Properties

Label 6300.2.dd.b.4049.12
Level $6300$
Weight $2$
Character 6300.4049
Analytic conductor $50.306$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6300,2,Mod(1349,6300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6300, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6300.1349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.dd (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1260)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 4049.12
Character \(\chi\) \(=\) 6300.4049
Dual form 6300.2.dd.b.1349.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.63285 - 0.260926i) q^{7} +(3.06024 + 1.76683i) q^{11} +0.599777 q^{13} +(1.47054 + 0.849017i) q^{17} +(6.74071 - 3.89175i) q^{19} +(1.65660 + 2.86931i) q^{23} +0.456069i q^{29} +(-0.914390 - 0.527923i) q^{31} +(0.334501 - 0.193124i) q^{37} +0.478149 q^{41} -4.21237i q^{43} +(7.41148 - 4.27902i) q^{47} +(6.86384 - 1.37396i) q^{49} +(-1.99486 + 3.45520i) q^{53} +(1.30307 - 2.25698i) q^{59} +(-9.60378 + 5.54474i) q^{61} +(2.48915 + 1.43711i) q^{67} +0.336875i q^{71} +(-1.54239 + 2.67151i) q^{73} +(8.51816 + 3.85331i) q^{77} +(-6.80447 - 11.7857i) q^{79} +16.2901i q^{83} +(5.34822 + 9.26339i) q^{89} +(1.57913 - 0.156497i) q^{91} -2.18092 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{11} + 12 q^{19} - 12 q^{31} + 16 q^{41} - 44 q^{49} - 28 q^{79} - 40 q^{89} + 20 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.63285 0.260926i 0.995125 0.0986206i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.06024 + 1.76683i 0.922696 + 0.532719i 0.884494 0.466551i \(-0.154504\pi\)
0.0382018 + 0.999270i \(0.487837\pi\)
\(12\) 0 0
\(13\) 0.599777 0.166348 0.0831742 0.996535i \(-0.473494\pi\)
0.0831742 + 0.996535i \(0.473494\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.47054 + 0.849017i 0.356658 + 0.205917i 0.667614 0.744508i \(-0.267316\pi\)
−0.310955 + 0.950424i \(0.600649\pi\)
\(18\) 0 0
\(19\) 6.74071 3.89175i 1.54642 0.892829i 0.548014 0.836469i \(-0.315384\pi\)
0.998411 0.0563594i \(-0.0179493\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.65660 + 2.86931i 0.345424 + 0.598292i 0.985431 0.170077i \(-0.0544018\pi\)
−0.640007 + 0.768369i \(0.721068\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.456069i 0.0846898i 0.999103 + 0.0423449i \(0.0134828\pi\)
−0.999103 + 0.0423449i \(0.986517\pi\)
\(30\) 0 0
\(31\) −0.914390 0.527923i −0.164229 0.0948178i 0.415633 0.909533i \(-0.363560\pi\)
−0.579862 + 0.814715i \(0.696894\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.334501 0.193124i 0.0549917 0.0317494i −0.472252 0.881464i \(-0.656559\pi\)
0.527244 + 0.849714i \(0.323225\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.478149 0.0746743 0.0373372 0.999303i \(-0.488112\pi\)
0.0373372 + 0.999303i \(0.488112\pi\)
\(42\) 0 0
\(43\) 4.21237i 0.642381i −0.947015 0.321190i \(-0.895917\pi\)
0.947015 0.321190i \(-0.104083\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.41148 4.27902i 1.08108 0.624159i 0.149889 0.988703i \(-0.452108\pi\)
0.931186 + 0.364544i \(0.118775\pi\)
\(48\) 0 0
\(49\) 6.86384 1.37396i 0.980548 0.196280i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.99486 + 3.45520i −0.274015 + 0.474609i −0.969886 0.243558i \(-0.921685\pi\)
0.695871 + 0.718167i \(0.255019\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.30307 2.25698i 0.169645 0.293834i −0.768650 0.639669i \(-0.779071\pi\)
0.938295 + 0.345836i \(0.112405\pi\)
\(60\) 0 0
\(61\) −9.60378 + 5.54474i −1.22964 + 0.709932i −0.966954 0.254950i \(-0.917941\pi\)
−0.262684 + 0.964882i \(0.584608\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.48915 + 1.43711i 0.304097 + 0.175571i 0.644282 0.764788i \(-0.277156\pi\)
−0.340185 + 0.940359i \(0.610490\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.336875i 0.0399797i 0.999800 + 0.0199898i \(0.00636339\pi\)
−0.999800 + 0.0199898i \(0.993637\pi\)
\(72\) 0 0
\(73\) −1.54239 + 2.67151i −0.180524 + 0.312676i −0.942059 0.335447i \(-0.891113\pi\)
0.761535 + 0.648123i \(0.224446\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.51816 + 3.85331i 0.970735 + 0.439125i
\(78\) 0 0
\(79\) −6.80447 11.7857i −0.765562 1.32599i −0.939949 0.341316i \(-0.889127\pi\)
0.174386 0.984677i \(-0.444206\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 16.2901i 1.78807i 0.447996 + 0.894036i \(0.352138\pi\)
−0.447996 + 0.894036i \(0.647862\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.34822 + 9.26339i 0.566910 + 0.981918i 0.996869 + 0.0790691i \(0.0251948\pi\)
−0.429959 + 0.902849i \(0.641472\pi\)
\(90\) 0 0
\(91\) 1.57913 0.156497i 0.165537 0.0164054i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.18092 −0.221439 −0.110719 0.993852i \(-0.535315\pi\)
−0.110719 + 0.993852i \(0.535315\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.85417 6.67563i 0.383505 0.664250i −0.608056 0.793894i \(-0.708050\pi\)
0.991561 + 0.129645i \(0.0413837\pi\)
\(102\) 0 0
\(103\) −0.367281 0.636149i −0.0361893 0.0626816i 0.847363 0.531013i \(-0.178189\pi\)
−0.883553 + 0.468332i \(0.844855\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.98870 17.3009i −0.965645 1.67255i −0.707873 0.706339i \(-0.750345\pi\)
−0.257771 0.966206i \(-0.582988\pi\)
\(108\) 0 0
\(109\) −0.221512 + 0.383671i −0.0212170 + 0.0367490i −0.876439 0.481513i \(-0.840087\pi\)
0.855222 + 0.518262i \(0.173421\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.6235 −1.37566 −0.687830 0.725871i \(-0.741437\pi\)
−0.687830 + 0.725871i \(0.741437\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.09325 + 1.85164i 0.375227 + 0.169739i
\(120\) 0 0
\(121\) 0.743363 + 1.28754i 0.0675785 + 0.117049i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.961155i 0.0852887i −0.999090 0.0426444i \(-0.986422\pi\)
0.999090 0.0426444i \(-0.0135782\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.99734 + 13.8518i 0.698731 + 1.21024i 0.968907 + 0.247427i \(0.0795850\pi\)
−0.270175 + 0.962811i \(0.587082\pi\)
\(132\) 0 0
\(133\) 16.7318 12.0052i 1.45083 1.04099i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.79985 + 8.31358i −0.410078 + 0.710277i −0.994898 0.100887i \(-0.967832\pi\)
0.584819 + 0.811163i \(0.301165\pi\)
\(138\) 0 0
\(139\) 9.13902i 0.775162i −0.921836 0.387581i \(-0.873311\pi\)
0.921836 0.387581i \(-0.126689\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.83546 + 1.05970i 0.153489 + 0.0886169i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.5541 10.1349i 1.43809 0.830279i 0.440369 0.897817i \(-0.354847\pi\)
0.997717 + 0.0675373i \(0.0215142\pi\)
\(150\) 0 0
\(151\) 4.00516 6.93714i 0.325935 0.564536i −0.655766 0.754964i \(-0.727654\pi\)
0.981701 + 0.190428i \(0.0609876\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4.66593 + 8.08163i −0.372382 + 0.644984i −0.989931 0.141548i \(-0.954792\pi\)
0.617550 + 0.786532i \(0.288125\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.11025 + 7.12222i 0.402744 + 0.561309i
\(162\) 0 0
\(163\) −11.8245 + 6.82685i −0.926163 + 0.534720i −0.885596 0.464457i \(-0.846250\pi\)
−0.0405668 + 0.999177i \(0.512916\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.94429i 0.769512i 0.923018 + 0.384756i \(0.125714\pi\)
−0.923018 + 0.384756i \(0.874286\pi\)
\(168\) 0 0
\(169\) −12.6403 −0.972328
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.60049 + 4.96550i −0.653883 + 0.377520i −0.789942 0.613181i \(-0.789890\pi\)
0.136059 + 0.990701i \(0.456556\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.3233 + 9.42424i 1.22006 + 0.704400i 0.964930 0.262507i \(-0.0845493\pi\)
0.255127 + 0.966907i \(0.417883\pi\)
\(180\) 0 0
\(181\) 20.0424i 1.48974i −0.667211 0.744869i \(-0.732512\pi\)
0.667211 0.744869i \(-0.267488\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.00013 + 5.19639i 0.219392 + 0.379997i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.99103 4.61363i 0.578211 0.333830i −0.182211 0.983259i \(-0.558325\pi\)
0.760422 + 0.649429i \(0.224992\pi\)
\(192\) 0 0
\(193\) 22.5467 + 13.0173i 1.62294 + 0.937007i 0.986127 + 0.165992i \(0.0530827\pi\)
0.636817 + 0.771015i \(0.280251\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.6156 −1.11256 −0.556282 0.830994i \(-0.687772\pi\)
−0.556282 + 0.830994i \(0.687772\pi\)
\(198\) 0 0
\(199\) −5.29961 3.05973i −0.375679 0.216899i 0.300257 0.953858i \(-0.402927\pi\)
−0.675937 + 0.736960i \(0.736261\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.119000 + 1.20076i 0.00835216 + 0.0842770i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 27.5042 1.90251
\(210\) 0 0
\(211\) 26.7224 1.83964 0.919822 0.392337i \(-0.128333\pi\)
0.919822 + 0.392337i \(0.128333\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.54520 1.15136i −0.172780 0.0781592i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.881997 + 0.509221i 0.0593295 + 0.0342539i
\(222\) 0 0
\(223\) 20.3668 1.36386 0.681932 0.731416i \(-0.261140\pi\)
0.681932 + 0.731416i \(0.261140\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.2677 9.96949i −1.14609 0.661698i −0.198162 0.980169i \(-0.563497\pi\)
−0.947933 + 0.318471i \(0.896831\pi\)
\(228\) 0 0
\(229\) 16.4015 9.46944i 1.08384 0.625758i 0.151914 0.988394i \(-0.451456\pi\)
0.931931 + 0.362636i \(0.118123\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.2765 + 22.9956i 0.869775 + 1.50650i 0.862226 + 0.506524i \(0.169070\pi\)
0.00754927 + 0.999972i \(0.497597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.76076i 0.437317i 0.975801 + 0.218659i \(0.0701681\pi\)
−0.975801 + 0.218659i \(0.929832\pi\)
\(240\) 0 0
\(241\) −10.4654 6.04219i −0.674134 0.389211i 0.123507 0.992344i \(-0.460586\pi\)
−0.797641 + 0.603132i \(0.793919\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.04292 2.33418i 0.257245 0.148521i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −17.3410 −1.09455 −0.547276 0.836952i \(-0.684335\pi\)
−0.547276 + 0.836952i \(0.684335\pi\)
\(252\) 0 0
\(253\) 11.7077i 0.736055i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.22486 4.17127i 0.450674 0.260197i −0.257441 0.966294i \(-0.582879\pi\)
0.708115 + 0.706097i \(0.249546\pi\)
\(258\) 0 0
\(259\) 0.830302 0.595748i 0.0515924 0.0370180i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.70936 11.6209i 0.413717 0.716578i −0.581576 0.813492i \(-0.697564\pi\)
0.995293 + 0.0969137i \(0.0308971\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.98145 6.89607i 0.242753 0.420461i −0.718744 0.695274i \(-0.755283\pi\)
0.961497 + 0.274814i \(0.0886162\pi\)
\(270\) 0 0
\(271\) −6.46871 + 3.73471i −0.392946 + 0.226867i −0.683436 0.730011i \(-0.739515\pi\)
0.290490 + 0.956878i \(0.406182\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −27.0734 15.6308i −1.62668 0.939166i −0.985073 0.172135i \(-0.944933\pi\)
−0.641610 0.767031i \(-0.721733\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.4956i 1.40163i −0.713343 0.700815i \(-0.752820\pi\)
0.713343 0.700815i \(-0.247180\pi\)
\(282\) 0 0
\(283\) −9.25634 + 16.0325i −0.550232 + 0.953030i 0.448025 + 0.894021i \(0.352127\pi\)
−0.998257 + 0.0590093i \(0.981206\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.25890 0.124761i 0.0743103 0.00736442i
\(288\) 0 0
\(289\) −7.05834 12.2254i −0.415196 0.719141i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.7388i 0.861048i 0.902579 + 0.430524i \(0.141671\pi\)
−0.902579 + 0.430524i \(0.858329\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.993588 + 1.72095i 0.0574607 + 0.0995248i
\(300\) 0 0
\(301\) −1.09912 11.0906i −0.0633520 0.639249i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −17.6583 −1.00781 −0.503906 0.863758i \(-0.668104\pi\)
−0.503906 + 0.863758i \(0.668104\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.43782 2.49037i 0.0815310 0.141216i −0.822377 0.568943i \(-0.807352\pi\)
0.903908 + 0.427727i \(0.140686\pi\)
\(312\) 0 0
\(313\) 10.0193 + 17.3539i 0.566324 + 0.980901i 0.996925 + 0.0783592i \(0.0249681\pi\)
−0.430602 + 0.902542i \(0.641699\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.2955 + 17.8323i 0.578252 + 1.00156i 0.995680 + 0.0928516i \(0.0295982\pi\)
−0.417428 + 0.908710i \(0.637068\pi\)
\(318\) 0 0
\(319\) −0.805795 + 1.39568i −0.0451159 + 0.0781430i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.2166 0.735394
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18.3968 13.1999i 1.01425 0.727733i
\(330\) 0 0
\(331\) 11.4497 + 19.8315i 0.629335 + 1.09004i 0.987685 + 0.156453i \(0.0500060\pi\)
−0.358350 + 0.933587i \(0.616661\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 17.7305i 0.965840i −0.875664 0.482920i \(-0.839576\pi\)
0.875664 0.482920i \(-0.160424\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.86550 3.23114i −0.101022 0.174976i
\(342\) 0 0
\(343\) 17.7130 5.40838i 0.956411 0.292025i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.09495 15.7529i 0.488243 0.845661i −0.511666 0.859185i \(-0.670971\pi\)
0.999909 + 0.0135233i \(0.00430473\pi\)
\(348\) 0 0
\(349\) 4.44213i 0.237782i −0.992907 0.118891i \(-0.962066\pi\)
0.992907 0.118891i \(-0.0379339\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.48835 2.59135i −0.238891 0.137924i 0.375776 0.926711i \(-0.377376\pi\)
−0.614667 + 0.788787i \(0.710710\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.7893 + 9.11596i −0.833327 + 0.481122i −0.854991 0.518644i \(-0.826437\pi\)
0.0216632 + 0.999765i \(0.493104\pi\)
\(360\) 0 0
\(361\) 20.7914 36.0118i 1.09429 1.89536i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10.0298 17.3722i 0.523553 0.906821i −0.476071 0.879407i \(-0.657939\pi\)
0.999624 0.0274140i \(-0.00872725\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.35063 + 9.61755i −0.225873 + 0.499319i
\(372\) 0 0
\(373\) 23.0267 13.2945i 1.19228 0.688361i 0.233454 0.972368i \(-0.424997\pi\)
0.958822 + 0.284007i \(0.0916638\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.273540i 0.0140880i
\(378\) 0 0
\(379\) 18.3623 0.943210 0.471605 0.881810i \(-0.343675\pi\)
0.471605 + 0.881810i \(0.343675\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −31.8783 + 18.4049i −1.62891 + 0.940449i −0.644485 + 0.764617i \(0.722928\pi\)
−0.984420 + 0.175832i \(0.943738\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.4003 + 15.8196i 1.38925 + 0.802084i 0.993231 0.116157i \(-0.0370577\pi\)
0.396020 + 0.918242i \(0.370391\pi\)
\(390\) 0 0
\(391\) 5.62591i 0.284515i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13.4929 + 23.3704i 0.677190 + 1.17293i 0.975824 + 0.218560i \(0.0701358\pi\)
−0.298634 + 0.954368i \(0.596531\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.48970 4.90153i 0.423956 0.244771i −0.272813 0.962067i \(-0.587954\pi\)
0.696768 + 0.717296i \(0.254621\pi\)
\(402\) 0 0
\(403\) −0.548430 0.316636i −0.0273193 0.0157728i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.36487 0.0676541
\(408\) 0 0
\(409\) −7.43046 4.28998i −0.367413 0.212126i 0.304915 0.952380i \(-0.401372\pi\)
−0.672328 + 0.740254i \(0.734705\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.84188 6.28230i 0.139840 0.309132i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.7882 1.06443 0.532213 0.846611i \(-0.321361\pi\)
0.532213 + 0.846611i \(0.321361\pi\)
\(420\) 0 0
\(421\) −24.2280 −1.18080 −0.590400 0.807111i \(-0.701030\pi\)
−0.590400 + 0.807111i \(0.701030\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −23.8386 + 17.1044i −1.15363 + 0.827738i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.6400 + 11.9165i 0.994194 + 0.573998i 0.906525 0.422151i \(-0.138725\pi\)
0.0876688 + 0.996150i \(0.472058\pi\)
\(432\) 0 0
\(433\) −1.39596 −0.0670855 −0.0335427 0.999437i \(-0.510679\pi\)
−0.0335427 + 0.999437i \(0.510679\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 22.3333 + 12.8941i 1.06834 + 0.616809i
\(438\) 0 0
\(439\) 10.2953 5.94397i 0.491366 0.283690i −0.233775 0.972291i \(-0.575108\pi\)
0.725141 + 0.688600i \(0.241775\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.3701 + 23.1578i 0.635235 + 1.10026i 0.986465 + 0.163970i \(0.0524301\pi\)
−0.351230 + 0.936289i \(0.614237\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.8394i 1.54979i 0.632091 + 0.774895i \(0.282197\pi\)
−0.632091 + 0.774895i \(0.717803\pi\)
\(450\) 0 0
\(451\) 1.46325 + 0.844807i 0.0689017 + 0.0397804i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.3502 17.5227i 1.41972 0.819677i 0.423448 0.905920i \(-0.360820\pi\)
0.996274 + 0.0862436i \(0.0274863\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.90991 0.414976 0.207488 0.978238i \(-0.433471\pi\)
0.207488 + 0.978238i \(0.433471\pi\)
\(462\) 0 0
\(463\) 10.2000i 0.474036i −0.971505 0.237018i \(-0.923830\pi\)
0.971505 0.237018i \(-0.0761700\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.5824 + 8.41916i −0.674794 + 0.389592i −0.797891 0.602802i \(-0.794051\pi\)
0.123097 + 0.992395i \(0.460717\pi\)
\(468\) 0 0
\(469\) 6.92853 + 3.13421i 0.319930 + 0.144725i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.44254 12.8909i 0.342208 0.592722i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.18515 + 15.9091i −0.419680 + 0.726907i −0.995907 0.0903824i \(-0.971191\pi\)
0.576227 + 0.817290i \(0.304524\pi\)
\(480\) 0 0
\(481\) 0.200626 0.115832i 0.00914777 0.00528147i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −10.1012 5.83194i −0.457729 0.264270i 0.253360 0.967372i \(-0.418464\pi\)
−0.711089 + 0.703102i \(0.751798\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.4694i 0.968902i 0.874818 + 0.484451i \(0.160981\pi\)
−0.874818 + 0.484451i \(0.839019\pi\)
\(492\) 0 0
\(493\) −0.387210 + 0.670668i −0.0174391 + 0.0302054i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.0878993 + 0.886942i 0.00394282 + 0.0397848i
\(498\) 0 0
\(499\) −7.41090 12.8361i −0.331757 0.574621i 0.651099 0.758993i \(-0.274308\pi\)
−0.982857 + 0.184372i \(0.940975\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.9563i 1.29110i 0.763719 + 0.645548i \(0.223371\pi\)
−0.763719 + 0.645548i \(0.776629\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.5897 25.2700i −0.646675 1.12007i −0.983912 0.178654i \(-0.942826\pi\)
0.337237 0.941420i \(-0.390508\pi\)
\(510\) 0 0
\(511\) −3.36384 + 7.43614i −0.148807 + 0.328955i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 30.2412 1.33001
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.3104 26.5184i 0.670761 1.16179i −0.306928 0.951733i \(-0.599301\pi\)
0.977689 0.210059i \(-0.0673655\pi\)
\(522\) 0 0
\(523\) −6.04118 10.4636i −0.264162 0.457542i 0.703182 0.711010i \(-0.251762\pi\)
−0.967344 + 0.253468i \(0.918429\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.896431 1.55266i −0.0390492 0.0676351i
\(528\) 0 0
\(529\) 6.01138 10.4120i 0.261365 0.452697i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.286783 0.0124219
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23.4325 + 7.92258i 1.00931 + 0.341250i
\(540\) 0 0
\(541\) −2.77440 4.80539i −0.119281 0.206600i 0.800202 0.599730i \(-0.204725\pi\)
−0.919483 + 0.393130i \(0.871392\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.60440i 0.196870i −0.995143 0.0984349i \(-0.968616\pi\)
0.995143 0.0984349i \(-0.0313836\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.77491 + 3.07423i 0.0756135 + 0.130966i
\(552\) 0 0
\(553\) −20.9904 29.2545i −0.892601 1.24403i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.85045 13.5974i 0.332634 0.576139i −0.650393 0.759598i \(-0.725396\pi\)
0.983028 + 0.183458i \(0.0587292\pi\)
\(558\) 0 0
\(559\) 2.52649i 0.106859i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.3061 16.3425i −1.19296 0.688756i −0.233983 0.972241i \(-0.575176\pi\)
−0.958977 + 0.283485i \(0.908509\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.0566 + 11.5797i −0.840817 + 0.485446i −0.857542 0.514414i \(-0.828009\pi\)
0.0167248 + 0.999860i \(0.494676\pi\)
\(570\) 0 0
\(571\) 1.95247 3.38177i 0.0817083 0.141523i −0.822276 0.569090i \(-0.807296\pi\)
0.903984 + 0.427567i \(0.140629\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −3.83961 + 6.65040i −0.159845 + 0.276860i −0.934813 0.355141i \(-0.884433\pi\)
0.774968 + 0.632001i \(0.217766\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.25050 + 42.8895i 0.176341 + 1.77935i
\(582\) 0 0
\(583\) −12.2095 + 7.04916i −0.505666 + 0.291946i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.375586i 0.0155021i −0.999970 0.00775105i \(-0.997533\pi\)
0.999970 0.00775105i \(-0.00246726\pi\)
\(588\) 0 0
\(589\) −8.21818 −0.338624
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19.9536 + 11.5202i −0.819396 + 0.473078i −0.850208 0.526447i \(-0.823524\pi\)
0.0308124 + 0.999525i \(0.490191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.46233 + 4.30838i 0.304902 + 0.176036i 0.644643 0.764484i \(-0.277006\pi\)
−0.339741 + 0.940519i \(0.610339\pi\)
\(600\) 0 0
\(601\) 27.4954i 1.12156i 0.827965 + 0.560780i \(0.189499\pi\)
−0.827965 + 0.560780i \(0.810501\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17.9638 + 31.1143i 0.729130 + 1.26289i 0.957251 + 0.289257i \(0.0934084\pi\)
−0.228121 + 0.973633i \(0.573258\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.44524 2.56646i 0.179835 0.103828i
\(612\) 0 0
\(613\) −36.2468 20.9271i −1.46400 0.845238i −0.464803 0.885414i \(-0.653875\pi\)
−0.999193 + 0.0401755i \(0.987208\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.6411 1.11279 0.556395 0.830918i \(-0.312184\pi\)
0.556395 + 0.830918i \(0.312184\pi\)
\(618\) 0 0
\(619\) 11.4818 + 6.62901i 0.461492 + 0.266442i 0.712671 0.701498i \(-0.247485\pi\)
−0.251179 + 0.967941i \(0.580818\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.4981 + 22.9937i 0.660984 + 0.921222i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.655863 0.0261510
\(630\) 0 0
\(631\) −12.2455 −0.487485 −0.243742 0.969840i \(-0.578375\pi\)
−0.243742 + 0.969840i \(0.578375\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.11677 0.824069i 0.163112 0.0326508i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.7315 + 6.19582i 0.423868 + 0.244720i 0.696731 0.717333i \(-0.254637\pi\)
−0.272863 + 0.962053i \(0.587971\pi\)
\(642\) 0 0
\(643\) 42.8847 1.69121 0.845604 0.533811i \(-0.179241\pi\)
0.845604 + 0.533811i \(0.179241\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.2701 13.4350i −0.914843 0.528185i −0.0328565 0.999460i \(-0.510460\pi\)
−0.881986 + 0.471275i \(0.843794\pi\)
\(648\) 0 0
\(649\) 7.97539 4.60459i 0.313061 0.180746i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.311046 + 0.538748i 0.0121722 + 0.0210828i 0.872047 0.489422i \(-0.162792\pi\)
−0.859875 + 0.510504i \(0.829459\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17.9996i 0.701167i −0.936532 0.350583i \(-0.885983\pi\)
0.936532 0.350583i \(-0.114017\pi\)
\(660\) 0 0
\(661\) −26.0446 15.0369i −1.01302 0.584866i −0.100944 0.994892i \(-0.532186\pi\)
−0.912074 + 0.410026i \(0.865519\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.30860 + 0.755521i −0.0506693 + 0.0292539i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −39.1864 −1.51278
\(672\) 0 0
\(673\) 39.4637i 1.52121i 0.649213 + 0.760606i \(0.275098\pi\)
−0.649213 + 0.760606i \(0.724902\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.0412 9.83874i 0.654947 0.378134i −0.135402 0.990791i \(-0.543233\pi\)
0.790349 + 0.612657i \(0.209899\pi\)
\(678\) 0 0
\(679\) −5.74204 + 0.569057i −0.220359 + 0.0218384i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.01113 15.6077i 0.344801 0.597213i −0.640516 0.767945i \(-0.721280\pi\)
0.985318 + 0.170731i \(0.0546129\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.19647 + 2.07235i −0.0455820 + 0.0789503i
\(690\) 0 0
\(691\) −23.5609 + 13.6029i −0.896298 + 0.517478i −0.875997 0.482316i \(-0.839796\pi\)
−0.0203004 + 0.999794i \(0.506462\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0.703137 + 0.405957i 0.0266332 + 0.0153767i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.1556i 1.25227i −0.779715 0.626134i \(-0.784636\pi\)
0.779715 0.626134i \(-0.215364\pi\)
\(702\) 0 0
\(703\) 1.50318 2.60359i 0.0566936 0.0981962i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.40563 18.5816i 0.316126 0.698833i
\(708\) 0 0
\(709\) 0.989596 + 1.71403i 0.0371650 + 0.0643717i 0.884010 0.467469i \(-0.154834\pi\)
−0.846845 + 0.531840i \(0.821501\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.49822i 0.131009i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.1795 26.2916i −0.566098 0.980510i −0.996947 0.0780862i \(-0.975119\pi\)
0.430849 0.902424i \(-0.358214\pi\)
\(720\) 0 0
\(721\) −1.13298 1.57905i −0.0421945 0.0588071i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −17.5883 −0.652313 −0.326156 0.945316i \(-0.605754\pi\)
−0.326156 + 0.945316i \(0.605754\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.57638 6.19446i 0.132277 0.229111i
\(732\) 0 0
\(733\) −18.4722 31.9948i −0.682287 1.18176i −0.974281 0.225336i \(-0.927652\pi\)
0.291994 0.956420i \(-0.405681\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.07825 + 8.79578i 0.187060 + 0.323997i
\(738\) 0 0
\(739\) −2.52958 + 4.38136i −0.0930520 + 0.161171i −0.908794 0.417245i \(-0.862996\pi\)
0.815742 + 0.578416i \(0.196329\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.19725 −0.227355 −0.113678 0.993518i \(-0.536263\pi\)
−0.113678 + 0.993518i \(0.536263\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −30.8131 42.9445i −1.12588 1.56916i
\(750\) 0 0
\(751\) 18.9100 + 32.7531i 0.690037 + 1.19518i 0.971825 + 0.235703i \(0.0757392\pi\)
−0.281788 + 0.959477i \(0.590928\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 13.7436i 0.499519i 0.968308 + 0.249760i \(0.0803516\pi\)
−0.968308 + 0.249760i \(0.919648\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.19974 + 2.07800i 0.0434904 + 0.0753275i 0.886951 0.461863i \(-0.152819\pi\)
−0.843461 + 0.537191i \(0.819486\pi\)
\(762\) 0 0
\(763\) −0.483100 + 1.06795i −0.0174894 + 0.0386623i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.781550 1.35368i 0.0282201 0.0488787i
\(768\) 0 0
\(769\) 9.42300i 0.339802i −0.985461 0.169901i \(-0.945655\pi\)
0.985461 0.169901i \(-0.0543448\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.5441 11.2838i −0.702953 0.405850i 0.105493 0.994420i \(-0.466358\pi\)
−0.808446 + 0.588570i \(0.799691\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.22306 1.86084i 0.115478 0.0666714i
\(780\) 0 0
\(781\) −0.595200 + 1.03092i −0.0212979 + 0.0368891i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −12.9573 + 22.4427i −0.461878 + 0.799997i −0.999055 0.0434733i \(-0.986158\pi\)
0.537176 + 0.843470i \(0.319491\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −38.5015 + 3.81564i −1.36895 + 0.135668i
\(792\) 0 0
\(793\) −5.76013 + 3.32561i −0.204548 + 0.118096i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.94772i 0.246101i −0.992400 0.123050i \(-0.960732\pi\)
0.992400 0.123050i \(-0.0392677\pi\)
\(798\) 0 0
\(799\) 14.5318 0.514100
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.44019 + 5.45029i −0.333137 + 0.192337i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −28.9229 16.6986i −1.01687 0.587093i −0.103677 0.994611i \(-0.533061\pi\)
−0.913197 + 0.407518i \(0.866394\pi\)
\(810\) 0 0
\(811\) 28.9701i 1.01728i 0.860979 + 0.508640i \(0.169851\pi\)
−0.860979 + 0.508640i \(0.830149\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −16.3935 28.3944i −0.573536 0.993393i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.25824 1.30380i 0.0788132 0.0455028i −0.460076 0.887880i \(-0.652178\pi\)
0.538889 + 0.842377i \(0.318844\pi\)
\(822\) 0 0
\(823\) −7.32393 4.22848i −0.255296 0.147395i 0.366891 0.930264i \(-0.380422\pi\)
−0.622187 + 0.782869i \(0.713756\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.3362 −0.463744 −0.231872 0.972746i \(-0.574485\pi\)
−0.231872 + 0.972746i \(0.574485\pi\)
\(828\) 0 0
\(829\) −10.0783 5.81869i −0.350033 0.202091i 0.314667 0.949202i \(-0.398107\pi\)
−0.664700 + 0.747111i \(0.731440\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 11.2601 + 3.80705i 0.390138 + 0.131907i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.9335 −0.688181 −0.344090 0.938937i \(-0.611813\pi\)
−0.344090 + 0.938937i \(0.611813\pi\)
\(840\) 0 0
\(841\) 28.7920 0.992828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.29312 + 3.19595i 0.0787925 + 0.109814i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.10827 + 0.639858i 0.0379909 + 0.0219340i
\(852\) 0 0
\(853\) 2.08233 0.0712975 0.0356487 0.999364i \(-0.488650\pi\)
0.0356487 + 0.999364i \(0.488650\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −40.3119 23.2741i −1.37703 0.795028i −0.385228 0.922821i \(-0.625877\pi\)
−0.991801 + 0.127793i \(0.959211\pi\)
\(858\) 0 0
\(859\) −4.62888 + 2.67248i −0.157935 + 0.0911840i −0.576885 0.816826i \(-0.695732\pi\)
0.418949 + 0.908010i \(0.362398\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.65350 11.5242i −0.226488 0.392288i 0.730277 0.683151i \(-0.239391\pi\)
−0.956765 + 0.290863i \(0.906058\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 48.0893i 1.63132i
\(870\) 0 0
\(871\) 1.49293 + 0.861945i 0.0505861 + 0.0292059i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17.1339 9.89224i 0.578570 0.334037i −0.181995 0.983299i \(-0.558256\pi\)
0.760565 + 0.649262i \(0.224922\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 34.3203 1.15628 0.578141 0.815937i \(-0.303778\pi\)
0.578141 + 0.815937i \(0.303778\pi\)
\(882\) 0 0
\(883\) 28.1109i 0.946006i 0.881061 + 0.473003i \(0.156830\pi\)
−0.881061 + 0.473003i \(0.843170\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −36.1697 + 20.8826i −1.21446 + 0.701169i −0.963728 0.266888i \(-0.914005\pi\)
−0.250732 + 0.968056i \(0.580671\pi\)
\(888\) 0 0
\(889\) −0.250790 2.53058i −0.00841122 0.0848730i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 33.3058 57.6873i 1.11453 1.93043i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.240769 0.417025i 0.00803010 0.0139085i
\(900\) 0 0
\(901\) −5.86705 + 3.38734i −0.195460 + 0.112849i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −6.85979 3.96050i −0.227776 0.131506i 0.381770 0.924257i \(-0.375315\pi\)
−0.609546 + 0.792751i \(0.708648\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 49.9301i 1.65426i 0.562012 + 0.827129i \(0.310027\pi\)
−0.562012 + 0.827129i \(0.689973\pi\)
\(912\) 0 0
\(913\) −28.7818 + 49.8516i −0.952539 + 1.64985i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 24.6701 + 34.3831i 0.814679 + 1.13543i
\(918\) 0 0
\(919\) −0.132073 0.228757i −0.00435668 0.00754598i 0.863839 0.503768i \(-0.168053\pi\)
−0.868196 + 0.496222i \(0.834720\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.202050i 0.00665055i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 28.4346 + 49.2502i 0.932910 + 1.61585i 0.778320 + 0.627868i \(0.216072\pi\)
0.154590 + 0.987979i \(0.450594\pi\)
\(930\) 0 0
\(931\) 40.9200 35.9738i 1.34110 1.17899i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 37.3673 1.22074 0.610369 0.792118i \(-0.291021\pi\)
0.610369 + 0.792118i \(0.291021\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23.8667 41.3384i 0.778033 1.34759i −0.155042 0.987908i \(-0.549551\pi\)
0.933074 0.359684i \(-0.117115\pi\)
\(942\) 0 0
\(943\) 0.792099 + 1.37196i 0.0257943 + 0.0446770i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.5870 28.7296i −0.539006 0.933587i −0.998958 0.0456424i \(-0.985467\pi\)
0.459951 0.887944i \(-0.347867\pi\)
\(948\) 0 0
\(949\) −0.925094 + 1.60231i −0.0300298 + 0.0520131i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28.1591 0.912164 0.456082 0.889938i \(-0.349252\pi\)
0.456082 + 0.889938i \(0.349252\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.4681 + 23.1408i −0.338031 + 0.747256i
\(960\) 0 0
\(961\) −14.9426 25.8813i −0.482019 0.834882i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 53.8983i 1.73325i 0.498959 + 0.866626i \(0.333716\pi\)
−0.498959 + 0.866626i \(0.666284\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.5266 35.5531i −0.658729 1.14095i −0.980945 0.194286i \(-0.937761\pi\)
0.322216 0.946666i \(-0.395572\pi\)
\(972\) 0 0
\(973\) −2.38460 24.0617i −0.0764469 0.771383i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.4594 + 25.0445i −0.462598 + 0.801244i −0.999090 0.0426622i \(-0.986416\pi\)
0.536491 + 0.843906i \(0.319749\pi\)
\(978\) 0 0
\(979\) 37.7976i 1.20802i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −31.4152 18.1376i −1.00199 0.578499i −0.0931532 0.995652i \(-0.529695\pi\)
−0.908836 + 0.417153i \(0.863028\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.0866 6.97820i 0.384331 0.221894i
\(990\) 0 0
\(991\) 19.6101 33.9656i 0.622934 1.07895i −0.366002 0.930614i \(-0.619274\pi\)
0.988936 0.148340i \(-0.0473930\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −6.20678 + 10.7505i −0.196571 + 0.340471i −0.947414 0.320009i \(-0.896314\pi\)
0.750844 + 0.660480i \(0.229647\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.dd.b.4049.12 24
3.2 odd 2 6300.2.dd.c.4049.12 24
5.2 odd 4 1260.2.cg.b.521.3 yes 12
5.3 odd 4 6300.2.ch.b.4301.4 12
5.4 even 2 inner 6300.2.dd.b.4049.1 24
7.5 odd 6 6300.2.dd.c.1349.1 24
15.2 even 4 1260.2.cg.a.521.3 yes 12
15.8 even 4 6300.2.ch.c.4301.4 12
15.14 odd 2 6300.2.dd.c.4049.1 24
21.5 even 6 inner 6300.2.dd.b.1349.1 24
35.12 even 12 1260.2.cg.a.341.3 12
35.17 even 12 8820.2.d.b.881.2 12
35.19 odd 6 6300.2.dd.c.1349.12 24
35.32 odd 12 8820.2.d.a.881.2 12
35.33 even 12 6300.2.ch.c.1601.4 12
105.17 odd 12 8820.2.d.a.881.11 12
105.32 even 12 8820.2.d.b.881.11 12
105.47 odd 12 1260.2.cg.b.341.3 yes 12
105.68 odd 12 6300.2.ch.b.1601.4 12
105.89 even 6 inner 6300.2.dd.b.1349.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.cg.a.341.3 12 35.12 even 12
1260.2.cg.a.521.3 yes 12 15.2 even 4
1260.2.cg.b.341.3 yes 12 105.47 odd 12
1260.2.cg.b.521.3 yes 12 5.2 odd 4
6300.2.ch.b.1601.4 12 105.68 odd 12
6300.2.ch.b.4301.4 12 5.3 odd 4
6300.2.ch.c.1601.4 12 35.33 even 12
6300.2.ch.c.4301.4 12 15.8 even 4
6300.2.dd.b.1349.1 24 21.5 even 6 inner
6300.2.dd.b.1349.12 24 105.89 even 6 inner
6300.2.dd.b.4049.1 24 5.4 even 2 inner
6300.2.dd.b.4049.12 24 1.1 even 1 trivial
6300.2.dd.c.1349.1 24 7.5 odd 6
6300.2.dd.c.1349.12 24 35.19 odd 6
6300.2.dd.c.4049.1 24 15.14 odd 2
6300.2.dd.c.4049.12 24 3.2 odd 2
8820.2.d.a.881.2 12 35.32 odd 12
8820.2.d.a.881.11 12 105.17 odd 12
8820.2.d.b.881.2 12 35.17 even 12
8820.2.d.b.881.11 12 105.32 even 12