Properties

Label 8967.2.a.bi.1.14
Level $8967$
Weight $2$
Character 8967.1
Self dual yes
Analytic conductor $71.602$
Analytic rank $0$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8967,2,Mod(1,8967)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8967, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8967.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8967 = 3 \cdot 7^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8967.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.6018554925\)
Analytic rank: \(0\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 4 x^{18} - 23 x^{17} + 104 x^{16} + 198 x^{15} - 1098 x^{14} - 729 x^{13} + 6066 x^{12} + \cdots + 350 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(1.66531\) of defining polynomial
Character \(\chi\) \(=\) 8967.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.66531 q^{2} -1.00000 q^{3} +0.773271 q^{4} -2.48363 q^{5} -1.66531 q^{6} -2.04289 q^{8} +1.00000 q^{9} -4.13602 q^{10} -1.08933 q^{11} -0.773271 q^{12} -6.85952 q^{13} +2.48363 q^{15} -4.94859 q^{16} -5.32797 q^{17} +1.66531 q^{18} -6.15321 q^{19} -1.92052 q^{20} -1.81408 q^{22} -2.44675 q^{23} +2.04289 q^{24} +1.16840 q^{25} -11.4232 q^{26} -1.00000 q^{27} -4.13329 q^{29} +4.13602 q^{30} +3.16639 q^{31} -4.15518 q^{32} +1.08933 q^{33} -8.87274 q^{34} +0.773271 q^{36} +0.0678240 q^{37} -10.2470 q^{38} +6.85952 q^{39} +5.07378 q^{40} -7.06260 q^{41} -0.385534 q^{43} -0.842347 q^{44} -2.48363 q^{45} -4.07460 q^{46} +7.37734 q^{47} +4.94859 q^{48} +1.94576 q^{50} +5.32797 q^{51} -5.30426 q^{52} +0.597533 q^{53} -1.66531 q^{54} +2.70549 q^{55} +6.15321 q^{57} -6.88323 q^{58} +0.468004 q^{59} +1.92052 q^{60} -1.00000 q^{61} +5.27303 q^{62} +2.97750 q^{64} +17.0365 q^{65} +1.81408 q^{66} +6.82635 q^{67} -4.11996 q^{68} +2.44675 q^{69} +7.17809 q^{71} -2.04289 q^{72} -16.3585 q^{73} +0.112948 q^{74} -1.16840 q^{75} -4.75810 q^{76} +11.4232 q^{78} -4.89698 q^{79} +12.2905 q^{80} +1.00000 q^{81} -11.7614 q^{82} +12.9769 q^{83} +13.2327 q^{85} -0.642035 q^{86} +4.13329 q^{87} +2.22538 q^{88} -10.1560 q^{89} -4.13602 q^{90} -1.89200 q^{92} -3.16639 q^{93} +12.2856 q^{94} +15.2823 q^{95} +4.15518 q^{96} +1.03060 q^{97} -1.08933 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q + 4 q^{2} - 19 q^{3} + 24 q^{4} + 2 q^{5} - 4 q^{6} + 12 q^{8} + 19 q^{9} - 10 q^{10} + 4 q^{11} - 24 q^{12} - 2 q^{15} + 34 q^{16} - 5 q^{17} + 4 q^{18} - 18 q^{19} + 24 q^{20} + 6 q^{22} + 18 q^{23}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.66531 1.17755 0.588777 0.808295i \(-0.299609\pi\)
0.588777 + 0.808295i \(0.299609\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.773271 0.386635
\(5\) −2.48363 −1.11071 −0.555356 0.831613i \(-0.687418\pi\)
−0.555356 + 0.831613i \(0.687418\pi\)
\(6\) −1.66531 −0.679862
\(7\) 0 0
\(8\) −2.04289 −0.722271
\(9\) 1.00000 0.333333
\(10\) −4.13602 −1.30792
\(11\) −1.08933 −0.328446 −0.164223 0.986423i \(-0.552512\pi\)
−0.164223 + 0.986423i \(0.552512\pi\)
\(12\) −0.773271 −0.223224
\(13\) −6.85952 −1.90249 −0.951244 0.308440i \(-0.900193\pi\)
−0.951244 + 0.308440i \(0.900193\pi\)
\(14\) 0 0
\(15\) 2.48363 0.641270
\(16\) −4.94859 −1.23715
\(17\) −5.32797 −1.29222 −0.646111 0.763244i \(-0.723606\pi\)
−0.646111 + 0.763244i \(0.723606\pi\)
\(18\) 1.66531 0.392518
\(19\) −6.15321 −1.41164 −0.705822 0.708389i \(-0.749422\pi\)
−0.705822 + 0.708389i \(0.749422\pi\)
\(20\) −1.92052 −0.429440
\(21\) 0 0
\(22\) −1.81408 −0.386763
\(23\) −2.44675 −0.510182 −0.255091 0.966917i \(-0.582105\pi\)
−0.255091 + 0.966917i \(0.582105\pi\)
\(24\) 2.04289 0.417003
\(25\) 1.16840 0.233680
\(26\) −11.4232 −2.24028
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −4.13329 −0.767533 −0.383767 0.923430i \(-0.625373\pi\)
−0.383767 + 0.923430i \(0.625373\pi\)
\(30\) 4.13602 0.755130
\(31\) 3.16639 0.568700 0.284350 0.958721i \(-0.408222\pi\)
0.284350 + 0.958721i \(0.408222\pi\)
\(32\) −4.15518 −0.734540
\(33\) 1.08933 0.189628
\(34\) −8.87274 −1.52166
\(35\) 0 0
\(36\) 0.773271 0.128878
\(37\) 0.0678240 0.0111502 0.00557510 0.999984i \(-0.498225\pi\)
0.00557510 + 0.999984i \(0.498225\pi\)
\(38\) −10.2470 −1.66229
\(39\) 6.85952 1.09840
\(40\) 5.07378 0.802234
\(41\) −7.06260 −1.10299 −0.551496 0.834177i \(-0.685943\pi\)
−0.551496 + 0.834177i \(0.685943\pi\)
\(42\) 0 0
\(43\) −0.385534 −0.0587933 −0.0293967 0.999568i \(-0.509359\pi\)
−0.0293967 + 0.999568i \(0.509359\pi\)
\(44\) −0.842347 −0.126989
\(45\) −2.48363 −0.370237
\(46\) −4.07460 −0.600767
\(47\) 7.37734 1.07610 0.538048 0.842914i \(-0.319162\pi\)
0.538048 + 0.842914i \(0.319162\pi\)
\(48\) 4.94859 0.714268
\(49\) 0 0
\(50\) 1.94576 0.275172
\(51\) 5.32797 0.746065
\(52\) −5.30426 −0.735569
\(53\) 0.597533 0.0820775 0.0410387 0.999158i \(-0.486933\pi\)
0.0410387 + 0.999158i \(0.486933\pi\)
\(54\) −1.66531 −0.226621
\(55\) 2.70549 0.364808
\(56\) 0 0
\(57\) 6.15321 0.815013
\(58\) −6.88323 −0.903812
\(59\) 0.468004 0.0609289 0.0304644 0.999536i \(-0.490301\pi\)
0.0304644 + 0.999536i \(0.490301\pi\)
\(60\) 1.92052 0.247937
\(61\) −1.00000 −0.128037
\(62\) 5.27303 0.669675
\(63\) 0 0
\(64\) 2.97750 0.372188
\(65\) 17.0365 2.11311
\(66\) 1.81408 0.223298
\(67\) 6.82635 0.833972 0.416986 0.908913i \(-0.363086\pi\)
0.416986 + 0.908913i \(0.363086\pi\)
\(68\) −4.11996 −0.499619
\(69\) 2.44675 0.294554
\(70\) 0 0
\(71\) 7.17809 0.851882 0.425941 0.904751i \(-0.359943\pi\)
0.425941 + 0.904751i \(0.359943\pi\)
\(72\) −2.04289 −0.240757
\(73\) −16.3585 −1.91462 −0.957310 0.289063i \(-0.906656\pi\)
−0.957310 + 0.289063i \(0.906656\pi\)
\(74\) 0.112948 0.0131300
\(75\) −1.16840 −0.134915
\(76\) −4.75810 −0.545791
\(77\) 0 0
\(78\) 11.4232 1.29343
\(79\) −4.89698 −0.550953 −0.275477 0.961308i \(-0.588836\pi\)
−0.275477 + 0.961308i \(0.588836\pi\)
\(80\) 12.2905 1.37412
\(81\) 1.00000 0.111111
\(82\) −11.7614 −1.29883
\(83\) 12.9769 1.42440 0.712199 0.701977i \(-0.247699\pi\)
0.712199 + 0.701977i \(0.247699\pi\)
\(84\) 0 0
\(85\) 13.2327 1.43529
\(86\) −0.642035 −0.0692324
\(87\) 4.13329 0.443135
\(88\) 2.22538 0.237227
\(89\) −10.1560 −1.07654 −0.538268 0.842773i \(-0.680921\pi\)
−0.538268 + 0.842773i \(0.680921\pi\)
\(90\) −4.13602 −0.435975
\(91\) 0 0
\(92\) −1.89200 −0.197254
\(93\) −3.16639 −0.328339
\(94\) 12.2856 1.26716
\(95\) 15.2823 1.56793
\(96\) 4.15518 0.424087
\(97\) 1.03060 0.104642 0.0523210 0.998630i \(-0.483338\pi\)
0.0523210 + 0.998630i \(0.483338\pi\)
\(98\) 0 0
\(99\) −1.08933 −0.109482
\(100\) 0.903491 0.0903491
\(101\) −8.06469 −0.802467 −0.401233 0.915976i \(-0.631418\pi\)
−0.401233 + 0.915976i \(0.631418\pi\)
\(102\) 8.87274 0.878532
\(103\) 5.04626 0.497222 0.248611 0.968603i \(-0.420026\pi\)
0.248611 + 0.968603i \(0.420026\pi\)
\(104\) 14.0132 1.37411
\(105\) 0 0
\(106\) 0.995080 0.0966507
\(107\) −20.3918 −1.97135 −0.985675 0.168658i \(-0.946057\pi\)
−0.985675 + 0.168658i \(0.946057\pi\)
\(108\) −0.773271 −0.0744080
\(109\) −9.36765 −0.897258 −0.448629 0.893718i \(-0.648087\pi\)
−0.448629 + 0.893718i \(0.648087\pi\)
\(110\) 4.50549 0.429582
\(111\) −0.0678240 −0.00643757
\(112\) 0 0
\(113\) −1.38232 −0.130038 −0.0650189 0.997884i \(-0.520711\pi\)
−0.0650189 + 0.997884i \(0.520711\pi\)
\(114\) 10.2470 0.959722
\(115\) 6.07681 0.566665
\(116\) −3.19615 −0.296755
\(117\) −6.85952 −0.634162
\(118\) 0.779373 0.0717471
\(119\) 0 0
\(120\) −5.07378 −0.463170
\(121\) −9.81336 −0.892123
\(122\) −1.66531 −0.150770
\(123\) 7.06260 0.636813
\(124\) 2.44847 0.219879
\(125\) 9.51626 0.851160
\(126\) 0 0
\(127\) 12.2641 1.08826 0.544132 0.839000i \(-0.316859\pi\)
0.544132 + 0.839000i \(0.316859\pi\)
\(128\) 13.2688 1.17281
\(129\) 0.385534 0.0339443
\(130\) 28.3711 2.48831
\(131\) −1.92063 −0.167806 −0.0839032 0.996474i \(-0.526739\pi\)
−0.0839032 + 0.996474i \(0.526739\pi\)
\(132\) 0.842347 0.0733169
\(133\) 0 0
\(134\) 11.3680 0.982047
\(135\) 2.48363 0.213757
\(136\) 10.8844 0.933334
\(137\) −4.07959 −0.348543 −0.174271 0.984698i \(-0.555757\pi\)
−0.174271 + 0.984698i \(0.555757\pi\)
\(138\) 4.07460 0.346853
\(139\) −12.7187 −1.07878 −0.539391 0.842055i \(-0.681346\pi\)
−0.539391 + 0.842055i \(0.681346\pi\)
\(140\) 0 0
\(141\) −7.37734 −0.621284
\(142\) 11.9538 1.00314
\(143\) 7.47228 0.624864
\(144\) −4.94859 −0.412383
\(145\) 10.2656 0.852508
\(146\) −27.2421 −2.25457
\(147\) 0 0
\(148\) 0.0524463 0.00431106
\(149\) −15.6338 −1.28077 −0.640386 0.768053i \(-0.721226\pi\)
−0.640386 + 0.768053i \(0.721226\pi\)
\(150\) −1.94576 −0.158870
\(151\) −2.65913 −0.216397 −0.108199 0.994129i \(-0.534508\pi\)
−0.108199 + 0.994129i \(0.534508\pi\)
\(152\) 12.5703 1.01959
\(153\) −5.32797 −0.430741
\(154\) 0 0
\(155\) −7.86412 −0.631662
\(156\) 5.30426 0.424681
\(157\) −20.7962 −1.65971 −0.829857 0.557976i \(-0.811578\pi\)
−0.829857 + 0.557976i \(0.811578\pi\)
\(158\) −8.15501 −0.648778
\(159\) −0.597533 −0.0473874
\(160\) 10.3199 0.815862
\(161\) 0 0
\(162\) 1.66531 0.130839
\(163\) −8.62747 −0.675756 −0.337878 0.941190i \(-0.609709\pi\)
−0.337878 + 0.941190i \(0.609709\pi\)
\(164\) −5.46130 −0.426456
\(165\) −2.70549 −0.210622
\(166\) 21.6106 1.67731
\(167\) 5.40537 0.418280 0.209140 0.977886i \(-0.432934\pi\)
0.209140 + 0.977886i \(0.432934\pi\)
\(168\) 0 0
\(169\) 34.0530 2.61946
\(170\) 22.0366 1.69013
\(171\) −6.15321 −0.470548
\(172\) −0.298122 −0.0227316
\(173\) −6.69610 −0.509095 −0.254548 0.967060i \(-0.581927\pi\)
−0.254548 + 0.967060i \(0.581927\pi\)
\(174\) 6.88323 0.521816
\(175\) 0 0
\(176\) 5.39066 0.406336
\(177\) −0.468004 −0.0351773
\(178\) −16.9130 −1.26768
\(179\) 20.7593 1.55162 0.775810 0.630966i \(-0.217341\pi\)
0.775810 + 0.630966i \(0.217341\pi\)
\(180\) −1.92052 −0.143147
\(181\) −15.2864 −1.13623 −0.568115 0.822949i \(-0.692327\pi\)
−0.568115 + 0.822949i \(0.692327\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 4.99844 0.368490
\(185\) −0.168449 −0.0123846
\(186\) −5.27303 −0.386637
\(187\) 5.80392 0.424425
\(188\) 5.70468 0.416057
\(189\) 0 0
\(190\) 25.4498 1.84632
\(191\) −14.6650 −1.06112 −0.530560 0.847648i \(-0.678018\pi\)
−0.530560 + 0.847648i \(0.678018\pi\)
\(192\) −2.97750 −0.214883
\(193\) 24.0250 1.72936 0.864679 0.502325i \(-0.167522\pi\)
0.864679 + 0.502325i \(0.167522\pi\)
\(194\) 1.71628 0.123222
\(195\) −17.0365 −1.22001
\(196\) 0 0
\(197\) −3.17791 −0.226416 −0.113208 0.993571i \(-0.536113\pi\)
−0.113208 + 0.993571i \(0.536113\pi\)
\(198\) −1.81408 −0.128921
\(199\) 19.0267 1.34877 0.674383 0.738381i \(-0.264410\pi\)
0.674383 + 0.738381i \(0.264410\pi\)
\(200\) −2.38692 −0.168780
\(201\) −6.82635 −0.481494
\(202\) −13.4302 −0.944948
\(203\) 0 0
\(204\) 4.11996 0.288455
\(205\) 17.5409 1.22511
\(206\) 8.40360 0.585507
\(207\) −2.44675 −0.170061
\(208\) 33.9450 2.35366
\(209\) 6.70288 0.463648
\(210\) 0 0
\(211\) 0.464623 0.0319860 0.0159930 0.999872i \(-0.494909\pi\)
0.0159930 + 0.999872i \(0.494909\pi\)
\(212\) 0.462055 0.0317340
\(213\) −7.17809 −0.491834
\(214\) −33.9587 −2.32137
\(215\) 0.957522 0.0653024
\(216\) 2.04289 0.139001
\(217\) 0 0
\(218\) −15.6001 −1.05657
\(219\) 16.3585 1.10541
\(220\) 2.09208 0.141048
\(221\) 36.5473 2.45844
\(222\) −0.112948 −0.00758059
\(223\) 6.25421 0.418813 0.209407 0.977829i \(-0.432847\pi\)
0.209407 + 0.977829i \(0.432847\pi\)
\(224\) 0 0
\(225\) 1.16840 0.0778935
\(226\) −2.30200 −0.153127
\(227\) −22.1252 −1.46850 −0.734252 0.678877i \(-0.762467\pi\)
−0.734252 + 0.678877i \(0.762467\pi\)
\(228\) 4.75810 0.315113
\(229\) 8.80130 0.581606 0.290803 0.956783i \(-0.406078\pi\)
0.290803 + 0.956783i \(0.406078\pi\)
\(230\) 10.1198 0.667279
\(231\) 0 0
\(232\) 8.44386 0.554367
\(233\) −10.9507 −0.717402 −0.358701 0.933453i \(-0.616780\pi\)
−0.358701 + 0.933453i \(0.616780\pi\)
\(234\) −11.4232 −0.746761
\(235\) −18.3226 −1.19523
\(236\) 0.361893 0.0235573
\(237\) 4.89698 0.318093
\(238\) 0 0
\(239\) 5.64478 0.365130 0.182565 0.983194i \(-0.441560\pi\)
0.182565 + 0.983194i \(0.441560\pi\)
\(240\) −12.2905 −0.793346
\(241\) 10.4938 0.675968 0.337984 0.941152i \(-0.390255\pi\)
0.337984 + 0.941152i \(0.390255\pi\)
\(242\) −16.3423 −1.05052
\(243\) −1.00000 −0.0641500
\(244\) −0.773271 −0.0495036
\(245\) 0 0
\(246\) 11.7614 0.749882
\(247\) 42.2081 2.68563
\(248\) −6.46858 −0.410755
\(249\) −12.9769 −0.822377
\(250\) 15.8476 1.00229
\(251\) 21.2920 1.34394 0.671971 0.740578i \(-0.265448\pi\)
0.671971 + 0.740578i \(0.265448\pi\)
\(252\) 0 0
\(253\) 2.66532 0.167567
\(254\) 20.4236 1.28149
\(255\) −13.2327 −0.828663
\(256\) 16.1418 1.00886
\(257\) −8.95602 −0.558661 −0.279330 0.960195i \(-0.590113\pi\)
−0.279330 + 0.960195i \(0.590113\pi\)
\(258\) 0.642035 0.0399713
\(259\) 0 0
\(260\) 13.1738 0.817005
\(261\) −4.13329 −0.255844
\(262\) −3.19846 −0.197601
\(263\) −1.27133 −0.0783934 −0.0391967 0.999232i \(-0.512480\pi\)
−0.0391967 + 0.999232i \(0.512480\pi\)
\(264\) −2.22538 −0.136963
\(265\) −1.48405 −0.0911644
\(266\) 0 0
\(267\) 10.1560 0.621539
\(268\) 5.27862 0.322443
\(269\) 5.05668 0.308311 0.154156 0.988047i \(-0.450734\pi\)
0.154156 + 0.988047i \(0.450734\pi\)
\(270\) 4.13602 0.251710
\(271\) −19.8775 −1.20747 −0.603736 0.797184i \(-0.706322\pi\)
−0.603736 + 0.797184i \(0.706322\pi\)
\(272\) 26.3659 1.59867
\(273\) 0 0
\(274\) −6.79379 −0.410428
\(275\) −1.27278 −0.0767513
\(276\) 1.89200 0.113885
\(277\) −21.8430 −1.31242 −0.656208 0.754580i \(-0.727841\pi\)
−0.656208 + 0.754580i \(0.727841\pi\)
\(278\) −21.1806 −1.27033
\(279\) 3.16639 0.189567
\(280\) 0 0
\(281\) 13.6619 0.814999 0.407499 0.913205i \(-0.366401\pi\)
0.407499 + 0.913205i \(0.366401\pi\)
\(282\) −12.2856 −0.731596
\(283\) 9.91781 0.589553 0.294776 0.955566i \(-0.404755\pi\)
0.294776 + 0.955566i \(0.404755\pi\)
\(284\) 5.55060 0.329368
\(285\) −15.2823 −0.905244
\(286\) 12.4437 0.735811
\(287\) 0 0
\(288\) −4.15518 −0.244847
\(289\) 11.3872 0.669837
\(290\) 17.0954 1.00387
\(291\) −1.03060 −0.0604151
\(292\) −12.6496 −0.740260
\(293\) 17.7754 1.03845 0.519225 0.854638i \(-0.326221\pi\)
0.519225 + 0.854638i \(0.326221\pi\)
\(294\) 0 0
\(295\) −1.16235 −0.0676744
\(296\) −0.138557 −0.00805345
\(297\) 1.08933 0.0632094
\(298\) −26.0352 −1.50818
\(299\) 16.7835 0.970615
\(300\) −0.903491 −0.0521631
\(301\) 0 0
\(302\) −4.42829 −0.254820
\(303\) 8.06469 0.463304
\(304\) 30.4497 1.74641
\(305\) 2.48363 0.142212
\(306\) −8.87274 −0.507221
\(307\) −30.4965 −1.74052 −0.870262 0.492589i \(-0.836051\pi\)
−0.870262 + 0.492589i \(0.836051\pi\)
\(308\) 0 0
\(309\) −5.04626 −0.287072
\(310\) −13.0962 −0.743816
\(311\) 13.1943 0.748182 0.374091 0.927392i \(-0.377955\pi\)
0.374091 + 0.927392i \(0.377955\pi\)
\(312\) −14.0132 −0.793343
\(313\) −29.6447 −1.67562 −0.837809 0.545964i \(-0.816164\pi\)
−0.837809 + 0.545964i \(0.816164\pi\)
\(314\) −34.6321 −1.95441
\(315\) 0 0
\(316\) −3.78669 −0.213018
\(317\) 5.52243 0.310170 0.155085 0.987901i \(-0.450435\pi\)
0.155085 + 0.987901i \(0.450435\pi\)
\(318\) −0.995080 −0.0558013
\(319\) 4.50252 0.252093
\(320\) −7.39501 −0.413393
\(321\) 20.3918 1.13816
\(322\) 0 0
\(323\) 32.7841 1.82416
\(324\) 0.773271 0.0429595
\(325\) −8.01467 −0.444574
\(326\) −14.3674 −0.795739
\(327\) 9.36765 0.518032
\(328\) 14.4281 0.796659
\(329\) 0 0
\(330\) −4.50549 −0.248019
\(331\) −11.2755 −0.619756 −0.309878 0.950776i \(-0.600288\pi\)
−0.309878 + 0.950776i \(0.600288\pi\)
\(332\) 10.0346 0.550723
\(333\) 0.0678240 0.00371673
\(334\) 9.00163 0.492547
\(335\) −16.9541 −0.926302
\(336\) 0 0
\(337\) 18.5025 1.00790 0.503949 0.863734i \(-0.331880\pi\)
0.503949 + 0.863734i \(0.331880\pi\)
\(338\) 56.7089 3.08456
\(339\) 1.38232 0.0750774
\(340\) 10.2324 0.554932
\(341\) −3.44924 −0.186787
\(342\) −10.2470 −0.554096
\(343\) 0 0
\(344\) 0.787603 0.0424647
\(345\) −6.07681 −0.327164
\(346\) −11.1511 −0.599487
\(347\) 20.1761 1.08311 0.541556 0.840665i \(-0.317836\pi\)
0.541556 + 0.840665i \(0.317836\pi\)
\(348\) 3.19615 0.171332
\(349\) 4.35583 0.233162 0.116581 0.993181i \(-0.462807\pi\)
0.116581 + 0.993181i \(0.462807\pi\)
\(350\) 0 0
\(351\) 6.85952 0.366134
\(352\) 4.52637 0.241256
\(353\) 8.57592 0.456450 0.228225 0.973608i \(-0.426708\pi\)
0.228225 + 0.973608i \(0.426708\pi\)
\(354\) −0.779373 −0.0414232
\(355\) −17.8277 −0.946195
\(356\) −7.85336 −0.416227
\(357\) 0 0
\(358\) 34.5707 1.82712
\(359\) 26.9540 1.42258 0.711290 0.702899i \(-0.248111\pi\)
0.711290 + 0.702899i \(0.248111\pi\)
\(360\) 5.07378 0.267411
\(361\) 18.8620 0.992737
\(362\) −25.4567 −1.33797
\(363\) 9.81336 0.515068
\(364\) 0 0
\(365\) 40.6285 2.12659
\(366\) 1.66531 0.0870474
\(367\) 0.772740 0.0403367 0.0201683 0.999797i \(-0.493580\pi\)
0.0201683 + 0.999797i \(0.493580\pi\)
\(368\) 12.1080 0.631171
\(369\) −7.06260 −0.367664
\(370\) −0.280521 −0.0145836
\(371\) 0 0
\(372\) −2.44847 −0.126947
\(373\) −22.5979 −1.17008 −0.585038 0.811006i \(-0.698920\pi\)
−0.585038 + 0.811006i \(0.698920\pi\)
\(374\) 9.66535 0.499783
\(375\) −9.51626 −0.491418
\(376\) −15.0711 −0.777232
\(377\) 28.3524 1.46022
\(378\) 0 0
\(379\) −29.7445 −1.52787 −0.763935 0.645293i \(-0.776735\pi\)
−0.763935 + 0.645293i \(0.776735\pi\)
\(380\) 11.8173 0.606217
\(381\) −12.2641 −0.628309
\(382\) −24.4218 −1.24953
\(383\) −17.6483 −0.901784 −0.450892 0.892579i \(-0.648894\pi\)
−0.450892 + 0.892579i \(0.648894\pi\)
\(384\) −13.2688 −0.677123
\(385\) 0 0
\(386\) 40.0092 2.03641
\(387\) −0.385534 −0.0195978
\(388\) 0.796936 0.0404583
\(389\) −22.2965 −1.13048 −0.565239 0.824927i \(-0.691216\pi\)
−0.565239 + 0.824927i \(0.691216\pi\)
\(390\) −28.3711 −1.43663
\(391\) 13.0362 0.659269
\(392\) 0 0
\(393\) 1.92063 0.0968831
\(394\) −5.29221 −0.266618
\(395\) 12.1623 0.611950
\(396\) −0.842347 −0.0423296
\(397\) 17.5707 0.881847 0.440923 0.897545i \(-0.354651\pi\)
0.440923 + 0.897545i \(0.354651\pi\)
\(398\) 31.6854 1.58825
\(399\) 0 0
\(400\) −5.78195 −0.289097
\(401\) −17.8020 −0.888989 −0.444494 0.895782i \(-0.646617\pi\)
−0.444494 + 0.895782i \(0.646617\pi\)
\(402\) −11.3680 −0.566985
\(403\) −21.7199 −1.08194
\(404\) −6.23619 −0.310262
\(405\) −2.48363 −0.123412
\(406\) 0 0
\(407\) −0.0738827 −0.00366223
\(408\) −10.8844 −0.538860
\(409\) −19.8338 −0.980716 −0.490358 0.871521i \(-0.663134\pi\)
−0.490358 + 0.871521i \(0.663134\pi\)
\(410\) 29.2110 1.44263
\(411\) 4.07959 0.201231
\(412\) 3.90212 0.192244
\(413\) 0 0
\(414\) −4.07460 −0.200256
\(415\) −32.2298 −1.58210
\(416\) 28.5025 1.39745
\(417\) 12.7187 0.622835
\(418\) 11.1624 0.545971
\(419\) 3.19419 0.156047 0.0780233 0.996952i \(-0.475139\pi\)
0.0780233 + 0.996952i \(0.475139\pi\)
\(420\) 0 0
\(421\) −18.5523 −0.904185 −0.452092 0.891971i \(-0.649322\pi\)
−0.452092 + 0.891971i \(0.649322\pi\)
\(422\) 0.773743 0.0376652
\(423\) 7.37734 0.358699
\(424\) −1.22069 −0.0592821
\(425\) −6.22521 −0.301967
\(426\) −11.9538 −0.579162
\(427\) 0 0
\(428\) −15.7684 −0.762193
\(429\) −7.47228 −0.360765
\(430\) 1.59457 0.0768972
\(431\) −36.4548 −1.75597 −0.877983 0.478692i \(-0.841111\pi\)
−0.877983 + 0.478692i \(0.841111\pi\)
\(432\) 4.94859 0.238089
\(433\) 9.68925 0.465636 0.232818 0.972520i \(-0.425205\pi\)
0.232818 + 0.972520i \(0.425205\pi\)
\(434\) 0 0
\(435\) −10.2656 −0.492196
\(436\) −7.24373 −0.346912
\(437\) 15.0554 0.720195
\(438\) 27.2421 1.30168
\(439\) 7.18719 0.343026 0.171513 0.985182i \(-0.445134\pi\)
0.171513 + 0.985182i \(0.445134\pi\)
\(440\) −5.52702 −0.263490
\(441\) 0 0
\(442\) 60.8627 2.89494
\(443\) −29.3032 −1.39224 −0.696119 0.717926i \(-0.745092\pi\)
−0.696119 + 0.717926i \(0.745092\pi\)
\(444\) −0.0524463 −0.00248899
\(445\) 25.2238 1.19572
\(446\) 10.4152 0.493175
\(447\) 15.6338 0.739455
\(448\) 0 0
\(449\) 10.5176 0.496355 0.248177 0.968715i \(-0.420168\pi\)
0.248177 + 0.968715i \(0.420168\pi\)
\(450\) 1.94576 0.0917238
\(451\) 7.69351 0.362273
\(452\) −1.06891 −0.0502772
\(453\) 2.65913 0.124937
\(454\) −36.8455 −1.72924
\(455\) 0 0
\(456\) −12.5703 −0.588660
\(457\) −9.20995 −0.430823 −0.215412 0.976523i \(-0.569109\pi\)
−0.215412 + 0.976523i \(0.569109\pi\)
\(458\) 14.6569 0.684873
\(459\) 5.32797 0.248688
\(460\) 4.69902 0.219093
\(461\) −16.6122 −0.773709 −0.386855 0.922141i \(-0.626438\pi\)
−0.386855 + 0.922141i \(0.626438\pi\)
\(462\) 0 0
\(463\) 11.7105 0.544235 0.272118 0.962264i \(-0.412276\pi\)
0.272118 + 0.962264i \(0.412276\pi\)
\(464\) 20.4540 0.949552
\(465\) 7.86412 0.364690
\(466\) −18.2363 −0.844780
\(467\) 9.67433 0.447675 0.223837 0.974627i \(-0.428142\pi\)
0.223837 + 0.974627i \(0.428142\pi\)
\(468\) −5.30426 −0.245190
\(469\) 0 0
\(470\) −30.5128 −1.40745
\(471\) 20.7962 0.958237
\(472\) −0.956080 −0.0440071
\(473\) 0.419974 0.0193104
\(474\) 8.15501 0.374572
\(475\) −7.18943 −0.329873
\(476\) 0 0
\(477\) 0.597533 0.0273592
\(478\) 9.40032 0.429961
\(479\) 17.7841 0.812578 0.406289 0.913745i \(-0.366823\pi\)
0.406289 + 0.913745i \(0.366823\pi\)
\(480\) −10.3199 −0.471038
\(481\) −0.465240 −0.0212131
\(482\) 17.4756 0.795990
\(483\) 0 0
\(484\) −7.58838 −0.344926
\(485\) −2.55964 −0.116227
\(486\) −1.66531 −0.0755402
\(487\) −20.4907 −0.928522 −0.464261 0.885698i \(-0.653680\pi\)
−0.464261 + 0.885698i \(0.653680\pi\)
\(488\) 2.04289 0.0924773
\(489\) 8.62747 0.390148
\(490\) 0 0
\(491\) 31.6017 1.42616 0.713082 0.701081i \(-0.247299\pi\)
0.713082 + 0.701081i \(0.247299\pi\)
\(492\) 5.46130 0.246214
\(493\) 22.0220 0.991823
\(494\) 70.2897 3.16248
\(495\) 2.70549 0.121603
\(496\) −15.6692 −0.703566
\(497\) 0 0
\(498\) −21.6106 −0.968394
\(499\) −3.59836 −0.161085 −0.0805423 0.996751i \(-0.525665\pi\)
−0.0805423 + 0.996751i \(0.525665\pi\)
\(500\) 7.35864 0.329089
\(501\) −5.40537 −0.241494
\(502\) 35.4579 1.58256
\(503\) 8.75034 0.390159 0.195079 0.980787i \(-0.437504\pi\)
0.195079 + 0.980787i \(0.437504\pi\)
\(504\) 0 0
\(505\) 20.0297 0.891309
\(506\) 4.43859 0.197319
\(507\) −34.0530 −1.51234
\(508\) 9.48347 0.420761
\(509\) 42.6613 1.89093 0.945463 0.325728i \(-0.105609\pi\)
0.945463 + 0.325728i \(0.105609\pi\)
\(510\) −22.0366 −0.975796
\(511\) 0 0
\(512\) 0.343452 0.0151786
\(513\) 6.15321 0.271671
\(514\) −14.9146 −0.657854
\(515\) −12.5330 −0.552271
\(516\) 0.298122 0.0131241
\(517\) −8.03637 −0.353439
\(518\) 0 0
\(519\) 6.69610 0.293926
\(520\) −34.8036 −1.52624
\(521\) −27.7320 −1.21496 −0.607480 0.794335i \(-0.707819\pi\)
−0.607480 + 0.794335i \(0.707819\pi\)
\(522\) −6.88323 −0.301271
\(523\) 20.0783 0.877962 0.438981 0.898496i \(-0.355340\pi\)
0.438981 + 0.898496i \(0.355340\pi\)
\(524\) −1.48517 −0.0648799
\(525\) 0 0
\(526\) −2.11716 −0.0923126
\(527\) −16.8704 −0.734886
\(528\) −5.39066 −0.234598
\(529\) −17.0134 −0.739714
\(530\) −2.47141 −0.107351
\(531\) 0.468004 0.0203096
\(532\) 0 0
\(533\) 48.4460 2.09843
\(534\) 16.9130 0.731896
\(535\) 50.6456 2.18960
\(536\) −13.9455 −0.602353
\(537\) −20.7593 −0.895829
\(538\) 8.42096 0.363054
\(539\) 0 0
\(540\) 1.92052 0.0826458
\(541\) 1.87674 0.0806875 0.0403438 0.999186i \(-0.487155\pi\)
0.0403438 + 0.999186i \(0.487155\pi\)
\(542\) −33.1023 −1.42186
\(543\) 15.2864 0.656003
\(544\) 22.1387 0.949188
\(545\) 23.2657 0.996595
\(546\) 0 0
\(547\) 17.8715 0.764129 0.382065 0.924136i \(-0.375213\pi\)
0.382065 + 0.924136i \(0.375213\pi\)
\(548\) −3.15462 −0.134759
\(549\) −1.00000 −0.0426790
\(550\) −2.11957 −0.0903789
\(551\) 25.4330 1.08348
\(552\) −4.99844 −0.212748
\(553\) 0 0
\(554\) −36.3754 −1.54544
\(555\) 0.168449 0.00715028
\(556\) −9.83496 −0.417095
\(557\) −41.5297 −1.75967 −0.879835 0.475280i \(-0.842347\pi\)
−0.879835 + 0.475280i \(0.842347\pi\)
\(558\) 5.27303 0.223225
\(559\) 2.64457 0.111854
\(560\) 0 0
\(561\) −5.80392 −0.245042
\(562\) 22.7513 0.959706
\(563\) −41.1611 −1.73473 −0.867367 0.497669i \(-0.834189\pi\)
−0.867367 + 0.497669i \(0.834189\pi\)
\(564\) −5.70468 −0.240210
\(565\) 3.43317 0.144435
\(566\) 16.5163 0.694231
\(567\) 0 0
\(568\) −14.6640 −0.615289
\(569\) 7.24648 0.303788 0.151894 0.988397i \(-0.451463\pi\)
0.151894 + 0.988397i \(0.451463\pi\)
\(570\) −25.4498 −1.06597
\(571\) −28.8875 −1.20890 −0.604452 0.796642i \(-0.706608\pi\)
−0.604452 + 0.796642i \(0.706608\pi\)
\(572\) 5.77810 0.241594
\(573\) 14.6650 0.612638
\(574\) 0 0
\(575\) −2.85879 −0.119220
\(576\) 2.97750 0.124063
\(577\) −13.8805 −0.577851 −0.288926 0.957352i \(-0.593298\pi\)
−0.288926 + 0.957352i \(0.593298\pi\)
\(578\) 18.9633 0.788770
\(579\) −24.0250 −0.998445
\(580\) 7.93805 0.329610
\(581\) 0 0
\(582\) −1.71628 −0.0711421
\(583\) −0.650911 −0.0269580
\(584\) 33.4187 1.38287
\(585\) 17.0365 0.704372
\(586\) 29.6016 1.22283
\(587\) 28.7169 1.18527 0.592637 0.805470i \(-0.298087\pi\)
0.592637 + 0.805470i \(0.298087\pi\)
\(588\) 0 0
\(589\) −19.4834 −0.802802
\(590\) −1.93567 −0.0796903
\(591\) 3.17791 0.130722
\(592\) −0.335633 −0.0137944
\(593\) −15.1742 −0.623129 −0.311565 0.950225i \(-0.600853\pi\)
−0.311565 + 0.950225i \(0.600853\pi\)
\(594\) 1.81408 0.0744325
\(595\) 0 0
\(596\) −12.0892 −0.495192
\(597\) −19.0267 −0.778711
\(598\) 27.9498 1.14295
\(599\) 12.4743 0.509687 0.254844 0.966982i \(-0.417976\pi\)
0.254844 + 0.966982i \(0.417976\pi\)
\(600\) 2.38692 0.0974455
\(601\) −28.2571 −1.15263 −0.576315 0.817228i \(-0.695510\pi\)
−0.576315 + 0.817228i \(0.695510\pi\)
\(602\) 0 0
\(603\) 6.82635 0.277991
\(604\) −2.05623 −0.0836668
\(605\) 24.3727 0.990892
\(606\) 13.4302 0.545566
\(607\) 0.00814922 0.000330767 0 0.000165383 1.00000i \(-0.499947\pi\)
0.000165383 1.00000i \(0.499947\pi\)
\(608\) 25.5677 1.03691
\(609\) 0 0
\(610\) 4.13602 0.167462
\(611\) −50.6050 −2.04726
\(612\) −4.11996 −0.166540
\(613\) −39.8780 −1.61066 −0.805328 0.592829i \(-0.798011\pi\)
−0.805328 + 0.592829i \(0.798011\pi\)
\(614\) −50.7862 −2.04956
\(615\) −17.5409 −0.707316
\(616\) 0 0
\(617\) 19.1754 0.771973 0.385986 0.922504i \(-0.373861\pi\)
0.385986 + 0.922504i \(0.373861\pi\)
\(618\) −8.40360 −0.338042
\(619\) 23.2748 0.935495 0.467747 0.883862i \(-0.345066\pi\)
0.467747 + 0.883862i \(0.345066\pi\)
\(620\) −6.08110 −0.244223
\(621\) 2.44675 0.0981846
\(622\) 21.9727 0.881025
\(623\) 0 0
\(624\) −33.9450 −1.35889
\(625\) −29.4768 −1.17907
\(626\) −49.3677 −1.97313
\(627\) −6.70288 −0.267687
\(628\) −16.0811 −0.641704
\(629\) −0.361364 −0.0144085
\(630\) 0 0
\(631\) −23.2569 −0.925841 −0.462921 0.886400i \(-0.653199\pi\)
−0.462921 + 0.886400i \(0.653199\pi\)
\(632\) 10.0040 0.397937
\(633\) −0.464623 −0.0184671
\(634\) 9.19658 0.365243
\(635\) −30.4595 −1.20875
\(636\) −0.462055 −0.0183217
\(637\) 0 0
\(638\) 7.49811 0.296853
\(639\) 7.17809 0.283961
\(640\) −32.9549 −1.30266
\(641\) −30.9736 −1.22339 −0.611693 0.791096i \(-0.709511\pi\)
−0.611693 + 0.791096i \(0.709511\pi\)
\(642\) 33.9587 1.34024
\(643\) −27.0298 −1.06595 −0.532977 0.846130i \(-0.678927\pi\)
−0.532977 + 0.846130i \(0.678927\pi\)
\(644\) 0 0
\(645\) −0.957522 −0.0377024
\(646\) 54.5958 2.14804
\(647\) 29.7990 1.17152 0.585760 0.810484i \(-0.300796\pi\)
0.585760 + 0.810484i \(0.300796\pi\)
\(648\) −2.04289 −0.0802523
\(649\) −0.509811 −0.0200118
\(650\) −13.3469 −0.523510
\(651\) 0 0
\(652\) −6.67137 −0.261271
\(653\) 15.1106 0.591324 0.295662 0.955293i \(-0.404460\pi\)
0.295662 + 0.955293i \(0.404460\pi\)
\(654\) 15.6001 0.610011
\(655\) 4.77013 0.186385
\(656\) 34.9499 1.36457
\(657\) −16.3585 −0.638207
\(658\) 0 0
\(659\) 35.9618 1.40087 0.700437 0.713714i \(-0.252989\pi\)
0.700437 + 0.713714i \(0.252989\pi\)
\(660\) −2.09208 −0.0814340
\(661\) 44.3819 1.72626 0.863128 0.504986i \(-0.168502\pi\)
0.863128 + 0.504986i \(0.168502\pi\)
\(662\) −18.7772 −0.729797
\(663\) −36.5473 −1.41938
\(664\) −26.5104 −1.02880
\(665\) 0 0
\(666\) 0.112948 0.00437665
\(667\) 10.1131 0.391582
\(668\) 4.17981 0.161722
\(669\) −6.25421 −0.241802
\(670\) −28.2339 −1.09077
\(671\) 1.08933 0.0420531
\(672\) 0 0
\(673\) −45.3058 −1.74641 −0.873205 0.487353i \(-0.837962\pi\)
−0.873205 + 0.487353i \(0.837962\pi\)
\(674\) 30.8125 1.18685
\(675\) −1.16840 −0.0449718
\(676\) 26.3321 1.01277
\(677\) −15.3495 −0.589929 −0.294965 0.955508i \(-0.595308\pi\)
−0.294965 + 0.955508i \(0.595308\pi\)
\(678\) 2.30200 0.0884077
\(679\) 0 0
\(680\) −27.0329 −1.03666
\(681\) 22.1252 0.847841
\(682\) −5.74407 −0.219952
\(683\) 30.5362 1.16844 0.584218 0.811597i \(-0.301401\pi\)
0.584218 + 0.811597i \(0.301401\pi\)
\(684\) −4.75810 −0.181930
\(685\) 10.1322 0.387130
\(686\) 0 0
\(687\) −8.80130 −0.335790
\(688\) 1.90785 0.0727361
\(689\) −4.09879 −0.156151
\(690\) −10.1198 −0.385254
\(691\) 37.4178 1.42344 0.711720 0.702464i \(-0.247917\pi\)
0.711720 + 0.702464i \(0.247917\pi\)
\(692\) −5.17790 −0.196834
\(693\) 0 0
\(694\) 33.5996 1.27542
\(695\) 31.5884 1.19822
\(696\) −8.44386 −0.320064
\(697\) 37.6293 1.42531
\(698\) 7.25382 0.274561
\(699\) 10.9507 0.414192
\(700\) 0 0
\(701\) −45.8005 −1.72986 −0.864931 0.501891i \(-0.832638\pi\)
−0.864931 + 0.501891i \(0.832638\pi\)
\(702\) 11.4232 0.431143
\(703\) −0.417335 −0.0157401
\(704\) −3.24349 −0.122243
\(705\) 18.3226 0.690068
\(706\) 14.2816 0.537495
\(707\) 0 0
\(708\) −0.361893 −0.0136008
\(709\) 4.37397 0.164268 0.0821340 0.996621i \(-0.473826\pi\)
0.0821340 + 0.996621i \(0.473826\pi\)
\(710\) −29.6887 −1.11420
\(711\) −4.89698 −0.183651
\(712\) 20.7476 0.777551
\(713\) −7.74735 −0.290141
\(714\) 0 0
\(715\) −18.5584 −0.694043
\(716\) 16.0525 0.599911
\(717\) −5.64478 −0.210808
\(718\) 44.8869 1.67516
\(719\) −33.1144 −1.23496 −0.617479 0.786587i \(-0.711846\pi\)
−0.617479 + 0.786587i \(0.711846\pi\)
\(720\) 12.2905 0.458038
\(721\) 0 0
\(722\) 31.4112 1.16900
\(723\) −10.4938 −0.390270
\(724\) −11.8205 −0.439307
\(725\) −4.82935 −0.179357
\(726\) 16.3423 0.606520
\(727\) 21.2510 0.788155 0.394078 0.919077i \(-0.371064\pi\)
0.394078 + 0.919077i \(0.371064\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 67.6592 2.50418
\(731\) 2.05411 0.0759740
\(732\) 0.773271 0.0285809
\(733\) −5.44744 −0.201206 −0.100603 0.994927i \(-0.532077\pi\)
−0.100603 + 0.994927i \(0.532077\pi\)
\(734\) 1.28685 0.0474986
\(735\) 0 0
\(736\) 10.1667 0.374749
\(737\) −7.43616 −0.273914
\(738\) −11.7614 −0.432945
\(739\) −3.21230 −0.118166 −0.0590831 0.998253i \(-0.518818\pi\)
−0.0590831 + 0.998253i \(0.518818\pi\)
\(740\) −0.130257 −0.00478834
\(741\) −42.2081 −1.55055
\(742\) 0 0
\(743\) 31.9772 1.17313 0.586566 0.809902i \(-0.300480\pi\)
0.586566 + 0.809902i \(0.300480\pi\)
\(744\) 6.46858 0.237150
\(745\) 38.8286 1.42257
\(746\) −37.6326 −1.37783
\(747\) 12.9769 0.474800
\(748\) 4.48800 0.164098
\(749\) 0 0
\(750\) −15.8476 −0.578671
\(751\) −39.3392 −1.43551 −0.717754 0.696297i \(-0.754830\pi\)
−0.717754 + 0.696297i \(0.754830\pi\)
\(752\) −36.5075 −1.33129
\(753\) −21.2920 −0.775925
\(754\) 47.2156 1.71949
\(755\) 6.60430 0.240355
\(756\) 0 0
\(757\) 4.64206 0.168718 0.0843592 0.996435i \(-0.473116\pi\)
0.0843592 + 0.996435i \(0.473116\pi\)
\(758\) −49.5339 −1.79915
\(759\) −2.66532 −0.0967449
\(760\) −31.2200 −1.13247
\(761\) −29.7421 −1.07815 −0.539076 0.842257i \(-0.681226\pi\)
−0.539076 + 0.842257i \(0.681226\pi\)
\(762\) −20.4236 −0.739869
\(763\) 0 0
\(764\) −11.3400 −0.410266
\(765\) 13.2327 0.478429
\(766\) −29.3899 −1.06190
\(767\) −3.21028 −0.115916
\(768\) −16.1418 −0.582466
\(769\) −9.80110 −0.353437 −0.176718 0.984261i \(-0.556548\pi\)
−0.176718 + 0.984261i \(0.556548\pi\)
\(770\) 0 0
\(771\) 8.95602 0.322543
\(772\) 18.5778 0.668631
\(773\) 39.9423 1.43662 0.718312 0.695722i \(-0.244915\pi\)
0.718312 + 0.695722i \(0.244915\pi\)
\(774\) −0.642035 −0.0230775
\(775\) 3.69961 0.132894
\(776\) −2.10541 −0.0755798
\(777\) 0 0
\(778\) −37.1307 −1.33120
\(779\) 43.4577 1.55703
\(780\) −13.1738 −0.471698
\(781\) −7.81931 −0.279797
\(782\) 21.7094 0.776325
\(783\) 4.13329 0.147712
\(784\) 0 0
\(785\) 51.6499 1.84346
\(786\) 3.19846 0.114085
\(787\) 1.53745 0.0548042 0.0274021 0.999624i \(-0.491277\pi\)
0.0274021 + 0.999624i \(0.491277\pi\)
\(788\) −2.45738 −0.0875406
\(789\) 1.27133 0.0452605
\(790\) 20.2540 0.720605
\(791\) 0 0
\(792\) 2.22538 0.0790755
\(793\) 6.85952 0.243589
\(794\) 29.2607 1.03842
\(795\) 1.48405 0.0526338
\(796\) 14.7128 0.521481
\(797\) −36.1021 −1.27880 −0.639401 0.768874i \(-0.720818\pi\)
−0.639401 + 0.768874i \(0.720818\pi\)
\(798\) 0 0
\(799\) −39.3062 −1.39055
\(800\) −4.85492 −0.171648
\(801\) −10.1560 −0.358846
\(802\) −29.6459 −1.04683
\(803\) 17.8198 0.628849
\(804\) −5.27862 −0.186162
\(805\) 0 0
\(806\) −36.1704 −1.27405
\(807\) −5.05668 −0.178004
\(808\) 16.4753 0.579598
\(809\) −33.6350 −1.18255 −0.591273 0.806472i \(-0.701374\pi\)
−0.591273 + 0.806472i \(0.701374\pi\)
\(810\) −4.13602 −0.145325
\(811\) −49.0189 −1.72129 −0.860643 0.509209i \(-0.829938\pi\)
−0.860643 + 0.509209i \(0.829938\pi\)
\(812\) 0 0
\(813\) 19.8775 0.697134
\(814\) −0.123038 −0.00431248
\(815\) 21.4274 0.750570
\(816\) −26.3659 −0.922993
\(817\) 2.37227 0.0829952
\(818\) −33.0294 −1.15485
\(819\) 0 0
\(820\) 13.5638 0.473670
\(821\) −3.58484 −0.125112 −0.0625558 0.998041i \(-0.519925\pi\)
−0.0625558 + 0.998041i \(0.519925\pi\)
\(822\) 6.79379 0.236961
\(823\) −21.0239 −0.732848 −0.366424 0.930448i \(-0.619418\pi\)
−0.366424 + 0.930448i \(0.619418\pi\)
\(824\) −10.3089 −0.359129
\(825\) 1.27278 0.0443124
\(826\) 0 0
\(827\) −15.8507 −0.551183 −0.275591 0.961275i \(-0.588874\pi\)
−0.275591 + 0.961275i \(0.588874\pi\)
\(828\) −1.89200 −0.0657515
\(829\) −0.230495 −0.00800543 −0.00400272 0.999992i \(-0.501274\pi\)
−0.00400272 + 0.999992i \(0.501274\pi\)
\(830\) −53.6727 −1.86301
\(831\) 21.8430 0.757724
\(832\) −20.4242 −0.708083
\(833\) 0 0
\(834\) 21.1806 0.733423
\(835\) −13.4249 −0.464588
\(836\) 5.18314 0.179263
\(837\) −3.16639 −0.109446
\(838\) 5.31934 0.183753
\(839\) 24.4708 0.844827 0.422413 0.906403i \(-0.361183\pi\)
0.422413 + 0.906403i \(0.361183\pi\)
\(840\) 0 0
\(841\) −11.9159 −0.410893
\(842\) −30.8954 −1.06473
\(843\) −13.6619 −0.470540
\(844\) 0.359279 0.0123669
\(845\) −84.5748 −2.90946
\(846\) 12.2856 0.422387
\(847\) 0 0
\(848\) −2.95695 −0.101542
\(849\) −9.91781 −0.340378
\(850\) −10.3669 −0.355583
\(851\) −0.165948 −0.00568863
\(852\) −5.55060 −0.190161
\(853\) −12.3208 −0.421856 −0.210928 0.977502i \(-0.567649\pi\)
−0.210928 + 0.977502i \(0.567649\pi\)
\(854\) 0 0
\(855\) 15.2823 0.522643
\(856\) 41.6582 1.42385
\(857\) 21.7617 0.743366 0.371683 0.928360i \(-0.378781\pi\)
0.371683 + 0.928360i \(0.378781\pi\)
\(858\) −12.4437 −0.424821
\(859\) 32.2956 1.10191 0.550955 0.834535i \(-0.314264\pi\)
0.550955 + 0.834535i \(0.314264\pi\)
\(860\) 0.740423 0.0252482
\(861\) 0 0
\(862\) −60.7087 −2.06775
\(863\) −33.4015 −1.13700 −0.568500 0.822683i \(-0.692476\pi\)
−0.568500 + 0.822683i \(0.692476\pi\)
\(864\) 4.15518 0.141362
\(865\) 16.6306 0.565458
\(866\) 16.1356 0.548311
\(867\) −11.3872 −0.386731
\(868\) 0 0
\(869\) 5.33443 0.180958
\(870\) −17.0954 −0.579587
\(871\) −46.8255 −1.58662
\(872\) 19.1371 0.648063
\(873\) 1.03060 0.0348807
\(874\) 25.0719 0.848070
\(875\) 0 0
\(876\) 12.6496 0.427389
\(877\) 27.2853 0.921357 0.460679 0.887567i \(-0.347606\pi\)
0.460679 + 0.887567i \(0.347606\pi\)
\(878\) 11.9689 0.403932
\(879\) −17.7754 −0.599549
\(880\) −13.3884 −0.451322
\(881\) −0.454864 −0.0153248 −0.00766239 0.999971i \(-0.502439\pi\)
−0.00766239 + 0.999971i \(0.502439\pi\)
\(882\) 0 0
\(883\) −44.8031 −1.50774 −0.753872 0.657021i \(-0.771816\pi\)
−0.753872 + 0.657021i \(0.771816\pi\)
\(884\) 28.2609 0.950518
\(885\) 1.16235 0.0390718
\(886\) −48.7991 −1.63944
\(887\) 18.8285 0.632200 0.316100 0.948726i \(-0.397627\pi\)
0.316100 + 0.948726i \(0.397627\pi\)
\(888\) 0.138557 0.00464966
\(889\) 0 0
\(890\) 42.0055 1.40803
\(891\) −1.08933 −0.0364940
\(892\) 4.83620 0.161928
\(893\) −45.3943 −1.51906
\(894\) 26.0352 0.870748
\(895\) −51.5583 −1.72340
\(896\) 0 0
\(897\) −16.7835 −0.560385
\(898\) 17.5150 0.584485
\(899\) −13.0876 −0.436496
\(900\) 0.903491 0.0301164
\(901\) −3.18364 −0.106062
\(902\) 12.8121 0.426596
\(903\) 0 0
\(904\) 2.82393 0.0939225
\(905\) 37.9657 1.26202
\(906\) 4.42829 0.147120
\(907\) −18.1507 −0.602686 −0.301343 0.953516i \(-0.597435\pi\)
−0.301343 + 0.953516i \(0.597435\pi\)
\(908\) −17.1088 −0.567775
\(909\) −8.06469 −0.267489
\(910\) 0 0
\(911\) 3.80550 0.126082 0.0630409 0.998011i \(-0.479920\pi\)
0.0630409 + 0.998011i \(0.479920\pi\)
\(912\) −30.4497 −1.00829
\(913\) −14.1361 −0.467838
\(914\) −15.3375 −0.507318
\(915\) −2.48363 −0.0821062
\(916\) 6.80578 0.224869
\(917\) 0 0
\(918\) 8.87274 0.292844
\(919\) 54.7353 1.80555 0.902776 0.430111i \(-0.141526\pi\)
0.902776 + 0.430111i \(0.141526\pi\)
\(920\) −12.4142 −0.409286
\(921\) 30.4965 1.00489
\(922\) −27.6646 −0.911085
\(923\) −49.2382 −1.62069
\(924\) 0 0
\(925\) 0.0792457 0.00260558
\(926\) 19.5017 0.640867
\(927\) 5.04626 0.165741
\(928\) 17.1746 0.563783
\(929\) −17.3605 −0.569581 −0.284790 0.958590i \(-0.591924\pi\)
−0.284790 + 0.958590i \(0.591924\pi\)
\(930\) 13.0962 0.429442
\(931\) 0 0
\(932\) −8.46783 −0.277373
\(933\) −13.1943 −0.431963
\(934\) 16.1108 0.527162
\(935\) −14.4148 −0.471413
\(936\) 14.0132 0.458037
\(937\) 46.0922 1.50577 0.752883 0.658155i \(-0.228663\pi\)
0.752883 + 0.658155i \(0.228663\pi\)
\(938\) 0 0
\(939\) 29.6447 0.967418
\(940\) −14.1683 −0.462119
\(941\) 2.34375 0.0764039 0.0382020 0.999270i \(-0.487837\pi\)
0.0382020 + 0.999270i \(0.487837\pi\)
\(942\) 34.6321 1.12838
\(943\) 17.2804 0.562727
\(944\) −2.31596 −0.0753781
\(945\) 0 0
\(946\) 0.699388 0.0227391
\(947\) −51.9602 −1.68848 −0.844241 0.535964i \(-0.819948\pi\)
−0.844241 + 0.535964i \(0.819948\pi\)
\(948\) 3.78669 0.122986
\(949\) 112.212 3.64254
\(950\) −11.9727 −0.388444
\(951\) −5.52243 −0.179077
\(952\) 0 0
\(953\) 17.8478 0.578148 0.289074 0.957307i \(-0.406653\pi\)
0.289074 + 0.957307i \(0.406653\pi\)
\(954\) 0.995080 0.0322169
\(955\) 36.4223 1.17860
\(956\) 4.36494 0.141172
\(957\) −4.50252 −0.145546
\(958\) 29.6162 0.956856
\(959\) 0 0
\(960\) 7.39501 0.238673
\(961\) −20.9740 −0.676580
\(962\) −0.774770 −0.0249796
\(963\) −20.3918 −0.657116
\(964\) 8.11458 0.261353
\(965\) −59.6692 −1.92082
\(966\) 0 0
\(967\) −1.28496 −0.0413215 −0.0206608 0.999787i \(-0.506577\pi\)
−0.0206608 + 0.999787i \(0.506577\pi\)
\(968\) 20.0476 0.644355
\(969\) −32.7841 −1.05318
\(970\) −4.26260 −0.136864
\(971\) 27.6157 0.886229 0.443114 0.896465i \(-0.353874\pi\)
0.443114 + 0.896465i \(0.353874\pi\)
\(972\) −0.773271 −0.0248027
\(973\) 0 0
\(974\) −34.1234 −1.09339
\(975\) 8.01467 0.256675
\(976\) 4.94859 0.158401
\(977\) −19.5229 −0.624594 −0.312297 0.949985i \(-0.601098\pi\)
−0.312297 + 0.949985i \(0.601098\pi\)
\(978\) 14.3674 0.459420
\(979\) 11.0633 0.353584
\(980\) 0 0
\(981\) −9.36765 −0.299086
\(982\) 52.6267 1.67939
\(983\) 9.61078 0.306536 0.153268 0.988185i \(-0.451020\pi\)
0.153268 + 0.988185i \(0.451020\pi\)
\(984\) −14.4281 −0.459951
\(985\) 7.89273 0.251483
\(986\) 36.6736 1.16793
\(987\) 0 0
\(988\) 32.6382 1.03836
\(989\) 0.943304 0.0299953
\(990\) 4.50549 0.143194
\(991\) 30.5066 0.969075 0.484537 0.874771i \(-0.338988\pi\)
0.484537 + 0.874771i \(0.338988\pi\)
\(992\) −13.1569 −0.417733
\(993\) 11.2755 0.357816
\(994\) 0 0
\(995\) −47.2552 −1.49809
\(996\) −10.0346 −0.317960
\(997\) −24.0879 −0.762872 −0.381436 0.924395i \(-0.624570\pi\)
−0.381436 + 0.924395i \(0.624570\pi\)
\(998\) −5.99240 −0.189686
\(999\) −0.0678240 −0.00214586
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8967.2.a.bi.1.14 19
7.6 odd 2 8967.2.a.bj.1.14 yes 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8967.2.a.bi.1.14 19 1.1 even 1 trivial
8967.2.a.bj.1.14 yes 19 7.6 odd 2