Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8820,2,Mod(881,8820)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8820, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8820.881");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8820 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8820.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(70.4280545828\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{12} - 2 x^{11} - 9 x^{10} + 58 x^{9} - 78 x^{8} - 298 x^{7} + 1341 x^{6} - 2086 x^{5} - 3822 x^{4} + \cdots + 117649 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{6}\cdot 3^{2} \) |
Twist minimal: | no (minimal twist has level 1260) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 881.2 | ||
Root | \(0.260926 + 2.63285i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 8820.881 |
Dual form | 8820.2.d.b.881.11 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8820\mathbb{Z}\right)^\times\).
\(n\) | \(1081\) | \(4411\) | \(7057\) | \(7841\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.00000 | 0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − 3.53366i | − 1.06544i | −0.846292 | − | 0.532719i | \(-0.821170\pi\) | ||||
0.846292 | − | 0.532719i | \(-0.178830\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0.599777i | 0.166348i | 0.996535 | + | 0.0831742i | \(0.0265058\pi\) | ||||
−0.996535 | + | 0.0831742i | \(0.973494\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −1.69803 | −0.411834 | −0.205917 | − | 0.978569i | \(-0.566018\pi\) | ||||
−0.205917 | + | 0.978569i | \(0.566018\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 7.78350i | 1.78566i | 0.450397 | + | 0.892829i | \(0.351283\pi\) | ||||
−0.450397 | + | 0.892829i | \(0.648717\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 3.31319i | 0.690848i | 0.938447 | + | 0.345424i | \(0.112265\pi\) | ||||
−0.938447 | + | 0.345424i | \(0.887735\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − 0.456069i | − 0.0846898i | −0.999103 | − | 0.0423449i | \(-0.986517\pi\) | ||||
0.999103 | − | 0.0423449i | \(-0.0134828\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | − 1.05585i | − 0.189636i | −0.995495 | − | 0.0948178i | \(-0.969773\pi\) | ||||
0.995495 | − | 0.0948178i | \(-0.0302268\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −0.386249 | −0.0634989 | −0.0317494 | − | 0.999496i | \(-0.510108\pi\) | ||||
−0.0317494 | + | 0.999496i | \(0.510108\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −0.478149 | −0.0746743 | −0.0373372 | − | 0.999303i | \(-0.511888\pi\) | ||||
−0.0373372 | + | 0.999303i | \(0.511888\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −4.21237 | −0.642381 | −0.321190 | − | 0.947015i | \(-0.604083\pi\) | ||||
−0.321190 | + | 0.947015i | \(0.604083\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 8.55804 | 1.24832 | 0.624159 | − | 0.781297i | \(-0.285442\pi\) | ||||
0.624159 | + | 0.781297i | \(0.285442\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 0 | 0 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 3.98973i | − 0.548031i | −0.961725 | − | 0.274015i | \(-0.911648\pi\) | ||||
0.961725 | − | 0.274015i | \(-0.0883519\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | − 3.53366i | − 0.476478i | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −2.60613 | −0.339290 | −0.169645 | − | 0.985505i | \(-0.554262\pi\) | ||||
−0.169645 | + | 0.985505i | \(0.554262\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 11.0895i | 1.41986i | 0.704271 | + | 0.709932i | \(0.251274\pi\) | ||||
−0.704271 | + | 0.709932i | \(0.748726\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0.599777i | 0.0743932i | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 2.87422 | 0.351142 | 0.175571 | − | 0.984467i | \(-0.443823\pi\) | ||||
0.175571 | + | 0.984467i | \(0.443823\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0.336875i | 0.0399797i | 0.999800 | + | 0.0199898i | \(0.00636339\pi\) | ||||
−0.999800 | + | 0.0199898i | \(0.993637\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 3.08479i | 0.361047i | 0.983571 | + | 0.180524i | \(0.0577792\pi\) | ||||
−0.983571 | + | 0.180524i | \(0.942221\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −13.6089 | −1.53112 | −0.765562 | − | 0.643362i | \(-0.777539\pi\) | ||||
−0.765562 | + | 0.643362i | \(0.777539\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −16.2901 | −1.78807 | −0.894036 | − | 0.447996i | \(-0.852138\pi\) | ||||
−0.894036 | + | 0.447996i | \(0.852138\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −1.69803 | −0.184178 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −10.6964 | −1.13382 | −0.566910 | − | 0.823779i | \(-0.691861\pi\) | ||||
−0.566910 | + | 0.823779i | \(0.691861\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 7.78350i | 0.798570i | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 2.18092i | 0.221439i | 0.993852 | + | 0.110719i | \(0.0353155\pi\) | ||||
−0.993852 | + | 0.110719i | \(0.964685\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 7.70835 | 0.767009 | 0.383505 | − | 0.923539i | \(-0.374717\pi\) | ||||
0.383505 | + | 0.923539i | \(0.374717\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0.734562i | 0.0723785i | 0.999345 | + | 0.0361893i | \(0.0115219\pi\) | ||||
−0.999345 | + | 0.0361893i | \(0.988478\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 19.9774i | 1.93129i | 0.259867 | + | 0.965645i | \(0.416321\pi\) | ||||
−0.259867 | + | 0.965645i | \(0.583679\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −0.443025 | −0.0424341 | −0.0212170 | − | 0.999775i | \(-0.506754\pi\) | ||||
−0.0212170 | + | 0.999775i | \(0.506754\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 14.6235i | 1.37566i | 0.725871 | + | 0.687830i | \(0.241437\pi\) | ||||
−0.725871 | + | 0.687830i | \(0.758563\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 3.31319i | 0.308957i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −1.48673 | −0.135157 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 1.00000 | 0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0.961155 | 0.0852887 | 0.0426444 | − | 0.999090i | \(-0.486422\pi\) | ||||
0.0426444 | + | 0.999090i | \(0.486422\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 15.9947 | 1.39746 | 0.698731 | − | 0.715384i | \(-0.253748\pi\) | ||||
0.698731 | + | 0.715384i | \(0.253748\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 9.59969i | 0.820157i | 0.912050 | + | 0.410078i | \(0.134499\pi\) | ||||
−0.912050 | + | 0.410078i | \(0.865501\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − 9.13902i | − 0.775162i | −0.921836 | − | 0.387581i | \(-0.873311\pi\) | ||||
0.921836 | − | 0.387581i | \(-0.126689\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 2.11941 | 0.177234 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | − 0.456069i | − 0.0378745i | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | − 20.2697i | − 1.66056i | −0.557347 | − | 0.830279i | \(-0.688181\pi\) | ||||
0.557347 | − | 0.830279i | \(-0.311819\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −8.01031 | −0.651870 | −0.325935 | − | 0.945392i | \(-0.605679\pi\) | ||||
−0.325935 | + | 0.945392i | \(0.605679\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | − 1.05585i | − 0.0848076i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 9.33186i | − 0.744763i | −0.928080 | − | 0.372382i | \(-0.878541\pi\) | ||||
0.928080 | − | 0.372382i | \(-0.121459\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −13.6537 | −1.06944 | −0.534720 | − | 0.845029i | \(-0.679583\pi\) | ||||
−0.534720 | + | 0.845029i | \(0.679583\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 9.94429 | 0.769512 | 0.384756 | − | 0.923018i | \(-0.374286\pi\) | ||||
0.384756 | + | 0.923018i | \(0.374286\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 12.6403 | 0.972328 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 9.93099 | 0.755039 | 0.377520 | − | 0.926002i | \(-0.376777\pi\) | ||||
0.377520 | + | 0.926002i | \(0.376777\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 18.8485i | 1.40880i | 0.709803 | + | 0.704400i | \(0.248784\pi\) | ||||
−0.709803 | + | 0.704400i | \(0.751216\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 20.0424i | 1.48974i | 0.667211 | + | 0.744869i | \(0.267488\pi\) | ||||
−0.667211 | + | 0.744869i | \(0.732512\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −0.386249 | −0.0283976 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 6.00027i | 0.438783i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 9.22725i | 0.667660i | 0.942633 | + | 0.333830i | \(0.108341\pi\) | ||||
−0.942633 | + | 0.333830i | \(0.891659\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −26.0346 | −1.87401 | −0.937007 | − | 0.349310i | \(-0.886416\pi\) | ||||
−0.937007 | + | 0.349310i | \(0.886416\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 15.6156i | − 1.11256i | −0.830994 | − | 0.556282i | \(-0.812228\pi\) | ||||
0.830994 | − | 0.556282i | \(-0.187772\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 6.11946i | 0.433797i | 0.976194 | + | 0.216899i | \(0.0695941\pi\) | ||||
−0.976194 | + | 0.216899i | \(0.930406\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −0.478149 | −0.0333954 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 27.5042 | 1.90251 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 26.7224 | 1.83964 | 0.919822 | − | 0.392337i | \(-0.128333\pi\) | ||||
0.919822 | + | 0.392337i | \(0.128333\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −4.21237 | −0.287281 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | − 1.01844i | − 0.0685078i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 20.3668i | 1.36386i | 0.731416 | + | 0.681932i | \(0.238860\pi\) | ||||
−0.731416 | + | 0.681932i | \(0.761140\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 19.9390 | 1.32340 | 0.661698 | − | 0.749770i | \(-0.269836\pi\) | ||||
0.661698 | + | 0.749770i | \(0.269836\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 18.9389i | 1.25152i | 0.780017 | + | 0.625758i | \(0.215210\pi\) | ||||
−0.780017 | + | 0.625758i | \(0.784790\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 26.5531i | 1.73955i | 0.493448 | + | 0.869775i | \(0.335736\pi\) | ||||
−0.493448 | + | 0.869775i | \(0.664264\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 8.55804 | 0.558265 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | − 6.76076i | − 0.437317i | −0.975801 | − | 0.218659i | \(-0.929832\pi\) | ||||
0.975801 | − | 0.218659i | \(-0.0701681\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | − 12.0844i | − 0.778423i | −0.921148 | − | 0.389211i | \(-0.872748\pi\) | ||||
0.921148 | − | 0.389211i | \(-0.127252\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −4.66837 | −0.297041 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 17.3410 | 1.09455 | 0.547276 | − | 0.836952i | \(-0.315665\pi\) | ||||
0.547276 | + | 0.836952i | \(0.315665\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 11.7077 | 0.736055 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 8.34255 | 0.520394 | 0.260197 | − | 0.965556i | \(-0.416213\pi\) | ||||
0.260197 | + | 0.965556i | \(0.416213\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 13.4187i | 0.827433i | 0.910406 | + | 0.413717i | \(0.135770\pi\) | ||||
−0.910406 | + | 0.413717i | \(0.864230\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | − 3.98973i | − 0.245087i | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −7.96289 | −0.485506 | −0.242753 | − | 0.970088i | \(-0.578050\pi\) | ||||
−0.242753 | + | 0.970088i | \(0.578050\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 7.46942i | 0.453735i | 0.973926 | + | 0.226867i | \(0.0728484\pi\) | ||||
−0.973926 | + | 0.226867i | \(0.927152\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | − 3.53366i | − 0.213087i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −31.2617 | −1.87833 | −0.939166 | − | 0.343463i | \(-0.888400\pi\) | ||||
−0.939166 | + | 0.343463i | \(0.888400\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | − 23.4956i | − 1.40163i | −0.713343 | − | 0.700815i | \(-0.752820\pi\) | ||||
0.713343 | − | 0.700815i | \(-0.247180\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 18.5127i | 1.10046i | 0.835012 | + | 0.550232i | \(0.185461\pi\) | ||||
−0.835012 | + | 0.550232i | \(0.814539\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −14.1167 | −0.830393 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −14.7388 | −0.861048 | −0.430524 | − | 0.902579i | \(-0.641671\pi\) | ||||
−0.430524 | + | 0.902579i | \(0.641671\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −2.60613 | −0.151735 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −1.98718 | −0.114921 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 11.0895i | 0.634982i | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 17.6583i | 1.00781i | 0.863758 | + | 0.503906i | \(0.168104\pi\) | ||||
−0.863758 | + | 0.503906i | \(0.831896\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 2.87563 | 0.163062 | 0.0815310 | − | 0.996671i | \(-0.474019\pi\) | ||||
0.0815310 | + | 0.996671i | \(0.474019\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 20.0386i | − 1.13265i | −0.824183 | − | 0.566324i | \(-0.808365\pi\) | ||||
0.824183 | − | 0.566324i | \(-0.191635\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 20.5910i | − 1.15650i | −0.815858 | − | 0.578252i | \(-0.803735\pi\) | ||||
0.815858 | − | 0.578252i | \(-0.196265\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −1.61159 | −0.0902317 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 13.2166i | − 0.735394i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0.599777i | 0.0332697i | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −22.8995 | −1.25867 | −0.629335 | − | 0.777134i | \(-0.716673\pi\) | ||||
−0.629335 | + | 0.777134i | \(0.716673\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 2.87422 | 0.157035 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 17.7305 | 0.965840 | 0.482920 | − | 0.875664i | \(-0.339576\pi\) | ||||
0.482920 | + | 0.875664i | \(0.339576\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −3.73100 | −0.202045 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 18.1899i | − 0.976486i | −0.872708 | − | 0.488243i | \(-0.837638\pi\) | ||||
0.872708 | − | 0.488243i | \(-0.162362\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | − 4.44213i | − 0.237782i | −0.992907 | − | 0.118891i | \(-0.962066\pi\) | ||||
0.992907 | − | 0.118891i | \(-0.0379339\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −5.18270 | −0.275848 | −0.137924 | − | 0.990443i | \(-0.544043\pi\) | ||||
−0.137924 | + | 0.990443i | \(0.544043\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0.336875i | 0.0178795i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 18.2319i | 0.962244i | 0.876654 | + | 0.481122i | \(0.159771\pi\) | ||||
−0.876654 | + | 0.481122i | \(0.840229\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −41.5829 | −2.18857 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 3.08479i | 0.161465i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 20.0597i | 1.04711i | 0.851993 | + | 0.523553i | \(0.175394\pi\) | ||||
−0.851993 | + | 0.523553i | \(0.824606\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 26.5889 | 1.37672 | 0.688361 | − | 0.725368i | \(-0.258331\pi\) | ||||
0.688361 | + | 0.725368i | \(0.258331\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0.273540 | 0.0140880 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −18.3623 | −0.943210 | −0.471605 | − | 0.881810i | \(-0.656325\pi\) | ||||
−0.471605 | + | 0.881810i | \(0.656325\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 36.8099 | 1.88090 | 0.940449 | − | 0.339935i | \(-0.110405\pi\) | ||||
0.940449 | + | 0.339935i | \(0.110405\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 31.6392i | 1.60417i | 0.597211 | + | 0.802084i | \(0.296276\pi\) | ||||
−0.597211 | + | 0.802084i | \(0.703724\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | − 5.62591i | − 0.284515i | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −13.6089 | −0.684740 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 26.9858i | 1.35438i | 0.735808 | + | 0.677190i | \(0.236802\pi\) | ||||
−0.735808 | + | 0.677190i | \(0.763198\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 9.80307i | 0.489542i | 0.969581 | + | 0.244771i | \(0.0787127\pi\) | ||||
−0.969581 | + | 0.244771i | \(0.921287\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0.633273 | 0.0315456 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 1.36487i | 0.0676541i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 8.57996i | 0.424252i | 0.977242 | + | 0.212126i | \(0.0680387\pi\) | ||||
−0.977242 | + | 0.212126i | \(0.931961\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −16.2901 | −0.799650 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 21.7882 | 1.06443 | 0.532213 | − | 0.846611i | \(-0.321361\pi\) | ||||
0.532213 | + | 0.846611i | \(0.321361\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −24.2280 | −1.18080 | −0.590400 | − | 0.807111i | \(-0.701030\pi\) | ||||
−0.590400 | + | 0.807111i | \(0.701030\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −1.69803 | −0.0823668 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | − 23.8330i | − 1.14800i | −0.818857 | − | 0.573998i | \(-0.805392\pi\) | ||||
0.818857 | − | 0.573998i | \(-0.194608\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 1.39596i | − 0.0670855i | −0.999437 | − | 0.0335427i | \(-0.989321\pi\) | ||||
0.999437 | − | 0.0335427i | \(-0.0106790\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −25.7882 | −1.23362 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 11.8879i | 0.567381i | 0.958916 | + | 0.283690i | \(0.0915588\pi\) | ||||
−0.958916 | + | 0.283690i | \(0.908441\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 26.7403i | 1.27047i | 0.772319 | + | 0.635235i | \(0.219097\pi\) | ||||
−0.772319 | + | 0.635235i | \(0.780903\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −10.6964 | −0.507060 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | − 32.8394i | − 1.54979i | −0.632091 | − | 0.774895i | \(-0.717803\pi\) | ||||
0.632091 | − | 0.774895i | \(-0.282197\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 1.68961i | 0.0795608i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −35.0454 | −1.63935 | −0.819677 | − | 0.572826i | \(-0.805847\pi\) | ||||
−0.819677 | + | 0.572826i | \(0.805847\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −8.90991 | −0.414976 | −0.207488 | − | 0.978238i | \(-0.566529\pi\) | ||||
−0.207488 | + | 0.978238i | \(0.566529\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −10.2000 | −0.474036 | −0.237018 | − | 0.971505i | \(-0.576170\pi\) | ||||
−0.237018 | + | 0.971505i | \(0.576170\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −16.8383 | −0.779185 | −0.389592 | − | 0.920987i | \(-0.627384\pi\) | ||||
−0.389592 | + | 0.920987i | \(0.627384\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 14.8851i | 0.684417i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 7.78350i | 0.357131i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 18.3703 | 0.839360 | 0.419680 | − | 0.907672i | \(-0.362142\pi\) | ||||
0.419680 | + | 0.907672i | \(0.362142\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | − 0.231663i | − 0.0105629i | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 2.18092i | 0.0990304i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −11.6639 | −0.528540 | −0.264270 | − | 0.964449i | \(-0.585131\pi\) | ||||
−0.264270 | + | 0.964449i | \(0.585131\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 21.4694i | 0.968902i | 0.874818 | + | 0.484451i | \(0.160981\pi\) | ||||
−0.874818 | + | 0.484451i | \(0.839019\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0.774420i | 0.0348781i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −14.8218 | −0.663515 | −0.331757 | − | 0.943365i | \(-0.607642\pi\) | ||||
−0.331757 | + | 0.943365i | \(0.607642\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −28.9563 | −1.29110 | −0.645548 | − | 0.763719i | \(-0.723371\pi\) | ||||
−0.645548 | + | 0.763719i | \(0.723371\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 7.70835 | 0.343017 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 29.1793 | 1.29335 | 0.646675 | − | 0.762766i | \(-0.276159\pi\) | ||||
0.646675 | + | 0.762766i | \(0.276159\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0.734562i | 0.0323687i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 30.2412i | − 1.33001i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 30.6208 | 1.34152 | 0.670761 | − | 0.741674i | \(-0.265968\pi\) | ||||
0.670761 | + | 0.741674i | \(0.265968\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 12.0824i | 0.528324i | 0.964478 | + | 0.264162i | \(0.0850954\pi\) | ||||
−0.964478 | + | 0.264162i | \(0.914905\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 1.79286i | 0.0780983i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 12.0228 | 0.522729 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 0.286783i | − 0.0124219i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 19.9774i | 0.863699i | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 5.54879 | 0.238561 | 0.119281 | − | 0.992861i | \(-0.461941\pi\) | ||||
0.119281 | + | 0.992861i | \(0.461941\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −0.443025 | −0.0189771 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 4.60440 | 0.196870 | 0.0984349 | − | 0.995143i | \(-0.468616\pi\) | ||||
0.0984349 | + | 0.995143i | \(0.468616\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 3.54981 | 0.151227 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 15.7009i | − 0.665269i | −0.943056 | − | 0.332634i | \(-0.892063\pi\) | ||||
0.943056 | − | 0.332634i | \(-0.107937\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | − 2.52649i | − 0.106859i | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −32.6851 | −1.37751 | −0.688756 | − | 0.724993i | \(-0.741843\pi\) | ||||
−0.688756 | + | 0.724993i | \(0.741843\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 14.6235i | 0.615214i | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 23.1594i | 0.970892i | 0.874267 | + | 0.485446i | \(0.161343\pi\) | ||||
−0.874267 | + | 0.485446i | \(0.838657\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −3.90494 | −0.163417 | −0.0817083 | − | 0.996656i | \(-0.526038\pi\) | ||||
−0.0817083 | + | 0.996656i | \(0.526038\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 3.31319i | 0.138170i | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 7.67922i | − 0.319690i | −0.987142 | − | 0.159845i | \(-0.948901\pi\) | ||||
0.987142 | − | 0.159845i | \(-0.0510995\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −14.0983 | −0.583893 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −0.375586 | −0.0155021 | −0.00775105 | − | 0.999970i | \(-0.502467\pi\) | ||||
−0.00775105 | + | 0.999970i | \(0.502467\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 8.21818 | 0.338624 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 23.0404 | 0.946157 | 0.473078 | − | 0.881020i | \(-0.343143\pi\) | ||||
0.473078 | + | 0.881020i | \(0.343143\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 8.61675i | 0.352071i | 0.984384 | + | 0.176036i | \(0.0563274\pi\) | ||||
−0.984384 | + | 0.176036i | \(0.943673\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | − 27.4954i | − 1.12156i | −0.827965 | − | 0.560780i | \(-0.810501\pi\) | ||||
0.827965 | − | 0.560780i | \(-0.189499\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −1.48673 | −0.0604440 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 35.9277i | 1.45826i | 0.684375 | + | 0.729130i | \(0.260075\pi\) | ||||
−0.684375 | + | 0.729130i | \(0.739925\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 5.13292i | 0.207656i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 41.8542 | 1.69048 | 0.845238 | − | 0.534389i | \(-0.179458\pi\) | ||||
0.845238 | + | 0.534389i | \(0.179458\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 27.6411i | 1.11279i | 0.830918 | + | 0.556395i | \(0.187816\pi\) | ||||
−0.830918 | + | 0.556395i | \(0.812184\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − 13.2580i | − 0.532885i | −0.963851 | − | 0.266442i | \(-0.914152\pi\) | ||||
0.963851 | − | 0.266442i | \(-0.0858482\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0.655863 | 0.0261510 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −12.2455 | −0.487485 | −0.243742 | − | 0.969840i | \(-0.578375\pi\) | ||||
−0.243742 | + | 0.969840i | \(0.578375\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0.961155 | 0.0381423 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | − 12.3916i | − 0.489441i | −0.969594 | − | 0.244720i | \(-0.921304\pi\) | ||||
0.969594 | − | 0.244720i | \(-0.0786962\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 42.8847i | 1.69121i | 0.533811 | + | 0.845604i | \(0.320759\pi\) | ||||
−0.533811 | + | 0.845604i | \(0.679241\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 26.8700 | 1.05637 | 0.528185 | − | 0.849130i | \(-0.322873\pi\) | ||||
0.528185 | + | 0.849130i | \(0.322873\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 9.20918i | 0.361492i | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 0.622092i | 0.0243444i | 0.999926 | + | 0.0121722i | \(0.00387462\pi\) | ||||
−0.999926 | + | 0.0121722i | \(0.996125\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 15.9947 | 0.624964 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 17.9996i | 0.701167i | 0.936532 | + | 0.350583i | \(0.114017\pi\) | ||||
−0.936532 | + | 0.350583i | \(0.885983\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | − 30.0737i | − 1.16973i | −0.811130 | − | 0.584866i | \(-0.801147\pi\) | ||||
0.811130 | − | 0.584866i | \(-0.198853\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 1.51104 | 0.0585078 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 39.1864 | 1.51278 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 39.4637 | 1.52121 | 0.760606 | − | 0.649213i | \(-0.224902\pi\) | ||||
0.760606 | + | 0.649213i | \(0.224902\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 19.6775 | 0.756267 | 0.378134 | − | 0.925751i | \(-0.376566\pi\) | ||||
0.378134 | + | 0.925751i | \(0.376566\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 18.0223i | 0.689603i | 0.938676 | + | 0.344801i | \(0.112054\pi\) | ||||
−0.938676 | + | 0.344801i | \(0.887946\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 9.59969i | 0.366785i | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 2.39295 | 0.0911640 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 27.2057i | 1.03496i | 0.855697 | + | 0.517478i | \(0.173129\pi\) | ||||
−0.855697 | + | 0.517478i | \(0.826871\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | − 9.13902i | − 0.346663i | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0.811913 | 0.0307534 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 33.1556i | − 1.25227i | −0.779715 | − | 0.626134i | \(-0.784636\pi\) | ||||
0.779715 | − | 0.626134i | \(-0.215364\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 3.00637i | − 0.113387i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 1.97919 | 0.0743301 | 0.0371650 | − | 0.999309i | \(-0.488167\pi\) | ||||
0.0371650 | + | 0.999309i | \(0.488167\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 3.49822 | 0.131009 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 2.11941 | 0.0792613 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 30.3589 | 1.13220 | 0.566098 | − | 0.824338i | \(-0.308452\pi\) | ||||
0.566098 | + | 0.824338i | \(0.308452\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | − 0.456069i | − 0.0169380i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 17.5883i | 0.652313i | 0.945316 | + | 0.326156i | \(0.105754\pi\) | ||||
−0.945316 | + | 0.326156i | \(0.894246\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 7.15275 | 0.264554 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 36.9445i | 1.36457i | 0.731084 | + | 0.682287i | \(0.239015\pi\) | ||||
−0.731084 | + | 0.682287i | \(0.760985\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 10.1565i | − 0.374119i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −5.05915 | −0.186104 | −0.0930520 | − | 0.995661i | \(-0.529662\pi\) | ||||
−0.0930520 | + | 0.995661i | \(0.529662\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 6.19725i | 0.227355i | 0.993518 | + | 0.113678i | \(0.0362631\pi\) | ||||
−0.993518 | + | 0.113678i | \(0.963737\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | − 20.2697i | − 0.742624i | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −37.8201 | −1.38007 | −0.690037 | − | 0.723774i | \(-0.742406\pi\) | ||||
−0.690037 | + | 0.723774i | \(0.742406\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −8.01031 | −0.291525 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −13.7436 | −0.499519 | −0.249760 | − | 0.968308i | \(-0.580352\pi\) | ||||
−0.249760 | + | 0.968308i | \(0.580352\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 2.39947 | 0.0869807 | 0.0434904 | − | 0.999054i | \(-0.486152\pi\) | ||||
0.0434904 | + | 0.999054i | \(0.486152\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 1.56310i | − 0.0564403i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | − 9.42300i | − 0.339802i | −0.985461 | − | 0.169901i | \(-0.945655\pi\) | ||||
0.985461 | − | 0.169901i | \(-0.0543448\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −22.5676 | −0.811700 | −0.405850 | − | 0.913940i | \(-0.633025\pi\) | ||||
−0.405850 | + | 0.913940i | \(0.633025\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | − 1.05585i | − 0.0379271i | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − 3.72167i | − 0.133343i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 1.19040 | 0.0425959 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | − 9.33186i | − 0.333068i | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 25.9146i | − 0.923757i | −0.886943 | − | 0.461878i | \(-0.847176\pi\) | ||||
0.886943 | − | 0.461878i | \(-0.152824\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −6.65122 | −0.236192 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −6.94772 | −0.246101 | −0.123050 | − | 0.992400i | \(-0.539268\pi\) | ||||
−0.123050 | + | 0.992400i | \(0.539268\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −14.5318 | −0.514100 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 10.9006 | 0.384673 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | − 33.3973i | − 1.17419i | −0.809520 | − | 0.587093i | \(-0.800272\pi\) | ||||
0.809520 | − | 0.587093i | \(-0.199728\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 28.9701i | − 1.01728i | −0.860979 | − | 0.508640i | \(-0.830149\pi\) | ||||
0.860979 | − | 0.508640i | \(-0.169851\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −13.6537 | −0.478268 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 32.7870i | − 1.14707i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 2.60759i | 0.0910056i | 0.998964 | + | 0.0455028i | \(0.0144890\pi\) | ||||
−0.998964 | + | 0.0455028i | \(0.985511\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 8.45695 | 0.294791 | 0.147395 | − | 0.989078i | \(-0.452911\pi\) | ||||
0.147395 | + | 0.989078i | \(0.452911\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 13.3362i | − 0.463744i | −0.972746 | − | 0.231872i | \(-0.925515\pi\) | ||||
0.972746 | − | 0.231872i | \(-0.0744851\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 11.6374i | 0.404183i | 0.979367 | + | 0.202091i | \(0.0647738\pi\) | ||||
−0.979367 | + | 0.202091i | \(0.935226\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 9.94429 | 0.344136 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −19.9335 | −0.688181 | −0.344090 | − | 0.938937i | \(-0.611813\pi\) | ||||
−0.344090 | + | 0.938937i | \(0.611813\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 28.7920 | 0.992828 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 12.6403 | 0.434838 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | − 1.27972i | − 0.0438681i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 2.08233i | 0.0712975i | 0.999364 | + | 0.0356487i | \(0.0113498\pi\) | ||||
−0.999364 | + | 0.0356487i | \(0.988650\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 46.5482 | 1.59006 | 0.795028 | − | 0.606573i | \(-0.207456\pi\) | ||||
0.795028 | + | 0.606573i | \(0.207456\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − 5.34497i | − 0.182368i | −0.995834 | − | 0.0911840i | \(-0.970935\pi\) | ||||
0.995834 | − | 0.0911840i | \(-0.0290651\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 13.3070i | − 0.452976i | −0.974014 | − | 0.226488i | \(-0.927276\pi\) | ||||
0.974014 | − | 0.226488i | \(-0.0727243\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 9.93099 | 0.337664 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 48.0893i | 1.63132i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 1.72389i | 0.0584118i | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −19.7845 | −0.668075 | −0.334037 | − | 0.942560i | \(-0.608411\pi\) | ||||
−0.334037 | + | 0.942560i | \(0.608411\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −34.3203 | −1.15628 | −0.578141 | − | 0.815937i | \(-0.696222\pi\) | ||||
−0.578141 | + | 0.815937i | \(0.696222\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 28.1109 | 0.946006 | 0.473003 | − | 0.881061i | \(-0.343170\pi\) | ||||
0.473003 | + | 0.881061i | \(0.343170\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −41.7652 | −1.40234 | −0.701169 | − | 0.712995i | \(-0.747338\pi\) | ||||
−0.701169 | + | 0.712995i | \(0.747338\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 66.6115i | 2.22907i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 18.8485i | 0.630035i | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −0.481538 | −0.0160602 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 6.77469i | 0.225698i | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 20.0424i | 0.666231i | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −7.92101 | −0.263013 | −0.131506 | − | 0.991315i | \(-0.541981\pi\) | ||||
−0.131506 | + | 0.991315i | \(0.541981\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 49.9301i | 1.65426i | 0.562012 | + | 0.827129i | \(0.310027\pi\) | ||||
−0.562012 | + | 0.827129i | \(0.689973\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 57.5636i | 1.90508i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −0.264145 | −0.00871335 | −0.00435668 | − | 0.999991i | \(-0.501387\pi\) | ||||
−0.00435668 | + | 0.999991i | \(0.501387\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −0.202050 | −0.00665055 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −0.386249 | −0.0126998 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −56.8692 | −1.86582 | −0.932910 | − | 0.360110i | \(-0.882739\pi\) | ||||
−0.932910 | + | 0.360110i | \(0.882739\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 6.00027i | 0.196230i | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 37.3673i | − 1.22074i | −0.792118 | − | 0.610369i | \(-0.791021\pi\) | ||||
0.792118 | − | 0.610369i | \(-0.208979\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 47.7334 | 1.55607 | 0.778033 | − | 0.628224i | \(-0.216218\pi\) | ||||
0.778033 | + | 0.628224i | \(0.216218\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 1.58420i | − 0.0515886i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 33.1741i | 1.07801i | 0.842302 | + | 0.539006i | \(0.181200\pi\) | ||||
−0.842302 | + | 0.539006i | \(0.818800\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −1.85019 | −0.0600596 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 28.1591i | − 0.912164i | −0.889938 | − | 0.456082i | \(-0.849252\pi\) | ||||
0.889938 | − | 0.456082i | \(-0.150748\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 9.22725i | 0.298587i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 29.8852 | 0.964038 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −26.0346 | −0.838085 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −53.8983 | −1.73325 | −0.866626 | − | 0.498959i | \(-0.833716\pi\) | ||||
−0.866626 | + | 0.498959i | \(0.833716\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −41.0531 | −1.31746 | −0.658729 | − | 0.752380i | \(-0.728906\pi\) | ||||
−0.658729 | + | 0.752380i | \(0.728906\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 28.9189i | 0.925197i | 0.886568 | + | 0.462598i | \(0.153083\pi\) | ||||
−0.886568 | + | 0.462598i | \(0.846917\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 37.7976i | 1.20802i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −36.2752 | −1.15700 | −0.578499 | − | 0.815683i | \(-0.696361\pi\) | ||||
−0.578499 | + | 0.815683i | \(0.696361\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | − 15.6156i | − 0.497554i | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | − 13.9564i | − 0.443787i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −39.2201 | −1.24587 | −0.622934 | − | 0.782274i | \(-0.714060\pi\) | ||||
−0.622934 | + | 0.782274i | \(0.714060\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 6.11946i | 0.194000i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 12.4136i | − 0.393142i | −0.980490 | − | 0.196571i | \(-0.937019\pi\) | ||||
0.980490 | − | 0.196571i | \(-0.0629806\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 8820.2.d.b.881.2 | 12 | ||
3.2 | odd | 2 | 8820.2.d.a.881.11 | 12 | |||
7.4 | even | 3 | 1260.2.cg.a.341.3 | ✓ | 12 | ||
7.5 | odd | 6 | 1260.2.cg.b.521.3 | yes | 12 | ||
7.6 | odd | 2 | 8820.2.d.a.881.2 | 12 | |||
21.5 | even | 6 | 1260.2.cg.a.521.3 | yes | 12 | ||
21.11 | odd | 6 | 1260.2.cg.b.341.3 | yes | 12 | ||
21.20 | even | 2 | inner | 8820.2.d.b.881.11 | 12 | ||
35.4 | even | 6 | 6300.2.ch.c.1601.4 | 12 | |||
35.12 | even | 12 | 6300.2.dd.b.4049.1 | 24 | |||
35.18 | odd | 12 | 6300.2.dd.c.1349.1 | 24 | |||
35.19 | odd | 6 | 6300.2.ch.b.4301.4 | 12 | |||
35.32 | odd | 12 | 6300.2.dd.c.1349.12 | 24 | |||
35.33 | even | 12 | 6300.2.dd.b.4049.12 | 24 | |||
105.32 | even | 12 | 6300.2.dd.b.1349.12 | 24 | |||
105.47 | odd | 12 | 6300.2.dd.c.4049.1 | 24 | |||
105.53 | even | 12 | 6300.2.dd.b.1349.1 | 24 | |||
105.68 | odd | 12 | 6300.2.dd.c.4049.12 | 24 | |||
105.74 | odd | 6 | 6300.2.ch.b.1601.4 | 12 | |||
105.89 | even | 6 | 6300.2.ch.c.4301.4 | 12 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1260.2.cg.a.341.3 | ✓ | 12 | 7.4 | even | 3 | ||
1260.2.cg.a.521.3 | yes | 12 | 21.5 | even | 6 | ||
1260.2.cg.b.341.3 | yes | 12 | 21.11 | odd | 6 | ||
1260.2.cg.b.521.3 | yes | 12 | 7.5 | odd | 6 | ||
6300.2.ch.b.1601.4 | 12 | 105.74 | odd | 6 | |||
6300.2.ch.b.4301.4 | 12 | 35.19 | odd | 6 | |||
6300.2.ch.c.1601.4 | 12 | 35.4 | even | 6 | |||
6300.2.ch.c.4301.4 | 12 | 105.89 | even | 6 | |||
6300.2.dd.b.1349.1 | 24 | 105.53 | even | 12 | |||
6300.2.dd.b.1349.12 | 24 | 105.32 | even | 12 | |||
6300.2.dd.b.4049.1 | 24 | 35.12 | even | 12 | |||
6300.2.dd.b.4049.12 | 24 | 35.33 | even | 12 | |||
6300.2.dd.c.1349.1 | 24 | 35.18 | odd | 12 | |||
6300.2.dd.c.1349.12 | 24 | 35.32 | odd | 12 | |||
6300.2.dd.c.4049.1 | 24 | 105.47 | odd | 12 | |||
6300.2.dd.c.4049.12 | 24 | 105.68 | odd | 12 | |||
8820.2.d.a.881.2 | 12 | 7.6 | odd | 2 | |||
8820.2.d.a.881.11 | 12 | 3.2 | odd | 2 | |||
8820.2.d.b.881.2 | 12 | 1.1 | even | 1 | trivial | ||
8820.2.d.b.881.11 | 12 | 21.20 | even | 2 | inner |