Properties

Label 882.6.a.bt.1.2
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{130}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-11.4018\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} +21.0000 q^{5} +64.0000 q^{8} +84.0000 q^{10} +625.874 q^{11} -206.821 q^{13} +256.000 q^{16} -1061.46 q^{17} -1883.98 q^{19} +336.000 q^{20} +2503.49 q^{22} -3717.37 q^{23} -2684.00 q^{25} -827.284 q^{26} +123.747 q^{29} -9109.26 q^{31} +1024.00 q^{32} -4245.85 q^{34} -6028.73 q^{37} -7535.92 q^{38} +1344.00 q^{40} +17201.9 q^{41} +5401.98 q^{43} +10014.0 q^{44} -14869.5 q^{46} -1875.24 q^{47} -10736.0 q^{50} -3309.14 q^{52} -18707.2 q^{53} +13143.3 q^{55} +494.989 q^{58} +2534.78 q^{59} -2094.71 q^{61} -36437.1 q^{62} +4096.00 q^{64} -4343.24 q^{65} +58620.8 q^{67} -16983.4 q^{68} +31279.5 q^{71} -7150.47 q^{73} -24114.9 q^{74} -30143.7 q^{76} +2979.81 q^{79} +5376.00 q^{80} +68807.4 q^{82} -45954.6 q^{83} -22290.7 q^{85} +21607.9 q^{86} +40055.9 q^{88} -99040.0 q^{89} -59477.9 q^{92} -7500.97 q^{94} -39563.6 q^{95} -115548. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 32 q^{4} + 42 q^{5} + 128 q^{8} + 168 q^{10} + 294 q^{11} - 140 q^{13} + 512 q^{16} - 1302 q^{17} - 1442 q^{19} + 672 q^{20} + 1176 q^{22} - 2646 q^{23} - 5368 q^{25} - 560 q^{26} - 1668 q^{29}+ \cdots - 43652 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 21.0000 0.375659 0.187830 0.982202i \(-0.439855\pi\)
0.187830 + 0.982202i \(0.439855\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) 84.0000 0.265631
\(11\) 625.874 1.55957 0.779785 0.626047i \(-0.215328\pi\)
0.779785 + 0.626047i \(0.215328\pi\)
\(12\) 0 0
\(13\) −206.821 −0.339419 −0.169710 0.985494i \(-0.554283\pi\)
−0.169710 + 0.985494i \(0.554283\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1061.46 −0.890805 −0.445402 0.895330i \(-0.646939\pi\)
−0.445402 + 0.895330i \(0.646939\pi\)
\(18\) 0 0
\(19\) −1883.98 −1.19727 −0.598635 0.801022i \(-0.704290\pi\)
−0.598635 + 0.801022i \(0.704290\pi\)
\(20\) 336.000 0.187830
\(21\) 0 0
\(22\) 2503.49 1.10278
\(23\) −3717.37 −1.46526 −0.732632 0.680625i \(-0.761708\pi\)
−0.732632 + 0.680625i \(0.761708\pi\)
\(24\) 0 0
\(25\) −2684.00 −0.858880
\(26\) −827.284 −0.240006
\(27\) 0 0
\(28\) 0 0
\(29\) 123.747 0.0273238 0.0136619 0.999907i \(-0.495651\pi\)
0.0136619 + 0.999907i \(0.495651\pi\)
\(30\) 0 0
\(31\) −9109.26 −1.70247 −0.851234 0.524786i \(-0.824145\pi\)
−0.851234 + 0.524786i \(0.824145\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) −4245.85 −0.629894
\(35\) 0 0
\(36\) 0 0
\(37\) −6028.73 −0.723971 −0.361986 0.932184i \(-0.617901\pi\)
−0.361986 + 0.932184i \(0.617901\pi\)
\(38\) −7535.92 −0.846598
\(39\) 0 0
\(40\) 1344.00 0.132816
\(41\) 17201.9 1.59814 0.799071 0.601236i \(-0.205325\pi\)
0.799071 + 0.601236i \(0.205325\pi\)
\(42\) 0 0
\(43\) 5401.98 0.445535 0.222767 0.974872i \(-0.428491\pi\)
0.222767 + 0.974872i \(0.428491\pi\)
\(44\) 10014.0 0.779785
\(45\) 0 0
\(46\) −14869.5 −1.03610
\(47\) −1875.24 −0.123826 −0.0619131 0.998082i \(-0.519720\pi\)
−0.0619131 + 0.998082i \(0.519720\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −10736.0 −0.607320
\(51\) 0 0
\(52\) −3309.14 −0.169710
\(53\) −18707.2 −0.914787 −0.457393 0.889264i \(-0.651217\pi\)
−0.457393 + 0.889264i \(0.651217\pi\)
\(54\) 0 0
\(55\) 13143.3 0.585867
\(56\) 0 0
\(57\) 0 0
\(58\) 494.989 0.0193208
\(59\) 2534.78 0.0948004 0.0474002 0.998876i \(-0.484906\pi\)
0.0474002 + 0.998876i \(0.484906\pi\)
\(60\) 0 0
\(61\) −2094.71 −0.0720773 −0.0360386 0.999350i \(-0.511474\pi\)
−0.0360386 + 0.999350i \(0.511474\pi\)
\(62\) −36437.1 −1.20383
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −4343.24 −0.127506
\(66\) 0 0
\(67\) 58620.8 1.59538 0.797691 0.603067i \(-0.206055\pi\)
0.797691 + 0.603067i \(0.206055\pi\)
\(68\) −16983.4 −0.445402
\(69\) 0 0
\(70\) 0 0
\(71\) 31279.5 0.736401 0.368201 0.929746i \(-0.379974\pi\)
0.368201 + 0.929746i \(0.379974\pi\)
\(72\) 0 0
\(73\) −7150.47 −0.157046 −0.0785231 0.996912i \(-0.525020\pi\)
−0.0785231 + 0.996912i \(0.525020\pi\)
\(74\) −24114.9 −0.511925
\(75\) 0 0
\(76\) −30143.7 −0.598635
\(77\) 0 0
\(78\) 0 0
\(79\) 2979.81 0.0537181 0.0268591 0.999639i \(-0.491449\pi\)
0.0268591 + 0.999639i \(0.491449\pi\)
\(80\) 5376.00 0.0939149
\(81\) 0 0
\(82\) 68807.4 1.13006
\(83\) −45954.6 −0.732207 −0.366103 0.930574i \(-0.619308\pi\)
−0.366103 + 0.930574i \(0.619308\pi\)
\(84\) 0 0
\(85\) −22290.7 −0.334639
\(86\) 21607.9 0.315041
\(87\) 0 0
\(88\) 40055.9 0.551391
\(89\) −99040.0 −1.32536 −0.662682 0.748900i \(-0.730582\pi\)
−0.662682 + 0.748900i \(0.730582\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −59477.9 −0.732632
\(93\) 0 0
\(94\) −7500.97 −0.0875584
\(95\) −39563.6 −0.449766
\(96\) 0 0
\(97\) −115548. −1.24691 −0.623454 0.781860i \(-0.714271\pi\)
−0.623454 + 0.781860i \(0.714271\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −42944.0 −0.429440
\(101\) −10951.5 −0.106824 −0.0534120 0.998573i \(-0.517010\pi\)
−0.0534120 + 0.998573i \(0.517010\pi\)
\(102\) 0 0
\(103\) −137724. −1.27914 −0.639570 0.768733i \(-0.720887\pi\)
−0.639570 + 0.768733i \(0.720887\pi\)
\(104\) −13236.5 −0.120003
\(105\) 0 0
\(106\) −74828.9 −0.646852
\(107\) −75573.0 −0.638127 −0.319064 0.947733i \(-0.603368\pi\)
−0.319064 + 0.947733i \(0.603368\pi\)
\(108\) 0 0
\(109\) 44526.3 0.358963 0.179482 0.983761i \(-0.442558\pi\)
0.179482 + 0.983761i \(0.442558\pi\)
\(110\) 52573.4 0.414271
\(111\) 0 0
\(112\) 0 0
\(113\) −90456.5 −0.666413 −0.333207 0.942854i \(-0.608131\pi\)
−0.333207 + 0.942854i \(0.608131\pi\)
\(114\) 0 0
\(115\) −78064.7 −0.550440
\(116\) 1979.96 0.0136619
\(117\) 0 0
\(118\) 10139.1 0.0670340
\(119\) 0 0
\(120\) 0 0
\(121\) 230667. 1.43226
\(122\) −8378.82 −0.0509663
\(123\) 0 0
\(124\) −145748. −0.851234
\(125\) −121989. −0.698306
\(126\) 0 0
\(127\) 187707. 1.03269 0.516346 0.856380i \(-0.327292\pi\)
0.516346 + 0.856380i \(0.327292\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) −17373.0 −0.0901604
\(131\) −154412. −0.786147 −0.393073 0.919507i \(-0.628588\pi\)
−0.393073 + 0.919507i \(0.628588\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 234483. 1.12810
\(135\) 0 0
\(136\) −67933.6 −0.314947
\(137\) −109238. −0.497246 −0.248623 0.968600i \(-0.579978\pi\)
−0.248623 + 0.968600i \(0.579978\pi\)
\(138\) 0 0
\(139\) −204695. −0.898609 −0.449305 0.893379i \(-0.648328\pi\)
−0.449305 + 0.893379i \(0.648328\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 125118. 0.520714
\(143\) −129444. −0.529348
\(144\) 0 0
\(145\) 2598.69 0.0102644
\(146\) −28601.9 −0.111048
\(147\) 0 0
\(148\) −96459.6 −0.361986
\(149\) 406308. 1.49930 0.749651 0.661833i \(-0.230221\pi\)
0.749651 + 0.661833i \(0.230221\pi\)
\(150\) 0 0
\(151\) −416838. −1.48773 −0.743866 0.668328i \(-0.767010\pi\)
−0.743866 + 0.668328i \(0.767010\pi\)
\(152\) −120575. −0.423299
\(153\) 0 0
\(154\) 0 0
\(155\) −191295. −0.639548
\(156\) 0 0
\(157\) 119291. 0.386240 0.193120 0.981175i \(-0.438139\pi\)
0.193120 + 0.981175i \(0.438139\pi\)
\(158\) 11919.2 0.0379845
\(159\) 0 0
\(160\) 21504.0 0.0664078
\(161\) 0 0
\(162\) 0 0
\(163\) 47372.4 0.139655 0.0698275 0.997559i \(-0.477755\pi\)
0.0698275 + 0.997559i \(0.477755\pi\)
\(164\) 275230. 0.799071
\(165\) 0 0
\(166\) −183818. −0.517749
\(167\) 231669. 0.642802 0.321401 0.946943i \(-0.395846\pi\)
0.321401 + 0.946943i \(0.395846\pi\)
\(168\) 0 0
\(169\) −328518. −0.884795
\(170\) −89162.9 −0.236626
\(171\) 0 0
\(172\) 86431.7 0.222767
\(173\) −134339. −0.341262 −0.170631 0.985335i \(-0.554581\pi\)
−0.170631 + 0.985335i \(0.554581\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 160224. 0.389893
\(177\) 0 0
\(178\) −396160. −0.937175
\(179\) −46584.4 −0.108669 −0.0543347 0.998523i \(-0.517304\pi\)
−0.0543347 + 0.998523i \(0.517304\pi\)
\(180\) 0 0
\(181\) 829210. 1.88134 0.940672 0.339317i \(-0.110196\pi\)
0.940672 + 0.339317i \(0.110196\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −237912. −0.518049
\(185\) −126603. −0.271967
\(186\) 0 0
\(187\) −664342. −1.38927
\(188\) −30003.9 −0.0619131
\(189\) 0 0
\(190\) −158254. −0.318032
\(191\) 471917. 0.936013 0.468006 0.883725i \(-0.344972\pi\)
0.468006 + 0.883725i \(0.344972\pi\)
\(192\) 0 0
\(193\) 688354. 1.33021 0.665103 0.746752i \(-0.268388\pi\)
0.665103 + 0.746752i \(0.268388\pi\)
\(194\) −462194. −0.881698
\(195\) 0 0
\(196\) 0 0
\(197\) −311915. −0.572625 −0.286313 0.958136i \(-0.592430\pi\)
−0.286313 + 0.958136i \(0.592430\pi\)
\(198\) 0 0
\(199\) −287212. −0.514126 −0.257063 0.966395i \(-0.582755\pi\)
−0.257063 + 0.966395i \(0.582755\pi\)
\(200\) −171776. −0.303660
\(201\) 0 0
\(202\) −43805.9 −0.0755360
\(203\) 0 0
\(204\) 0 0
\(205\) 361239. 0.600357
\(206\) −550898. −0.904488
\(207\) 0 0
\(208\) −52946.2 −0.0848548
\(209\) −1.17913e6 −1.86723
\(210\) 0 0
\(211\) −460493. −0.712061 −0.356031 0.934474i \(-0.615870\pi\)
−0.356031 + 0.934474i \(0.615870\pi\)
\(212\) −299316. −0.457393
\(213\) 0 0
\(214\) −302292. −0.451224
\(215\) 113442. 0.167369
\(216\) 0 0
\(217\) 0 0
\(218\) 178105. 0.253825
\(219\) 0 0
\(220\) 210294. 0.292934
\(221\) 219533. 0.302356
\(222\) 0 0
\(223\) −1.19776e6 −1.61290 −0.806449 0.591304i \(-0.798613\pi\)
−0.806449 + 0.591304i \(0.798613\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −361826. −0.471225
\(227\) −894561. −1.15225 −0.576123 0.817363i \(-0.695435\pi\)
−0.576123 + 0.817363i \(0.695435\pi\)
\(228\) 0 0
\(229\) −259256. −0.326693 −0.163347 0.986569i \(-0.552229\pi\)
−0.163347 + 0.986569i \(0.552229\pi\)
\(230\) −312259. −0.389220
\(231\) 0 0
\(232\) 7919.83 0.00966042
\(233\) −211315. −0.255000 −0.127500 0.991839i \(-0.540695\pi\)
−0.127500 + 0.991839i \(0.540695\pi\)
\(234\) 0 0
\(235\) −39380.1 −0.0465165
\(236\) 40556.5 0.0474002
\(237\) 0 0
\(238\) 0 0
\(239\) −463.018 −0.000524328 0 −0.000262164 1.00000i \(-0.500083\pi\)
−0.000262164 1.00000i \(0.500083\pi\)
\(240\) 0 0
\(241\) 286395. 0.317631 0.158815 0.987308i \(-0.449233\pi\)
0.158815 + 0.987308i \(0.449233\pi\)
\(242\) 922667. 1.01276
\(243\) 0 0
\(244\) −33515.3 −0.0360386
\(245\) 0 0
\(246\) 0 0
\(247\) 389647. 0.406376
\(248\) −582993. −0.601913
\(249\) 0 0
\(250\) −487956. −0.493777
\(251\) 1.37168e6 1.37426 0.687129 0.726535i \(-0.258870\pi\)
0.687129 + 0.726535i \(0.258870\pi\)
\(252\) 0 0
\(253\) −2.32660e6 −2.28518
\(254\) 750828. 0.730224
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 759223. 0.717029 0.358515 0.933524i \(-0.383283\pi\)
0.358515 + 0.933524i \(0.383283\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −69491.9 −0.0637530
\(261\) 0 0
\(262\) −617649. −0.555890
\(263\) 1.07244e6 0.956061 0.478030 0.878343i \(-0.341351\pi\)
0.478030 + 0.878343i \(0.341351\pi\)
\(264\) 0 0
\(265\) −392852. −0.343648
\(266\) 0 0
\(267\) 0 0
\(268\) 937932. 0.797691
\(269\) 1.76611e6 1.48812 0.744059 0.668114i \(-0.232898\pi\)
0.744059 + 0.668114i \(0.232898\pi\)
\(270\) 0 0
\(271\) −2.05171e6 −1.69704 −0.848522 0.529160i \(-0.822507\pi\)
−0.848522 + 0.529160i \(0.822507\pi\)
\(272\) −271735. −0.222701
\(273\) 0 0
\(274\) −436951. −0.351606
\(275\) −1.67984e6 −1.33948
\(276\) 0 0
\(277\) 870682. 0.681805 0.340903 0.940099i \(-0.389267\pi\)
0.340903 + 0.940099i \(0.389267\pi\)
\(278\) −818781. −0.635413
\(279\) 0 0
\(280\) 0 0
\(281\) −2.35412e6 −1.77854 −0.889270 0.457383i \(-0.848787\pi\)
−0.889270 + 0.457383i \(0.848787\pi\)
\(282\) 0 0
\(283\) −2.19035e6 −1.62573 −0.812863 0.582454i \(-0.802092\pi\)
−0.812863 + 0.582454i \(0.802092\pi\)
\(284\) 500473. 0.368201
\(285\) 0 0
\(286\) −517775. −0.374306
\(287\) 0 0
\(288\) 0 0
\(289\) −293153. −0.206467
\(290\) 10394.8 0.00725805
\(291\) 0 0
\(292\) −114408. −0.0785231
\(293\) 807700. 0.549644 0.274822 0.961495i \(-0.411381\pi\)
0.274822 + 0.961495i \(0.411381\pi\)
\(294\) 0 0
\(295\) 53230.4 0.0356127
\(296\) −385838. −0.255962
\(297\) 0 0
\(298\) 1.62523e6 1.06017
\(299\) 768830. 0.497339
\(300\) 0 0
\(301\) 0 0
\(302\) −1.66735e6 −1.05199
\(303\) 0 0
\(304\) −482299. −0.299317
\(305\) −43988.8 −0.0270765
\(306\) 0 0
\(307\) 211516. 0.128085 0.0640424 0.997947i \(-0.479601\pi\)
0.0640424 + 0.997947i \(0.479601\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −765178. −0.452229
\(311\) 291709. 0.171021 0.0855104 0.996337i \(-0.472748\pi\)
0.0855104 + 0.996337i \(0.472748\pi\)
\(312\) 0 0
\(313\) −1.99598e6 −1.15158 −0.575791 0.817597i \(-0.695306\pi\)
−0.575791 + 0.817597i \(0.695306\pi\)
\(314\) 477162. 0.273113
\(315\) 0 0
\(316\) 47677.0 0.0268591
\(317\) 2.80957e6 1.57033 0.785167 0.619285i \(-0.212577\pi\)
0.785167 + 0.619285i \(0.212577\pi\)
\(318\) 0 0
\(319\) 77450.2 0.0426134
\(320\) 86016.0 0.0469574
\(321\) 0 0
\(322\) 0 0
\(323\) 1.99977e6 1.06653
\(324\) 0 0
\(325\) 555108. 0.291520
\(326\) 189490. 0.0987510
\(327\) 0 0
\(328\) 1.10092e6 0.565029
\(329\) 0 0
\(330\) 0 0
\(331\) 1.38050e6 0.692572 0.346286 0.938129i \(-0.387443\pi\)
0.346286 + 0.938129i \(0.387443\pi\)
\(332\) −735274. −0.366103
\(333\) 0 0
\(334\) 926677. 0.454530
\(335\) 1.23104e6 0.599320
\(336\) 0 0
\(337\) 566429. 0.271688 0.135844 0.990730i \(-0.456625\pi\)
0.135844 + 0.990730i \(0.456625\pi\)
\(338\) −1.31407e6 −0.625644
\(339\) 0 0
\(340\) −356652. −0.167320
\(341\) −5.70125e6 −2.65512
\(342\) 0 0
\(343\) 0 0
\(344\) 345727. 0.157520
\(345\) 0 0
\(346\) −537357. −0.241308
\(347\) −540207. −0.240845 −0.120422 0.992723i \(-0.538425\pi\)
−0.120422 + 0.992723i \(0.538425\pi\)
\(348\) 0 0
\(349\) 1.73807e6 0.763841 0.381921 0.924195i \(-0.375263\pi\)
0.381921 + 0.924195i \(0.375263\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 640895. 0.275696
\(353\) −1.07422e6 −0.458834 −0.229417 0.973328i \(-0.573682\pi\)
−0.229417 + 0.973328i \(0.573682\pi\)
\(354\) 0 0
\(355\) 656870. 0.276636
\(356\) −1.58464e6 −0.662682
\(357\) 0 0
\(358\) −186337. −0.0768409
\(359\) −121204. −0.0496341 −0.0248170 0.999692i \(-0.507900\pi\)
−0.0248170 + 0.999692i \(0.507900\pi\)
\(360\) 0 0
\(361\) 1.07328e6 0.433455
\(362\) 3.31684e6 1.33031
\(363\) 0 0
\(364\) 0 0
\(365\) −150160. −0.0589959
\(366\) 0 0
\(367\) −553829. −0.214640 −0.107320 0.994225i \(-0.534227\pi\)
−0.107320 + 0.994225i \(0.534227\pi\)
\(368\) −951646. −0.366316
\(369\) 0 0
\(370\) −506413. −0.192309
\(371\) 0 0
\(372\) 0 0
\(373\) −501478. −0.186629 −0.0933146 0.995637i \(-0.529746\pi\)
−0.0933146 + 0.995637i \(0.529746\pi\)
\(374\) −2.65737e6 −0.982364
\(375\) 0 0
\(376\) −120015. −0.0437792
\(377\) −25593.6 −0.00927422
\(378\) 0 0
\(379\) 999004. 0.357248 0.178624 0.983917i \(-0.442835\pi\)
0.178624 + 0.983917i \(0.442835\pi\)
\(380\) −633017. −0.224883
\(381\) 0 0
\(382\) 1.88767e6 0.661861
\(383\) −652464. −0.227279 −0.113640 0.993522i \(-0.536251\pi\)
−0.113640 + 0.993522i \(0.536251\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.75342e6 0.940597
\(387\) 0 0
\(388\) −1.84877e6 −0.623454
\(389\) 79253.0 0.0265547 0.0132774 0.999912i \(-0.495774\pi\)
0.0132774 + 0.999912i \(0.495774\pi\)
\(390\) 0 0
\(391\) 3.94585e6 1.30526
\(392\) 0 0
\(393\) 0 0
\(394\) −1.24766e6 −0.404907
\(395\) 62576.0 0.0201797
\(396\) 0 0
\(397\) 4.00886e6 1.27657 0.638284 0.769801i \(-0.279644\pi\)
0.638284 + 0.769801i \(0.279644\pi\)
\(398\) −1.14885e6 −0.363542
\(399\) 0 0
\(400\) −687104. −0.214720
\(401\) −674418. −0.209444 −0.104722 0.994502i \(-0.533395\pi\)
−0.104722 + 0.994502i \(0.533395\pi\)
\(402\) 0 0
\(403\) 1.88399e6 0.577850
\(404\) −175223. −0.0534120
\(405\) 0 0
\(406\) 0 0
\(407\) −3.77322e6 −1.12908
\(408\) 0 0
\(409\) −2.85413e6 −0.843656 −0.421828 0.906676i \(-0.638611\pi\)
−0.421828 + 0.906676i \(0.638611\pi\)
\(410\) 1.44496e6 0.424517
\(411\) 0 0
\(412\) −2.20359e6 −0.639570
\(413\) 0 0
\(414\) 0 0
\(415\) −965047. −0.275060
\(416\) −211785. −0.0600014
\(417\) 0 0
\(418\) −4.71653e6 −1.32033
\(419\) 4.66553e6 1.29827 0.649136 0.760672i \(-0.275130\pi\)
0.649136 + 0.760672i \(0.275130\pi\)
\(420\) 0 0
\(421\) −3.73317e6 −1.02653 −0.513266 0.858229i \(-0.671565\pi\)
−0.513266 + 0.858229i \(0.671565\pi\)
\(422\) −1.84197e6 −0.503503
\(423\) 0 0
\(424\) −1.19726e6 −0.323426
\(425\) 2.84897e6 0.765095
\(426\) 0 0
\(427\) 0 0
\(428\) −1.20917e6 −0.319064
\(429\) 0 0
\(430\) 453766. 0.118348
\(431\) −964670. −0.250141 −0.125071 0.992148i \(-0.539916\pi\)
−0.125071 + 0.992148i \(0.539916\pi\)
\(432\) 0 0
\(433\) −6.18096e6 −1.58429 −0.792147 0.610330i \(-0.791037\pi\)
−0.792147 + 0.610330i \(0.791037\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 712421. 0.179482
\(437\) 7.00344e6 1.75432
\(438\) 0 0
\(439\) −215135. −0.0532782 −0.0266391 0.999645i \(-0.508480\pi\)
−0.0266391 + 0.999645i \(0.508480\pi\)
\(440\) 841174. 0.207135
\(441\) 0 0
\(442\) 878132. 0.213798
\(443\) 7.19867e6 1.74278 0.871391 0.490589i \(-0.163218\pi\)
0.871391 + 0.490589i \(0.163218\pi\)
\(444\) 0 0
\(445\) −2.07984e6 −0.497886
\(446\) −4.79103e6 −1.14049
\(447\) 0 0
\(448\) 0 0
\(449\) −3.92153e6 −0.917994 −0.458997 0.888438i \(-0.651791\pi\)
−0.458997 + 0.888438i \(0.651791\pi\)
\(450\) 0 0
\(451\) 1.07662e7 2.49242
\(452\) −1.44730e6 −0.333207
\(453\) 0 0
\(454\) −3.57824e6 −0.814761
\(455\) 0 0
\(456\) 0 0
\(457\) 1.32168e6 0.296030 0.148015 0.988985i \(-0.452712\pi\)
0.148015 + 0.988985i \(0.452712\pi\)
\(458\) −1.03702e6 −0.231007
\(459\) 0 0
\(460\) −1.24904e6 −0.275220
\(461\) 75459.1 0.0165371 0.00826855 0.999966i \(-0.497368\pi\)
0.00826855 + 0.999966i \(0.497368\pi\)
\(462\) 0 0
\(463\) −3.28757e6 −0.712727 −0.356363 0.934347i \(-0.615984\pi\)
−0.356363 + 0.934347i \(0.615984\pi\)
\(464\) 31679.3 0.00683095
\(465\) 0 0
\(466\) −845259. −0.180312
\(467\) 643382. 0.136514 0.0682569 0.997668i \(-0.478256\pi\)
0.0682569 + 0.997668i \(0.478256\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −157520. −0.0328921
\(471\) 0 0
\(472\) 162226. 0.0335170
\(473\) 3.38096e6 0.694843
\(474\) 0 0
\(475\) 5.05660e6 1.02831
\(476\) 0 0
\(477\) 0 0
\(478\) −1852.07 −0.000370756 0
\(479\) 7.42648e6 1.47892 0.739459 0.673202i \(-0.235081\pi\)
0.739459 + 0.673202i \(0.235081\pi\)
\(480\) 0 0
\(481\) 1.24687e6 0.245730
\(482\) 1.14558e6 0.224599
\(483\) 0 0
\(484\) 3.69067e6 0.716130
\(485\) −2.42652e6 −0.468413
\(486\) 0 0
\(487\) −4.17085e6 −0.796896 −0.398448 0.917191i \(-0.630451\pi\)
−0.398448 + 0.917191i \(0.630451\pi\)
\(488\) −134061. −0.0254832
\(489\) 0 0
\(490\) 0 0
\(491\) 3.73674e6 0.699502 0.349751 0.936843i \(-0.386266\pi\)
0.349751 + 0.936843i \(0.386266\pi\)
\(492\) 0 0
\(493\) −131353. −0.0243402
\(494\) 1.55859e6 0.287351
\(495\) 0 0
\(496\) −2.33197e6 −0.425617
\(497\) 0 0
\(498\) 0 0
\(499\) 8.70862e6 1.56566 0.782831 0.622235i \(-0.213775\pi\)
0.782831 + 0.622235i \(0.213775\pi\)
\(500\) −1.95182e6 −0.349153
\(501\) 0 0
\(502\) 5.48672e6 0.971748
\(503\) −3.28384e6 −0.578711 −0.289355 0.957222i \(-0.593441\pi\)
−0.289355 + 0.957222i \(0.593441\pi\)
\(504\) 0 0
\(505\) −229981. −0.0401294
\(506\) −9.30641e6 −1.61587
\(507\) 0 0
\(508\) 3.00331e6 0.516346
\(509\) 9.43703e6 1.61451 0.807255 0.590203i \(-0.200952\pi\)
0.807255 + 0.590203i \(0.200952\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) 3.03689e6 0.507016
\(515\) −2.89221e6 −0.480521
\(516\) 0 0
\(517\) −1.17366e6 −0.193116
\(518\) 0 0
\(519\) 0 0
\(520\) −277967. −0.0450802
\(521\) −5.90726e6 −0.953437 −0.476719 0.879056i \(-0.658174\pi\)
−0.476719 + 0.879056i \(0.658174\pi\)
\(522\) 0 0
\(523\) 654337. 0.104604 0.0523019 0.998631i \(-0.483344\pi\)
0.0523019 + 0.998631i \(0.483344\pi\)
\(524\) −2.47060e6 −0.393073
\(525\) 0 0
\(526\) 4.28978e6 0.676037
\(527\) 9.66915e6 1.51657
\(528\) 0 0
\(529\) 7.38248e6 1.14700
\(530\) −1.57141e6 −0.242996
\(531\) 0 0
\(532\) 0 0
\(533\) −3.55771e6 −0.542440
\(534\) 0 0
\(535\) −1.58703e6 −0.239718
\(536\) 3.75173e6 0.564052
\(537\) 0 0
\(538\) 7.06445e6 1.05226
\(539\) 0 0
\(540\) 0 0
\(541\) −863115. −0.126787 −0.0633936 0.997989i \(-0.520192\pi\)
−0.0633936 + 0.997989i \(0.520192\pi\)
\(542\) −8.20685e6 −1.19999
\(543\) 0 0
\(544\) −1.08694e6 −0.157474
\(545\) 935052. 0.134848
\(546\) 0 0
\(547\) −5.45692e6 −0.779794 −0.389897 0.920859i \(-0.627489\pi\)
−0.389897 + 0.920859i \(0.627489\pi\)
\(548\) −1.74781e6 −0.248623
\(549\) 0 0
\(550\) −6.71938e6 −0.947158
\(551\) −233137. −0.0327139
\(552\) 0 0
\(553\) 0 0
\(554\) 3.48273e6 0.482109
\(555\) 0 0
\(556\) −3.27513e6 −0.449305
\(557\) −1.11776e7 −1.52655 −0.763275 0.646074i \(-0.776410\pi\)
−0.763275 + 0.646074i \(0.776410\pi\)
\(558\) 0 0
\(559\) −1.11724e6 −0.151223
\(560\) 0 0
\(561\) 0 0
\(562\) −9.41650e6 −1.25762
\(563\) −880265. −0.117042 −0.0585211 0.998286i \(-0.518638\pi\)
−0.0585211 + 0.998286i \(0.518638\pi\)
\(564\) 0 0
\(565\) −1.89959e6 −0.250344
\(566\) −8.76140e6 −1.14956
\(567\) 0 0
\(568\) 2.00189e6 0.260357
\(569\) 1.54972e6 0.200665 0.100332 0.994954i \(-0.468009\pi\)
0.100332 + 0.994954i \(0.468009\pi\)
\(570\) 0 0
\(571\) −1.09701e7 −1.40806 −0.704032 0.710168i \(-0.748619\pi\)
−0.704032 + 0.710168i \(0.748619\pi\)
\(572\) −2.07110e6 −0.264674
\(573\) 0 0
\(574\) 0 0
\(575\) 9.97742e6 1.25849
\(576\) 0 0
\(577\) −1.25868e7 −1.57390 −0.786948 0.617019i \(-0.788340\pi\)
−0.786948 + 0.617019i \(0.788340\pi\)
\(578\) −1.17261e6 −0.145994
\(579\) 0 0
\(580\) 41579.1 0.00513222
\(581\) 0 0
\(582\) 0 0
\(583\) −1.17084e7 −1.42667
\(584\) −457630. −0.0555242
\(585\) 0 0
\(586\) 3.23080e6 0.388657
\(587\) −1.19962e7 −1.43697 −0.718484 0.695544i \(-0.755164\pi\)
−0.718484 + 0.695544i \(0.755164\pi\)
\(588\) 0 0
\(589\) 1.71617e7 2.03831
\(590\) 212921. 0.0251819
\(591\) 0 0
\(592\) −1.54335e6 −0.180993
\(593\) −5.32309e6 −0.621623 −0.310811 0.950472i \(-0.600601\pi\)
−0.310811 + 0.950472i \(0.600601\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.50092e6 0.749651
\(597\) 0 0
\(598\) 3.07532e6 0.351672
\(599\) −7.55513e6 −0.860350 −0.430175 0.902746i \(-0.641548\pi\)
−0.430175 + 0.902746i \(0.641548\pi\)
\(600\) 0 0
\(601\) 4.44758e6 0.502270 0.251135 0.967952i \(-0.419196\pi\)
0.251135 + 0.967952i \(0.419196\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −6.66941e6 −0.743866
\(605\) 4.84400e6 0.538042
\(606\) 0 0
\(607\) 5.57320e6 0.613950 0.306975 0.951718i \(-0.400683\pi\)
0.306975 + 0.951718i \(0.400683\pi\)
\(608\) −1.92919e6 −0.211649
\(609\) 0 0
\(610\) −175955. −0.0191460
\(611\) 387840. 0.0420290
\(612\) 0 0
\(613\) −1.11265e7 −1.19593 −0.597965 0.801522i \(-0.704024\pi\)
−0.597965 + 0.801522i \(0.704024\pi\)
\(614\) 846064. 0.0905696
\(615\) 0 0
\(616\) 0 0
\(617\) 1.07454e7 1.13634 0.568170 0.822911i \(-0.307651\pi\)
0.568170 + 0.822911i \(0.307651\pi\)
\(618\) 0 0
\(619\) 1.35756e7 1.42408 0.712038 0.702141i \(-0.247772\pi\)
0.712038 + 0.702141i \(0.247772\pi\)
\(620\) −3.06071e6 −0.319774
\(621\) 0 0
\(622\) 1.16684e6 0.120930
\(623\) 0 0
\(624\) 0 0
\(625\) 5.82573e6 0.596555
\(626\) −7.98391e6 −0.814291
\(627\) 0 0
\(628\) 1.90865e6 0.193120
\(629\) 6.39927e6 0.644917
\(630\) 0 0
\(631\) 1.27986e7 1.27964 0.639820 0.768525i \(-0.279009\pi\)
0.639820 + 0.768525i \(0.279009\pi\)
\(632\) 190708. 0.0189922
\(633\) 0 0
\(634\) 1.12383e7 1.11039
\(635\) 3.94184e6 0.387941
\(636\) 0 0
\(637\) 0 0
\(638\) 309801. 0.0301322
\(639\) 0 0
\(640\) 344064. 0.0332039
\(641\) 884833. 0.0850582 0.0425291 0.999095i \(-0.486458\pi\)
0.0425291 + 0.999095i \(0.486458\pi\)
\(642\) 0 0
\(643\) 6.66271e6 0.635511 0.317756 0.948173i \(-0.397071\pi\)
0.317756 + 0.948173i \(0.397071\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 7.99910e6 0.754153
\(647\) 1.69177e7 1.58885 0.794423 0.607365i \(-0.207773\pi\)
0.794423 + 0.607365i \(0.207773\pi\)
\(648\) 0 0
\(649\) 1.58645e6 0.147848
\(650\) 2.22043e6 0.206136
\(651\) 0 0
\(652\) 757959. 0.0698275
\(653\) −9.49307e6 −0.871212 −0.435606 0.900137i \(-0.643466\pi\)
−0.435606 + 0.900137i \(0.643466\pi\)
\(654\) 0 0
\(655\) −3.24266e6 −0.295323
\(656\) 4.40367e6 0.399536
\(657\) 0 0
\(658\) 0 0
\(659\) 4.97563e6 0.446308 0.223154 0.974783i \(-0.428365\pi\)
0.223154 + 0.974783i \(0.428365\pi\)
\(660\) 0 0
\(661\) 2.11531e7 1.88309 0.941543 0.336894i \(-0.109376\pi\)
0.941543 + 0.336894i \(0.109376\pi\)
\(662\) 5.52198e6 0.489722
\(663\) 0 0
\(664\) −2.94110e6 −0.258874
\(665\) 0 0
\(666\) 0 0
\(667\) −460015. −0.0400366
\(668\) 3.70671e6 0.321401
\(669\) 0 0
\(670\) 4.92414e6 0.423783
\(671\) −1.31102e6 −0.112410
\(672\) 0 0
\(673\) 417573. 0.0355382 0.0177691 0.999842i \(-0.494344\pi\)
0.0177691 + 0.999842i \(0.494344\pi\)
\(674\) 2.26572e6 0.192112
\(675\) 0 0
\(676\) −5.25629e6 −0.442397
\(677\) −2.62468e6 −0.220092 −0.110046 0.993926i \(-0.535100\pi\)
−0.110046 + 0.993926i \(0.535100\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.42661e6 −0.118313
\(681\) 0 0
\(682\) −2.28050e7 −1.87745
\(683\) 8.74455e6 0.717275 0.358637 0.933477i \(-0.383241\pi\)
0.358637 + 0.933477i \(0.383241\pi\)
\(684\) 0 0
\(685\) −2.29399e6 −0.186795
\(686\) 0 0
\(687\) 0 0
\(688\) 1.38291e6 0.111384
\(689\) 3.86905e6 0.310496
\(690\) 0 0
\(691\) 4.39667e6 0.350291 0.175146 0.984543i \(-0.443960\pi\)
0.175146 + 0.984543i \(0.443960\pi\)
\(692\) −2.14943e6 −0.170631
\(693\) 0 0
\(694\) −2.16083e6 −0.170303
\(695\) −4.29860e6 −0.337571
\(696\) 0 0
\(697\) −1.82591e7 −1.42363
\(698\) 6.95227e6 0.540117
\(699\) 0 0
\(700\) 0 0
\(701\) −6.51339e6 −0.500624 −0.250312 0.968165i \(-0.580533\pi\)
−0.250312 + 0.968165i \(0.580533\pi\)
\(702\) 0 0
\(703\) 1.13580e7 0.866789
\(704\) 2.56358e6 0.194946
\(705\) 0 0
\(706\) −4.29687e6 −0.324445
\(707\) 0 0
\(708\) 0 0
\(709\) −1.04651e7 −0.781859 −0.390929 0.920421i \(-0.627846\pi\)
−0.390929 + 0.920421i \(0.627846\pi\)
\(710\) 2.62748e6 0.195611
\(711\) 0 0
\(712\) −6.33856e6 −0.468587
\(713\) 3.38625e7 2.49457
\(714\) 0 0
\(715\) −2.71832e6 −0.198855
\(716\) −745350. −0.0543347
\(717\) 0 0
\(718\) −484815. −0.0350966
\(719\) 1.68149e7 1.21303 0.606516 0.795071i \(-0.292567\pi\)
0.606516 + 0.795071i \(0.292567\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4.29311e6 0.306499
\(723\) 0 0
\(724\) 1.32674e7 0.940672
\(725\) −332138. −0.0234679
\(726\) 0 0
\(727\) −1.71928e7 −1.20646 −0.603228 0.797569i \(-0.706119\pi\)
−0.603228 + 0.797569i \(0.706119\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −600640. −0.0417164
\(731\) −5.73400e6 −0.396885
\(732\) 0 0
\(733\) 1.97365e7 1.35679 0.678393 0.734700i \(-0.262677\pi\)
0.678393 + 0.734700i \(0.262677\pi\)
\(734\) −2.21531e6 −0.151773
\(735\) 0 0
\(736\) −3.80659e6 −0.259025
\(737\) 3.66892e7 2.48811
\(738\) 0 0
\(739\) 1.28719e7 0.867022 0.433511 0.901148i \(-0.357275\pi\)
0.433511 + 0.901148i \(0.357275\pi\)
\(740\) −2.02565e6 −0.135983
\(741\) 0 0
\(742\) 0 0
\(743\) −2.45606e7 −1.63218 −0.816089 0.577927i \(-0.803862\pi\)
−0.816089 + 0.577927i \(0.803862\pi\)
\(744\) 0 0
\(745\) 8.53246e6 0.563227
\(746\) −2.00591e6 −0.131967
\(747\) 0 0
\(748\) −1.06295e7 −0.694636
\(749\) 0 0
\(750\) 0 0
\(751\) −325965. −0.0210898 −0.0105449 0.999944i \(-0.503357\pi\)
−0.0105449 + 0.999944i \(0.503357\pi\)
\(752\) −480062. −0.0309566
\(753\) 0 0
\(754\) −102374. −0.00655786
\(755\) −8.75360e6 −0.558881
\(756\) 0 0
\(757\) 1.84659e7 1.17120 0.585599 0.810601i \(-0.300859\pi\)
0.585599 + 0.810601i \(0.300859\pi\)
\(758\) 3.99602e6 0.252612
\(759\) 0 0
\(760\) −2.53207e6 −0.159016
\(761\) −5.12626e6 −0.320877 −0.160439 0.987046i \(-0.551291\pi\)
−0.160439 + 0.987046i \(0.551291\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 7.55066e6 0.468006
\(765\) 0 0
\(766\) −2.60985e6 −0.160711
\(767\) −524246. −0.0321771
\(768\) 0 0
\(769\) 1.63432e6 0.0996602 0.0498301 0.998758i \(-0.484132\pi\)
0.0498301 + 0.998758i \(0.484132\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.10137e7 0.665103
\(773\) 4.28257e6 0.257784 0.128892 0.991659i \(-0.458858\pi\)
0.128892 + 0.991659i \(0.458858\pi\)
\(774\) 0 0
\(775\) 2.44493e7 1.46222
\(776\) −7.39510e6 −0.440849
\(777\) 0 0
\(778\) 317012. 0.0187770
\(779\) −3.24079e7 −1.91341
\(780\) 0 0
\(781\) 1.95770e7 1.14847
\(782\) 1.57834e7 0.922962
\(783\) 0 0
\(784\) 0 0
\(785\) 2.50510e6 0.145095
\(786\) 0 0
\(787\) −7.82963e6 −0.450614 −0.225307 0.974288i \(-0.572338\pi\)
−0.225307 + 0.974288i \(0.572338\pi\)
\(788\) −4.99064e6 −0.286313
\(789\) 0 0
\(790\) 250304. 0.0142692
\(791\) 0 0
\(792\) 0 0
\(793\) 433229. 0.0244644
\(794\) 1.60354e7 0.902670
\(795\) 0 0
\(796\) −4.59539e6 −0.257063
\(797\) 3.68238e6 0.205344 0.102672 0.994715i \(-0.467261\pi\)
0.102672 + 0.994715i \(0.467261\pi\)
\(798\) 0 0
\(799\) 1.99050e6 0.110305
\(800\) −2.74842e6 −0.151830
\(801\) 0 0
\(802\) −2.69767e6 −0.148099
\(803\) −4.47529e6 −0.244925
\(804\) 0 0
\(805\) 0 0
\(806\) 7.53595e6 0.408602
\(807\) 0 0
\(808\) −700894. −0.0377680
\(809\) −2.08181e7 −1.11833 −0.559165 0.829056i \(-0.688878\pi\)
−0.559165 + 0.829056i \(0.688878\pi\)
\(810\) 0 0
\(811\) 3.03542e7 1.62057 0.810283 0.586039i \(-0.199313\pi\)
0.810283 + 0.586039i \(0.199313\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.50929e7 −0.798383
\(815\) 994821. 0.0524627
\(816\) 0 0
\(817\) −1.01772e7 −0.533426
\(818\) −1.14165e7 −0.596555
\(819\) 0 0
\(820\) 5.77982e6 0.300179
\(821\) −2.74387e7 −1.42071 −0.710355 0.703843i \(-0.751466\pi\)
−0.710355 + 0.703843i \(0.751466\pi\)
\(822\) 0 0
\(823\) 1.59126e7 0.818919 0.409459 0.912328i \(-0.365717\pi\)
0.409459 + 0.912328i \(0.365717\pi\)
\(824\) −8.81436e6 −0.452244
\(825\) 0 0
\(826\) 0 0
\(827\) −1.40824e7 −0.716001 −0.358001 0.933721i \(-0.616541\pi\)
−0.358001 + 0.933721i \(0.616541\pi\)
\(828\) 0 0
\(829\) 2.18883e7 1.10618 0.553089 0.833122i \(-0.313449\pi\)
0.553089 + 0.833122i \(0.313449\pi\)
\(830\) −3.86019e6 −0.194497
\(831\) 0 0
\(832\) −847139. −0.0424274
\(833\) 0 0
\(834\) 0 0
\(835\) 4.86505e6 0.241475
\(836\) −1.88661e7 −0.933613
\(837\) 0 0
\(838\) 1.86621e7 0.918017
\(839\) 1.98669e7 0.974372 0.487186 0.873298i \(-0.338023\pi\)
0.487186 + 0.873298i \(0.338023\pi\)
\(840\) 0 0
\(841\) −2.04958e7 −0.999253
\(842\) −1.49327e7 −0.725868
\(843\) 0 0
\(844\) −7.36790e6 −0.356031
\(845\) −6.89888e6 −0.332381
\(846\) 0 0
\(847\) 0 0
\(848\) −4.78905e6 −0.228697
\(849\) 0 0
\(850\) 1.13959e7 0.541004
\(851\) 2.24110e7 1.06081
\(852\) 0 0
\(853\) 8.75258e6 0.411873 0.205937 0.978565i \(-0.433976\pi\)
0.205937 + 0.978565i \(0.433976\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −4.83667e6 −0.225612
\(857\) 1.95477e6 0.0909166 0.0454583 0.998966i \(-0.485525\pi\)
0.0454583 + 0.998966i \(0.485525\pi\)
\(858\) 0 0
\(859\) 4.98450e6 0.230483 0.115241 0.993338i \(-0.463236\pi\)
0.115241 + 0.993338i \(0.463236\pi\)
\(860\) 1.81506e6 0.0836847
\(861\) 0 0
\(862\) −3.85868e6 −0.176877
\(863\) 1.69931e7 0.776685 0.388343 0.921515i \(-0.373048\pi\)
0.388343 + 0.921515i \(0.373048\pi\)
\(864\) 0 0
\(865\) −2.82112e6 −0.128198
\(866\) −2.47238e7 −1.12027
\(867\) 0 0
\(868\) 0 0
\(869\) 1.86498e6 0.0837772
\(870\) 0 0
\(871\) −1.21240e7 −0.541503
\(872\) 2.84968e6 0.126913
\(873\) 0 0
\(874\) 2.80138e7 1.24049
\(875\) 0 0
\(876\) 0 0
\(877\) 1.81959e7 0.798869 0.399434 0.916762i \(-0.369207\pi\)
0.399434 + 0.916762i \(0.369207\pi\)
\(878\) −860539. −0.0376733
\(879\) 0 0
\(880\) 3.36470e6 0.146467
\(881\) −1.77637e7 −0.771068 −0.385534 0.922694i \(-0.625983\pi\)
−0.385534 + 0.922694i \(0.625983\pi\)
\(882\) 0 0
\(883\) 1.71479e6 0.0740131 0.0370065 0.999315i \(-0.488218\pi\)
0.0370065 + 0.999315i \(0.488218\pi\)
\(884\) 3.51253e6 0.151178
\(885\) 0 0
\(886\) 2.87947e7 1.23233
\(887\) 2.42436e7 1.03464 0.517318 0.855793i \(-0.326930\pi\)
0.517318 + 0.855793i \(0.326930\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −8.31936e6 −0.352058
\(891\) 0 0
\(892\) −1.91641e7 −0.806449
\(893\) 3.53292e6 0.148253
\(894\) 0 0
\(895\) −978272. −0.0408227
\(896\) 0 0
\(897\) 0 0
\(898\) −1.56861e7 −0.649120
\(899\) −1.12725e6 −0.0465179
\(900\) 0 0
\(901\) 1.98570e7 0.814897
\(902\) 4.30647e7 1.76240
\(903\) 0 0
\(904\) −5.78921e6 −0.235613
\(905\) 1.74134e7 0.706745
\(906\) 0 0
\(907\) −1.90432e7 −0.768639 −0.384319 0.923200i \(-0.625564\pi\)
−0.384319 + 0.923200i \(0.625564\pi\)
\(908\) −1.43130e7 −0.576123
\(909\) 0 0
\(910\) 0 0
\(911\) 3.18731e7 1.27242 0.636208 0.771518i \(-0.280502\pi\)
0.636208 + 0.771518i \(0.280502\pi\)
\(912\) 0 0
\(913\) −2.87618e7 −1.14193
\(914\) 5.28671e6 0.209325
\(915\) 0 0
\(916\) −4.14810e6 −0.163347
\(917\) 0 0
\(918\) 0 0
\(919\) −2.94858e7 −1.15166 −0.575830 0.817569i \(-0.695321\pi\)
−0.575830 + 0.817569i \(0.695321\pi\)
\(920\) −4.99614e6 −0.194610
\(921\) 0 0
\(922\) 301836. 0.0116935
\(923\) −6.46927e6 −0.249949
\(924\) 0 0
\(925\) 1.61811e7 0.621804
\(926\) −1.31503e7 −0.503974
\(927\) 0 0
\(928\) 126717. 0.00483021
\(929\) 9.73871e6 0.370222 0.185111 0.982718i \(-0.440736\pi\)
0.185111 + 0.982718i \(0.440736\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3.38104e6 −0.127500
\(933\) 0 0
\(934\) 2.57353e6 0.0965299
\(935\) −1.39512e7 −0.521893
\(936\) 0 0
\(937\) 2.66734e7 0.992498 0.496249 0.868180i \(-0.334710\pi\)
0.496249 + 0.868180i \(0.334710\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −630081. −0.0232582
\(941\) −3.22865e6 −0.118863 −0.0594315 0.998232i \(-0.518929\pi\)
−0.0594315 + 0.998232i \(0.518929\pi\)
\(942\) 0 0
\(943\) −6.39456e7 −2.34170
\(944\) 648903. 0.0237001
\(945\) 0 0
\(946\) 1.35238e7 0.491328
\(947\) 4.59244e6 0.166406 0.0832029 0.996533i \(-0.473485\pi\)
0.0832029 + 0.996533i \(0.473485\pi\)
\(948\) 0 0
\(949\) 1.47887e6 0.0533045
\(950\) 2.02264e7 0.727126
\(951\) 0 0
\(952\) 0 0
\(953\) −2.97125e7 −1.05976 −0.529880 0.848073i \(-0.677763\pi\)
−0.529880 + 0.848073i \(0.677763\pi\)
\(954\) 0 0
\(955\) 9.91025e6 0.351622
\(956\) −7408.29 −0.000262164 0
\(957\) 0 0
\(958\) 2.97059e7 1.04575
\(959\) 0 0
\(960\) 0 0
\(961\) 5.43495e7 1.89840
\(962\) 4.98747e6 0.173757
\(963\) 0 0
\(964\) 4.58232e6 0.158815
\(965\) 1.44554e7 0.499704
\(966\) 0 0
\(967\) 7.64435e6 0.262890 0.131445 0.991323i \(-0.458038\pi\)
0.131445 + 0.991323i \(0.458038\pi\)
\(968\) 1.47627e7 0.506380
\(969\) 0 0
\(970\) −9.70607e6 −0.331218
\(971\) 4.99621e7 1.70056 0.850281 0.526329i \(-0.176432\pi\)
0.850281 + 0.526329i \(0.176432\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.66834e7 −0.563491
\(975\) 0 0
\(976\) −536245. −0.0180193
\(977\) −4.05394e7 −1.35876 −0.679378 0.733789i \(-0.737750\pi\)
−0.679378 + 0.733789i \(0.737750\pi\)
\(978\) 0 0
\(979\) −6.19865e7 −2.06700
\(980\) 0 0
\(981\) 0 0
\(982\) 1.49470e7 0.494623
\(983\) 4.13056e7 1.36341 0.681703 0.731629i \(-0.261239\pi\)
0.681703 + 0.731629i \(0.261239\pi\)
\(984\) 0 0
\(985\) −6.55021e6 −0.215112
\(986\) −525413. −0.0172111
\(987\) 0 0
\(988\) 6.23434e6 0.203188
\(989\) −2.00811e7 −0.652826
\(990\) 0 0
\(991\) −1.84084e7 −0.595431 −0.297715 0.954655i \(-0.596225\pi\)
−0.297715 + 0.954655i \(0.596225\pi\)
\(992\) −9.32789e6 −0.300957
\(993\) 0 0
\(994\) 0 0
\(995\) −6.03144e6 −0.193136
\(996\) 0 0
\(997\) −3.39708e7 −1.08235 −0.541175 0.840910i \(-0.682020\pi\)
−0.541175 + 0.840910i \(0.682020\pi\)
\(998\) 3.48345e7 1.10709
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.bt.1.2 2
3.2 odd 2 98.6.a.c.1.2 2
7.2 even 3 126.6.g.e.109.2 4
7.4 even 3 126.6.g.e.37.2 4
7.6 odd 2 882.6.a.bl.1.2 2
12.11 even 2 784.6.a.bc.1.1 2
21.2 odd 6 14.6.c.b.11.1 yes 4
21.5 even 6 98.6.c.f.67.2 4
21.11 odd 6 14.6.c.b.9.1 4
21.17 even 6 98.6.c.f.79.2 4
21.20 even 2 98.6.a.f.1.1 2
84.11 even 6 112.6.i.b.65.2 4
84.23 even 6 112.6.i.b.81.2 4
84.83 odd 2 784.6.a.r.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.b.9.1 4 21.11 odd 6
14.6.c.b.11.1 yes 4 21.2 odd 6
98.6.a.c.1.2 2 3.2 odd 2
98.6.a.f.1.1 2 21.20 even 2
98.6.c.f.67.2 4 21.5 even 6
98.6.c.f.79.2 4 21.17 even 6
112.6.i.b.65.2 4 84.11 even 6
112.6.i.b.81.2 4 84.23 even 6
126.6.g.e.37.2 4 7.4 even 3
126.6.g.e.109.2 4 7.2 even 3
784.6.a.r.1.2 2 84.83 odd 2
784.6.a.bc.1.1 2 12.11 even 2
882.6.a.bl.1.2 2 7.6 odd 2
882.6.a.bt.1.2 2 1.1 even 1 trivial