Properties

Label 6300.2.dd.c.4049.12
Level $6300$
Weight $2$
Character 6300.4049
Analytic conductor $50.306$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6300,2,Mod(1349,6300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6300, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6300.1349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.dd (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1260)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 4049.12
Character \(\chi\) \(=\) 6300.4049
Dual form 6300.2.dd.c.1349.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.63285 - 0.260926i) q^{7} +(-3.06024 - 1.76683i) q^{11} +0.599777 q^{13} +(-1.47054 - 0.849017i) q^{17} +(6.74071 - 3.89175i) q^{19} +(-1.65660 - 2.86931i) q^{23} -0.456069i q^{29} +(-0.914390 - 0.527923i) q^{31} +(0.334501 - 0.193124i) q^{37} -0.478149 q^{41} -4.21237i q^{43} +(-7.41148 + 4.27902i) q^{47} +(6.86384 - 1.37396i) q^{49} +(1.99486 - 3.45520i) q^{53} +(-1.30307 + 2.25698i) q^{59} +(-9.60378 + 5.54474i) q^{61} +(2.48915 + 1.43711i) q^{67} -0.336875i q^{71} +(-1.54239 + 2.67151i) q^{73} +(-8.51816 - 3.85331i) q^{77} +(-6.80447 - 11.7857i) q^{79} -16.2901i q^{83} +(-5.34822 - 9.26339i) q^{89} +(1.57913 - 0.156497i) q^{91} -2.18092 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{11} + 12 q^{19} - 12 q^{31} - 16 q^{41} - 44 q^{49} - 28 q^{79} + 40 q^{89} + 20 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.63285 0.260926i 0.995125 0.0986206i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.06024 1.76683i −0.922696 0.532719i −0.0382018 0.999270i \(-0.512163\pi\)
−0.884494 + 0.466551i \(0.845496\pi\)
\(12\) 0 0
\(13\) 0.599777 0.166348 0.0831742 0.996535i \(-0.473494\pi\)
0.0831742 + 0.996535i \(0.473494\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.47054 0.849017i −0.356658 0.205917i 0.310955 0.950424i \(-0.399351\pi\)
−0.667614 + 0.744508i \(0.732684\pi\)
\(18\) 0 0
\(19\) 6.74071 3.89175i 1.54642 0.892829i 0.548014 0.836469i \(-0.315384\pi\)
0.998411 0.0563594i \(-0.0179493\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.65660 2.86931i −0.345424 0.598292i 0.640007 0.768369i \(-0.278932\pi\)
−0.985431 + 0.170077i \(0.945598\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.456069i 0.0846898i −0.999103 0.0423449i \(-0.986517\pi\)
0.999103 0.0423449i \(-0.0134828\pi\)
\(30\) 0 0
\(31\) −0.914390 0.527923i −0.164229 0.0948178i 0.415633 0.909533i \(-0.363560\pi\)
−0.579862 + 0.814715i \(0.696894\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.334501 0.193124i 0.0549917 0.0317494i −0.472252 0.881464i \(-0.656559\pi\)
0.527244 + 0.849714i \(0.323225\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.478149 −0.0746743 −0.0373372 0.999303i \(-0.511888\pi\)
−0.0373372 + 0.999303i \(0.511888\pi\)
\(42\) 0 0
\(43\) 4.21237i 0.642381i −0.947015 0.321190i \(-0.895917\pi\)
0.947015 0.321190i \(-0.104083\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.41148 + 4.27902i −1.08108 + 0.624159i −0.931186 0.364544i \(-0.881225\pi\)
−0.149889 + 0.988703i \(0.547892\pi\)
\(48\) 0 0
\(49\) 6.86384 1.37396i 0.980548 0.196280i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.99486 3.45520i 0.274015 0.474609i −0.695871 0.718167i \(-0.744981\pi\)
0.969886 + 0.243558i \(0.0783147\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.30307 + 2.25698i −0.169645 + 0.293834i −0.938295 0.345836i \(-0.887595\pi\)
0.768650 + 0.639669i \(0.220929\pi\)
\(60\) 0 0
\(61\) −9.60378 + 5.54474i −1.22964 + 0.709932i −0.966954 0.254950i \(-0.917941\pi\)
−0.262684 + 0.964882i \(0.584608\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.48915 + 1.43711i 0.304097 + 0.175571i 0.644282 0.764788i \(-0.277156\pi\)
−0.340185 + 0.940359i \(0.610490\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.336875i 0.0399797i −0.999800 0.0199898i \(-0.993637\pi\)
0.999800 0.0199898i \(-0.00636339\pi\)
\(72\) 0 0
\(73\) −1.54239 + 2.67151i −0.180524 + 0.312676i −0.942059 0.335447i \(-0.891113\pi\)
0.761535 + 0.648123i \(0.224446\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.51816 3.85331i −0.970735 0.439125i
\(78\) 0 0
\(79\) −6.80447 11.7857i −0.765562 1.32599i −0.939949 0.341316i \(-0.889127\pi\)
0.174386 0.984677i \(-0.444206\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 16.2901i 1.78807i −0.447996 0.894036i \(-0.647862\pi\)
0.447996 0.894036i \(-0.352138\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.34822 9.26339i −0.566910 0.981918i −0.996869 0.0790691i \(-0.974805\pi\)
0.429959 0.902849i \(-0.358528\pi\)
\(90\) 0 0
\(91\) 1.57913 0.156497i 0.165537 0.0164054i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.18092 −0.221439 −0.110719 0.993852i \(-0.535315\pi\)
−0.110719 + 0.993852i \(0.535315\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.85417 + 6.67563i −0.383505 + 0.664250i −0.991561 0.129645i \(-0.958616\pi\)
0.608056 + 0.793894i \(0.291950\pi\)
\(102\) 0 0
\(103\) −0.367281 0.636149i −0.0361893 0.0626816i 0.847363 0.531013i \(-0.178189\pi\)
−0.883553 + 0.468332i \(0.844855\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.98870 + 17.3009i 0.965645 + 1.67255i 0.707873 + 0.706339i \(0.249655\pi\)
0.257771 + 0.966206i \(0.417012\pi\)
\(108\) 0 0
\(109\) −0.221512 + 0.383671i −0.0212170 + 0.0367490i −0.876439 0.481513i \(-0.840087\pi\)
0.855222 + 0.518262i \(0.173421\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.6235 1.37566 0.687830 0.725871i \(-0.258563\pi\)
0.687830 + 0.725871i \(0.258563\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.09325 1.85164i −0.375227 0.169739i
\(120\) 0 0
\(121\) 0.743363 + 1.28754i 0.0675785 + 0.117049i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.961155i 0.0852887i −0.999090 0.0426444i \(-0.986422\pi\)
0.999090 0.0426444i \(-0.0135782\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.99734 13.8518i −0.698731 1.21024i −0.968907 0.247427i \(-0.920415\pi\)
0.270175 0.962811i \(-0.412918\pi\)
\(132\) 0 0
\(133\) 16.7318 12.0052i 1.45083 1.04099i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.79985 8.31358i 0.410078 0.710277i −0.584819 0.811163i \(-0.698835\pi\)
0.994898 + 0.100887i \(0.0321680\pi\)
\(138\) 0 0
\(139\) 9.13902i 0.775162i −0.921836 0.387581i \(-0.873311\pi\)
0.921836 0.387581i \(-0.126689\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.83546 1.05970i −0.153489 0.0886169i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.5541 + 10.1349i −1.43809 + 0.830279i −0.997717 0.0675373i \(-0.978486\pi\)
−0.440369 + 0.897817i \(0.645153\pi\)
\(150\) 0 0
\(151\) 4.00516 6.93714i 0.325935 0.564536i −0.655766 0.754964i \(-0.727654\pi\)
0.981701 + 0.190428i \(0.0609876\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4.66593 + 8.08163i −0.372382 + 0.644984i −0.989931 0.141548i \(-0.954792\pi\)
0.617550 + 0.786532i \(0.288125\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.11025 7.12222i −0.402744 0.561309i
\(162\) 0 0
\(163\) −11.8245 + 6.82685i −0.926163 + 0.534720i −0.885596 0.464457i \(-0.846250\pi\)
−0.0405668 + 0.999177i \(0.512916\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.94429i 0.769512i −0.923018 0.384756i \(-0.874286\pi\)
0.923018 0.384756i \(-0.125714\pi\)
\(168\) 0 0
\(169\) −12.6403 −0.972328
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.60049 4.96550i 0.653883 0.377520i −0.136059 0.990701i \(-0.543444\pi\)
0.789942 + 0.613181i \(0.210110\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.3233 9.42424i −1.22006 0.704400i −0.255127 0.966907i \(-0.582117\pi\)
−0.964930 + 0.262507i \(0.915451\pi\)
\(180\) 0 0
\(181\) 20.0424i 1.48974i −0.667211 0.744869i \(-0.732512\pi\)
0.667211 0.744869i \(-0.267488\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.00013 + 5.19639i 0.219392 + 0.379997i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.99103 + 4.61363i −0.578211 + 0.333830i −0.760422 0.649429i \(-0.775008\pi\)
0.182211 + 0.983259i \(0.441675\pi\)
\(192\) 0 0
\(193\) 22.5467 + 13.0173i 1.62294 + 0.937007i 0.986127 + 0.165992i \(0.0530827\pi\)
0.636817 + 0.771015i \(0.280251\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.6156 1.11256 0.556282 0.830994i \(-0.312228\pi\)
0.556282 + 0.830994i \(0.312228\pi\)
\(198\) 0 0
\(199\) −5.29961 3.05973i −0.375679 0.216899i 0.300257 0.953858i \(-0.402927\pi\)
−0.675937 + 0.736960i \(0.736261\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.119000 1.20076i −0.00835216 0.0842770i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −27.5042 −1.90251
\(210\) 0 0
\(211\) 26.7224 1.83964 0.919822 0.392337i \(-0.128333\pi\)
0.919822 + 0.392337i \(0.128333\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.54520 1.15136i −0.172780 0.0781592i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.881997 0.509221i −0.0593295 0.0342539i
\(222\) 0 0
\(223\) 20.3668 1.36386 0.681932 0.731416i \(-0.261140\pi\)
0.681932 + 0.731416i \(0.261140\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.2677 + 9.96949i 1.14609 + 0.661698i 0.947933 0.318471i \(-0.103169\pi\)
0.198162 + 0.980169i \(0.436503\pi\)
\(228\) 0 0
\(229\) 16.4015 9.46944i 1.08384 0.625758i 0.151914 0.988394i \(-0.451456\pi\)
0.931931 + 0.362636i \(0.118123\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.2765 22.9956i −0.869775 1.50650i −0.862226 0.506524i \(-0.830930\pi\)
−0.00754927 0.999972i \(-0.502403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.76076i 0.437317i −0.975801 0.218659i \(-0.929832\pi\)
0.975801 0.218659i \(-0.0701681\pi\)
\(240\) 0 0
\(241\) −10.4654 6.04219i −0.674134 0.389211i 0.123507 0.992344i \(-0.460586\pi\)
−0.797641 + 0.603132i \(0.793919\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.04292 2.33418i 0.257245 0.148521i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.3410 1.09455 0.547276 0.836952i \(-0.315665\pi\)
0.547276 + 0.836952i \(0.315665\pi\)
\(252\) 0 0
\(253\) 11.7077i 0.736055i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.22486 + 4.17127i −0.450674 + 0.260197i −0.708115 0.706097i \(-0.750454\pi\)
0.257441 + 0.966294i \(0.417121\pi\)
\(258\) 0 0
\(259\) 0.830302 0.595748i 0.0515924 0.0370180i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.70936 + 11.6209i −0.413717 + 0.716578i −0.995293 0.0969137i \(-0.969103\pi\)
0.581576 + 0.813492i \(0.302436\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.98145 + 6.89607i −0.242753 + 0.420461i −0.961497 0.274814i \(-0.911384\pi\)
0.718744 + 0.695274i \(0.244717\pi\)
\(270\) 0 0
\(271\) −6.46871 + 3.73471i −0.392946 + 0.226867i −0.683436 0.730011i \(-0.739515\pi\)
0.290490 + 0.956878i \(0.406182\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −27.0734 15.6308i −1.62668 0.939166i −0.985073 0.172135i \(-0.944933\pi\)
−0.641610 0.767031i \(-0.721733\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.4956i 1.40163i 0.713343 + 0.700815i \(0.247180\pi\)
−0.713343 + 0.700815i \(0.752820\pi\)
\(282\) 0 0
\(283\) −9.25634 + 16.0325i −0.550232 + 0.953030i 0.448025 + 0.894021i \(0.352127\pi\)
−0.998257 + 0.0590093i \(0.981206\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.25890 + 0.124761i −0.0743103 + 0.00736442i
\(288\) 0 0
\(289\) −7.05834 12.2254i −0.415196 0.719141i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.7388i 0.861048i −0.902579 0.430524i \(-0.858329\pi\)
0.902579 0.430524i \(-0.141671\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.993588 1.72095i −0.0574607 0.0995248i
\(300\) 0 0
\(301\) −1.09912 11.0906i −0.0633520 0.639249i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −17.6583 −1.00781 −0.503906 0.863758i \(-0.668104\pi\)
−0.503906 + 0.863758i \(0.668104\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.43782 + 2.49037i −0.0815310 + 0.141216i −0.903908 0.427727i \(-0.859314\pi\)
0.822377 + 0.568943i \(0.192648\pi\)
\(312\) 0 0
\(313\) 10.0193 + 17.3539i 0.566324 + 0.980901i 0.996925 + 0.0783592i \(0.0249681\pi\)
−0.430602 + 0.902542i \(0.641699\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.2955 17.8323i −0.578252 1.00156i −0.995680 0.0928516i \(-0.970402\pi\)
0.417428 0.908710i \(-0.362932\pi\)
\(318\) 0 0
\(319\) −0.805795 + 1.39568i −0.0451159 + 0.0781430i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −13.2166 −0.735394
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −18.3968 + 13.1999i −1.01425 + 0.727733i
\(330\) 0 0
\(331\) 11.4497 + 19.8315i 0.629335 + 1.09004i 0.987685 + 0.156453i \(0.0500060\pi\)
−0.358350 + 0.933587i \(0.616661\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 17.7305i 0.965840i −0.875664 0.482920i \(-0.839576\pi\)
0.875664 0.482920i \(-0.160424\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.86550 + 3.23114i 0.101022 + 0.174976i
\(342\) 0 0
\(343\) 17.7130 5.40838i 0.956411 0.292025i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.09495 + 15.7529i −0.488243 + 0.845661i −0.999909 0.0135233i \(-0.995695\pi\)
0.511666 + 0.859185i \(0.329029\pi\)
\(348\) 0 0
\(349\) 4.44213i 0.237782i −0.992907 0.118891i \(-0.962066\pi\)
0.992907 0.118891i \(-0.0379339\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.48835 + 2.59135i 0.238891 + 0.137924i 0.614667 0.788787i \(-0.289290\pi\)
−0.375776 + 0.926711i \(0.622624\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.7893 9.11596i 0.833327 0.481122i −0.0216632 0.999765i \(-0.506896\pi\)
0.854991 + 0.518644i \(0.173563\pi\)
\(360\) 0 0
\(361\) 20.7914 36.0118i 1.09429 1.89536i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10.0298 17.3722i 0.523553 0.906821i −0.476071 0.879407i \(-0.657939\pi\)
0.999624 0.0274140i \(-0.00872725\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.35063 9.61755i 0.225873 0.499319i
\(372\) 0 0
\(373\) 23.0267 13.2945i 1.19228 0.688361i 0.233454 0.972368i \(-0.424997\pi\)
0.958822 + 0.284007i \(0.0916638\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.273540i 0.0140880i
\(378\) 0 0
\(379\) 18.3623 0.943210 0.471605 0.881810i \(-0.343675\pi\)
0.471605 + 0.881810i \(0.343675\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 31.8783 18.4049i 1.62891 0.940449i 0.644485 0.764617i \(-0.277072\pi\)
0.984420 0.175832i \(-0.0562616\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −27.4003 15.8196i −1.38925 0.802084i −0.396020 0.918242i \(-0.629609\pi\)
−0.993231 + 0.116157i \(0.962942\pi\)
\(390\) 0 0
\(391\) 5.62591i 0.284515i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13.4929 + 23.3704i 0.677190 + 1.17293i 0.975824 + 0.218560i \(0.0701358\pi\)
−0.298634 + 0.954368i \(0.596531\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.48970 + 4.90153i −0.423956 + 0.244771i −0.696768 0.717296i \(-0.745379\pi\)
0.272813 + 0.962067i \(0.412046\pi\)
\(402\) 0 0
\(403\) −0.548430 0.316636i −0.0273193 0.0157728i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.36487 −0.0676541
\(408\) 0 0
\(409\) −7.43046 4.28998i −0.367413 0.212126i 0.304915 0.952380i \(-0.401372\pi\)
−0.672328 + 0.740254i \(0.734705\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.84188 + 6.28230i −0.139840 + 0.309132i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −21.7882 −1.06443 −0.532213 0.846611i \(-0.678639\pi\)
−0.532213 + 0.846611i \(0.678639\pi\)
\(420\) 0 0
\(421\) −24.2280 −1.18080 −0.590400 0.807111i \(-0.701030\pi\)
−0.590400 + 0.807111i \(0.701030\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −23.8386 + 17.1044i −1.15363 + 0.827738i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.6400 11.9165i −0.994194 0.573998i −0.0876688 0.996150i \(-0.527942\pi\)
−0.906525 + 0.422151i \(0.861275\pi\)
\(432\) 0 0
\(433\) −1.39596 −0.0670855 −0.0335427 0.999437i \(-0.510679\pi\)
−0.0335427 + 0.999437i \(0.510679\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −22.3333 12.8941i −1.06834 0.616809i
\(438\) 0 0
\(439\) 10.2953 5.94397i 0.491366 0.283690i −0.233775 0.972291i \(-0.575108\pi\)
0.725141 + 0.688600i \(0.241775\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.3701 23.1578i −0.635235 1.10026i −0.986465 0.163970i \(-0.947570\pi\)
0.351230 0.936289i \(-0.385763\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.8394i 1.54979i −0.632091 0.774895i \(-0.717803\pi\)
0.632091 0.774895i \(-0.282197\pi\)
\(450\) 0 0
\(451\) 1.46325 + 0.844807i 0.0689017 + 0.0397804i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.3502 17.5227i 1.41972 0.819677i 0.423448 0.905920i \(-0.360820\pi\)
0.996274 + 0.0862436i \(0.0274863\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8.90991 −0.414976 −0.207488 0.978238i \(-0.566529\pi\)
−0.207488 + 0.978238i \(0.566529\pi\)
\(462\) 0 0
\(463\) 10.2000i 0.474036i −0.971505 0.237018i \(-0.923830\pi\)
0.971505 0.237018i \(-0.0761700\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.5824 8.41916i 0.674794 0.389592i −0.123097 0.992395i \(-0.539283\pi\)
0.797891 + 0.602802i \(0.205949\pi\)
\(468\) 0 0
\(469\) 6.92853 + 3.13421i 0.319930 + 0.144725i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.44254 + 12.8909i −0.342208 + 0.592722i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.18515 15.9091i 0.419680 0.726907i −0.576227 0.817290i \(-0.695476\pi\)
0.995907 + 0.0903824i \(0.0288089\pi\)
\(480\) 0 0
\(481\) 0.200626 0.115832i 0.00914777 0.00528147i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −10.1012 5.83194i −0.457729 0.264270i 0.253360 0.967372i \(-0.418464\pi\)
−0.711089 + 0.703102i \(0.751798\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.4694i 0.968902i −0.874818 0.484451i \(-0.839019\pi\)
0.874818 0.484451i \(-0.160981\pi\)
\(492\) 0 0
\(493\) −0.387210 + 0.670668i −0.0174391 + 0.0302054i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.0878993 0.886942i −0.00394282 0.0397848i
\(498\) 0 0
\(499\) −7.41090 12.8361i −0.331757 0.574621i 0.651099 0.758993i \(-0.274308\pi\)
−0.982857 + 0.184372i \(0.940975\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.9563i 1.29110i −0.763719 0.645548i \(-0.776629\pi\)
0.763719 0.645548i \(-0.223371\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.5897 + 25.2700i 0.646675 + 1.12007i 0.983912 + 0.178654i \(0.0571744\pi\)
−0.337237 + 0.941420i \(0.609492\pi\)
\(510\) 0 0
\(511\) −3.36384 + 7.43614i −0.148807 + 0.328955i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 30.2412 1.33001
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15.3104 + 26.5184i −0.670761 + 1.16179i 0.306928 + 0.951733i \(0.400699\pi\)
−0.977689 + 0.210059i \(0.932635\pi\)
\(522\) 0 0
\(523\) −6.04118 10.4636i −0.264162 0.457542i 0.703182 0.711010i \(-0.251762\pi\)
−0.967344 + 0.253468i \(0.918429\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.896431 + 1.55266i 0.0390492 + 0.0676351i
\(528\) 0 0
\(529\) 6.01138 10.4120i 0.261365 0.452697i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.286783 −0.0124219
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −23.4325 7.92258i −1.00931 0.341250i
\(540\) 0 0
\(541\) −2.77440 4.80539i −0.119281 0.206600i 0.800202 0.599730i \(-0.204725\pi\)
−0.919483 + 0.393130i \(0.871392\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.60440i 0.196870i −0.995143 0.0984349i \(-0.968616\pi\)
0.995143 0.0984349i \(-0.0313836\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.77491 3.07423i −0.0756135 0.130966i
\(552\) 0 0
\(553\) −20.9904 29.2545i −0.892601 1.24403i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.85045 + 13.5974i −0.332634 + 0.576139i −0.983028 0.183458i \(-0.941271\pi\)
0.650393 + 0.759598i \(0.274604\pi\)
\(558\) 0 0
\(559\) 2.52649i 0.106859i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 28.3061 + 16.3425i 1.19296 + 0.688756i 0.958977 0.283485i \(-0.0914905\pi\)
0.233983 + 0.972241i \(0.424824\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.0566 11.5797i 0.840817 0.485446i −0.0167248 0.999860i \(-0.505324\pi\)
0.857542 + 0.514414i \(0.171991\pi\)
\(570\) 0 0
\(571\) 1.95247 3.38177i 0.0817083 0.141523i −0.822276 0.569090i \(-0.807296\pi\)
0.903984 + 0.427567i \(0.140629\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −3.83961 + 6.65040i −0.159845 + 0.276860i −0.934813 0.355141i \(-0.884433\pi\)
0.774968 + 0.632001i \(0.217766\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.25050 42.8895i −0.176341 1.77935i
\(582\) 0 0
\(583\) −12.2095 + 7.04916i −0.505666 + 0.291946i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.375586i 0.0155021i 0.999970 + 0.00775105i \(0.00246726\pi\)
−0.999970 + 0.00775105i \(0.997533\pi\)
\(588\) 0 0
\(589\) −8.21818 −0.338624
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.9536 11.5202i 0.819396 0.473078i −0.0308124 0.999525i \(-0.509809\pi\)
0.850208 + 0.526447i \(0.176476\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.46233 4.30838i −0.304902 0.176036i 0.339741 0.940519i \(-0.389661\pi\)
−0.644643 + 0.764484i \(0.722994\pi\)
\(600\) 0 0
\(601\) 27.4954i 1.12156i 0.827965 + 0.560780i \(0.189499\pi\)
−0.827965 + 0.560780i \(0.810501\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17.9638 + 31.1143i 0.729130 + 1.26289i 0.957251 + 0.289257i \(0.0934084\pi\)
−0.228121 + 0.973633i \(0.573258\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.44524 + 2.56646i −0.179835 + 0.103828i
\(612\) 0 0
\(613\) −36.2468 20.9271i −1.46400 0.845238i −0.464803 0.885414i \(-0.653875\pi\)
−0.999193 + 0.0401755i \(0.987208\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.6411 −1.11279 −0.556395 0.830918i \(-0.687816\pi\)
−0.556395 + 0.830918i \(0.687816\pi\)
\(618\) 0 0
\(619\) 11.4818 + 6.62901i 0.461492 + 0.266442i 0.712671 0.701498i \(-0.247485\pi\)
−0.251179 + 0.967941i \(0.580818\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16.4981 22.9937i −0.660984 0.921222i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.655863 −0.0261510
\(630\) 0 0
\(631\) −12.2455 −0.487485 −0.243742 0.969840i \(-0.578375\pi\)
−0.243742 + 0.969840i \(0.578375\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.11677 0.824069i 0.163112 0.0326508i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.7315 6.19582i −0.423868 0.244720i 0.272863 0.962053i \(-0.412029\pi\)
−0.696731 + 0.717333i \(0.745363\pi\)
\(642\) 0 0
\(643\) 42.8847 1.69121 0.845604 0.533811i \(-0.179241\pi\)
0.845604 + 0.533811i \(0.179241\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.2701 + 13.4350i 0.914843 + 0.528185i 0.881986 0.471275i \(-0.156206\pi\)
0.0328565 + 0.999460i \(0.489540\pi\)
\(648\) 0 0
\(649\) 7.97539 4.60459i 0.313061 0.180746i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.311046 0.538748i −0.0121722 0.0210828i 0.859875 0.510504i \(-0.170541\pi\)
−0.872047 + 0.489422i \(0.837208\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17.9996i 0.701167i 0.936532 + 0.350583i \(0.114017\pi\)
−0.936532 + 0.350583i \(0.885983\pi\)
\(660\) 0 0
\(661\) −26.0446 15.0369i −1.01302 0.584866i −0.100944 0.994892i \(-0.532186\pi\)
−0.912074 + 0.410026i \(0.865519\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.30860 + 0.755521i −0.0506693 + 0.0292539i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 39.1864 1.51278
\(672\) 0 0
\(673\) 39.4637i 1.52121i 0.649213 + 0.760606i \(0.275098\pi\)
−0.649213 + 0.760606i \(0.724902\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −17.0412 + 9.83874i −0.654947 + 0.378134i −0.790349 0.612657i \(-0.790101\pi\)
0.135402 + 0.990791i \(0.456767\pi\)
\(678\) 0 0
\(679\) −5.74204 + 0.569057i −0.220359 + 0.0218384i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −9.01113 + 15.6077i −0.344801 + 0.597213i −0.985318 0.170731i \(-0.945387\pi\)
0.640516 + 0.767945i \(0.278720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.19647 2.07235i 0.0455820 0.0789503i
\(690\) 0 0
\(691\) −23.5609 + 13.6029i −0.896298 + 0.517478i −0.875997 0.482316i \(-0.839796\pi\)
−0.0203004 + 0.999794i \(0.506462\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0.703137 + 0.405957i 0.0266332 + 0.0153767i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.1556i 1.25227i 0.779715 + 0.626134i \(0.215364\pi\)
−0.779715 + 0.626134i \(0.784636\pi\)
\(702\) 0 0
\(703\) 1.50318 2.60359i 0.0566936 0.0981962i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.40563 + 18.5816i −0.316126 + 0.698833i
\(708\) 0 0
\(709\) 0.989596 + 1.71403i 0.0371650 + 0.0643717i 0.884010 0.467469i \(-0.154834\pi\)
−0.846845 + 0.531840i \(0.821501\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.49822i 0.131009i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.1795 + 26.2916i 0.566098 + 0.980510i 0.996947 + 0.0780862i \(0.0248810\pi\)
−0.430849 + 0.902424i \(0.641786\pi\)
\(720\) 0 0
\(721\) −1.13298 1.57905i −0.0421945 0.0588071i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −17.5883 −0.652313 −0.326156 0.945316i \(-0.605754\pi\)
−0.326156 + 0.945316i \(0.605754\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.57638 + 6.19446i −0.132277 + 0.229111i
\(732\) 0 0
\(733\) −18.4722 31.9948i −0.682287 1.18176i −0.974281 0.225336i \(-0.927652\pi\)
0.291994 0.956420i \(-0.405681\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.07825 8.79578i −0.187060 0.323997i
\(738\) 0 0
\(739\) −2.52958 + 4.38136i −0.0930520 + 0.161171i −0.908794 0.417245i \(-0.862996\pi\)
0.815742 + 0.578416i \(0.196329\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.19725 0.227355 0.113678 0.993518i \(-0.463737\pi\)
0.113678 + 0.993518i \(0.463737\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 30.8131 + 42.9445i 1.12588 + 1.56916i
\(750\) 0 0
\(751\) 18.9100 + 32.7531i 0.690037 + 1.19518i 0.971825 + 0.235703i \(0.0757392\pi\)
−0.281788 + 0.959477i \(0.590928\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 13.7436i 0.499519i 0.968308 + 0.249760i \(0.0803516\pi\)
−0.968308 + 0.249760i \(0.919648\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.19974 2.07800i −0.0434904 0.0753275i 0.843461 0.537191i \(-0.180514\pi\)
−0.886951 + 0.461863i \(0.847181\pi\)
\(762\) 0 0
\(763\) −0.483100 + 1.06795i −0.0174894 + 0.0386623i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.781550 + 1.35368i −0.0282201 + 0.0488787i
\(768\) 0 0
\(769\) 9.42300i 0.339802i −0.985461 0.169901i \(-0.945655\pi\)
0.985461 0.169901i \(-0.0543448\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.5441 + 11.2838i 0.702953 + 0.405850i 0.808446 0.588570i \(-0.200309\pi\)
−0.105493 + 0.994420i \(0.533642\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.22306 + 1.86084i −0.115478 + 0.0666714i
\(780\) 0 0
\(781\) −0.595200 + 1.03092i −0.0212979 + 0.0368891i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −12.9573 + 22.4427i −0.461878 + 0.799997i −0.999055 0.0434733i \(-0.986158\pi\)
0.537176 + 0.843470i \(0.319491\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 38.5015 3.81564i 1.36895 0.135668i
\(792\) 0 0
\(793\) −5.76013 + 3.32561i −0.204548 + 0.118096i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.94772i 0.246101i 0.992400 + 0.123050i \(0.0392677\pi\)
−0.992400 + 0.123050i \(0.960732\pi\)
\(798\) 0 0
\(799\) 14.5318 0.514100
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.44019 5.45029i 0.333137 0.192337i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28.9229 + 16.6986i 1.01687 + 0.587093i 0.913197 0.407518i \(-0.133606\pi\)
0.103677 + 0.994611i \(0.466939\pi\)
\(810\) 0 0
\(811\) 28.9701i 1.01728i 0.860979 + 0.508640i \(0.169851\pi\)
−0.860979 + 0.508640i \(0.830149\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −16.3935 28.3944i −0.573536 0.993393i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.25824 + 1.30380i −0.0788132 + 0.0455028i −0.538889 0.842377i \(-0.681156\pi\)
0.460076 + 0.887880i \(0.347822\pi\)
\(822\) 0 0
\(823\) −7.32393 4.22848i −0.255296 0.147395i 0.366891 0.930264i \(-0.380422\pi\)
−0.622187 + 0.782869i \(0.713756\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.3362 0.463744 0.231872 0.972746i \(-0.425515\pi\)
0.231872 + 0.972746i \(0.425515\pi\)
\(828\) 0 0
\(829\) −10.0783 5.81869i −0.350033 0.202091i 0.314667 0.949202i \(-0.398107\pi\)
−0.664700 + 0.747111i \(0.731440\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11.2601 3.80705i −0.390138 0.131907i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 19.9335 0.688181 0.344090 0.938937i \(-0.388187\pi\)
0.344090 + 0.938937i \(0.388187\pi\)
\(840\) 0 0
\(841\) 28.7920 0.992828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.29312 + 3.19595i 0.0787925 + 0.109814i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.10827 0.639858i −0.0379909 0.0219340i
\(852\) 0 0
\(853\) 2.08233 0.0712975 0.0356487 0.999364i \(-0.488650\pi\)
0.0356487 + 0.999364i \(0.488650\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.3119 + 23.2741i 1.37703 + 0.795028i 0.991801 0.127793i \(-0.0407894\pi\)
0.385228 + 0.922821i \(0.374123\pi\)
\(858\) 0 0
\(859\) −4.62888 + 2.67248i −0.157935 + 0.0911840i −0.576885 0.816826i \(-0.695732\pi\)
0.418949 + 0.908010i \(0.362398\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.65350 + 11.5242i 0.226488 + 0.392288i 0.956765 0.290863i \(-0.0939423\pi\)
−0.730277 + 0.683151i \(0.760609\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 48.0893i 1.63132i
\(870\) 0 0
\(871\) 1.49293 + 0.861945i 0.0505861 + 0.0292059i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17.1339 9.89224i 0.578570 0.334037i −0.181995 0.983299i \(-0.558256\pi\)
0.760565 + 0.649262i \(0.224922\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −34.3203 −1.15628 −0.578141 0.815937i \(-0.696222\pi\)
−0.578141 + 0.815937i \(0.696222\pi\)
\(882\) 0 0
\(883\) 28.1109i 0.946006i 0.881061 + 0.473003i \(0.156830\pi\)
−0.881061 + 0.473003i \(0.843170\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.1697 20.8826i 1.21446 0.701169i 0.250732 0.968056i \(-0.419329\pi\)
0.963728 + 0.266888i \(0.0859953\pi\)
\(888\) 0 0
\(889\) −0.250790 2.53058i −0.00841122 0.0848730i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −33.3058 + 57.6873i −1.11453 + 1.93043i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.240769 + 0.417025i −0.00803010 + 0.0139085i
\(900\) 0 0
\(901\) −5.86705 + 3.38734i −0.195460 + 0.112849i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −6.85979 3.96050i −0.227776 0.131506i 0.381770 0.924257i \(-0.375315\pi\)
−0.609546 + 0.792751i \(0.708648\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 49.9301i 1.65426i −0.562012 0.827129i \(-0.689973\pi\)
0.562012 0.827129i \(-0.310027\pi\)
\(912\) 0 0
\(913\) −28.7818 + 49.8516i −0.952539 + 1.64985i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −24.6701 34.3831i −0.814679 1.13543i
\(918\) 0 0
\(919\) −0.132073 0.228757i −0.00435668 0.00754598i 0.863839 0.503768i \(-0.168053\pi\)
−0.868196 + 0.496222i \(0.834720\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.202050i 0.00665055i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.4346 49.2502i −0.932910 1.61585i −0.778320 0.627868i \(-0.783928\pi\)
−0.154590 0.987979i \(-0.549406\pi\)
\(930\) 0 0
\(931\) 40.9200 35.9738i 1.34110 1.17899i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 37.3673 1.22074 0.610369 0.792118i \(-0.291021\pi\)
0.610369 + 0.792118i \(0.291021\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −23.8667 + 41.3384i −0.778033 + 1.34759i 0.155042 + 0.987908i \(0.450449\pi\)
−0.933074 + 0.359684i \(0.882885\pi\)
\(942\) 0 0
\(943\) 0.792099 + 1.37196i 0.0257943 + 0.0446770i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16.5870 + 28.7296i 0.539006 + 0.933587i 0.998958 + 0.0456424i \(0.0145335\pi\)
−0.459951 + 0.887944i \(0.652133\pi\)
\(948\) 0 0
\(949\) −0.925094 + 1.60231i −0.0300298 + 0.0520131i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −28.1591 −0.912164 −0.456082 0.889938i \(-0.650748\pi\)
−0.456082 + 0.889938i \(0.650748\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.4681 23.1408i 0.338031 0.747256i
\(960\) 0 0
\(961\) −14.9426 25.8813i −0.482019 0.834882i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 53.8983i 1.73325i 0.498959 + 0.866626i \(0.333716\pi\)
−0.498959 + 0.866626i \(0.666284\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.5266 + 35.5531i 0.658729 + 1.14095i 0.980945 + 0.194286i \(0.0622390\pi\)
−0.322216 + 0.946666i \(0.604428\pi\)
\(972\) 0 0
\(973\) −2.38460 24.0617i −0.0764469 0.771383i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.4594 25.0445i 0.462598 0.801244i −0.536491 0.843906i \(-0.680251\pi\)
0.999090 + 0.0426622i \(0.0135839\pi\)
\(978\) 0 0
\(979\) 37.7976i 1.20802i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 31.4152 + 18.1376i 1.00199 + 0.578499i 0.908836 0.417153i \(-0.136972\pi\)
0.0931532 + 0.995652i \(0.470305\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.0866 + 6.97820i −0.384331 + 0.221894i
\(990\) 0 0
\(991\) 19.6101 33.9656i 0.622934 1.07895i −0.366002 0.930614i \(-0.619274\pi\)
0.988936 0.148340i \(-0.0473930\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −6.20678 + 10.7505i −0.196571 + 0.340471i −0.947414 0.320009i \(-0.896314\pi\)
0.750844 + 0.660480i \(0.229647\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.dd.c.4049.12 24
3.2 odd 2 6300.2.dd.b.4049.12 24
5.2 odd 4 1260.2.cg.a.521.3 yes 12
5.3 odd 4 6300.2.ch.c.4301.4 12
5.4 even 2 inner 6300.2.dd.c.4049.1 24
7.5 odd 6 6300.2.dd.b.1349.1 24
15.2 even 4 1260.2.cg.b.521.3 yes 12
15.8 even 4 6300.2.ch.b.4301.4 12
15.14 odd 2 6300.2.dd.b.4049.1 24
21.5 even 6 inner 6300.2.dd.c.1349.1 24
35.12 even 12 1260.2.cg.b.341.3 yes 12
35.17 even 12 8820.2.d.a.881.11 12
35.19 odd 6 6300.2.dd.b.1349.12 24
35.32 odd 12 8820.2.d.b.881.11 12
35.33 even 12 6300.2.ch.b.1601.4 12
105.17 odd 12 8820.2.d.b.881.2 12
105.32 even 12 8820.2.d.a.881.2 12
105.47 odd 12 1260.2.cg.a.341.3 12
105.68 odd 12 6300.2.ch.c.1601.4 12
105.89 even 6 inner 6300.2.dd.c.1349.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.cg.a.341.3 12 105.47 odd 12
1260.2.cg.a.521.3 yes 12 5.2 odd 4
1260.2.cg.b.341.3 yes 12 35.12 even 12
1260.2.cg.b.521.3 yes 12 15.2 even 4
6300.2.ch.b.1601.4 12 35.33 even 12
6300.2.ch.b.4301.4 12 15.8 even 4
6300.2.ch.c.1601.4 12 105.68 odd 12
6300.2.ch.c.4301.4 12 5.3 odd 4
6300.2.dd.b.1349.1 24 7.5 odd 6
6300.2.dd.b.1349.12 24 35.19 odd 6
6300.2.dd.b.4049.1 24 15.14 odd 2
6300.2.dd.b.4049.12 24 3.2 odd 2
6300.2.dd.c.1349.1 24 21.5 even 6 inner
6300.2.dd.c.1349.12 24 105.89 even 6 inner
6300.2.dd.c.4049.1 24 5.4 even 2 inner
6300.2.dd.c.4049.12 24 1.1 even 1 trivial
8820.2.d.a.881.2 12 105.32 even 12
8820.2.d.a.881.11 12 35.17 even 12
8820.2.d.b.881.2 12 105.17 odd 12
8820.2.d.b.881.11 12 35.32 odd 12