2.11863 3.72689i −0.566227 0.996054i
\(15\) 0 0
\(16\) 3.25179 + 3.61148i 0.812948 + 0.902871i
\(17\) −2.10918 2.60462i −0.511550 0.631712i 0.454289 0.890854i \(-0.349893\pi\)
−0.965839 + 0.259142i \(0.916560\pi\)
\(18\) 6.98356 + 1.87124i 1.64604 + 0.441055i
\(19\) 5.56832 2.47917i 1.27746 0.568762i 0.347934 0.937519i \(-0.386883\pi\)
0.929526 + 0.368757i \(0.120217\pi\)
\(20\) 0 0
\(21\) 2.18736 + 6.88836i 0.477320 + 1.50316i
\(22\) −6.28573 0.995562i −1.34012 0.212254i
\(23\) 4.39848 2.85640i 0.917146 0.595601i 0.00256149 0.999997i \(-0.499185\pi\)
0.914584 + 0.404395i \(0.132518\pi\)
\(24\) −3.04197 5.26884i −0.620939 1.07550i
\(25\) 0 0
\(26\) 0.136313 + 0.0787005i 0.0267332 + 0.0154344i
\(27\) −3.55840 1.81310i −0.684814 0.348930i
\(28\) −0.761125 + 1.46942i −0.143839 + 0.277695i
\(29\) 2.51245 + 3.45809i 0.466550 + 0.642152i 0.975851 0.218437i \(-0.0700959\pi\)
−0.509301 + 0.860589i \(0.670096\pi\)
\(30\) 0 0
\(31\) −0.701840 0.0737664i −0.126054 0.0132488i 0.0412913 0.999147i \(-0.486853\pi\)
−0.167345 + 0.985898i \(0.553520\pi\)
\(32\) 0.885159 3.30346i 0.156475 0.583975i
\(33\) 10.0164 + 3.84493i 1.74363 + 0.669317i
\(34\) −1.67814 + 5.16477i −0.287798 + 0.885751i
\(35\) 0 0
\(36\) −0.862422 2.65426i −0.143737 0.442377i
\(37\) −0.403914 + 7.70713i −0.0664030 + 1.26704i 0.738751 + 0.673978i \(0.235416\pi\)
−0.805154 + 0.593066i \(0.797917\pi\)
\(38\) −8.28302 5.37906i −1.34368 0.872599i
\(39\) −0.197199 0.177559i −0.0315771 0.0284322i
\(40\) 0 0
\(41\) −0.124652 0.0405019i −0.0194674 0.00632534i 0.299267 0.954169i \(-0.403258\pi\)
−0.318735 + 0.947844i \(0.603258\pi\)
\(42\) 7.43042 9.05139i 1.14654 1.39666i
\(43\) −8.25770 + 8.25770i −1.25929 + 1.25929i −0.307854 + 0.951434i \(0.599611\pi\)
−0.951434 + 0.307854i \(0.900389\pi\)
\(44\) 0.999203 + 2.24425i 0.150636 + 0.338333i
\(45\) 0 0
\(46\) −7.76327 3.45643i −1.14463 0.509623i
\(47\) −2.10528 1.70482i −0.307087 0.248674i 0.463372 0.886164i \(-0.346639\pi\)
−0.770459 + 0.637490i \(0.779973\pi\)
\(48\) −6.02679 + 11.8282i −0.869893 + 1.70726i
\(49\) 6.95125 + 0.824720i 0.993035 + 0.117817i
\(50\) 0 0
\(51\) 4.57761 7.92865i 0.640993 1.11023i
\(52\) −0.00317989 0.0606759i −0.000440972 0.00841424i
\(53\) 10.9795 4.21462i 1.50814 0.578922i 0.542791 0.839868i \(-0.317368\pi\)
0.965354 + 0.260945i \(0.0840342\pi\)
\(54\) 0.676413 + 6.43564i 0.0920482 + 0.875780i
\(55\) 0 0
\(56\) −5.86430 + 0.576749i −0.783649 + 0.0770713i
\(57\) 11.7735 + 11.7735i 1.55944 + 1.55944i
\(58\) 2.48206 6.46598i 0.325910 0.849025i
\(59\) −5.04772 + 1.07293i −0.657157 + 0.139683i −0.524409 0.851467i \(-0.675714\pi\)
−0.132748 + 0.991150i \(0.542380\pi\)
\(60\) 0 0
\(61\) −1.48307 + 6.97731i −0.189888 + 0.893354i 0.775259 + 0.631644i \(0.217620\pi\)
−0.965147 + 0.261709i \(0.915714\pi\)
\(62\) 0.519128 + 1.01885i 0.0659293 + 0.129394i
\(63\) −9.22393 + 7.36783i −1.16211 + 0.928260i
\(64\) 3.97346 1.29105i 0.496682 0.161382i
\(65\) 0 0
\(66\) −3.61445 17.0046i −0.444908 2.09313i
\(67\) −0.433773 + 0.351262i −0.0529938 + 0.0429135i −0.655451 0.755237i \(-0.727522\pi\)
0.602458 + 0.798151i \(0.294188\pi\)
\(68\) 2.02485 0.542557i 0.245549 0.0657947i
\(69\) 11.5903 + 8.42087i 1.39531 + 1.01375i
\(70\) 0 0
\(71\) 0.818370 0.594581i 0.0971227 0.0705637i −0.538164 0.842840i \(-0.680882\pi\)
0.635287 + 0.772276i \(0.280882\pi\)
\(72\) 6.25400 7.72305i 0.737041 0.910170i
\(73\) 2.13084 0.111673i 0.249396 0.0130703i 0.0727716 0.997349i \(-0.476816\pi\)
0.176624 + 0.984278i \(0.443482\pi\)
\(74\) 10.8299 6.25262i 1.25894 0.726852i
\(75\) 0 0
\(76\) 3.81243i 0.437316i
\(77\) 7.39691 7.29866i 0.842956 0.831759i
\(78\) −0.0672616 + 0.424673i −0.00761588 + 0.0480848i
\(79\) 15.3675 1.61519i 1.72898 0.181723i 0.812816 0.582521i \(-0.197933\pi\)
0.916167 + 0.400797i \(0.131267\pi\)
\(80\) 0 0
\(81\) −0.258873 + 2.46301i −0.0287636 + 0.273668i
\(82\) 0.0549659 + 0.205136i 0.00606997 + 0.0226534i
\(83\) −1.69214 10.6837i −0.185736 1.17269i −0.887680 0.460461i \(-0.847684\pi\)
0.701944 0.712232i \(-0.252316\pi\)
\(84\) −4.49246 0.502566i −0.490168 0.0548345i
\(85\) 0 0
\(86\) 18.5090 + 3.93420i 1.99587 + 0.424236i
\(87\) −6.35939 + 9.79260i −0.681798 + 1.04988i
\(88\) −4.76429 + 7.33636i −0.507875 + 0.782058i
\(89\) −0.981714 0.208670i −0.104061 0.0221190i 0.155587 0.987822i \(-0.450273\pi\)
−0.259648 + 0.965703i \(0.583607\pi\)
\(90\) 0 0
\(91\) −0.235485 + 0.102964i −0.0246856 + 0.0107936i
\(92\) 0.513159 + 3.23996i 0.0535005 + 0.337789i
\(93\) −0.498939 1.86207i −0.0517376 0.193087i
\(94\) −0.458824 + 4.36542i −0.0473241 + 0.450259i
\(95\) 0 0
\(96\) 9.29110 0.976534i 0.948269 0.0996670i
\(97\) 1.77133 11.1837i 0.179851 1.13554i −0.718262 0.695773i \(-0.755062\pi\)
0.898113 0.439764i \(-0.144938\pi\)
\(98\) −5.01371 10.1740i −0.506461 1.02773i
\(99\) 17.5251i 1.76134i
\(100\) 0 0
\(101\) −10.1623 + 5.86718i −1.01118 + 0.583807i −0.911538 0.411216i \(-0.865104\pi\)
−0.0996449 + 0.995023i \(0.531771\pi\)
\(102\) −14.8141 + 0.776377i −1.46682 + 0.0768727i
\(103\) −6.33822 + 7.82705i −0.624523 + 0.771222i −0.986991 0.160774i \(-0.948601\pi\)
0.362468 + 0.931996i \(0.381934\pi\)
\(104\) 0.175032 0.127168i 0.0171633 0.0124699i
\(105\) 0 0
\(106\) −15.4167 11.2009i −1.49740 1.08792i
\(107\) −1.09349 + 0.292999i −0.105711 + 0.0283253i −0.311287 0.950316i \(-0.600760\pi\)
0.205576 + 0.978641i \(0.434093\pi\)
\(108\) 1.94126 1.57201i 0.186798 0.151266i
\(109\) −0.608654 2.86349i −0.0582985 0.274273i 0.939337 0.342995i \(-0.111441\pi\)
−0.997636 + 0.0687217i \(0.978108\pi\)
\(110\) 0 0
\(111\) −20.0504 + 6.51476i −1.90310 + 0.618353i
\(112\) 8.02458 + 10.0461i 0.758252 + 0.949271i
\(113\) 2.12100 + 4.16270i 0.199527 + 0.391594i 0.968991 0.247097i \(-0.0794765\pi\)
−0.769464 + 0.638690i \(0.779477\pi\)
\(114\) 5.60924 26.3894i 0.525353 2.47159i
\(115\) 0 0
\(116\) −2.61512 + 0.555861i −0.242808 + 0.0516104i
\(117\) 0.155332 0.404655i 0.0143605 0.0374103i
\(118\) 5.91261 + 5.91261i 0.544300 + 0.544300i
\(119\) −5.16397 7.20846i −0.473381 0.660798i
\(120\) 0 0
\(121\) −0.462683 4.40213i −0.0420621 0.400194i
\(122\) 10.7904 4.14206i 0.976921 0.375005i
\(123\) −0.0187379 0.357541i −0.00168954 0.0322383i
\(124\) 0.220700 0.382263i 0.0198194 0.0343283i
\(125\) 0 0
\(126\) 18.1524 + 6.03254i 1.61714 + 0.537422i
\(127\) 7.51832 14.7555i 0.667143 1.30934i −0.270829 0.962628i \(-0.587298\pi\)
0.937971 0.346713i \(-0.112702\pi\)
\(128\) −10.5767 8.56482i −0.934854 0.757030i
\(129\) −29.1428 12.9752i −2.56588 1.14240i
\(130\) 0 0
\(131\) −0.163724 0.367729i −0.0143046 0.0321287i 0.906252 0.422738i \(-0.138931\pi\)
−0.920557 + 0.390609i \(0.872264\pi\)
\(132\) −4.74518 + 4.74518i −0.413015 + 0.413015i
\(133\) 15.0938 5.67847i 1.30880 0.492386i
\(134\) 0.860142 + 0.279477i 0.0743049 + 0.0241431i
\(135\) 0 0
\(136\) 5.54717 + 4.99470i 0.475666 + 0.428292i
\(137\) −10.6234 6.89895i −0.907623 0.589417i 0.00420463 0.999991i \(-0.498662\pi\)
−0.911827 + 0.410574i \(0.865328\pi\)
\(138\) 1.21491 23.1818i 0.103420 1.97336i
\(139\) −4.44619 13.6840i −0.377121 1.16066i −0.942036 0.335511i \(-0.891091\pi\)
0.564915 0.825149i \(-0.308909\pi\)
\(140\) 0 0
\(141\) 2.28674 7.03788i 0.192579 0.592696i
\(142\) −1.53020 0.587388i −0.128411 0.0492925i
\(143\) −0.0987488 + 0.368536i −0.00825779 + 0.0308185i
\(144\) −21.5653 2.26661i −1.79711 0.188884i
\(145\) 0 0
\(146\) −2.03221 2.79710i −0.168187 0.231489i
\(147\) 4.70164 + 18.5346i 0.387785 + 1.52871i
\(148\) −4.30108 2.19151i −0.353547 0.180141i
\(149\) −9.24670 5.33859i −0.757519 0.437354i 0.0708851 0.997484i \(-0.477418\pi\)
−0.828404 + 0.560131i \(0.810751\pi\)
\(150\) 0 0
\(151\) −10.4396 18.0820i −0.849565 1.47149i −0.881597 0.472003i \(-0.843531\pi\)
0.0320315 0.999487i \(-0.489802\pi\)
\(152\) −11.3852 + 7.39366i −0.923465 + 0.599705i
\(153\) 14.7703 + 2.33939i 1.19411 + 0.189128i
\(154\) −16.4461 3.61081i −1.32526 0.290967i
\(155\) 0 0
\(156\) 0.151625 0.0675076i 0.0121397 0.00540494i
\(157\) −11.5468 3.09395i −0.921533 0.246924i −0.233293 0.972407i \(-0.574950\pi\)
−0.688241 + 0.725483i \(0.741617\pi\)
\(158\) −15.7567 19.4579i −1.25354 1.54799i
\(159\) 21.4965 + 23.8743i 1.70478 + 1.89335i
\(160\) 0 0
\(161\) 12.0630 6.85743i 0.950695 0.540441i
\(162\) 3.57550 1.82181i 0.280918 0.143135i
\(163\) 14.4820 + 0.758967i 1.13431 + 0.0594469i 0.610234 0.792222i \(-0.291076\pi\)
0.524081 + 0.851668i \(0.324409\pi\)
\(164\) 0.0548546 0.0609222i 0.00428342 0.00475722i
\(165\) 0 0
\(166\) −13.0251 + 11.7278i −1.01094 + 0.910257i
\(167\) 1.65219 0.261681i 0.127850 0.0202495i −0.0921813 0.995742i \(-0.529384\pi\)
0.220032 + 0.975493i \(0.429384\pi\)
\(168\) −7.21164 14.3907i −0.556390 1.11027i
\(169\) −7.63566 + 10.5096i −0.587359 + 0.808430i
\(170\) 0 0
\(171\) −11.0621 + 24.8458i −0.845937 + 1.90001i
\(172\) −2.61765 6.81921i −0.199594 0.519960i
\(173\) 0.153180 + 0.235876i 0.0116460 + 0.0179333i 0.844446 0.535641i \(-0.179930\pi\)
−0.832800 + 0.553575i \(0.813263\pi\)
\(174\) 18.9195 1.43429
\(175\) 0 0
\(176\) 19.0873 1.43876
\(177\) −7.67763 11.8225i −0.577086 0.888634i
\(178\) 0.582792 + 1.51822i 0.0436821 + 0.113796i
\(179\) −5.33375 + 11.9798i −0.398663 + 0.895412i 0.596988 + 0.802250i \(0.296364\pi\)
−0.995651 + 0.0931620i \(0.970303\pi\)
\(180\) 0 0
\(181\) −13.5383 + 18.6338i −1.00629 + 1.38504i −0.0849076 + 0.996389i \(0.527060\pi\)
−0.921384 + 0.388653i \(0.872940\pi\)
\(182\) 0.347735 + 0.229142i 0.0257758 + 0.0169851i
\(183\) −19.2456 + 3.04820i −1.42268 + 0.225330i
\(184\) −8.68043 + 7.81590i −0.639930 + 0.576196i
\(185\) 0 0
\(186\) −2.09009 + 2.32129i −0.153253 + 0.170205i
\(187\) −13.1455 0.688927i −0.961295 0.0503793i
\(188\) 1.50972 0.769242i 0.110108 0.0561027i
\(189\) −9.11516 5.34421i −0.663030 0.388734i
\(190\) 0 0
\(191\) 2.70749 + 3.00698i 0.195907 + 0.217577i 0.833093 0.553133i \(-0.186568\pi\)
−0.637185 + 0.770711i \(0.719901\pi\)
\(192\) 7.18227 + 8.86936i 0.518335 + 0.640091i
\(193\) 2.96976 + 0.795745i 0.213768 + 0.0572790i 0.364114 0.931355i \(-0.381372\pi\)
−0.150346 + 0.988634i \(0.548039\pi\)
\(194\) −16.7611 + 7.46250i −1.20337 + 0.535776i
\(195\) 0 0
\(196\) −2.23966 + 3.76212i −0.159976 + 0.268723i
\(197\) −12.4561 1.97286i −0.887464 0.140560i −0.303973 0.952681i \(-0.598313\pi\)
−0.583490 + 0.812120i \(0.698313\pi\)
\(198\) 23.8153 15.4658i 1.69248 1.09911i
\(199\) 2.17496 + 3.76715i 0.154179 + 0.267046i 0.932760 0.360498i \(-0.117393\pi\)
−0.778581 + 0.627545i \(0.784060\pi\)
\(200\) 0 0
\(201\) −1.32044 0.762355i −0.0931365 0.0537724i
\(202\) 16.9412 + 8.63198i 1.19198 + 0.607344i
\(203\) 6.09583 + 9.52558i 0.427843 + 0.668564i
\(204\) 3.36586 + 4.63270i 0.235657 + 0.324354i
\(205\) 0 0
\(206\) 16.2298 + 1.70582i 1.13078 + 0.118850i
\(207\) −6.05670 + 22.6039i −0.420970 + 1.57108i
\(208\) −0.440725 0.169178i −0.0305588 0.0117304i
\(209\) 7.39789 22.7684i 0.511723 1.57492i
\(210\) 0 0
\(211\) 2.05986 + 6.33961i 0.141807 + 0.436437i 0.996587 0.0825543i \(-0.0263078\pi\)
−0.854780 + 0.518991i \(0.826308\pi\)
\(212\) −0.384980 + 7.34585i −0.0264405 + 0.504515i
\(213\) 2.31745 + 1.50497i 0.158789 + 0.103119i
\(214\) 1.36316 + 1.22740i 0.0931838 + 0.0839031i
\(215\) 0 0
\(216\) 8.45936 + 2.74861i 0.575586 + 0.187019i
\(217\) −1.84214 0.304405i −0.125053 0.0206644i
\(218\) −3.35413 + 3.35413i −0.227171 + 0.227171i
\(219\) 2.37076 + 5.32481i 0.160201 + 0.359817i
\(220\) 0 0
\(221\) 0.297423 + 0.132421i 0.0200069 + 0.00890762i
\(222\) 26.5474 + 21.4977i 1.78175 + 1.44283i
\(223\) −6.99626 + 13.7309i −0.468504 + 0.919491i 0.528982 + 0.848633i \(0.322574\pi\)
−0.997486 + 0.0708583i \(0.977426\pi\)
\(224\) 2.85360 8.58670i 0.190664 0.573723i
\(225\) 0 0
\(226\) 3.78502 6.55584i 0.251776 0.436088i
\(227\) −0.693452 13.2319i −0.0460260 0.878229i −0.919918 0.392110i \(-0.871745\pi\)
0.873892 0.486119i \(-0.161588\pi\)
\(228\) −9.72258 + 3.73215i −0.643893 + 0.247168i
\(229\) −0.433550 4.12495i −0.0286498 0.272584i −0.999464 0.0327499i \(-0.989574\pi\)
0.970814 0.239834i \(-0.0770932\pi\)
\(230\) 0 0
\(231\) 25.8544 + 11.7189i 1.70109 + 0.771044i
\(232\) −6.73164 6.73164i −0.441954 0.441954i
\(233\) −9.23458 + 24.0569i −0.604977 + 1.57602i 0.198124 + 0.980177i \(0.436515\pi\)
−0.803101 + 0.595843i \(0.796818\pi\)
\(234\) −0.686975 + 0.146021i −0.0449090 + 0.00954570i
\(235\) 0 0
\(236\) 0.671086 3.15721i 0.0436840 0.205517i
\(237\) 19.1630 + 37.6096i 1.24477 + 2.44300i
\(238\) −5.23857 + 13.3789i −0.339566 + 0.867224i
\(239\) −0.618920 + 0.201099i −0.0400346 + 0.0130080i −0.328966 0.944342i \(-0.606700\pi\)
0.288931 + 0.957350i \(0.406700\pi\)
\(240\) 0 0
\(241\) 0.238703 + 1.12301i 0.0153762 + 0.0723393i 0.985167 0.171600i \(-0.0548936\pi\)
−0.969791 + 0.243939i \(0.921560\pi\)
\(242\) −5.57385 + 4.51361i −0.358300 + 0.290146i
\(243\) −18.1075 + 4.85188i −1.16159 + 0.311248i
\(244\) −3.60952 2.62247i −0.231076 0.167887i
\(245\) 0 0
\(246\) −0.469334 + 0.340991i −0.0299237 + 0.0217408i
\(247\) −0.372623 + 0.460151i −0.0237094 + 0.0292787i
\(248\) 1.56959 0.0822585i 0.0996688 0.00522342i
\(249\) 25.5895 14.7741i 1.62167 0.936270i
\(250\) 0 0
\(251\) 13.8492i 0.874153i 0.899424 + 0.437076i \(0.143986\pi\)
−0.899424 + 0.437076i \(0.856014\pi\)
\(252\) −1.86337 7.14493i −0.117381 0.450088i
\(253\) 3.22237 20.3452i 0.202589 1.27909i
\(254\) −26.6865 + 2.80487i −1.67446 + 0.175993i
\(255\) 0 0
\(256\) −1.43165 + 13.6212i −0.0894778 + 0.851325i
\(257\) 0.0943752 + 0.352213i 0.00588696 + 0.0219704i 0.968807 0.247817i \(-0.0797132\pi\)
−0.962920 + 0.269788i \(0.913047\pi\)
\(258\) 8.08608 + 51.0535i 0.503417 + 3.17845i
\(259\) −2.27010 + 20.2925i −0.141057 + 1.26092i
\(260\) 0 0
\(261\) −18.6557 3.96540i −1.15476 0.245452i
\(262\) −0.355231 + 0.547007i −0.0219462 + 0.0337942i
\(263\) 16.2018 24.9486i 0.999045 1.53839i 0.165301 0.986243i \(-0.447141\pi\)
0.833744 0.552151i \(-0.186193\pi\)
\(264\) −23.3734 4.96816i −1.43853 0.305769i
\(265\) 0 0
\(266\) −21.0368 15.5001i −1.28985 0.950371i
\(267\) −0.428885 2.70787i −0.0262473 0.165719i
\(268\) −0.0903576 0.337219i −0.00551947 0.0205989i
\(269\) 2.16638 20.6117i 0.132087 1.25672i −0.704825 0.709381i \(-0.748974\pi\)
0.836911 0.547338i \(-0.184359\pi\)
\(270\) 0 0
\(271\) −5.57572 + 0.586032i −0.338701 + 0.0355989i −0.272352 0.962198i \(-0.587802\pi\)
−0.0663487 + 0.997796i \(0.521135\pi\)
\(272\) 2.54792 16.0869i 0.154490 0.975413i
\(273\) −0.493108 0.499746i −0.0298443 0.0302460i
\(274\) 20.5248i 1.23995i
\(275\) 0 0
\(276\) −7.76028 + 4.48040i −0.467114 + 0.269688i
\(277\) −5.90329 + 0.309378i −0.354694 + 0.0185887i −0.228851 0.973461i \(-0.573497\pi\)
−0.125843 + 0.992050i \(0.540164\pi\)
\(278\) −14.6717 + 18.1181i −0.879953 + 1.08665i
\(279\) 2.54748 1.85085i 0.152514 0.110808i
\(280\) 0 0
\(281\) −6.92124 5.02858i −0.412887 0.299980i 0.361883 0.932224i \(-0.382134\pi\)
−0.774769 + 0.632244i \(0.782134\pi\)
\(282\) −11.5820 + 3.10338i −0.689697 + 0.184804i
\(283\) −11.7275 + 9.49677i −0.697130 + 0.564525i −0.911035 0.412330i \(-0.864715\pi\)
0.213905 + 0.976855i \(0.431382\pi\)
\(284\) 0.131547 + 0.618878i 0.00780585 + 0.0367236i
\(285\) 0 0
\(286\) 0.587957 0.191039i 0.0347666 0.0112964i
\(287\) −0.322900 0.126433i −0.0190602 0.00746312i
\(288\) 6.92789 + 13.5968i 0.408230 + 0.801196i
\(289\) 1.19910 5.64132i 0.0705353 0.331843i
\(290\) 0 0
\(291\) 30.2551 6.43093i 1.77359 0.376988i
\(292\) −0.478282 + 1.24597i −0.0279893 + 0.0729147i
\(293\) −7.80680 7.80680i −0.456078 0.456078i 0.441288 0.897366i \(-0.354522\pi\)
−0.897366 + 0.441288i \(0.854522\pi\)
\(294\) 21.0380 22.7459i 1.22696 1.32657i
\(295\) 0 0
\(296\) −1.79672 17.0946i −0.104432 0.993605i
\(297\) −14.6439 + 5.62128i −0.849727 + 0.326180i
\(298\) 0.905441 + 17.2768i 0.0524508 + 1.00082i
\(299\) −0.254733 + 0.441210i −0.0147316 + 0.0255158i
\(300\) 0 0
\(301\) −23.0990 + 20.5205i −1.33141 + 1.18278i
\(302\) −15.3591 + 30.1439i −0.883817 + 1.73459i
\(303\) −24.9109 20.1725i −1.43109 1.15888i
\(304\) 27.0605 + 12.0481i 1.55203 + 0.691007i
\(305\) 0 0
\(306\) −9.85570 22.1363i −0.563413 1.26545i
\(307\) −8.14095 + 8.14095i −0.464628 + 0.464628i −0.900169 0.435541i \(-0.856557\pi\)
0.435541 + 0.900169i \(0.356557\pi\)
\(308\) 2.28864 + 6.08338i 0.130407 + 0.346632i
\(309\) −26.1655 8.50169i −1.48850 0.483644i
\(310\) 0 0
\(311\) −21.3562 19.2292i −1.21100 1.09039i −0.993442 0.114339i \(-0.963525\pi\)
−0.217556 0.976048i \(-0.569808\pi\)
\(312\) 0.495655 + 0.321882i 0.0280610 + 0.0182230i
\(313\) −0.498133 + 9.50493i −0.0281561 + 0.537251i 0.947744 + 0.319032i \(0.103358\pi\)
−0.975900 + 0.218218i \(0.929975\pi\)
\(314\) 5.98554 + 18.4216i 0.337783 + 1.03959i
\(315\) 0 0
\(316\) −2.98662 + 9.19189i −0.168011 + 0.517084i
\(317\) −7.28729 2.79733i −0.409295 0.157114i 0.145004 0.989431i \(-0.453680\pi\)
−0.554299 + 0.832317i \(0.687014\pi\)
\(318\) 13.4728 50.2810i 0.755515 2.81962i
\(319\) 16.6965 + 1.75487i 0.934824 + 0.0982540i
\(320\) 0 0
\(321\) −1.81768 2.50182i −0.101453 0.139638i
\(322\) −19.9642 10.3410i −1.11256 0.576281i
\(323\) −18.2019 9.27431i −1.01278 0.516036i
\(324\) −1.34150 0.774516i −0.0745278 0.0430287i
\(325\) 0 0
\(326\) −11.7489 20.3497i −0.650711 1.12706i
\(327\) 6.70673 4.35540i 0.370883 0.240854i
\(328\) 0.288317 + 0.0456650i 0.0159197 + 0.00252143i
\(329\) −5.29417 4.83138i −0.291877 0.266362i
\(330\) 0 0
\(331\) 0.945325 0.420886i 0.0519597 0.0231340i −0.380592 0.924743i \(-0.624280\pi\)
0.432552 + 0.901609i \(0.357613\pi\)
\(332\) 6.53515 + 1.75109i 0.358663 + 0.0961035i
\(333\) −21.6715 26.7621i −1.18759 1.46655i
\(334\) −1.81366 2.01427i −0.0992388 0.110216i
\(335\) 0 0
\(336\) −17.7644 + 30.2991i −0.969125 + 1.65295i
\(337\) 1.66773 0.849753i 0.0908472 0.0462890i −0.407977 0.912992i \(-0.633765\pi\)
0.498824 + 0.866703i \(0.333765\pi\)
\(338\) 21.0202 + 1.10162i 1.14335 + 0.0599202i
\(339\) −8.53950 + 9.48407i −0.463802 + 0.515104i
\(340\) 0 0
\(341\) −2.05982 + 1.85467i −0.111545 + 0.100436i
\(342\) 43.5258 6.89381i 2.35361 0.372774i
\(343\) 18.2305 + 3.26350i 0.984352 + 0.176212i
\(344\) 15.2880 21.0421i 0.824272 1.13451i
\(345\) 0 0
\(346\) 0.185357 0.416319i 0.00996486 0.0223814i
\(347\) −0.712508 1.85615i −0.0382494 0.0996431i 0.913125 0.407679i \(-0.133662\pi\)
−0.951375 + 0.308036i \(0.900328\pi\)
\(348\) −3.97762 6.12500i −0.213223 0.328335i
\(349\) 4.37015 0.233929 0.116964 0.993136i \(-0.462684\pi\)
0.116964 + 0.993136i \(0.462684\pi\)
\(350\) 0 0
\(351\) 0.387952 0.0207073
\(352\) −7.31587 11.2654i −0.389937 0.600450i
\(353\) −6.69256 17.4347i −0.356209 0.927957i −0.988226 0.153002i \(-0.951106\pi\)
0.632017 0.774955i \(-0.282227\pi\)
\(354\) −9.29042 + 20.8666i −0.493780 + 1.10905i
\(355\) 0 0
\(356\) 0.368984 0.507863i 0.0195561 0.0269167i
\(357\) 13.3280 20.2260i 0.705393 1.07047i
\(358\) 20.9867 3.32396i 1.10918 0.175677i
\(359\) −12.4207 + 11.1836i −0.655539 + 0.590250i −0.928300 0.371832i \(-0.878730\pi\)
0.272761 + 0.962082i \(0.412063\pi\)
\(360\) 0 0
\(361\) 12.1464 13.4899i 0.639282 0.709995i
\(362\) 37.2694 + 1.95321i 1.95884 + 0.102658i
\(363\) 10.7735 5.48937i 0.565462 0.288117i
\(364\) 0.00107477 0.160750i 5.63332e−5 0.00842560i
\(365\) 0 0
\(366\) 21.1264 + 23.4633i 1.10430 + 1.22644i
\(367\) 6.07938 + 7.50742i 0.317341 + 0.391884i 0.910710 0.413047i \(-0.135536\pi\)
−0.593368 + 0.804931i \(0.702202\pi\)
\(368\) 24.6188 + 6.59659i 1.28334 + 0.343871i
\(369\) 0.534260 0.237868i 0.0278125 0.0123829i
\(370\) 0 0
\(371\) 29.6563 9.41718i 1.53968 0.488916i
\(372\) 1.19091 + 0.188622i 0.0617459 + 0.00977959i
\(373\) 4.12458 2.67853i 0.213563 0.138689i −0.433425 0.901190i \(-0.642695\pi\)
0.646988 + 0.762500i \(0.276028\pi\)
\(374\) 10.6647 + 18.4717i 0.551456 + 0.955150i
\(375\) 0 0
\(376\) 5.22511 + 3.01672i 0.269465 + 0.155575i
\(377\) −0.369967 0.188508i −0.0190543 0.00970865i
\(378\) 0.781708 + 17.1030i 0.0402067 + 0.879686i
\(379\) 7.39900 + 10.1839i 0.380061 + 0.523109i 0.955601 0.294665i \(-0.0952079\pi\)
−0.575540 + 0.817774i \(0.695208\pi\)
\(380\) 0 0
\(381\) 44.9900 + 4.72864i 2.30491 + 0.242255i
\(382\) 1.69690 6.33292i 0.0868210 0.324020i
\(383\) 16.7403 + 6.42601i 0.855391 + 0.328354i 0.746245 0.665672i \(-0.231855\pi\)
0.109146 + 0.994026i \(0.465188\pi\)
\(384\) 11.4883 35.3574i 0.586260 1.80432i
\(385\) 0 0
\(386\) −1.53944 4.73792i −0.0783556 0.241154i
\(387\) 2.72712 52.0365i 0.138627 2.64516i
\(388\) 5.93974 + 3.85731i 0.301544 + 0.195825i
\(389\) −8.86329 7.98055i −0.449387 0.404630i 0.413119 0.910677i \(-0.364439\pi\)
−0.862506 + 0.506047i \(0.831106\pi\)
\(390\) 0 0
\(391\) −16.7170 5.43168i −0.845415 0.274692i
\(392\) −15.5785 + 0.607684i −0.786832 + 0.0306927i
\(393\) 0.777518 0.777518i 0.0392206 0.0392206i
\(394\) 8.31153 + 18.6680i 0.418729 + 0.940480i
\(395\) 0 0
\(396\) −10.0138 4.45844i −0.503213 0.224045i
\(397\) −29.1590 23.6125i −1.46345 1.18508i −0.943719 0.330750i \(-0.892698\pi\)
−0.519732 0.854329i \(-0.673968\pi\)
\(398\) 3.19987 6.28010i 0.160395 0.314793i
\(399\) 29.2573 + 32.9337i 1.46470 + 1.64875i
\(400\) 0 0
\(401\) 0.106730 0.184861i 0.00532982 0.00923152i −0.863348 0.504609i \(-0.831637\pi\)
0.868678 + 0.495377i \(0.164970\pi\)
\(402\) 0.129298 + 2.46715i 0.00644879 + 0.123050i
\(403\) 0.0639999 0.0245673i 0.00318806 0.00122378i
\(404\) −0.767189 7.29932i −0.0381691 0.363155i
\(405\) 0 0
\(406\) 7.56499 16.6900i 0.375444 0.828313i
\(407\) 21.4341 + 21.4341i 1.06245 + 1.06245i
\(408\) −7.30726 + 19.0361i −0.361763 + 0.942426i
\(409\) 31.2443 6.64117i 1.54493 0.328385i 0.644918 0.764252i \(-0.276891\pi\)
0.900011 + 0.435867i \(0.143558\pi\)
\(410\) 0 0
\(411\) 7.19417 33.8459i 0.354862 1.66950i
\(412\) −2.85990 5.61287i −0.140897 0.276526i
\(413\) −13.4992 + 2.04565i −0.664255 + 0.100660i
\(414\) 36.0620 11.7173i 1.77235 0.575872i
\(415\) 0 0
\(416\) 0.0690729 + 0.324962i 0.00338658 + 0.0159326i
\(417\) 30.5447 24.7346i 1.49578 1.21126i
\(418\) −37.4691 + 10.0398i −1.83267 + 0.491063i
\(419\) −8.57555 6.23050i −0.418943 0.304380i 0.358269 0.933618i \(-0.383367\pi\)
−0.777212 + 0.629238i \(0.783367\pi\)
\(420\) 0 0
\(421\) 7.12732 5.17830i 0.347364 0.252375i −0.400398 0.916341i \(-0.631128\pi\)
0.747762 + 0.663966i \(0.231128\pi\)
\(422\) 6.79723 8.39388i 0.330884 0.408608i
\(423\) 12.0710 0.632612i 0.586910 0.0307586i
\(424\) −22.6839 + 13.0965i −1.10163 + 0.636024i
\(425\) 0 0
\(426\) 4.47737i 0.216929i
\(427\) −5.00637 + 18.1965i −0.242275 + 0.880591i
\(428\) 0.110767 0.699356i 0.00535413 0.0338047i
\(429\) −1.03652 + 0.108943i −0.0500436 + 0.00525980i
\(430\) 0 0
\(431\) −0.640581 + 6.09472i −0.0308557 + 0.293572i 0.968202 + 0.250170i \(0.0804864\pi\)
−0.999058 + 0.0434025i \(0.986180\pi\)
\(432\) −5.02322 18.7469i −0.241680 0.901961i
\(433\) −5.58866 35.2854i −0.268574 1.69571i −0.640913 0.767613i \(-0.721444\pi\)
0.372339 0.928097i \(-0.378556\pi\)
\(434\) 1.21202 + 2.77197i 0.0581787 + 0.133059i
\(435\) 0 0
\(436\) 1.79104 + 0.380697i 0.0857751 + 0.0182321i
\(437\) 17.4106 26.8100i 0.832861 1.28249i
\(438\) 5.14383 7.92080i 0.245782 0.378470i
\(439\) −25.5065 5.42157i −1.21736 0.258757i −0.445926 0.895070i \(-0.647126\pi\)
−0.771431 + 0.636312i \(0.780459\pi\)
\(440\) 0 0
\(441\) −25.5120 + 18.0194i −1.21486 + 0.858064i
\(442\) −0.0825241 0.521037i −0.00392527 0.0247832i
\(443\) 8.76626 + 32.7161i 0.416498 + 1.55439i 0.781817 + 0.623508i \(0.214293\pi\)
−0.365319 + 0.930882i \(0.619040\pi\)
\(444\) 1.37835 13.1141i 0.0654135 0.622368i
\(445\) 0 0
\(446\) 24.8335 2.61010i 1.17590 0.123592i
\(447\) 4.56264 28.8074i 0.215805 1.36254i
\(448\) 10.6960 2.78948i 0.505340 0.131791i
\(449\) 17.8247i 0.841199i 0.907246 + 0.420600i \(0.138180\pi\)
−0.907246 + 0.420600i \(0.861820\pi\)
\(450\) 0 0
\(451\) −0.445816 + 0.257392i −0.0209927 + 0.0121201i
\(452\) −2.91814 + 0.152933i −0.137258 + 0.00719338i
\(453\) 35.8934 44.3247i 1.68642 2.08255i
\(454\) −17.3691 + 12.6194i −0.815173 + 0.592258i
\(455\) 0 0
\(456\) −30.0010 21.7970i −1.40493 1.02074i
\(457\) −8.24133 + 2.20826i −0.385513 + 0.103298i −0.446370 0.894849i \(-0.647283\pi\)
0.0608568 + 0.998147i \(0.480617\pi\)
\(458\) −5.22289 + 4.22941i −0.244050 + 0.197627i
\(459\) 2.78288 + 13.0924i 0.129893 + 0.611101i
\(460\) 0 0
\(461\) 25.2246 8.19596i 1.17483 0.381724i 0.344384 0.938829i \(-0.388088\pi\)
0.830442 + 0.557105i \(0.188088\pi\)
\(462\) −6.89134 45.4760i −0.320614 2.11573i
\(463\) 10.3899 + 20.3912i 0.482857 + 0.947661i 0.996000 + 0.0893575i \(0.0284814\pi\)
−0.513142 + 0.858304i \(0.671519\pi\)
\(464\) −4.31887 + 20.3187i −0.200498 + 0.943271i
\(465\) 0 0
\(466\) 40.8410 8.68102i 1.89192 0.402140i
\(467\) −3.19548 + 8.32450i −0.147869 + 0.385212i −0.987431 0.158052i \(-0.949479\pi\)
0.839562 + 0.543264i \(0.182812\pi\)
\(468\) 0.191702 + 0.191702i 0.00886142 + 0.00886142i
\(469\) −1.20050 + 0.860009i −0.0554338 + 0.0397115i
\(470\) 0 0
\(471\) −3.41334 32.4757i −0.157278 1.49640i
\(472\) 10.7300 4.11886i 0.493888 0.189586i
\(473\) 2.40053 + 45.8047i 0.110376 + 2.10610i
\(474\) 34.1972 59.2314i 1.57073 2.72059i
\(475\) 0 0
\(476\) 5.43263 1.11683i 0.249004 0.0511899i
\(477\) −23.8235 + 46.7562i −1.09080 + 2.14082i
\(478\) 0.819472 + 0.663596i 0.0374818 + 0.0303522i
\(479\) −2.18656 0.973518i −0.0999064 0.0444812i 0.356175 0.934419i \(-0.384081\pi\)
−0.456081 + 0.889938i \(0.650747\pi\)
\(480\) 0 0
\(481\) −0.304934 0.684892i −0.0139038 0.0312284i
\(482\) 1.31543 1.31543i 0.0599161 0.0599161i
\(483\) 29.2970 + 24.0503i 1.33306 + 1.09433i
\(484\) 2.63308 + 0.855538i 0.119685 + 0.0388881i
\(485\) 0 0
\(486\) 22.5731 + 20.3249i 1.02394 + 0.921957i
\(487\) 4.06415 + 2.63929i 0.184164 + 0.119598i 0.633428 0.773801i \(-0.281647\pi\)
−0.449264 + 0.893399i \(0.648314\pi\)
\(488\) 0.831460 15.8652i 0.0376384 0.718184i
\(489\) 12.2414 + 37.6753i 0.553577 + 1.70374i
\(490\) 0 0
\(491\) −9.20020 + 28.3153i −0.415199 + 1.27785i 0.496874 + 0.867823i \(0.334481\pi\)
−0.912073 + 0.410029i \(0.865519\pi\)
\(492\) 0.209065 + 0.0802525i 0.00942537 + 0.00361806i
\(493\) 3.70780 13.8377i 0.166991 0.623218i
\(494\) 0.954148 + 0.100285i 0.0429291 + 0.00451203i
\(495\) 0 0
\(496\) −2.01583 2.77456i −0.0905136 0.124581i
\(497\) 2.25426 1.44260i 0.101117 0.0647094i
\(498\) −42.6595 21.7361i −1.91162 0.974018i
\(499\) −33.6862 19.4488i −1.50800 0.870646i −0.999957 0.00931623i \(-0.997035\pi\)
−0.508046 0.861330i \(-0.669632\pi\)
\(500\) 0 0
\(501\) 2.28474 + 3.95729i 0.102075 + 0.176799i
\(502\) 18.8200 12.2218i 0.839977 0.545488i
\(503\) −37.4880 5.93752i −1.67151 0.264741i −0.752389 0.658719i \(-0.771098\pi\)
−0.919120 + 0.393979i \(0.871098\pi\)
\(504\) 17.7235 19.4212i 0.789467 0.865090i
\(505\) 0 0
\(506\) −30.4914 + 13.5756i −1.35551 + 0.603510i
\(507\) −34.2767 9.18442i −1.52228 0.407894i
\(508\) 6.51859 + 8.04979i 0.289216 + 0.357152i
\(509\) −6.94597 7.71429i −0.307875 0.341930i 0.569274 0.822148i \(-0.307224\pi\)
−0.877149 + 0.480218i \(0.840558\pi\)
\(510\) 0 0
\(511\) 5.64528 + 0.0377441i 0.249733 + 0.00166970i
\(512\) −4.47894 + 2.28214i −0.197943 + 0.100857i
\(513\) −24.3093 1.27400i −1.07328 0.0562483i
\(514\) 0.395345 0.439075i 0.0174379 0.0193668i
\(515\) 0 0
\(516\) 14.8280 13.3512i 0.652768 0.587755i
\(517\) −10.5090 + 1.66446i −0.462184 + 0.0732027i
\(518\) 29.5794 14.8232i 1.29964 0.651293i
\(519\) −0.451584 + 0.621552i −0.0198223 + 0.0272831i
\(520\) 0 0
\(521\) −4.89041 + 10.9840i −0.214253 + 0.481219i −0.988416 0.151766i \(-0.951504\pi\)
0.774164 + 0.632985i \(0.218171\pi\)
\(522\) 11.0749 + 28.8512i 0.484737 + 1.26278i
\(523\) 13.0588 + 20.1088i 0.571023 + 0.879298i 0.999708 0.0241556i \(-0.00768970\pi\)
−0.428685 + 0.903454i \(0.641023\pi\)
\(524\) 0.251771 0.0109987
\(525\) 0 0
\(526\) −48.2012 −2.10167
\(527\) 1.28817 + 1.98361i 0.0561136 + 0.0864074i
\(528\) 18.6853 + 48.6769i 0.813175 + 2.11839i
\(529\) 1.83261 4.11611i 0.0796787 0.178961i
\(530\) 0 0
\(531\) 13.5344 18.6285i 0.587342 0.808407i
\(532\) −0.595233 + 10.0692i −0.0258066 + 0.436554i
\(533\) 0.0125753 0.00199173i 0.000544695 8.62712e-5i
\(534\) −3.30130 + 2.97251i −0.142861 + 0.128633i
\(535\) 0 0
\(536\) 0.831817 0.923827i 0.0359290 0.0399032i
\(537\) −35.7727 1.87477i −1.54370 0.0809021i
\(538\) −29.9216 + 15.2458i −1.29001 + 0.657294i
\(539\) 20.6758 18.1219i 0.890570 0.780565i
\(540\) 0 0
\(541\) −12.8091 14.2259i −0.550705 0.611620i 0.401954 0.915660i \(-0.368331\pi\)
−0.952659 + 0.304040i \(0.901664\pi\)
\(542\) 5.71693 + 7.05982i 0.245563 + 0.303245i
\(543\) −60.7737 16.2843i −2.60805 0.698825i
\(544\) −10.4712 + 4.66208i −0.448949 + 0.199885i
\(545\) 0 0
\(546\) −0.243952 + 1.11112i −0.0104402 + 0.0475516i
\(547\) 12.3236 + 1.95187i 0.526919 + 0.0834558i 0.414226 0.910174i \(-0.364052\pi\)
0.112693 + 0.993630i \(0.464052\pi\)
\(548\) 6.64468 4.31510i 0.283847 0.184332i
\(549\) −15.9141 27.5641i −0.679199 1.17641i
\(550\) 0 0
\(551\) 22.5633 + 13.0269i 0.961230 + 0.554967i
\(552\) −28.4300 14.4858i −1.21006 0.616556i
\(553\) 40.8400 1.86663i 1.73669 0.0793770i
\(554\) 5.63005 + 7.74910i 0.239198 + 0.329228i
\(555\) 0 0
\(556\) 8.95012 + 0.940695i 0.379570 + 0.0398944i
\(557\) 5.89390 21.9963i 0.249732 0.932014i −0.721213 0.692713i \(-0.756415\pi\)
0.970946 0.239301i \(-0.0769182\pi\)
\(558\) −4.76331 1.82846i −0.201647 0.0774050i
\(559\) 0.350558 1.07891i 0.0148270 0.0456329i
\(560\) 0 0
\(561\) −11.1118 34.1985i −0.469139 1.44386i
\(562\) −0.725488 + 13.8431i −0.0306029 + 0.583937i
\(563\) 24.4754 + 15.8945i 1.03152 + 0.669874i 0.945233 0.326397i \(-0.105835\pi\)
0.0862825 + 0.996271i \(0.472501\pi\)
\(564\) 3.43967 + 3.09710i 0.144836 + 0.130411i
\(565\) 0 0
\(566\) 23.2549 + 7.55597i 0.977476 + 0.317601i
\(567\) −1.06827 + 6.46474i −0.0448631 + 0.271494i
\(568\) −1.59307 + 1.59307i −0.0668436 + 0.0668436i
\(569\) 0.645950 + 1.45083i 0.0270796 + 0.0608218i 0.926579 0.376100i \(-0.122735\pi\)
−0.899499 + 0.436922i \(0.856069\pi\)
\(570\) 0 0
\(571\) 3.28341 + 1.46187i 0.137406 + 0.0611773i 0.474288 0.880370i \(-0.342706\pi\)
−0.336882 + 0.941547i \(0.609372\pi\)
\(572\) −0.185458 0.150181i −0.00775441 0.00627940i
\(573\) −5.01800 + 9.84838i −0.209630 + 0.411422i
\(574\) 0.113145 + 0.550374i 0.00472258 + 0.0229722i
\(575\) 0 0
\(576\) −9.32098 + 16.1444i −0.388374 + 0.672683i
\(577\) 1.16904 + 22.3066i 0.0486677 + 0.928634i 0.908455 + 0.417982i \(0.137263\pi\)
−0.859788 + 0.510652i \(0.829404\pi\)
\(578\) −8.72433 + 3.34896i −0.362884 + 0.139298i
\(579\) 0.877889 + 8.35256i 0.0364838 + 0.347121i
\(580\) 0 0
\(581\) −2.80113 28.4815i −0.116210 1.18161i
\(582\) −35.4392 35.4392i −1.46900 1.46900i
\(583\) 16.5535 43.1234i 0.685577 1.78599i
\(584\) −4.64845 + 0.988058i −0.192354 + 0.0408861i
\(585\) 0 0
\(586\) −3.71938 + 17.4983i −0.153646 + 0.722848i
\(587\) 19.7026 + 38.6684i 0.813211 + 1.59602i 0.802933 + 0.596070i \(0.203272\pi\)
0.0102788 + 0.999947i \(0.496728\pi\)
\(588\) −11.7868 2.02875i −0.486078 0.0836644i
\(589\) −4.09095 + 1.32923i −0.168565 + 0.0547699i
\(590\) 0 0
\(591\) −7.16259 33.6973i −0.294630 1.38612i
\(592\) −29.1476 + 23.6033i −1.19796 + 0.970088i
\(593\) 12.4912 3.34701i 0.512953 0.137445i 0.00694789 0.999976i \(-0.497788\pi\)
0.506005 + 0.862531i \(0.331122\pi\)
\(594\) 20.5621 + 14.9392i 0.843673 + 0.612964i
\(595\) 0 0
\(596\) 5.40284 3.92539i 0.221309 0.160790i
\(597\) −7.47793 + 9.23448i −0.306051 + 0.377942i
\(598\) 0.824371 0.0432035i 0.0337110 0.00176672i
\(599\) 19.9444 11.5149i 0.814905 0.470485i −0.0337516 0.999430i \(-0.510745\pi\)
0.848656 + 0.528945i \(0.177412\pi\)
\(600\) 0 0
\(601\) 14.0409i 0.572740i −0.958119 0.286370i \(-0.907551\pi\)
0.958119 0.286370i \(-0.0924486\pi\)
\(602\) 48.2705 + 13.2806i 1.96736 + 0.541276i
\(603\) 0.389602 2.45985i 0.0158658 0.100173i
\(604\) 12.9879 1.36508i 0.528469 0.0555443i
\(605\) 0 0
\(606\) −5.42907 + 51.6542i −0.220541 + 2.09831i
\(607\) −10.2468 38.2415i −0.415904 1.55218i −0.783017 0.622000i \(-0.786320\pi\)
0.367113 0.930176i \(-0.380346\pi\)
\(608\) −3.26100 20.5892i −0.132251 0.835001i
\(609\) −18.3249 + 24.8707i −0.742564 + 1.00781i
\(610\) 0 0
\(611\) 0.257404 + 0.0547130i 0.0104135 + 0.00221345i
\(612\) −5.09433 + 7.84459i −0.205926 + 0.317099i
\(613\) −2.11361 + 3.25467i −0.0853679 + 0.131455i −0.878775 0.477236i \(-0.841639\pi\)
0.793407 + 0.608691i \(0.208305\pi\)
\(614\) 18.2473 + 3.87858i 0.736400 + 0.156527i
\(615\) 0 0
\(616\) −13.7286 + 18.6325i −0.553140 + 0.750725i
\(617\) 4.36290 + 27.5463i 0.175644 + 1.10897i 0.905180 + 0.425029i \(0.139736\pi\)
−0.729536 + 0.683943i \(0.760264\pi\)
\(618\) 11.5378 + 43.0597i 0.464118 + 1.73211i
\(619\) −2.82187 + 26.8483i −0.113421 + 1.07913i 0.778721 + 0.627370i \(0.215869\pi\)
−0.892142 + 0.451755i \(0.850798\pi\)
\(620\) 0 0
\(621\) −20.8305 + 2.18937i −0.835898 + 0.0878564i
\(622\) −7.28427 + 45.9911i −0.292073 + 1.84408i
\(623\) −2.56027 0.704401i −0.102575 0.0282212i
\(624\) 1.28957i 0.0516239i
\(625\) 0 0
\(626\) 13.3561 7.71114i 0.533816 0.308199i
\(627\) 65.3067 3.42258i 2.60810 0.136685i
\(628\) 4.70541 5.81069i 0.187766 0.231872i
\(629\) 20.9260 15.2037i 0.834376 0.606209i
\(630\) 0 0
\(631\) 8.70119 + 6.32178i 0.346389 + 0.251666i 0.747353 0.664428i \(-0.231325\pi\)
−0.400964 + 0.916094i \(0.631325\pi\)
\(632\) −33.2423 + 8.90724i −1.32231 + 0.354311i
\(633\) −14.1510 + 11.4592i −0.562451 + 0.455464i
\(634\) 2.62964 + 12.3715i 0.104436 + 0.491335i
\(635\) 0 0
\(636\) −19.1105 + 6.20937i −0.757780 + 0.246217i
\(637\) −0.638026 + 0.235176i −0.0252795 + 0.00931801i
\(638\) −12.3498 24.2379i −0.488935 0.959589i
\(639\) −0.938426 + 4.41495i −0.0371236 + 0.174653i
\(640\) 0 0
\(641\) −29.4673 + 6.26346i −1.16389 + 0.247392i −0.749056 0.662506i \(-0.769493\pi\)
−0.414831 + 0.909898i \(0.636159\pi\)
\(642\) −1.79569 + 4.67792i −0.0708701 + 0.184623i
\(643\) 20.4056 + 20.4056i 0.804720 + 0.804720i 0.983829 0.179110i \(-0.0573217\pi\)
−0.179110 + 0.983829i \(0.557322\pi\)
\(644\) 0.849471 + 8.63730i 0.0334739 + 0.340357i
\(645\) 0 0
\(646\) 3.45998 + 32.9195i 0.136131 + 1.29520i
\(647\) 17.8718 6.86034i 0.702613 0.269708i 0.0192794 0.999814i \(-0.493863\pi\)
0.683334 + 0.730106i \(0.260529\pi\)
\(648\) −0.288675 5.50825i −0.0113402 0.216384i
\(649\) −10.1343 + 17.5531i −0.397805 + 0.689019i
\(650\) 0 0
\(651\) −1.02704 4.99588i −0.0402531 0.195804i
\(652\) −4.11792 + 8.08188i −0.161270 + 0.316511i
\(653\) −9.38043 7.59612i −0.367084 0.297259i 0.427975 0.903791i \(-0.359227\pi\)
−0.795060 + 0.606531i \(0.792560\pi\)
\(654\) −11.8373 5.27031i −0.462876 0.206086i
\(655\) 0 0
\(656\) −0.259071 0.581883i −0.0101150 0.0227187i
\(657\) −6.73225 + 6.73225i −0.262650 + 0.262650i
\(658\) −1.89339 + 11.4580i −0.0738120 + 0.446681i
\(659\) 15.5052 + 5.03793i 0.603995 + 0.196250i 0.595022 0.803710i \(-0.297144\pi\)
0.00897383 + 0.999960i \(0.497144\pi\)
\(660\) 0 0
\(661\) 10.4225 + 9.38450i 0.405390 + 0.365015i 0.846455 0.532460i \(-0.178732\pi\)
−0.441065 + 0.897475i \(0.645399\pi\)
\(662\) −1.40620 0.913195i −0.0546534 0.0354923i
\(663\) −0.0465449 + 0.888130i −0.00180766 + 0.0344921i
\(664\) 7.44463 + 22.9122i 0.288908 + 0.889166i
\(665\) 0 0
\(666\) −17.2426 + 53.0674i −0.668138 + 2.05632i
\(667\) 20.9287 + 8.03376i 0.810361 + 0.311069i
\(668\) −0.270798 + 1.01063i −0.0104775 + 0.0391025i
\(669\) −41.8660 4.40029i −1.61863 0.170125i
\(670\) 0 0
\(671\) 16.4678 + 22.6659i 0.635731 + 0.875008i
\(672\) 24.6916 1.12855i 0.952498 0.0435347i
\(673\) 0.252552 + 0.128682i 0.00973515 + 0.00496031i 0.458851 0.888513i \(-0.348261\pi\)
−0.449116 + 0.893473i \(0.648261\pi\)
\(674\) −2.62652 1.51642i −0.101170 0.0584103i
\(675\) 0 0
\(676\) −4.06262 7.03667i −0.156255 0.270641i
\(677\) 28.0912 18.2427i 1.07963 0.701123i 0.122998 0.992407i \(-0.460749\pi\)
0.956637 + 0.291284i \(0.0940825\pi\)
\(678\) 20.4242 + 3.23488i 0.784387 + 0.124235i
\(679\) 6.42445 29.2613i 0.246548 1.12295i
\(680\) 0 0
\(681\) 33.0654 14.7217i 1.26707 0.564136i
\(682\) 4.33814 + 1.16240i 0.166116 + 0.0445106i
\(683\) 14.2385 + 17.5831i 0.544821 + 0.672798i 0.972976 0.230907i \(-0.0741694\pi\)
−0.428155 + 0.903706i \(0.640836\pi\)
\(684\) −11.3826 12.6417i −0.435225 0.483367i
\(685\) 0 0
\(686\) −11.6535 27.6538i −0.444931 1.05583i
\(687\) 10.0951 5.14374i 0.385154 0.196246i
\(688\) −56.6749 2.97020i −2.16071 0.113238i
\(689\) −0.764441 + 0.848997i −0.0291229 + 0.0323442i
\(690\) 0 0
\(691\) 21.1493 19.0429i 0.804557 0.724427i −0.160338 0.987062i \(-0.551258\pi\)
0.964895 + 0.262636i \(0.0845917\pi\)
\(692\) −0.173748 + 0.0275190i −0.00660492 + 0.00104612i
\(693\) −2.73619 + 46.2863i −0.103939 + 1.75827i
\(694\) −1.89358 + 2.60628i −0.0718792 + 0.0989332i
\(695\) 0 0
\(696\) 10.5773 23.7571i 0.400933 0.900511i
\(697\) 0.157421 + 0.410097i 0.00596276 + 0.0155335i
\(698\) −3.85664 5.93870i −0.145976 0.224783i
\(699\) −70.3907 −2.66242
\(700\) 0 0
\(701\) 29.7376 1.12317 0.561587 0.827418i \(-0.310191\pi\)
0.561587 + 0.827418i \(0.310191\pi\)
\(702\) −0.342366 0.527197i −0.0129218 0.0198978i
\(703\) 16.8582 + 43.9171i 0.635819 + 1.65637i
\(704\) 6.67433 14.9908i 0.251548 0.564986i
\(705\) 0 0
\(706\) −17.7863 + 24.4807i −0.669396 + 0.921345i
\(707\) −27.7560 + 13.9094i −1.04387 + 0.523118i
\(708\) 8.70856 1.37930i 0.327288 0.0518373i
\(709\) −6.43362 + 5.79286i −0.241620 + 0.217555i −0.781039 0.624482i \(-0.785310\pi\)
0.539420 + 0.842037i \(0.318644\pi\)
\(710\) 0 0
\(711\) −46.1349 + 51.2380i −1.73020 + 1.92158i
\(712\) 2.23225 + 0.116987i 0.0836570 + 0.00438428i
\(713\) −3.29773 + 1.68028i −0.123501 + 0.0629269i
\(714\) −39.2475 0.262407i −1.46880 0.00982033i
\(715\) 0 0
\(716\) −5.48831 6.09539i −0.205108 0.227795i
\(717\) −1.11873 1.38152i −0.0417799 0.0515939i
\(718\) 26.1589 + 7.00926i 0.976242 + 0.261583i
\(719\) −24.7026 + 10.9983i −0.921251 + 0.410167i −0.811874 0.583833i \(-0.801552\pi\)
−0.109377 + 0.994000i \(0.534886\pi\)
\(720\) 0 0
\(721\) −17.9622 + 19.6828i −0.668946 + 0.733024i
\(722\) −29.0509 4.60121i −1.08116 0.171239i
\(723\) −2.63025 + 1.70811i −0.0978201 + 0.0635251i
\(724\) −7.20316 12.4762i −0.267703 0.463676i
\(725\) 0 0
\(726\) −16.9672 9.79602i −0.629712 0.363565i
\(727\) −15.5218 7.90873i −0.575670 0.293318i 0.141814 0.989893i \(-0.454706\pi\)
−0.717484 + 0.696575i \(0.754706\pi\)
\(728\) 0.482140 0.308542i 0.0178693 0.0114353i
\(729\) −25.7325 35.4177i −0.953055 1.31177i
\(730\) 0 0
\(731\) 38.9251 + 4.09119i 1.43970 + 0.151318i
\(732\) 3.15439 11.7724i 0.116590 0.435119i
\(733\) −42.8618 16.4531i −1.58314 0.607709i −0.601567 0.798822i \(-0.705457\pi\)
−0.981568 + 0.191113i \(0.938790\pi\)
\(734\) 4.83698 14.8867i 0.178536 0.549477i
\(735\) 0 0
\(736\) −5.54266 17.0586i −0.204305 0.628787i
\(737\) −0.114734 + 2.18925i −0.00422628 + 0.0806422i
\(738\) −0.794727 0.516102i −0.0292543 0.0189980i
\(739\) −18.2915 16.4697i −0.672864 0.605849i 0.260202 0.965554i \(-0.416211\pi\)
−0.933066 + 0.359705i \(0.882877\pi\)
\(740\) 0 0
\(741\) −1.53827 0.499813i −0.0565096 0.0183611i
\(742\) −38.9688 31.9901i −1.43059 1.17439i
\(743\) 10.2323 10.2323i 0.375388 0.375388i −0.494047 0.869435i \(-0.664483\pi\)
0.869435 + 0.494047i \(0.164483\pi\)
\(744\) 1.74631 + 3.92228i 0.0640229 + 0.143798i
\(745\) 0 0
\(746\) −7.27985 3.24120i −0.266534 0.118669i
\(747\) 37.5090 + 30.3742i 1.37238 + 1.11133i
\(748\) 3.73790 7.33605i 0.136671 0.268233i
\(749\) −2.93380 + 0.603126i −0.107199 + 0.0220377i
\(750\) 0 0
\(751\) 5.60583 9.70959i 0.204560 0.354308i −0.745433 0.666581i \(-0.767757\pi\)
0.949992 + 0.312273i \(0.101090\pi\)
\(752\) −0.689001 13.1469i −0.0251253 0.479419i
\(753\) −35.3186 + 13.5575i −1.28708 + 0.494064i
\(754\) 0.0703268 + 0.669115i 0.00256115 + 0.0243677i
\(755\) 0 0
\(756\) 5.37259 3.84880i 0.195399 0.139979i
\(757\) 34.2009 + 34.2009i 1.24305 + 1.24305i 0.958728 + 0.284326i \(0.0917697\pi\)
0.284326 + 0.958728i \(0.408230\pi\)
\(758\) 7.30949 19.0419i 0.265493 0.691632i
\(759\) 55.0395 11.6990i 1.99781 0.424647i
\(760\) 0 0
\(761\) −3.57175 + 16.8038i −0.129476 + 0.609135i 0.864784 + 0.502144i \(0.167455\pi\)
−0.994260 + 0.106992i \(0.965878\pi\)
\(762\) −33.2776 65.3109i −1.20552 2.36597i
\(763\) −1.16047 7.65792i −0.0420117 0.277235i
\(764\) −2.40697 + 0.782073i −0.0870812 + 0.0282944i
\(765\) 0 0
\(766\) −6.04081 28.4198i −0.218263 1.02685i
\(767\) 0.389580 0.315476i 0.0140669 0.0113912i
\(768\) −36.1387 + 9.68333i −1.30404 + 0.349417i
\(769\) 15.2142 + 11.0538i 0.548638 + 0.398609i 0.827283 0.561785i \(-0.189885\pi\)
−0.278645 + 0.960394i \(0.589885\pi\)
\(770\) 0 0
\(771\) −0.805836 + 0.585474i −0.0290215 + 0.0210853i
\(772\) −1.21020 + 1.49448i −0.0435561 + 0.0537873i
\(773\) −32.2701 + 1.69120i −1.16067 + 0.0608283i −0.622928 0.782279i \(-0.714057\pi\)
−0.537745 + 0.843107i \(0.680724\pi\)
\(774\) −73.1203 + 42.2160i −2.62825 + 1.51742i
\(775\) 0 0
\(776\) 25.2188i 0.905302i
\(777\) −53.9730 + 14.0759i −1.93627 + 0.504971i
\(778\) −3.02314 + 19.0873i −0.108385 + 0.684314i
\(779\) −0.794514 + 0.0835068i −0.0284664 + 0.00299194i
\(780\) 0 0
\(781\) 0.415297 3.95129i 0.0148605 0.141388i
\(782\) 7.37143 + 27.5106i 0.263602 + 0.983776i
\(783\) −2.67045 16.8606i −0.0954343 0.602548i
\(784\) 19.6256 + 27.7861i 0.700913 + 0.992362i
\(785\) 0 0
\(786\) −1.74274 0.370432i −0.0621616 0.0132129i
\(787\) 7.23632 11.1430i 0.257947 0.397204i −0.685843 0.727750i \(-0.740566\pi\)
0.943790 + 0.330546i \(0.107233\pi\)
\(788\) 4.29616 6.61551i 0.153045 0.235668i
\(789\) 79.4852 + 16.8951i 2.82975 + 0.601481i
\(790\) 0 0
\(791\) 4.95194 + 11.3254i 0.176071 + 0.402686i
\(792\) −6.10592 38.5512i −0.216964 1.36986i
\(793\) −0.179343 0.669316i −0.00636865 0.0237681i
\(794\) −6.35491 + 60.4629i −0.225527 + 2.14575i
\(795\) 0 0
\(796\) −2.70586 + 0.284397i −0.0959066 + 0.0100802i
\(797\) −6.01424 + 37.9724i −0.213035 + 1.34505i 0.616833 + 0.787094i \(0.288415\pi\)
−0.829869 + 0.557959i \(0.811585\pi\)
\(798\) 18.9350 68.8223i 0.670290 2.43628i
\(799\) 9.07923i 0.321200i
\(800\) 0 0
\(801\) 3.87829 2.23913i 0.137033 0.0791159i
\(802\) −0.345401 + 0.0181017i −0.0121965 + 0.000639192i
\(803\) 5.27412 6.51300i 0.186120 0.229839i
\(804\) 0.771531 0.560550i 0.0272098 0.0197691i
\(805\) 0 0
\(806\) −0.0898647 0.0652905i −0.00316535 0.00229976i
\(807\) 54.6854 14.6529i 1.92502 0.515807i
\(808\) 20.3104 16.4471i 0.714519 0.578606i
\(809\) −0.240260 1.13033i −0.00844708 0.0397404i 0.973722 0.227739i \(-0.0731333\pi\)
−0.982169 + 0.187999i \(0.939800\pi\)
\(810\) 0 0
\(811\) 11.7589 3.82070i 0.412911 0.134163i −0.0951926 0.995459i \(-0.530347\pi\)
0.508104 + 0.861296i \(0.330347\pi\)
\(812\) −6.99369 + 1.05981i −0.245430 + 0.0371920i
\(813\) −6.95282 13.6457i −0.243846 0.478575i
\(814\) 10.2118 48.0428i 0.357924 1.68390i
\(815\) 0 0
\(816\) 43.5196 9.25038i 1.52349 0.323828i
\(817\) −25.5092 + 66.4538i −0.892454 + 2.32492i
\(818\) −36.5978 36.5978i −1.27961 1.27961i
\(819\) 0.473433 1.04450i 0.0165431 0.0364977i
\(820\) 0 0
\(821\) 3.87750 + 36.8920i 0.135326 + 1.28754i 0.825710 + 0.564095i \(0.190775\pi\)
−0.690384 + 0.723443i \(0.742558\pi\)
\(822\) −52.3428 + 20.0925i −1.82567 + 0.700807i
\(823\) −2.63210 50.2235i −0.0917494 1.75068i −0.526539 0.850151i \(-0.676511\pi\)
0.434790 0.900532i \(-0.356823\pi\)
\(824\) 11.2156 19.4260i 0.390714 0.676737i
\(825\) 0 0
\(826\) 14.6929 + 16.5392i 0.511232 + 0.575472i
\(827\) 8.94542 17.5564i 0.311063 0.610495i −0.681557 0.731765i \(-0.738697\pi\)
0.992620 + 0.121270i \(0.0386968\pi\)
\(828\) −11.3750 9.21129i −0.395308 0.320114i
\(829\) 20.7157 + 9.22321i 0.719485 + 0.320335i 0.733615 0.679565i \(-0.237831\pi\)
−0.0141306 + 0.999900i \(0.504498\pi\)
\(830\) 0 0
\(831\) −6.56796 14.7519i −0.227840 0.511737i
\(832\) −0.286979 + 0.286979i −0.00994922 + 0.00994922i
\(833\) −12.5133 19.8448i −0.433561 0.687582i
\(834\) −60.5681 19.6798i −2.09730 0.681454i
\(835\) 0 0
\(836\) 11.1278 + 10.0195i 0.384862 + 0.346531i
\(837\) 2.36368 + 1.53499i 0.0817008 + 0.0530571i
\(838\) −0.898893 + 17.1519i −0.0310518 + 0.592503i
\(839\) −5.77620 17.7773i −0.199417 0.613742i −0.999897 0.0143819i \(-0.995422\pi\)
0.800480 0.599360i \(-0.204578\pi\)
\(840\) 0 0
\(841\) 3.31550 10.2041i 0.114328 0.351864i
\(842\) −13.3267 5.11566i −0.459270 0.176297i
\(843\) 6.04853 22.5734i 0.208323 0.777470i
\(844\) −4.14647 0.435812i −0.142728 0.0150013i
\(845\) 0 0
\(846\) −11.5122 15.8452i −0.395799 0.544770i
\(847\) −0.534707 11.6989i −0.0183727 0.401978i
\(848\) 50.9240 + 25.9471i 1.74874 + 0.891025i
\(849\) −35.6995 20.6111i −1.22520 0.707372i
\(850\) 0 0
\(851\) 20.2381 + 35.0534i 0.693752 + 1.20161i
\(852\) −1.44950 + 0.941319i −0.0496592 + 0.0322491i
\(853\) 33.5138 + 5.30806i 1.14749 + 0.181744i 0.701079 0.713084i \(-0.252702\pi\)
0.446410 + 0.894828i \(0.352702\pi\)
\(854\) 29.1458 9.25507i 0.997348 0.316702i
\(855\) 0 0
\(856\) 2.30334 1.02551i 0.0787264 0.0350513i
\(857\) 8.64649 + 2.31682i 0.295358 + 0.0791410i 0.403455 0.914999i \(-0.367809\pi\)
−0.108097 + 0.994140i \(0.534476\pi\)
\(858\) 1.06277 + 1.31241i 0.0362823 + 0.0448049i
\(859\) −15.4543 17.1638i −0.527295 0.585621i 0.419380 0.907811i \(-0.362248\pi\)
−0.946675 + 0.322190i \(0.895581\pi\)
\(860\) 0 0
\(861\) 0.00633321 0.947241i 0.000215835 0.0322819i
\(862\) 8.84757 4.50806i 0.301349 0.153545i
\(863\) −3.68178 0.192954i −0.125329 0.00656823i −0.0104318 0.999946i \(-0.503321\pi\)
−0.114897 + 0.993377i \(0.536654\pi\)
\(864\) −9.13923 + 10.1501i −0.310923 + 0.345315i
\(865\) 0 0
\(866\) −43.0183 + 38.7338i −1.46182 + 1.31623i
\(867\) 15.5605 2.46454i 0.528463 0.0837003i
\(868\) 0.642582 0.975154i 0.0218107 0.0330989i
\(869\) 35.6731 49.0998i 1.21013 1.66560i
\(870\) 0 0
\(871\) 0.0220535 0.0495329i 0.000747253 0.00167836i
\(872\) 2.33657 + 6.08696i 0.0791261 + 0.206131i
\(873\) 27.5173 + 42.3729i 0.931318 + 1.43410i
\(874\) −51.7975 −1.75208
\(875\) 0 0
\(876\) −3.64571 −0.123177
\(877\) 16.3727 + 25.2117i 0.552866 + 0.851339i 0.999049 0.0436027i \(-0.0138836\pi\)
−0.446183 + 0.894942i \(0.647217\pi\)
\(878\) 15.1418 + 39.4459i 0.511013 + 1.33123i
\(879\) 12.2667 27.5515i 0.413746 0.929290i
\(880\) 0 0
\(881\) −26.3597 + 36.2810i −0.888079 + 1.22234i 0.0860376 + 0.996292i \(0.472579\pi\)
−0.974117 + 0.226045i \(0.927421\pi\)
\(882\) 47.0012 + 18.7669i 1.58261 + 0.631915i
\(883\) 28.6049 4.53057i 0.962631 0.152466i 0.344713 0.938708i \(-0.387976\pi\)
0.617918 + 0.786242i \(0.287976\pi\)
\(884\) −0.151331 + 0.136259i −0.00508980 + 0.00458287i
\(885\) 0 0
\(886\) 36.7226 40.7845i 1.23372 1.37018i
\(887\) −24.0529 1.26056i −0.807616 0.0423254i −0.355942 0.934508i \(-0.615840\pi\)
−0.451674 + 0.892183i \(0.649173\pi\)
\(888\) 41.8363 21.3167i 1.40394 0.715341i
\(889\) 22.1607 37.7976i 0.743246 1.26769i
\(890\) 0 0
\(891\) 6.50871 + 7.22865i 0.218050 + 0.242169i
\(892\) −6.06596 7.49083i −0.203103 0.250812i
\(893\) −15.9494 4.27364i −0.533728 0.143012i
\(894\) −43.1735 + 19.2221i −1.44394 + 0.642883i
\(895\) 0 0
\(896\) −26.5972 24.2722i −0.888552 0.810878i
\(897\) −1.37455 0.217708i −0.0458950 0.00726906i
\(898\) 24.2224 15.7302i 0.808312 0.524924i
\(899\) −1.50825 2.61236i −0.0503029 0.0871271i
\(900\) 0 0
\(901\) −34.1351 19.7079i −1.13720 0.656565i
\(902\) 0.743207 + 0.378683i 0.0247461 + 0.0126088i
\(903\) −74.9445 38.8195i −2.49400 1.29183i
\(904\) −6.11603 8.41800i −0.203416 0.279978i
\(905\) 0 0
\(906\) −91.9096 9.66009i −3.05349 0.320935i
\(907\) −0.937438 + 3.49857i −0.0311271 + 0.116168i −0.979741 0.200267i \(-0.935819\pi\)
0.948614 + 0.316435i \(0.102486\pi\)
\(908\) 7.73707 + 2.96998i 0.256764 + 0.0985623i
\(909\) 16.1797 49.7961i 0.536648 1.65163i
\(910\) 0 0
\(911\) 2.97054 + 9.14238i 0.0984183 + 0.302900i 0.988129 0.153623i \(-0.0490943\pi\)
−0.889711 + 0.456524i \(0.849094\pi\)
\(912\) −4.23481 + 80.8049i −0.140228 + 2.67572i
\(913\) −35.6309 23.1390i −1.17921 0.765788i
\(914\) 10.2738 + 9.25056i 0.339827 + 0.305981i
\(915\) 0 0
\(916\) 2.46728 + 0.801669i 0.0815213 + 0.0264879i
\(917\) −0.375004 0.996787i −0.0123837 0.0329168i
\(918\) 15.3357 15.3357i 0.506154 0.506154i
\(919\) 2.99431 + 6.72533i 0.0987732 + 0.221848i 0.956173 0.292803i \(-0.0945880\pi\)
−0.857400 + 0.514651i \(0.827921\pi\)
\(920\) 0 0
\(921\) −28.7308 12.7918i −0.946712 0.421503i
\(922\) −33.3983 27.0454i −1.09991 0.890693i
\(923\) −0.0446111 + 0.0875541i −0.00146839 + 0.00288188i
\(924\) −13.2736 + 11.7918i −0.436668 + 0.387923i
\(925\) 0 0
\(926\) 18.5411 32.1142i 0.609300 1.05534i
\(927\) −2.35193 44.8776i −0.0772476 1.47397i
\(928\) 13.6476 5.23882i 0.448004 0.171973i
\(929\) 6.12235 + 58.2502i 0.200868 + 1.91113i 0.376062 + 0.926595i \(0.377278\pi\)
−0.175194 + 0.984534i \(0.556055\pi\)
\(930\) 0 0
\(931\) 40.7514 12.6411i 1.33557 0.414294i
\(932\) −11.3968 11.3968i −0.373313 0.373313i
\(933\) 28.1324 73.2874i 0.921013 2.39932i
\(934\) 14.1324 3.00393i 0.462425 0.0982914i
\(935\) 0 0
\(936\) −0.200710 + 0.944266i −0.00656041 + 0.0308643i
\(937\) −2.11148 4.14402i −0.0689791 0.135379i 0.853942 0.520368i \(-0.174205\pi\)
−0.922921 + 0.384989i \(0.874205\pi\)
\(938\) 2.22812 + 0.872432i 0.0727507 + 0.0284859i
\(939\) −24.7274 + 8.03442i −0.806948 + 0.262193i
\(940\) 0 0
\(941\) −6.07308 28.5716i −0.197977 0.931408i −0.959159 0.282869i \(-0.908714\pi\)
0.761182 0.648539i \(-0.224619\pi\)
\(942\) −41.1198 + 33.2981i −1.33976 + 1.08491i
\(943\) −0.663969 + 0.177910i −0.0216218 + 0.00579355i
\(944\) −20.2890 14.7408i −0.660350 0.479773i
\(945\) 0 0
\(946\) 60.1267 43.6846i 1.95489 1.42031i
\(947\) −3.83410 + 4.73472i −0.124592 + 0.153858i −0.835625 0.549301i \(-0.814894\pi\)
0.711033 + 0.703158i \(0.248228\pi\)
\(948\) −26.3651 + 1.38174i −0.856300 + 0.0448768i
\(949\) −0.179507 + 0.103638i −0.00582703 + 0.00336424i
\(950\) 0 0
\(951\) 21.3227i 0.691435i
\(952\) 13.8710 + 14.0578i 0.449563 + 0.455615i
\(953\) 0.872243 5.50713i 0.0282547 0.178393i −0.969525 0.244992i \(-0.921215\pi\)
0.997780 + 0.0665986i \(0.0212147\pi\)
\(954\) 84.5622 8.88785i 2.73780 0.287755i
\(955\) 0 0
\(956\) 0.0425472 0.404809i 0.00137607 0.0130925i
\(957\) 11.8696 + 44.2978i 0.383688 + 1.43194i
\(958\) 0.606690 + 3.83049i 0.0196013 + 0.123758i
\(959\) −26.9809 19.8797i −0.871259 0.641950i
\(960\) 0 0
\(961\) −29.8354 6.34172i −0.962433 0.204572i
\(962\) −0.661614 + 1.01880i −0.0213313 + 0.0328473i
\(963\) 2.75111 4.23634i 0.0886533 0.136514i
\(964\) −0.702411 0.149302i −0.0226231 0.00480869i
\(965\) 0 0
\(966\) 6.82809 61.0366i 0.219690 1.96382i
\(967\) −9.25305 58.4215i −0.297558 1.87871i −0.453972 0.891016i \(-0.649993\pi\)
0.156414 0.987692i \(-0.450007\pi\)
\(968\) 2.55154 + 9.52247i 0.0820095 + 0.306064i
\(969\) 5.83307 55.4979i 0.187385 1.78285i
\(970\) 0 0
\(971\) −52.4895 + 5.51687i −1.68447 + 0.177045i −0.897822 0.440359i \(-0.854851\pi\)
−0.786647 + 0.617404i \(0.788185\pi\)
\(972\) 1.83423 11.5809i 0.0588331 0.371458i
\(973\) −9.60655 36.8355i −0.307972 1.18089i
\(974\) 7.85203i 0.251595i
\(975\) 0 0
\(976\) −30.0211 + 17.3327i −0.960952 + 0.554806i
\(977\) −13.1638 + 0.689886i −0.421148 + 0.0220714i −0.261733 0.965140i \(-0.584294\pi\)
−0.159415 + 0.987212i \(0.550961\pi\)
\(978\) 40.3949 49.8835i 1.29168 1.59510i
\(979\) −3.18912 + 2.31703i −0.101925 + 0.0740525i
\(980\) 0 0
\(981\) 10.5677 + 7.67785i 0.337399 + 0.245135i
\(982\) 46.5975 12.4858i 1.48699 0.398436i
\(983\) −41.7263 + 33.7893i −1.33086 + 1.07771i −0.340350 + 0.940299i \(0.610546\pi\)
−0.990514 + 0.137413i \(0.956121\pi\)
\(984\) 0.165789 + 0.779978i 0.00528518 + 0.0248648i
\(985\) 0 0
\(986\) −22.0765 + 7.17309i −0.703059 + 0.228438i
\(987\) 7.13844 18.2310i 0.227219 0.580299i
\(988\) −0.168133 0.329979i −0.00534902 0.0104980i
\(989\) −12.7340 + 59.9086i −0.404917 + 1.90498i
\(990\) 0 0
\(991\) −10.3254 + 2.19474i −0.327998 + 0.0697182i −0.368968 0.929442i \(-0.620289\pi\)
0.0409694 + 0.999160i \(0.486955\pi\)
\(992\) −0.864924 + 2.25320i −0.0274614 + 0.0715393i
\(993\) 1.99877 + 1.99877i 0.0634291 + 0.0634291i
\(994\) −3.94976 1.79028i −0.125279 0.0567843i
\(995\) 0 0
\(996\) 1.93185 + 18.3803i 0.0612131 + 0.582404i
\(997\) 55.8904 21.4543i 1.77007 0.679465i 0.770974 0.636867i \(-0.219770\pi\)
0.999092 0.0425978i \(-0.0135634\pi\)
\(998\) 3.29857 + 62.9405i 0.104414 + 1.99235i
\(999\) 15.4110 26.6927i 0.487584 0.844520i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.c.607.5 288
5.2 odd 4 875.2.bb.b.768.14 288
5.3 odd 4 875.2.bb.a.768.5 288
5.4 even 2 175.2.x.a.117.14 yes 288
7.3 odd 6 inner 875.2.bb.c.857.14 288
25.3 odd 20 inner 875.2.bb.c.243.14 288
25.4 even 10 875.2.bb.b.257.14 288
25.21 even 5 875.2.bb.a.257.5 288
25.22 odd 20 175.2.x.a.103.5 yes 288
35.3 even 12 875.2.bb.a.143.5 288
35.17 even 12 875.2.bb.b.143.14 288
35.24 odd 6 175.2.x.a.17.5 yes 288
175.3 even 60 inner 875.2.bb.c.493.5 288
175.122 even 60 175.2.x.a.3.14 288
175.129 odd 30 875.2.bb.b.507.14 288
175.171 odd 30 875.2.bb.a.507.5 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.3.14 288 175.122 even 60
175.2.x.a.17.5 yes 288 35.24 odd 6
175.2.x.a.103.5 yes 288 25.22 odd 20
175.2.x.a.117.14 yes 288 5.4 even 2
875.2.bb.a.143.5 288 35.3 even 12
875.2.bb.a.257.5 288 25.21 even 5
875.2.bb.a.507.5 288 175.171 odd 30
875.2.bb.a.768.5 288 5.3 odd 4
875.2.bb.b.143.14 288 35.17 even 12
875.2.bb.b.257.14 288 25.4 even 10
875.2.bb.b.507.14 288 175.129 odd 30
875.2.bb.b.768.14 288 5.2 odd 4
875.2.bb.c.243.14 288 25.3 odd 20 inner
875.2.bb.c.493.5 288 175.3 even 60 inner
875.2.bb.c.607.5 288 1.1 even 1 trivial
875.2.bb.c.857.14 288 7.3 odd 6 inner