Properties

Label 8967.2.a.bl.1.14
Level $8967$
Weight $2$
Character 8967.1
Self dual yes
Analytic conductor $71.602$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8967,2,Mod(1,8967)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8967, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8967.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8967 = 3 \cdot 7^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8967.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.6018554925\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 1281)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 8967.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.11936 q^{2} +1.00000 q^{3} -0.747042 q^{4} +4.03875 q^{5} +1.11936 q^{6} -3.07492 q^{8} +1.00000 q^{9} +4.52079 q^{10} -6.13738 q^{11} -0.747042 q^{12} +3.32325 q^{13} +4.03875 q^{15} -1.94784 q^{16} -1.38850 q^{17} +1.11936 q^{18} -3.74887 q^{19} -3.01711 q^{20} -6.86992 q^{22} +1.62146 q^{23} -3.07492 q^{24} +11.3115 q^{25} +3.71990 q^{26} +1.00000 q^{27} +7.09219 q^{29} +4.52079 q^{30} +2.02771 q^{31} +3.96951 q^{32} -6.13738 q^{33} -1.55422 q^{34} -0.747042 q^{36} +7.24458 q^{37} -4.19632 q^{38} +3.32325 q^{39} -12.4188 q^{40} -4.88816 q^{41} +3.81967 q^{43} +4.58488 q^{44} +4.03875 q^{45} +1.81500 q^{46} +1.13923 q^{47} -1.94784 q^{48} +12.6616 q^{50} -1.38850 q^{51} -2.48261 q^{52} -0.678837 q^{53} +1.11936 q^{54} -24.7873 q^{55} -3.74887 q^{57} +7.93869 q^{58} +11.1464 q^{59} -3.01711 q^{60} +1.00000 q^{61} +2.26973 q^{62} +8.33898 q^{64} +13.4218 q^{65} -6.86992 q^{66} +9.92296 q^{67} +1.03727 q^{68} +1.62146 q^{69} -4.32247 q^{71} -3.07492 q^{72} +9.71269 q^{73} +8.10927 q^{74} +11.3115 q^{75} +2.80056 q^{76} +3.71990 q^{78} -8.65346 q^{79} -7.86685 q^{80} +1.00000 q^{81} -5.47160 q^{82} -15.1426 q^{83} -5.60778 q^{85} +4.27557 q^{86} +7.09219 q^{87} +18.8719 q^{88} +13.7938 q^{89} +4.52079 q^{90} -1.21130 q^{92} +2.02771 q^{93} +1.27520 q^{94} -15.1407 q^{95} +3.96951 q^{96} +18.9768 q^{97} -6.13738 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 21 q^{3} + 32 q^{4} + 11 q^{5} + 21 q^{9} + 6 q^{10} + q^{11} + 32 q^{12} + 14 q^{13} + 11 q^{15} + 30 q^{16} + 21 q^{17} + 4 q^{19} + 26 q^{20} + 4 q^{22} + 8 q^{23} + 20 q^{25} + 38 q^{26} + 21 q^{27}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11936 0.791504 0.395752 0.918357i \(-0.370484\pi\)
0.395752 + 0.918357i \(0.370484\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.747042 −0.373521
\(5\) 4.03875 1.80618 0.903091 0.429449i \(-0.141292\pi\)
0.903091 + 0.429449i \(0.141292\pi\)
\(6\) 1.11936 0.456975
\(7\) 0 0
\(8\) −3.07492 −1.08715
\(9\) 1.00000 0.333333
\(10\) 4.52079 1.42960
\(11\) −6.13738 −1.85049 −0.925245 0.379369i \(-0.876141\pi\)
−0.925245 + 0.379369i \(0.876141\pi\)
\(12\) −0.747042 −0.215652
\(13\) 3.32325 0.921703 0.460852 0.887477i \(-0.347544\pi\)
0.460852 + 0.887477i \(0.347544\pi\)
\(14\) 0 0
\(15\) 4.03875 1.04280
\(16\) −1.94784 −0.486961
\(17\) −1.38850 −0.336760 −0.168380 0.985722i \(-0.553854\pi\)
−0.168380 + 0.985722i \(0.553854\pi\)
\(18\) 1.11936 0.263835
\(19\) −3.74887 −0.860049 −0.430025 0.902817i \(-0.641495\pi\)
−0.430025 + 0.902817i \(0.641495\pi\)
\(20\) −3.01711 −0.674647
\(21\) 0 0
\(22\) −6.86992 −1.46467
\(23\) 1.62146 0.338099 0.169049 0.985608i \(-0.445930\pi\)
0.169049 + 0.985608i \(0.445930\pi\)
\(24\) −3.07492 −0.627665
\(25\) 11.3115 2.26229
\(26\) 3.71990 0.729532
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 7.09219 1.31699 0.658494 0.752586i \(-0.271194\pi\)
0.658494 + 0.752586i \(0.271194\pi\)
\(30\) 4.52079 0.825380
\(31\) 2.02771 0.364188 0.182094 0.983281i \(-0.441712\pi\)
0.182094 + 0.983281i \(0.441712\pi\)
\(32\) 3.96951 0.701716
\(33\) −6.13738 −1.06838
\(34\) −1.55422 −0.266547
\(35\) 0 0
\(36\) −0.747042 −0.124507
\(37\) 7.24458 1.19100 0.595501 0.803355i \(-0.296954\pi\)
0.595501 + 0.803355i \(0.296954\pi\)
\(38\) −4.19632 −0.680733
\(39\) 3.32325 0.532146
\(40\) −12.4188 −1.96359
\(41\) −4.88816 −0.763403 −0.381702 0.924286i \(-0.624662\pi\)
−0.381702 + 0.924286i \(0.624662\pi\)
\(42\) 0 0
\(43\) 3.81967 0.582494 0.291247 0.956648i \(-0.405930\pi\)
0.291247 + 0.956648i \(0.405930\pi\)
\(44\) 4.58488 0.691197
\(45\) 4.03875 0.602061
\(46\) 1.81500 0.267606
\(47\) 1.13923 0.166173 0.0830865 0.996542i \(-0.473522\pi\)
0.0830865 + 0.996542i \(0.473522\pi\)
\(48\) −1.94784 −0.281147
\(49\) 0 0
\(50\) 12.6616 1.79061
\(51\) −1.38850 −0.194428
\(52\) −2.48261 −0.344276
\(53\) −0.678837 −0.0932454 −0.0466227 0.998913i \(-0.514846\pi\)
−0.0466227 + 0.998913i \(0.514846\pi\)
\(54\) 1.11936 0.152325
\(55\) −24.7873 −3.34232
\(56\) 0 0
\(57\) −3.74887 −0.496550
\(58\) 7.93869 1.04240
\(59\) 11.1464 1.45113 0.725566 0.688152i \(-0.241578\pi\)
0.725566 + 0.688152i \(0.241578\pi\)
\(60\) −3.01711 −0.389508
\(61\) 1.00000 0.128037
\(62\) 2.26973 0.288257
\(63\) 0 0
\(64\) 8.33898 1.04237
\(65\) 13.4218 1.66476
\(66\) −6.86992 −0.845628
\(67\) 9.92296 1.21228 0.606141 0.795357i \(-0.292717\pi\)
0.606141 + 0.795357i \(0.292717\pi\)
\(68\) 1.03727 0.125787
\(69\) 1.62146 0.195201
\(70\) 0 0
\(71\) −4.32247 −0.512983 −0.256492 0.966546i \(-0.582567\pi\)
−0.256492 + 0.966546i \(0.582567\pi\)
\(72\) −3.07492 −0.362383
\(73\) 9.71269 1.13678 0.568392 0.822758i \(-0.307566\pi\)
0.568392 + 0.822758i \(0.307566\pi\)
\(74\) 8.10927 0.942683
\(75\) 11.3115 1.30614
\(76\) 2.80056 0.321247
\(77\) 0 0
\(78\) 3.71990 0.421196
\(79\) −8.65346 −0.973591 −0.486795 0.873516i \(-0.661834\pi\)
−0.486795 + 0.873516i \(0.661834\pi\)
\(80\) −7.86685 −0.879540
\(81\) 1.00000 0.111111
\(82\) −5.47160 −0.604237
\(83\) −15.1426 −1.66212 −0.831059 0.556184i \(-0.812265\pi\)
−0.831059 + 0.556184i \(0.812265\pi\)
\(84\) 0 0
\(85\) −5.60778 −0.608250
\(86\) 4.27557 0.461046
\(87\) 7.09219 0.760363
\(88\) 18.8719 2.01176
\(89\) 13.7938 1.46214 0.731068 0.682304i \(-0.239022\pi\)
0.731068 + 0.682304i \(0.239022\pi\)
\(90\) 4.52079 0.476534
\(91\) 0 0
\(92\) −1.21130 −0.126287
\(93\) 2.02771 0.210264
\(94\) 1.27520 0.131527
\(95\) −15.1407 −1.55341
\(96\) 3.96951 0.405136
\(97\) 18.9768 1.92680 0.963399 0.268071i \(-0.0863863\pi\)
0.963399 + 0.268071i \(0.0863863\pi\)
\(98\) 0 0
\(99\) −6.13738 −0.616830
\(100\) −8.45014 −0.845014
\(101\) −2.65103 −0.263788 −0.131894 0.991264i \(-0.542106\pi\)
−0.131894 + 0.991264i \(0.542106\pi\)
\(102\) −1.55422 −0.153891
\(103\) 15.8109 1.55790 0.778949 0.627087i \(-0.215753\pi\)
0.778949 + 0.627087i \(0.215753\pi\)
\(104\) −10.2187 −1.00203
\(105\) 0 0
\(106\) −0.759860 −0.0738041
\(107\) 2.26187 0.218663 0.109332 0.994005i \(-0.465129\pi\)
0.109332 + 0.994005i \(0.465129\pi\)
\(108\) −0.747042 −0.0718842
\(109\) 16.6307 1.59293 0.796467 0.604681i \(-0.206700\pi\)
0.796467 + 0.604681i \(0.206700\pi\)
\(110\) −27.7458 −2.64546
\(111\) 7.24458 0.687625
\(112\) 0 0
\(113\) −10.4132 −0.979594 −0.489797 0.871837i \(-0.662929\pi\)
−0.489797 + 0.871837i \(0.662929\pi\)
\(114\) −4.19632 −0.393021
\(115\) 6.54868 0.610668
\(116\) −5.29817 −0.491923
\(117\) 3.32325 0.307234
\(118\) 12.4767 1.14858
\(119\) 0 0
\(120\) −12.4188 −1.13368
\(121\) 26.6675 2.42432
\(122\) 1.11936 0.101342
\(123\) −4.88816 −0.440751
\(124\) −1.51479 −0.136032
\(125\) 25.4904 2.27993
\(126\) 0 0
\(127\) −13.0847 −1.16108 −0.580540 0.814232i \(-0.697159\pi\)
−0.580540 + 0.814232i \(0.697159\pi\)
\(128\) 1.39527 0.123326
\(129\) 3.81967 0.336303
\(130\) 15.0237 1.31767
\(131\) −5.39891 −0.471705 −0.235852 0.971789i \(-0.575788\pi\)
−0.235852 + 0.971789i \(0.575788\pi\)
\(132\) 4.58488 0.399063
\(133\) 0 0
\(134\) 11.1073 0.959526
\(135\) 4.03875 0.347600
\(136\) 4.26951 0.366108
\(137\) 5.37225 0.458982 0.229491 0.973311i \(-0.426294\pi\)
0.229491 + 0.973311i \(0.426294\pi\)
\(138\) 1.81500 0.154503
\(139\) −12.1706 −1.03230 −0.516148 0.856499i \(-0.672635\pi\)
−0.516148 + 0.856499i \(0.672635\pi\)
\(140\) 0 0
\(141\) 1.13923 0.0959401
\(142\) −4.83839 −0.406028
\(143\) −20.3960 −1.70560
\(144\) −1.94784 −0.162320
\(145\) 28.6436 2.37872
\(146\) 10.8720 0.899769
\(147\) 0 0
\(148\) −5.41201 −0.444864
\(149\) −13.5495 −1.11002 −0.555009 0.831844i \(-0.687285\pi\)
−0.555009 + 0.831844i \(0.687285\pi\)
\(150\) 12.6616 1.03381
\(151\) 13.5508 1.10275 0.551375 0.834258i \(-0.314103\pi\)
0.551375 + 0.834258i \(0.314103\pi\)
\(152\) 11.5275 0.935001
\(153\) −1.38850 −0.112253
\(154\) 0 0
\(155\) 8.18942 0.657790
\(156\) −2.48261 −0.198768
\(157\) 6.75670 0.539243 0.269622 0.962966i \(-0.413101\pi\)
0.269622 + 0.962966i \(0.413101\pi\)
\(158\) −9.68631 −0.770601
\(159\) −0.678837 −0.0538352
\(160\) 16.0318 1.26743
\(161\) 0 0
\(162\) 1.11936 0.0879449
\(163\) 18.4035 1.44147 0.720737 0.693208i \(-0.243803\pi\)
0.720737 + 0.693208i \(0.243803\pi\)
\(164\) 3.65166 0.285147
\(165\) −24.7873 −1.92969
\(166\) −16.9500 −1.31557
\(167\) −9.60542 −0.743290 −0.371645 0.928375i \(-0.621206\pi\)
−0.371645 + 0.928375i \(0.621206\pi\)
\(168\) 0 0
\(169\) −1.95602 −0.150463
\(170\) −6.27711 −0.481432
\(171\) −3.74887 −0.286683
\(172\) −2.85345 −0.217574
\(173\) 6.22115 0.472985 0.236493 0.971633i \(-0.424002\pi\)
0.236493 + 0.971633i \(0.424002\pi\)
\(174\) 7.93869 0.601831
\(175\) 0 0
\(176\) 11.9547 0.901117
\(177\) 11.1464 0.837812
\(178\) 15.4401 1.15729
\(179\) −3.58780 −0.268165 −0.134082 0.990970i \(-0.542809\pi\)
−0.134082 + 0.990970i \(0.542809\pi\)
\(180\) −3.01711 −0.224882
\(181\) −18.8370 −1.40014 −0.700071 0.714073i \(-0.746848\pi\)
−0.700071 + 0.714073i \(0.746848\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) −4.98587 −0.367563
\(185\) 29.2590 2.15117
\(186\) 2.26973 0.166425
\(187\) 8.52174 0.623171
\(188\) −0.851049 −0.0620691
\(189\) 0 0
\(190\) −16.9479 −1.22953
\(191\) 15.8542 1.14717 0.573585 0.819146i \(-0.305552\pi\)
0.573585 + 0.819146i \(0.305552\pi\)
\(192\) 8.33898 0.601814
\(193\) 8.27509 0.595654 0.297827 0.954620i \(-0.403738\pi\)
0.297827 + 0.954620i \(0.403738\pi\)
\(194\) 21.2418 1.52507
\(195\) 13.4218 0.961152
\(196\) 0 0
\(197\) 7.03870 0.501487 0.250743 0.968054i \(-0.419325\pi\)
0.250743 + 0.968054i \(0.419325\pi\)
\(198\) −6.86992 −0.488224
\(199\) 4.12697 0.292553 0.146277 0.989244i \(-0.453271\pi\)
0.146277 + 0.989244i \(0.453271\pi\)
\(200\) −34.7818 −2.45945
\(201\) 9.92296 0.699911
\(202\) −2.96745 −0.208789
\(203\) 0 0
\(204\) 1.03727 0.0726231
\(205\) −19.7421 −1.37884
\(206\) 17.6981 1.23308
\(207\) 1.62146 0.112700
\(208\) −6.47317 −0.448834
\(209\) 23.0082 1.59151
\(210\) 0 0
\(211\) 17.2211 1.18555 0.592774 0.805369i \(-0.298033\pi\)
0.592774 + 0.805369i \(0.298033\pi\)
\(212\) 0.507120 0.0348291
\(213\) −4.32247 −0.296171
\(214\) 2.53184 0.173073
\(215\) 15.4267 1.05209
\(216\) −3.07492 −0.209222
\(217\) 0 0
\(218\) 18.6157 1.26081
\(219\) 9.71269 0.656322
\(220\) 18.5172 1.24843
\(221\) −4.61432 −0.310393
\(222\) 8.10927 0.544258
\(223\) −20.0385 −1.34188 −0.670938 0.741513i \(-0.734109\pi\)
−0.670938 + 0.741513i \(0.734109\pi\)
\(224\) 0 0
\(225\) 11.3115 0.754098
\(226\) −11.6561 −0.775353
\(227\) −15.2445 −1.01181 −0.505907 0.862588i \(-0.668842\pi\)
−0.505907 + 0.862588i \(0.668842\pi\)
\(228\) 2.80056 0.185472
\(229\) −12.6049 −0.832956 −0.416478 0.909146i \(-0.636736\pi\)
−0.416478 + 0.909146i \(0.636736\pi\)
\(230\) 7.33030 0.483346
\(231\) 0 0
\(232\) −21.8079 −1.43176
\(233\) −16.5702 −1.08555 −0.542774 0.839879i \(-0.682626\pi\)
−0.542774 + 0.839879i \(0.682626\pi\)
\(234\) 3.71990 0.243177
\(235\) 4.60104 0.300139
\(236\) −8.32680 −0.542029
\(237\) −8.65346 −0.562103
\(238\) 0 0
\(239\) −3.05639 −0.197701 −0.0988506 0.995102i \(-0.531517\pi\)
−0.0988506 + 0.995102i \(0.531517\pi\)
\(240\) −7.86685 −0.507803
\(241\) −28.8097 −1.85580 −0.927899 0.372832i \(-0.878387\pi\)
−0.927899 + 0.372832i \(0.878387\pi\)
\(242\) 29.8504 1.91886
\(243\) 1.00000 0.0641500
\(244\) −0.747042 −0.0478245
\(245\) 0 0
\(246\) −5.47160 −0.348856
\(247\) −12.4584 −0.792710
\(248\) −6.23506 −0.395927
\(249\) −15.1426 −0.959624
\(250\) 28.5328 1.80457
\(251\) 17.3307 1.09390 0.546952 0.837164i \(-0.315788\pi\)
0.546952 + 0.837164i \(0.315788\pi\)
\(252\) 0 0
\(253\) −9.95154 −0.625648
\(254\) −14.6465 −0.919000
\(255\) −5.60778 −0.351173
\(256\) −15.1161 −0.944759
\(257\) 14.9887 0.934967 0.467483 0.884002i \(-0.345161\pi\)
0.467483 + 0.884002i \(0.345161\pi\)
\(258\) 4.27557 0.266185
\(259\) 0 0
\(260\) −10.0266 −0.621824
\(261\) 7.09219 0.438996
\(262\) −6.04330 −0.373356
\(263\) 8.40696 0.518395 0.259198 0.965824i \(-0.416542\pi\)
0.259198 + 0.965824i \(0.416542\pi\)
\(264\) 18.8719 1.16149
\(265\) −2.74165 −0.168418
\(266\) 0 0
\(267\) 13.7938 0.844165
\(268\) −7.41286 −0.452813
\(269\) 24.7936 1.51169 0.755847 0.654749i \(-0.227226\pi\)
0.755847 + 0.654749i \(0.227226\pi\)
\(270\) 4.52079 0.275127
\(271\) −4.91574 −0.298610 −0.149305 0.988791i \(-0.547704\pi\)
−0.149305 + 0.988791i \(0.547704\pi\)
\(272\) 2.70457 0.163989
\(273\) 0 0
\(274\) 6.01346 0.363286
\(275\) −69.4228 −4.18635
\(276\) −1.21130 −0.0729118
\(277\) 7.86600 0.472622 0.236311 0.971677i \(-0.424062\pi\)
0.236311 + 0.971677i \(0.424062\pi\)
\(278\) −13.6232 −0.817067
\(279\) 2.02771 0.121396
\(280\) 0 0
\(281\) −25.6585 −1.53066 −0.765329 0.643639i \(-0.777424\pi\)
−0.765329 + 0.643639i \(0.777424\pi\)
\(282\) 1.27520 0.0759370
\(283\) −18.1005 −1.07596 −0.537982 0.842956i \(-0.680813\pi\)
−0.537982 + 0.842956i \(0.680813\pi\)
\(284\) 3.22907 0.191610
\(285\) −15.1407 −0.896859
\(286\) −22.8304 −1.34999
\(287\) 0 0
\(288\) 3.96951 0.233905
\(289\) −15.0721 −0.886593
\(290\) 32.0624 1.88277
\(291\) 18.9768 1.11244
\(292\) −7.25578 −0.424613
\(293\) −18.3637 −1.07282 −0.536410 0.843958i \(-0.680220\pi\)
−0.536410 + 0.843958i \(0.680220\pi\)
\(294\) 0 0
\(295\) 45.0173 2.62101
\(296\) −22.2765 −1.29480
\(297\) −6.13738 −0.356127
\(298\) −15.1667 −0.878584
\(299\) 5.38853 0.311627
\(300\) −8.45014 −0.487869
\(301\) 0 0
\(302\) 15.1682 0.872831
\(303\) −2.65103 −0.152298
\(304\) 7.30221 0.418811
\(305\) 4.03875 0.231258
\(306\) −1.55422 −0.0888490
\(307\) 8.65273 0.493837 0.246919 0.969036i \(-0.420582\pi\)
0.246919 + 0.969036i \(0.420582\pi\)
\(308\) 0 0
\(309\) 15.8109 0.899453
\(310\) 9.16688 0.520644
\(311\) −13.3478 −0.756885 −0.378443 0.925625i \(-0.623540\pi\)
−0.378443 + 0.925625i \(0.623540\pi\)
\(312\) −10.2187 −0.578521
\(313\) −14.4104 −0.814525 −0.407263 0.913311i \(-0.633517\pi\)
−0.407263 + 0.913311i \(0.633517\pi\)
\(314\) 7.56315 0.426813
\(315\) 0 0
\(316\) 6.46450 0.363657
\(317\) −26.5176 −1.48938 −0.744689 0.667412i \(-0.767402\pi\)
−0.744689 + 0.667412i \(0.767402\pi\)
\(318\) −0.759860 −0.0426108
\(319\) −43.5275 −2.43707
\(320\) 33.6790 1.88271
\(321\) 2.26187 0.126245
\(322\) 0 0
\(323\) 5.20529 0.289630
\(324\) −0.747042 −0.0415023
\(325\) 37.5908 2.08516
\(326\) 20.6001 1.14093
\(327\) 16.6307 0.919681
\(328\) 15.0307 0.829932
\(329\) 0 0
\(330\) −27.7458 −1.52736
\(331\) −11.2768 −0.619830 −0.309915 0.950764i \(-0.600301\pi\)
−0.309915 + 0.950764i \(0.600301\pi\)
\(332\) 11.3122 0.620836
\(333\) 7.24458 0.397001
\(334\) −10.7519 −0.588317
\(335\) 40.0763 2.18960
\(336\) 0 0
\(337\) −1.94483 −0.105942 −0.0529709 0.998596i \(-0.516869\pi\)
−0.0529709 + 0.998596i \(0.516869\pi\)
\(338\) −2.18948 −0.119092
\(339\) −10.4132 −0.565569
\(340\) 4.18925 0.227194
\(341\) −12.4449 −0.673927
\(342\) −4.19632 −0.226911
\(343\) 0 0
\(344\) −11.7452 −0.633257
\(345\) 6.54868 0.352569
\(346\) 6.96368 0.374370
\(347\) 2.48630 0.133471 0.0667357 0.997771i \(-0.478742\pi\)
0.0667357 + 0.997771i \(0.478742\pi\)
\(348\) −5.29817 −0.284012
\(349\) −1.23136 −0.0659131 −0.0329565 0.999457i \(-0.510492\pi\)
−0.0329565 + 0.999457i \(0.510492\pi\)
\(350\) 0 0
\(351\) 3.32325 0.177382
\(352\) −24.3624 −1.29852
\(353\) −10.4378 −0.555546 −0.277773 0.960647i \(-0.589596\pi\)
−0.277773 + 0.960647i \(0.589596\pi\)
\(354\) 12.4767 0.663132
\(355\) −17.4574 −0.926541
\(356\) −10.3045 −0.546139
\(357\) 0 0
\(358\) −4.01603 −0.212254
\(359\) −4.26160 −0.224919 −0.112459 0.993656i \(-0.535873\pi\)
−0.112459 + 0.993656i \(0.535873\pi\)
\(360\) −12.4188 −0.654529
\(361\) −4.94599 −0.260315
\(362\) −21.0853 −1.10822
\(363\) 26.6675 1.39968
\(364\) 0 0
\(365\) 39.2271 2.05324
\(366\) 1.11936 0.0585097
\(367\) 8.23430 0.429827 0.214913 0.976633i \(-0.431053\pi\)
0.214913 + 0.976633i \(0.431053\pi\)
\(368\) −3.15836 −0.164641
\(369\) −4.88816 −0.254468
\(370\) 32.7513 1.70266
\(371\) 0 0
\(372\) −1.51479 −0.0785381
\(373\) 9.76653 0.505692 0.252846 0.967507i \(-0.418633\pi\)
0.252846 + 0.967507i \(0.418633\pi\)
\(374\) 9.53886 0.493242
\(375\) 25.4904 1.31632
\(376\) −3.50302 −0.180655
\(377\) 23.5691 1.21387
\(378\) 0 0
\(379\) −29.0210 −1.49071 −0.745353 0.666670i \(-0.767719\pi\)
−0.745353 + 0.666670i \(0.767719\pi\)
\(380\) 11.3108 0.580230
\(381\) −13.0847 −0.670350
\(382\) 17.7465 0.907989
\(383\) 1.19631 0.0611284 0.0305642 0.999533i \(-0.490270\pi\)
0.0305642 + 0.999533i \(0.490270\pi\)
\(384\) 1.39527 0.0712023
\(385\) 0 0
\(386\) 9.26278 0.471463
\(387\) 3.81967 0.194165
\(388\) −14.1764 −0.719700
\(389\) 15.6753 0.794767 0.397384 0.917653i \(-0.369918\pi\)
0.397384 + 0.917653i \(0.369918\pi\)
\(390\) 15.0237 0.760756
\(391\) −2.25140 −0.113858
\(392\) 0 0
\(393\) −5.39891 −0.272339
\(394\) 7.87881 0.396929
\(395\) −34.9491 −1.75848
\(396\) 4.58488 0.230399
\(397\) −12.7490 −0.639854 −0.319927 0.947442i \(-0.603658\pi\)
−0.319927 + 0.947442i \(0.603658\pi\)
\(398\) 4.61955 0.231557
\(399\) 0 0
\(400\) −22.0330 −1.10165
\(401\) −27.2192 −1.35926 −0.679630 0.733555i \(-0.737860\pi\)
−0.679630 + 0.733555i \(0.737860\pi\)
\(402\) 11.1073 0.553983
\(403\) 6.73860 0.335674
\(404\) 1.98043 0.0985303
\(405\) 4.03875 0.200687
\(406\) 0 0
\(407\) −44.4628 −2.20394
\(408\) 4.26951 0.211372
\(409\) 19.1477 0.946794 0.473397 0.880849i \(-0.343028\pi\)
0.473397 + 0.880849i \(0.343028\pi\)
\(410\) −22.0984 −1.09136
\(411\) 5.37225 0.264993
\(412\) −11.8114 −0.581908
\(413\) 0 0
\(414\) 1.81500 0.0892021
\(415\) −61.1572 −3.00209
\(416\) 13.1917 0.646774
\(417\) −12.1706 −0.595997
\(418\) 25.7544 1.25969
\(419\) 13.7980 0.674075 0.337037 0.941491i \(-0.390575\pi\)
0.337037 + 0.941491i \(0.390575\pi\)
\(420\) 0 0
\(421\) 5.90717 0.287898 0.143949 0.989585i \(-0.454020\pi\)
0.143949 + 0.989585i \(0.454020\pi\)
\(422\) 19.2765 0.938367
\(423\) 1.13923 0.0553910
\(424\) 2.08737 0.101372
\(425\) −15.7059 −0.761850
\(426\) −4.83839 −0.234421
\(427\) 0 0
\(428\) −1.68971 −0.0816753
\(429\) −20.3960 −0.984730
\(430\) 17.2679 0.832733
\(431\) 7.55215 0.363774 0.181887 0.983319i \(-0.441779\pi\)
0.181887 + 0.983319i \(0.441779\pi\)
\(432\) −1.94784 −0.0937157
\(433\) −22.4792 −1.08028 −0.540140 0.841575i \(-0.681629\pi\)
−0.540140 + 0.841575i \(0.681629\pi\)
\(434\) 0 0
\(435\) 28.6436 1.37335
\(436\) −12.4239 −0.594995
\(437\) −6.07865 −0.290781
\(438\) 10.8720 0.519482
\(439\) 15.6329 0.746115 0.373058 0.927808i \(-0.378309\pi\)
0.373058 + 0.927808i \(0.378309\pi\)
\(440\) 76.2190 3.63360
\(441\) 0 0
\(442\) −5.16507 −0.245677
\(443\) −22.1604 −1.05287 −0.526437 0.850214i \(-0.676472\pi\)
−0.526437 + 0.850214i \(0.676472\pi\)
\(444\) −5.41201 −0.256843
\(445\) 55.7095 2.64088
\(446\) −22.4302 −1.06210
\(447\) −13.5495 −0.640869
\(448\) 0 0
\(449\) 37.9813 1.79245 0.896225 0.443600i \(-0.146299\pi\)
0.896225 + 0.443600i \(0.146299\pi\)
\(450\) 12.6616 0.596871
\(451\) 30.0005 1.41267
\(452\) 7.77912 0.365899
\(453\) 13.5508 0.636673
\(454\) −17.0640 −0.800855
\(455\) 0 0
\(456\) 11.5275 0.539823
\(457\) 41.2012 1.92731 0.963655 0.267151i \(-0.0860822\pi\)
0.963655 + 0.267151i \(0.0860822\pi\)
\(458\) −14.1094 −0.659288
\(459\) −1.38850 −0.0648095
\(460\) −4.89214 −0.228097
\(461\) −4.95495 −0.230775 −0.115387 0.993321i \(-0.536811\pi\)
−0.115387 + 0.993321i \(0.536811\pi\)
\(462\) 0 0
\(463\) 33.6873 1.56558 0.782792 0.622284i \(-0.213795\pi\)
0.782792 + 0.622284i \(0.213795\pi\)
\(464\) −13.8145 −0.641322
\(465\) 8.18942 0.379775
\(466\) −18.5479 −0.859216
\(467\) 20.7522 0.960299 0.480149 0.877187i \(-0.340582\pi\)
0.480149 + 0.877187i \(0.340582\pi\)
\(468\) −2.48261 −0.114759
\(469\) 0 0
\(470\) 5.15020 0.237561
\(471\) 6.75670 0.311332
\(472\) −34.2741 −1.57760
\(473\) −23.4428 −1.07790
\(474\) −9.68631 −0.444907
\(475\) −42.4052 −1.94568
\(476\) 0 0
\(477\) −0.678837 −0.0310818
\(478\) −3.42119 −0.156481
\(479\) 8.31585 0.379961 0.189981 0.981788i \(-0.439158\pi\)
0.189981 + 0.981788i \(0.439158\pi\)
\(480\) 16.0318 0.731749
\(481\) 24.0755 1.09775
\(482\) −32.2483 −1.46887
\(483\) 0 0
\(484\) −19.9217 −0.905533
\(485\) 76.6423 3.48015
\(486\) 1.11936 0.0507750
\(487\) −13.0439 −0.591073 −0.295537 0.955331i \(-0.595498\pi\)
−0.295537 + 0.955331i \(0.595498\pi\)
\(488\) −3.07492 −0.139195
\(489\) 18.4035 0.832236
\(490\) 0 0
\(491\) −3.79658 −0.171337 −0.0856686 0.996324i \(-0.527303\pi\)
−0.0856686 + 0.996324i \(0.527303\pi\)
\(492\) 3.65166 0.164630
\(493\) −9.84749 −0.443509
\(494\) −13.9454 −0.627434
\(495\) −24.7873 −1.11411
\(496\) −3.94967 −0.177346
\(497\) 0 0
\(498\) −16.9500 −0.759547
\(499\) 23.6318 1.05790 0.528951 0.848652i \(-0.322585\pi\)
0.528951 + 0.848652i \(0.322585\pi\)
\(500\) −19.0424 −0.851602
\(501\) −9.60542 −0.429138
\(502\) 19.3992 0.865829
\(503\) −15.4986 −0.691050 −0.345525 0.938410i \(-0.612299\pi\)
−0.345525 + 0.938410i \(0.612299\pi\)
\(504\) 0 0
\(505\) −10.7068 −0.476449
\(506\) −11.1393 −0.495203
\(507\) −1.95602 −0.0868699
\(508\) 9.77483 0.433688
\(509\) 19.9556 0.884515 0.442258 0.896888i \(-0.354178\pi\)
0.442258 + 0.896888i \(0.354178\pi\)
\(510\) −6.27711 −0.277955
\(511\) 0 0
\(512\) −19.7109 −0.871107
\(513\) −3.74887 −0.165517
\(514\) 16.7776 0.740030
\(515\) 63.8564 2.81385
\(516\) −2.85345 −0.125616
\(517\) −6.99186 −0.307502
\(518\) 0 0
\(519\) 6.22115 0.273078
\(520\) −41.2708 −1.80984
\(521\) 19.9862 0.875611 0.437806 0.899070i \(-0.355756\pi\)
0.437806 + 0.899070i \(0.355756\pi\)
\(522\) 7.93869 0.347467
\(523\) 35.5672 1.55524 0.777622 0.628733i \(-0.216426\pi\)
0.777622 + 0.628733i \(0.216426\pi\)
\(524\) 4.03321 0.176192
\(525\) 0 0
\(526\) 9.41038 0.410312
\(527\) −2.81548 −0.122644
\(528\) 11.9547 0.520260
\(529\) −20.3709 −0.885689
\(530\) −3.06888 −0.133304
\(531\) 11.1464 0.483711
\(532\) 0 0
\(533\) −16.2446 −0.703631
\(534\) 15.4401 0.668160
\(535\) 9.13511 0.394945
\(536\) −30.5123 −1.31793
\(537\) −3.58780 −0.154825
\(538\) 27.7529 1.19651
\(539\) 0 0
\(540\) −3.01711 −0.129836
\(541\) −0.636558 −0.0273677 −0.0136839 0.999906i \(-0.504356\pi\)
−0.0136839 + 0.999906i \(0.504356\pi\)
\(542\) −5.50246 −0.236351
\(543\) −18.8370 −0.808372
\(544\) −5.51164 −0.236310
\(545\) 67.1673 2.87713
\(546\) 0 0
\(547\) −23.9282 −1.02309 −0.511547 0.859255i \(-0.670927\pi\)
−0.511547 + 0.859255i \(0.670927\pi\)
\(548\) −4.01329 −0.171439
\(549\) 1.00000 0.0426790
\(550\) −77.7088 −3.31352
\(551\) −26.5877 −1.13267
\(552\) −4.98587 −0.212213
\(553\) 0 0
\(554\) 8.80485 0.374082
\(555\) 29.2590 1.24198
\(556\) 9.09195 0.385584
\(557\) 19.8641 0.841668 0.420834 0.907138i \(-0.361737\pi\)
0.420834 + 0.907138i \(0.361737\pi\)
\(558\) 2.26973 0.0960855
\(559\) 12.6937 0.536886
\(560\) 0 0
\(561\) 8.52174 0.359788
\(562\) −28.7210 −1.21152
\(563\) −37.1065 −1.56385 −0.781926 0.623371i \(-0.785763\pi\)
−0.781926 + 0.623371i \(0.785763\pi\)
\(564\) −0.851049 −0.0358356
\(565\) −42.0564 −1.76932
\(566\) −20.2609 −0.851630
\(567\) 0 0
\(568\) 13.2913 0.557689
\(569\) −16.9384 −0.710096 −0.355048 0.934848i \(-0.615535\pi\)
−0.355048 + 0.934848i \(0.615535\pi\)
\(570\) −16.9479 −0.709868
\(571\) −30.1546 −1.26193 −0.630966 0.775811i \(-0.717341\pi\)
−0.630966 + 0.775811i \(0.717341\pi\)
\(572\) 15.2367 0.637079
\(573\) 15.8542 0.662318
\(574\) 0 0
\(575\) 18.3411 0.764878
\(576\) 8.33898 0.347457
\(577\) 6.42792 0.267598 0.133799 0.991009i \(-0.457282\pi\)
0.133799 + 0.991009i \(0.457282\pi\)
\(578\) −16.8710 −0.701742
\(579\) 8.27509 0.343901
\(580\) −21.3980 −0.888502
\(581\) 0 0
\(582\) 21.2418 0.880499
\(583\) 4.16628 0.172550
\(584\) −29.8657 −1.23585
\(585\) 13.4218 0.554921
\(586\) −20.5555 −0.849142
\(587\) −9.57038 −0.395012 −0.197506 0.980302i \(-0.563284\pi\)
−0.197506 + 0.980302i \(0.563284\pi\)
\(588\) 0 0
\(589\) −7.60164 −0.313220
\(590\) 50.3904 2.07454
\(591\) 7.03870 0.289534
\(592\) −14.1113 −0.579972
\(593\) 15.4903 0.636111 0.318055 0.948072i \(-0.396970\pi\)
0.318055 + 0.948072i \(0.396970\pi\)
\(594\) −6.86992 −0.281876
\(595\) 0 0
\(596\) 10.1220 0.414615
\(597\) 4.12697 0.168906
\(598\) 6.03168 0.246654
\(599\) −40.2855 −1.64602 −0.823010 0.568027i \(-0.807707\pi\)
−0.823010 + 0.568027i \(0.807707\pi\)
\(600\) −34.7818 −1.41996
\(601\) −28.0663 −1.14485 −0.572424 0.819958i \(-0.693997\pi\)
−0.572424 + 0.819958i \(0.693997\pi\)
\(602\) 0 0
\(603\) 9.92296 0.404094
\(604\) −10.1230 −0.411900
\(605\) 107.703 4.37875
\(606\) −2.96745 −0.120544
\(607\) −30.8453 −1.25197 −0.625987 0.779834i \(-0.715304\pi\)
−0.625987 + 0.779834i \(0.715304\pi\)
\(608\) −14.8812 −0.603510
\(609\) 0 0
\(610\) 4.52079 0.183042
\(611\) 3.78593 0.153162
\(612\) 1.03727 0.0419290
\(613\) 11.9284 0.481783 0.240891 0.970552i \(-0.422560\pi\)
0.240891 + 0.970552i \(0.422560\pi\)
\(614\) 9.68548 0.390874
\(615\) −19.7421 −0.796076
\(616\) 0 0
\(617\) −22.3208 −0.898601 −0.449301 0.893381i \(-0.648327\pi\)
−0.449301 + 0.893381i \(0.648327\pi\)
\(618\) 17.6981 0.711921
\(619\) −30.4804 −1.22511 −0.612555 0.790428i \(-0.709858\pi\)
−0.612555 + 0.790428i \(0.709858\pi\)
\(620\) −6.11784 −0.245699
\(621\) 1.62146 0.0650671
\(622\) −14.9410 −0.599078
\(623\) 0 0
\(624\) −6.47317 −0.259134
\(625\) 46.3919 1.85568
\(626\) −16.1304 −0.644700
\(627\) 23.0082 0.918861
\(628\) −5.04754 −0.201419
\(629\) −10.0591 −0.401082
\(630\) 0 0
\(631\) 8.02405 0.319433 0.159716 0.987163i \(-0.448942\pi\)
0.159716 + 0.987163i \(0.448942\pi\)
\(632\) 26.6087 1.05844
\(633\) 17.2211 0.684477
\(634\) −29.6827 −1.17885
\(635\) −52.8458 −2.09712
\(636\) 0.507120 0.0201086
\(637\) 0 0
\(638\) −48.7228 −1.92895
\(639\) −4.32247 −0.170994
\(640\) 5.63516 0.222749
\(641\) 28.1678 1.11256 0.556281 0.830995i \(-0.312228\pi\)
0.556281 + 0.830995i \(0.312228\pi\)
\(642\) 2.53184 0.0999236
\(643\) 19.8552 0.783014 0.391507 0.920175i \(-0.371954\pi\)
0.391507 + 0.920175i \(0.371954\pi\)
\(644\) 0 0
\(645\) 15.4267 0.607424
\(646\) 5.82657 0.229243
\(647\) 16.0991 0.632920 0.316460 0.948606i \(-0.397506\pi\)
0.316460 + 0.948606i \(0.397506\pi\)
\(648\) −3.07492 −0.120794
\(649\) −68.4095 −2.68531
\(650\) 42.0775 1.65042
\(651\) 0 0
\(652\) −13.7482 −0.538421
\(653\) 0.761519 0.0298006 0.0149003 0.999889i \(-0.495257\pi\)
0.0149003 + 0.999889i \(0.495257\pi\)
\(654\) 18.6157 0.727932
\(655\) −21.8048 −0.851985
\(656\) 9.52138 0.371748
\(657\) 9.71269 0.378928
\(658\) 0 0
\(659\) −11.8946 −0.463347 −0.231673 0.972794i \(-0.574420\pi\)
−0.231673 + 0.972794i \(0.574420\pi\)
\(660\) 18.5172 0.720780
\(661\) −12.6464 −0.491889 −0.245945 0.969284i \(-0.579098\pi\)
−0.245945 + 0.969284i \(0.579098\pi\)
\(662\) −12.6228 −0.490598
\(663\) −4.61432 −0.179205
\(664\) 46.5623 1.80697
\(665\) 0 0
\(666\) 8.10927 0.314228
\(667\) 11.4997 0.445272
\(668\) 7.17565 0.277634
\(669\) −20.0385 −0.774733
\(670\) 44.8596 1.73308
\(671\) −6.13738 −0.236931
\(672\) 0 0
\(673\) −29.7186 −1.14557 −0.572784 0.819706i \(-0.694137\pi\)
−0.572784 + 0.819706i \(0.694137\pi\)
\(674\) −2.17696 −0.0838535
\(675\) 11.3115 0.435378
\(676\) 1.46123 0.0562011
\(677\) 44.9283 1.72673 0.863367 0.504577i \(-0.168351\pi\)
0.863367 + 0.504577i \(0.168351\pi\)
\(678\) −11.6561 −0.447650
\(679\) 0 0
\(680\) 17.2435 0.661257
\(681\) −15.2445 −0.584171
\(682\) −13.9302 −0.533416
\(683\) −11.9795 −0.458384 −0.229192 0.973381i \(-0.573608\pi\)
−0.229192 + 0.973381i \(0.573608\pi\)
\(684\) 2.80056 0.107082
\(685\) 21.6971 0.829005
\(686\) 0 0
\(687\) −12.6049 −0.480908
\(688\) −7.44012 −0.283652
\(689\) −2.25594 −0.0859446
\(690\) 7.33030 0.279060
\(691\) 1.48309 0.0564194 0.0282097 0.999602i \(-0.491019\pi\)
0.0282097 + 0.999602i \(0.491019\pi\)
\(692\) −4.64746 −0.176670
\(693\) 0 0
\(694\) 2.78305 0.105643
\(695\) −49.1539 −1.86451
\(696\) −21.8079 −0.826627
\(697\) 6.78720 0.257084
\(698\) −1.37833 −0.0521705
\(699\) −16.5702 −0.626742
\(700\) 0 0
\(701\) 10.3093 0.389376 0.194688 0.980865i \(-0.437631\pi\)
0.194688 + 0.980865i \(0.437631\pi\)
\(702\) 3.71990 0.140399
\(703\) −27.1590 −1.02432
\(704\) −51.1795 −1.92890
\(705\) 4.60104 0.173285
\(706\) −11.6836 −0.439717
\(707\) 0 0
\(708\) −8.32680 −0.312940
\(709\) −4.06701 −0.152740 −0.0763699 0.997080i \(-0.524333\pi\)
−0.0763699 + 0.997080i \(0.524333\pi\)
\(710\) −19.5410 −0.733361
\(711\) −8.65346 −0.324530
\(712\) −42.4147 −1.58956
\(713\) 3.28787 0.123132
\(714\) 0 0
\(715\) −82.3744 −3.08063
\(716\) 2.68024 0.100165
\(717\) −3.05639 −0.114143
\(718\) −4.77025 −0.178024
\(719\) −3.04710 −0.113638 −0.0568189 0.998385i \(-0.518096\pi\)
−0.0568189 + 0.998385i \(0.518096\pi\)
\(720\) −7.86685 −0.293180
\(721\) 0 0
\(722\) −5.53632 −0.206040
\(723\) −28.8097 −1.07145
\(724\) 14.0720 0.522982
\(725\) 80.2231 2.97941
\(726\) 29.8504 1.10785
\(727\) 18.6606 0.692082 0.346041 0.938219i \(-0.387526\pi\)
0.346041 + 0.938219i \(0.387526\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 43.9091 1.62515
\(731\) −5.30359 −0.196161
\(732\) −0.747042 −0.0276115
\(733\) 27.1448 1.00262 0.501308 0.865269i \(-0.332852\pi\)
0.501308 + 0.865269i \(0.332852\pi\)
\(734\) 9.21711 0.340210
\(735\) 0 0
\(736\) 6.43641 0.237249
\(737\) −60.9010 −2.24332
\(738\) −5.47160 −0.201412
\(739\) 2.53735 0.0933379 0.0466689 0.998910i \(-0.485139\pi\)
0.0466689 + 0.998910i \(0.485139\pi\)
\(740\) −21.8577 −0.803506
\(741\) −12.4584 −0.457672
\(742\) 0 0
\(743\) −27.8242 −1.02077 −0.510385 0.859946i \(-0.670497\pi\)
−0.510385 + 0.859946i \(0.670497\pi\)
\(744\) −6.23506 −0.228588
\(745\) −54.7230 −2.00489
\(746\) 10.9322 0.400257
\(747\) −15.1426 −0.554039
\(748\) −6.36609 −0.232767
\(749\) 0 0
\(750\) 28.5328 1.04187
\(751\) 35.9268 1.31099 0.655494 0.755200i \(-0.272460\pi\)
0.655494 + 0.755200i \(0.272460\pi\)
\(752\) −2.21903 −0.0809198
\(753\) 17.3307 0.631565
\(754\) 26.3822 0.960785
\(755\) 54.7283 1.99177
\(756\) 0 0
\(757\) −53.7172 −1.95238 −0.976192 0.216908i \(-0.930403\pi\)
−0.976192 + 0.216908i \(0.930403\pi\)
\(758\) −32.4848 −1.17990
\(759\) −9.95154 −0.361218
\(760\) 46.5565 1.68878
\(761\) 11.0521 0.400637 0.200318 0.979731i \(-0.435802\pi\)
0.200318 + 0.979731i \(0.435802\pi\)
\(762\) −14.6465 −0.530585
\(763\) 0 0
\(764\) −11.8437 −0.428492
\(765\) −5.60778 −0.202750
\(766\) 1.33909 0.0483834
\(767\) 37.0421 1.33751
\(768\) −15.1161 −0.545457
\(769\) 42.9706 1.54956 0.774781 0.632230i \(-0.217860\pi\)
0.774781 + 0.632230i \(0.217860\pi\)
\(770\) 0 0
\(771\) 14.9887 0.539803
\(772\) −6.18184 −0.222489
\(773\) 38.7386 1.39333 0.696664 0.717397i \(-0.254667\pi\)
0.696664 + 0.717397i \(0.254667\pi\)
\(774\) 4.27557 0.153682
\(775\) 22.9364 0.823901
\(776\) −58.3520 −2.09471
\(777\) 0 0
\(778\) 17.5462 0.629062
\(779\) 18.3251 0.656564
\(780\) −10.0266 −0.359010
\(781\) 26.5287 0.949271
\(782\) −2.52011 −0.0901191
\(783\) 7.09219 0.253454
\(784\) 0 0
\(785\) 27.2886 0.973971
\(786\) −6.04330 −0.215557
\(787\) 36.7717 1.31077 0.655385 0.755295i \(-0.272506\pi\)
0.655385 + 0.755295i \(0.272506\pi\)
\(788\) −5.25821 −0.187316
\(789\) 8.40696 0.299296
\(790\) −39.1205 −1.39185
\(791\) 0 0
\(792\) 18.8719 0.670586
\(793\) 3.32325 0.118012
\(794\) −14.2707 −0.506447
\(795\) −2.74165 −0.0972363
\(796\) −3.08302 −0.109275
\(797\) 16.3361 0.578653 0.289327 0.957230i \(-0.406569\pi\)
0.289327 + 0.957230i \(0.406569\pi\)
\(798\) 0 0
\(799\) −1.58181 −0.0559604
\(800\) 44.9009 1.58749
\(801\) 13.7938 0.487379
\(802\) −30.4679 −1.07586
\(803\) −59.6105 −2.10361
\(804\) −7.41286 −0.261432
\(805\) 0 0
\(806\) 7.54289 0.265687
\(807\) 24.7936 0.872776
\(808\) 8.15171 0.286776
\(809\) −31.0850 −1.09289 −0.546445 0.837495i \(-0.684019\pi\)
−0.546445 + 0.837495i \(0.684019\pi\)
\(810\) 4.52079 0.158845
\(811\) 34.5832 1.21438 0.607191 0.794556i \(-0.292296\pi\)
0.607191 + 0.794556i \(0.292296\pi\)
\(812\) 0 0
\(813\) −4.91574 −0.172402
\(814\) −49.7697 −1.74443
\(815\) 74.3271 2.60357
\(816\) 2.70457 0.0946791
\(817\) −14.3194 −0.500973
\(818\) 21.4331 0.749391
\(819\) 0 0
\(820\) 14.7481 0.515028
\(821\) 4.85028 0.169276 0.0846379 0.996412i \(-0.473027\pi\)
0.0846379 + 0.996412i \(0.473027\pi\)
\(822\) 6.01346 0.209743
\(823\) −23.4599 −0.817760 −0.408880 0.912588i \(-0.634080\pi\)
−0.408880 + 0.912588i \(0.634080\pi\)
\(824\) −48.6173 −1.69367
\(825\) −69.4228 −2.41699
\(826\) 0 0
\(827\) −37.9723 −1.32043 −0.660213 0.751079i \(-0.729534\pi\)
−0.660213 + 0.751079i \(0.729534\pi\)
\(828\) −1.21130 −0.0420956
\(829\) 22.5075 0.781718 0.390859 0.920451i \(-0.372178\pi\)
0.390859 + 0.920451i \(0.372178\pi\)
\(830\) −68.4567 −2.37617
\(831\) 7.86600 0.272868
\(832\) 27.7125 0.960758
\(833\) 0 0
\(834\) −13.6232 −0.471734
\(835\) −38.7938 −1.34252
\(836\) −17.1881 −0.594464
\(837\) 2.02771 0.0700881
\(838\) 15.4448 0.533533
\(839\) −7.41216 −0.255896 −0.127948 0.991781i \(-0.540839\pi\)
−0.127948 + 0.991781i \(0.540839\pi\)
\(840\) 0 0
\(841\) 21.2992 0.734456
\(842\) 6.61223 0.227873
\(843\) −25.6585 −0.883726
\(844\) −12.8649 −0.442827
\(845\) −7.89987 −0.271764
\(846\) 1.27520 0.0438422
\(847\) 0 0
\(848\) 1.32227 0.0454069
\(849\) −18.1005 −0.621208
\(850\) −17.5805 −0.603007
\(851\) 11.7468 0.402676
\(852\) 3.22907 0.110626
\(853\) −10.7030 −0.366464 −0.183232 0.983070i \(-0.558656\pi\)
−0.183232 + 0.983070i \(0.558656\pi\)
\(854\) 0 0
\(855\) −15.1407 −0.517802
\(856\) −6.95506 −0.237719
\(857\) −56.9070 −1.94391 −0.971954 0.235172i \(-0.924435\pi\)
−0.971954 + 0.235172i \(0.924435\pi\)
\(858\) −22.8304 −0.779418
\(859\) −47.8453 −1.63246 −0.816231 0.577726i \(-0.803940\pi\)
−0.816231 + 0.577726i \(0.803940\pi\)
\(860\) −11.5244 −0.392978
\(861\) 0 0
\(862\) 8.45354 0.287929
\(863\) 56.5642 1.92547 0.962734 0.270451i \(-0.0871727\pi\)
0.962734 + 0.270451i \(0.0871727\pi\)
\(864\) 3.96951 0.135045
\(865\) 25.1257 0.854298
\(866\) −25.1622 −0.855046
\(867\) −15.0721 −0.511875
\(868\) 0 0
\(869\) 53.1096 1.80162
\(870\) 32.0624 1.08702
\(871\) 32.9764 1.11736
\(872\) −51.1381 −1.73176
\(873\) 18.9768 0.642266
\(874\) −6.80418 −0.230155
\(875\) 0 0
\(876\) −7.25578 −0.245150
\(877\) −40.8403 −1.37908 −0.689540 0.724248i \(-0.742187\pi\)
−0.689540 + 0.724248i \(0.742187\pi\)
\(878\) 17.4987 0.590553
\(879\) −18.3637 −0.619393
\(880\) 48.2818 1.62758
\(881\) 25.9048 0.872756 0.436378 0.899764i \(-0.356261\pi\)
0.436378 + 0.899764i \(0.356261\pi\)
\(882\) 0 0
\(883\) −0.591065 −0.0198909 −0.00994546 0.999951i \(-0.503166\pi\)
−0.00994546 + 0.999951i \(0.503166\pi\)
\(884\) 3.44709 0.115938
\(885\) 45.0173 1.51324
\(886\) −24.8054 −0.833354
\(887\) 25.4331 0.853959 0.426979 0.904261i \(-0.359578\pi\)
0.426979 + 0.904261i \(0.359578\pi\)
\(888\) −22.2765 −0.747550
\(889\) 0 0
\(890\) 62.3588 2.09027
\(891\) −6.13738 −0.205610
\(892\) 14.9696 0.501219
\(893\) −4.27080 −0.142917
\(894\) −15.1667 −0.507251
\(895\) −14.4902 −0.484354
\(896\) 0 0
\(897\) 5.38853 0.179918
\(898\) 42.5146 1.41873
\(899\) 14.3809 0.479631
\(900\) −8.45014 −0.281671
\(901\) 0.942562 0.0314013
\(902\) 33.5813 1.11813
\(903\) 0 0
\(904\) 32.0198 1.06496
\(905\) −76.0778 −2.52891
\(906\) 15.1682 0.503929
\(907\) 38.6361 1.28289 0.641445 0.767169i \(-0.278335\pi\)
0.641445 + 0.767169i \(0.278335\pi\)
\(908\) 11.3883 0.377934
\(909\) −2.65103 −0.0879292
\(910\) 0 0
\(911\) 39.1663 1.29764 0.648818 0.760944i \(-0.275264\pi\)
0.648818 + 0.760944i \(0.275264\pi\)
\(912\) 7.30221 0.241800
\(913\) 92.9360 3.07573
\(914\) 46.1188 1.52547
\(915\) 4.03875 0.133517
\(916\) 9.41640 0.311127
\(917\) 0 0
\(918\) −1.55422 −0.0512970
\(919\) −5.46667 −0.180329 −0.0901643 0.995927i \(-0.528739\pi\)
−0.0901643 + 0.995927i \(0.528739\pi\)
\(920\) −20.1367 −0.663886
\(921\) 8.65273 0.285117
\(922\) −5.54635 −0.182659
\(923\) −14.3647 −0.472818
\(924\) 0 0
\(925\) 81.9468 2.69440
\(926\) 37.7081 1.23917
\(927\) 15.8109 0.519299
\(928\) 28.1525 0.924151
\(929\) −50.5753 −1.65932 −0.829661 0.558268i \(-0.811466\pi\)
−0.829661 + 0.558268i \(0.811466\pi\)
\(930\) 9.16688 0.300594
\(931\) 0 0
\(932\) 12.3786 0.405475
\(933\) −13.3478 −0.436988
\(934\) 23.2291 0.760080
\(935\) 34.4171 1.12556
\(936\) −10.2187 −0.334009
\(937\) 15.3809 0.502472 0.251236 0.967926i \(-0.419163\pi\)
0.251236 + 0.967926i \(0.419163\pi\)
\(938\) 0 0
\(939\) −14.4104 −0.470266
\(940\) −3.43717 −0.112108
\(941\) 1.25770 0.0409999 0.0204999 0.999790i \(-0.493474\pi\)
0.0204999 + 0.999790i \(0.493474\pi\)
\(942\) 7.56315 0.246421
\(943\) −7.92598 −0.258105
\(944\) −21.7114 −0.706645
\(945\) 0 0
\(946\) −26.2408 −0.853162
\(947\) 16.2496 0.528040 0.264020 0.964517i \(-0.414952\pi\)
0.264020 + 0.964517i \(0.414952\pi\)
\(948\) 6.46450 0.209957
\(949\) 32.2777 1.04778
\(950\) −47.4665 −1.54002
\(951\) −26.5176 −0.859893
\(952\) 0 0
\(953\) −1.28220 −0.0415345 −0.0207672 0.999784i \(-0.506611\pi\)
−0.0207672 + 0.999784i \(0.506611\pi\)
\(954\) −0.759860 −0.0246014
\(955\) 64.0310 2.07200
\(956\) 2.28325 0.0738456
\(957\) −43.5275 −1.40704
\(958\) 9.30840 0.300741
\(959\) 0 0
\(960\) 33.6790 1.08699
\(961\) −26.8884 −0.867367
\(962\) 26.9491 0.868874
\(963\) 2.26187 0.0728877
\(964\) 21.5221 0.693179
\(965\) 33.4210 1.07586
\(966\) 0 0
\(967\) 26.1594 0.841229 0.420615 0.907239i \(-0.361814\pi\)
0.420615 + 0.907239i \(0.361814\pi\)
\(968\) −82.0003 −2.63559
\(969\) 5.20529 0.167218
\(970\) 85.7900 2.75455
\(971\) 33.9488 1.08947 0.544735 0.838608i \(-0.316630\pi\)
0.544735 + 0.838608i \(0.316630\pi\)
\(972\) −0.747042 −0.0239614
\(973\) 0 0
\(974\) −14.6007 −0.467837
\(975\) 37.5908 1.20387
\(976\) −1.94784 −0.0623490
\(977\) −1.81397 −0.0580342 −0.0290171 0.999579i \(-0.509238\pi\)
−0.0290171 + 0.999579i \(0.509238\pi\)
\(978\) 20.6001 0.658718
\(979\) −84.6576 −2.70567
\(980\) 0 0
\(981\) 16.6307 0.530978
\(982\) −4.24972 −0.135614
\(983\) 41.1875 1.31368 0.656838 0.754032i \(-0.271893\pi\)
0.656838 + 0.754032i \(0.271893\pi\)
\(984\) 15.0307 0.479161
\(985\) 28.4275 0.905776
\(986\) −11.0228 −0.351039
\(987\) 0 0
\(988\) 9.30696 0.296094
\(989\) 6.19345 0.196940
\(990\) −27.7458 −0.881821
\(991\) 8.20643 0.260686 0.130343 0.991469i \(-0.458392\pi\)
0.130343 + 0.991469i \(0.458392\pi\)
\(992\) 8.04902 0.255557
\(993\) −11.2768 −0.357859
\(994\) 0 0
\(995\) 16.6678 0.528404
\(996\) 11.3122 0.358440
\(997\) 5.35382 0.169557 0.0847785 0.996400i \(-0.472982\pi\)
0.0847785 + 0.996400i \(0.472982\pi\)
\(998\) 26.4523 0.837334
\(999\) 7.24458 0.229208
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8967.2.a.bl.1.14 21
7.3 odd 6 1281.2.j.i.184.8 42
7.5 odd 6 1281.2.j.i.550.8 yes 42
7.6 odd 2 8967.2.a.bk.1.14 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1281.2.j.i.184.8 42 7.3 odd 6
1281.2.j.i.550.8 yes 42 7.5 odd 6
8967.2.a.bk.1.14 21 7.6 odd 2
8967.2.a.bl.1.14 21 1.1 even 1 trivial