Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8967,2,Mod(1,8967)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8967, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8967.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8967 = 3 \cdot 7^{2} \cdot 61 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8967.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(71.6018554925\) |
Analytic rank: | \(0\) |
Dimension: | \(21\) |
Twist minimal: | no (minimal twist has level 1281) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.79851 | 1.00000 | 5.83165 | 2.69028 | −2.79851 | 0 | −10.7229 | 1.00000 | −7.52877 | ||||||||||||||||||
1.2 | −2.74356 | 1.00000 | 5.52709 | −1.80479 | −2.74356 | 0 | −9.67678 | 1.00000 | 4.95155 | ||||||||||||||||||
1.3 | −2.36392 | 1.00000 | 3.58813 | −1.69694 | −2.36392 | 0 | −3.75421 | 1.00000 | 4.01145 | ||||||||||||||||||
1.4 | −2.09101 | 1.00000 | 2.37233 | 3.54651 | −2.09101 | 0 | −0.778540 | 1.00000 | −7.41578 | ||||||||||||||||||
1.5 | −1.83068 | 1.00000 | 1.35137 | 0.591980 | −1.83068 | 0 | 1.18743 | 1.00000 | −1.08372 | ||||||||||||||||||
1.6 | −1.64447 | 1.00000 | 0.704275 | 1.69807 | −1.64447 | 0 | 2.13078 | 1.00000 | −2.79242 | ||||||||||||||||||
1.7 | −1.50469 | 1.00000 | 0.264087 | −2.27929 | −1.50469 | 0 | 2.61201 | 1.00000 | 3.42961 | ||||||||||||||||||
1.8 | −1.38113 | 1.00000 | −0.0924791 | 0.506847 | −1.38113 | 0 | 2.88999 | 1.00000 | −0.700021 | ||||||||||||||||||
1.9 | −0.950148 | 1.00000 | −1.09722 | −2.36436 | −0.950148 | 0 | 2.94282 | 1.00000 | 2.24649 | ||||||||||||||||||
1.10 | −0.647075 | 1.00000 | −1.58129 | 4.33702 | −0.647075 | 0 | 2.31737 | 1.00000 | −2.80637 | ||||||||||||||||||
1.11 | −0.0905074 | 1.00000 | −1.99181 | 0.455648 | −0.0905074 | 0 | 0.361288 | 1.00000 | −0.0412395 | ||||||||||||||||||
1.12 | 0.622647 | 1.00000 | −1.61231 | −2.16920 | 0.622647 | 0 | −2.24919 | 1.00000 | −1.35064 | ||||||||||||||||||
1.13 | 1.06975 | 1.00000 | −0.855631 | −2.20739 | 1.06975 | 0 | −3.05482 | 1.00000 | −2.36136 | ||||||||||||||||||
1.14 | 1.11936 | 1.00000 | −0.747042 | 4.03875 | 1.11936 | 0 | −3.07492 | 1.00000 | 4.52079 | ||||||||||||||||||
1.15 | 1.53890 | 1.00000 | 0.368216 | 2.37632 | 1.53890 | 0 | −2.51115 | 1.00000 | 3.65692 | ||||||||||||||||||
1.16 | 1.70195 | 1.00000 | 0.896650 | −1.43807 | 1.70195 | 0 | −1.87785 | 1.00000 | −2.44754 | ||||||||||||||||||
1.17 | 2.10218 | 1.00000 | 2.41916 | 3.14040 | 2.10218 | 0 | 0.881157 | 1.00000 | 6.60169 | ||||||||||||||||||
1.18 | 2.16204 | 1.00000 | 2.67440 | −2.94715 | 2.16204 | 0 | 1.45808 | 1.00000 | −6.37183 | ||||||||||||||||||
1.19 | 2.43160 | 1.00000 | 3.91267 | 0.370755 | 2.43160 | 0 | 4.65084 | 1.00000 | 0.901528 | ||||||||||||||||||
1.20 | 2.51215 | 1.00000 | 4.31088 | 3.63202 | 2.51215 | 0 | 5.80526 | 1.00000 | 9.12418 | ||||||||||||||||||
See all 21 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \( -1 \) |
\(7\) | \( -1 \) |
\(61\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 8967.2.a.bl | 21 | |
7.b | odd | 2 | 1 | 8967.2.a.bk | 21 | ||
7.d | odd | 6 | 2 | 1281.2.j.i | ✓ | 42 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1281.2.j.i | ✓ | 42 | 7.d | odd | 6 | 2 | |
8967.2.a.bk | 21 | 7.b | odd | 2 | 1 | ||
8967.2.a.bl | 21 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8967))\):
\( T_{2}^{21} - 37 T_{2}^{19} + 587 T_{2}^{17} + 4 T_{2}^{16} - 5234 T_{2}^{15} - 101 T_{2}^{14} + \cdots + 1995 \)
|
\( T_{5}^{21} - 11 T_{5}^{20} - 2 T_{5}^{19} + 391 T_{5}^{18} - 733 T_{5}^{17} - 5882 T_{5}^{16} + \cdots - 68244 \)
|
\( T_{11}^{21} - T_{11}^{20} - 137 T_{11}^{19} + 183 T_{11}^{18} + 7672 T_{11}^{17} - 12264 T_{11}^{16} + \cdots - 2773109415 \)
|