Properties

Label 90.16.c.e.19.3
Level $90$
Weight $16$
Character 90.19
Analytic conductor $128.424$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,16,Mod(19,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.19");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.424154590\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1960198978 x^{14} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{94}\cdot 3^{32}\cdot 5^{18} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.3
Root \(25766.7i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.16.c.e.19.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-128.000i q^{2} -16384.0 q^{4} +(-101852. + 141929. i) q^{5} -859408. i q^{7} +2.09715e6i q^{8} +(1.81669e7 + 1.30370e7i) q^{10} +2.70335e7 q^{11} +3.33134e8i q^{13} -1.10004e8 q^{14} +2.68435e8 q^{16} +1.06804e9i q^{17} -2.29839e9 q^{19} +(1.66874e9 - 2.32536e9i) q^{20} -3.46029e9i q^{22} +1.25080e10i q^{23} +(-9.77005e9 - 2.89114e10i) q^{25} +4.26411e10 q^{26} +1.40805e10i q^{28} +5.43807e10 q^{29} +1.05351e11 q^{31} -3.43597e10i q^{32} +1.36709e11 q^{34} +(1.21975e11 + 8.75322e10i) q^{35} -1.33702e11i q^{37} +2.94193e11i q^{38} +(-2.97647e11 - 2.13598e11i) q^{40} +1.24268e12 q^{41} +4.58396e11i q^{43} -4.42917e11 q^{44} +1.60102e12 q^{46} -2.31085e12i q^{47} +4.00898e12 q^{49} +(-3.70066e12 + 1.25057e12i) q^{50} -5.45806e12i q^{52} -1.66620e12i q^{53} +(-2.75341e12 + 3.83683e12i) q^{55} +1.80231e12 q^{56} -6.96073e12i q^{58} -2.60140e13 q^{59} -1.95306e13 q^{61} -1.34850e13i q^{62} -4.39805e12 q^{64} +(-4.72813e13 - 3.39302e13i) q^{65} +2.32062e13i q^{67} -1.74987e13i q^{68} +(1.12041e13 - 1.56128e13i) q^{70} +8.64331e13 q^{71} +1.28307e14i q^{73} -1.71139e13 q^{74} +3.76567e13 q^{76} -2.32328e13i q^{77} -1.07394e14 q^{79} +(-2.73406e13 + 3.80988e13i) q^{80} -1.59063e14i q^{82} -2.06951e14i q^{83} +(-1.51585e14 - 1.08781e14i) q^{85} +5.86747e13 q^{86} +5.66933e13i q^{88} -3.44568e14 q^{89} +2.86298e14 q^{91} -2.04931e14i q^{92} -2.95788e14 q^{94} +(2.34094e14 - 3.26207e14i) q^{95} +5.81892e14i q^{97} -5.13149e14i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 262144 q^{4} - 49733632 q^{10} + 4294967296 q^{16} - 9028552704 q^{19} + 42419563632 q^{25} - 40724611904 q^{31} - 885646311424 q^{34} + 814835826688 q^{40} - 654599782400 q^{46} - 17251393932048 q^{49}+ \cdots - 909200639590400 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 128.000i 0.707107i
\(3\) 0 0
\(4\) −16384.0 −0.500000
\(5\) −101852. + 141929.i −0.583033 + 0.812449i
\(6\) 0 0
\(7\) 859408.i 0.394425i −0.980361 0.197212i \(-0.936811\pi\)
0.980361 0.197212i \(-0.0631889\pi\)
\(8\) 2.09715e6i 0.353553i
\(9\) 0 0
\(10\) 1.81669e7 + 1.30370e7i 0.574488 + 0.412267i
\(11\) 2.70335e7 0.418270 0.209135 0.977887i \(-0.432935\pi\)
0.209135 + 0.977887i \(0.432935\pi\)
\(12\) 0 0
\(13\) 3.33134e8i 1.47246i 0.676732 + 0.736230i \(0.263396\pi\)
−0.676732 + 0.736230i \(0.736604\pi\)
\(14\) −1.10004e8 −0.278900
\(15\) 0 0
\(16\) 2.68435e8 0.250000
\(17\) 1.06804e9i 0.631276i 0.948880 + 0.315638i \(0.102219\pi\)
−0.948880 + 0.315638i \(0.897781\pi\)
\(18\) 0 0
\(19\) −2.29839e9 −0.589890 −0.294945 0.955514i \(-0.595301\pi\)
−0.294945 + 0.955514i \(0.595301\pi\)
\(20\) 1.66874e9 2.32536e9i 0.291516 0.406224i
\(21\) 0 0
\(22\) 3.46029e9i 0.295762i
\(23\) 1.25080e10i 0.766000i 0.923748 + 0.383000i \(0.125109\pi\)
−0.923748 + 0.383000i \(0.874891\pi\)
\(24\) 0 0
\(25\) −9.77005e9 2.89114e10i −0.320145 0.947369i
\(26\) 4.26411e10 1.04119
\(27\) 0 0
\(28\) 1.40805e10i 0.197212i
\(29\) 5.43807e10 0.585409 0.292705 0.956203i \(-0.405445\pi\)
0.292705 + 0.956203i \(0.405445\pi\)
\(30\) 0 0
\(31\) 1.05351e11 0.687745 0.343873 0.939016i \(-0.388261\pi\)
0.343873 + 0.939016i \(0.388261\pi\)
\(32\) 3.43597e10i 0.176777i
\(33\) 0 0
\(34\) 1.36709e11 0.446380
\(35\) 1.21975e11 + 8.75322e10i 0.320450 + 0.229963i
\(36\) 0 0
\(37\) 1.33702e11i 0.231540i −0.993276 0.115770i \(-0.963066\pi\)
0.993276 0.115770i \(-0.0369336\pi\)
\(38\) 2.94193e11i 0.417115i
\(39\) 0 0
\(40\) −2.97647e11 2.13598e11i −0.287244 0.206133i
\(41\) 1.24268e12 0.996505 0.498253 0.867032i \(-0.333975\pi\)
0.498253 + 0.867032i \(0.333975\pi\)
\(42\) 0 0
\(43\) 4.58396e11i 0.257174i 0.991698 + 0.128587i \(0.0410442\pi\)
−0.991698 + 0.128587i \(0.958956\pi\)
\(44\) −4.42917e11 −0.209135
\(45\) 0 0
\(46\) 1.60102e12 0.541643
\(47\) 2.31085e12i 0.665330i −0.943045 0.332665i \(-0.892052\pi\)
0.943045 0.332665i \(-0.107948\pi\)
\(48\) 0 0
\(49\) 4.00898e12 0.844429
\(50\) −3.70066e12 + 1.25057e12i −0.669891 + 0.226377i
\(51\) 0 0
\(52\) 5.45806e12i 0.736230i
\(53\) 1.66620e12i 0.194832i −0.995244 0.0974158i \(-0.968942\pi\)
0.995244 0.0974158i \(-0.0310577\pi\)
\(54\) 0 0
\(55\) −2.75341e12 + 3.83683e12i −0.243865 + 0.339823i
\(56\) 1.80231e12 0.139450
\(57\) 0 0
\(58\) 6.96073e12i 0.413947i
\(59\) −2.60140e13 −1.36087 −0.680436 0.732807i \(-0.738210\pi\)
−0.680436 + 0.732807i \(0.738210\pi\)
\(60\) 0 0
\(61\) −1.95306e13 −0.795688 −0.397844 0.917453i \(-0.630241\pi\)
−0.397844 + 0.917453i \(0.630241\pi\)
\(62\) 1.34850e13i 0.486309i
\(63\) 0 0
\(64\) −4.39805e12 −0.125000
\(65\) −4.72813e13 3.39302e13i −1.19630 0.858492i
\(66\) 0 0
\(67\) 2.32062e13i 0.467781i 0.972263 + 0.233891i \(0.0751458\pi\)
−0.972263 + 0.233891i \(0.924854\pi\)
\(68\) 1.74987e13i 0.315638i
\(69\) 0 0
\(70\) 1.12041e13 1.56128e13i 0.162608 0.226592i
\(71\) 8.64331e13 1.12783 0.563914 0.825834i \(-0.309295\pi\)
0.563914 + 0.825834i \(0.309295\pi\)
\(72\) 0 0
\(73\) 1.28307e14i 1.35934i 0.733517 + 0.679671i \(0.237877\pi\)
−0.733517 + 0.679671i \(0.762123\pi\)
\(74\) −1.71139e13 −0.163724
\(75\) 0 0
\(76\) 3.76567e13 0.294945
\(77\) 2.32328e13i 0.164976i
\(78\) 0 0
\(79\) −1.07394e14 −0.629182 −0.314591 0.949227i \(-0.601867\pi\)
−0.314591 + 0.949227i \(0.601867\pi\)
\(80\) −2.73406e13 + 3.80988e13i −0.145758 + 0.203112i
\(81\) 0 0
\(82\) 1.59063e14i 0.704636i
\(83\) 2.06951e14i 0.837110i −0.908192 0.418555i \(-0.862537\pi\)
0.908192 0.418555i \(-0.137463\pi\)
\(84\) 0 0
\(85\) −1.51585e14 1.08781e14i −0.512880 0.368055i
\(86\) 5.86747e13 0.181850
\(87\) 0 0
\(88\) 5.66933e13i 0.147881i
\(89\) −3.44568e14 −0.825753 −0.412876 0.910787i \(-0.635476\pi\)
−0.412876 + 0.910787i \(0.635476\pi\)
\(90\) 0 0
\(91\) 2.86298e14 0.580774
\(92\) 2.04931e14i 0.383000i
\(93\) 0 0
\(94\) −2.95788e14 −0.470459
\(95\) 2.34094e14 3.26207e14i 0.343925 0.479255i
\(96\) 0 0
\(97\) 5.81892e14i 0.731230i 0.930766 + 0.365615i \(0.119141\pi\)
−0.930766 + 0.365615i \(0.880859\pi\)
\(98\) 5.13149e14i 0.597101i
\(99\) 0 0
\(100\) 1.60073e14 + 4.73684e14i 0.160073 + 0.473684i
\(101\) −1.85306e15 −1.71980 −0.859901 0.510460i \(-0.829475\pi\)
−0.859901 + 0.510460i \(0.829475\pi\)
\(102\) 0 0
\(103\) 8.03061e14i 0.643383i −0.946845 0.321691i \(-0.895749\pi\)
0.946845 0.321691i \(-0.104251\pi\)
\(104\) −6.98632e14 −0.520593
\(105\) 0 0
\(106\) −2.13274e14 −0.137767
\(107\) 1.84838e15i 1.11279i −0.830917 0.556396i \(-0.812184\pi\)
0.830917 0.556396i \(-0.187816\pi\)
\(108\) 0 0
\(109\) 2.21824e14 0.116228 0.0581139 0.998310i \(-0.481491\pi\)
0.0581139 + 0.998310i \(0.481491\pi\)
\(110\) 4.91115e14 + 3.52436e14i 0.240291 + 0.172439i
\(111\) 0 0
\(112\) 2.30696e14i 0.0986062i
\(113\) 1.20483e15i 0.481767i 0.970554 + 0.240884i \(0.0774372\pi\)
−0.970554 + 0.240884i \(0.922563\pi\)
\(114\) 0 0
\(115\) −1.77524e15 1.27396e15i −0.622335 0.446603i
\(116\) −8.90973e14 −0.292705
\(117\) 0 0
\(118\) 3.32980e15i 0.962282i
\(119\) 9.17880e14 0.248991
\(120\) 0 0
\(121\) −3.44644e15 −0.825050
\(122\) 2.49992e15i 0.562636i
\(123\) 0 0
\(124\) −1.72608e15 −0.343873
\(125\) 5.09846e15 + 1.55802e15i 0.956343 + 0.292246i
\(126\) 0 0
\(127\) 7.86228e15i 1.30924i 0.755956 + 0.654622i \(0.227172\pi\)
−0.755956 + 0.654622i \(0.772828\pi\)
\(128\) 5.62950e14i 0.0883883i
\(129\) 0 0
\(130\) −4.34307e15 + 6.05200e15i −0.607046 + 0.845910i
\(131\) 6.42621e15 0.848047 0.424024 0.905651i \(-0.360617\pi\)
0.424024 + 0.905651i \(0.360617\pi\)
\(132\) 0 0
\(133\) 1.97525e15i 0.232667i
\(134\) 2.97039e15 0.330771
\(135\) 0 0
\(136\) −2.23984e15 −0.223190
\(137\) 6.62688e15i 0.625036i 0.949912 + 0.312518i \(0.101172\pi\)
−0.949912 + 0.312518i \(0.898828\pi\)
\(138\) 0 0
\(139\) −2.07903e16 −1.75893 −0.879467 0.475960i \(-0.842101\pi\)
−0.879467 + 0.475960i \(0.842101\pi\)
\(140\) −1.99844e15 1.43413e15i −0.160225 0.114981i
\(141\) 0 0
\(142\) 1.10634e16i 0.797494i
\(143\) 9.00576e15i 0.615886i
\(144\) 0 0
\(145\) −5.53876e15 + 7.71819e15i −0.341313 + 0.475615i
\(146\) 1.64233e16 0.961200
\(147\) 0 0
\(148\) 2.19058e15i 0.115770i
\(149\) −1.27967e16 −0.642984 −0.321492 0.946912i \(-0.604184\pi\)
−0.321492 + 0.946912i \(0.604184\pi\)
\(150\) 0 0
\(151\) −1.91509e16 −0.870686 −0.435343 0.900265i \(-0.643373\pi\)
−0.435343 + 0.900265i \(0.643373\pi\)
\(152\) 4.82006e15i 0.208558i
\(153\) 0 0
\(154\) −2.97380e15 −0.116656
\(155\) −1.07302e16 + 1.49524e16i −0.400978 + 0.558757i
\(156\) 0 0
\(157\) 5.45855e16i 1.85281i 0.376534 + 0.926403i \(0.377116\pi\)
−0.376534 + 0.926403i \(0.622884\pi\)
\(158\) 1.37464e16i 0.444899i
\(159\) 0 0
\(160\) 4.87664e15 + 3.49960e15i 0.143622 + 0.103067i
\(161\) 1.07495e16 0.302129
\(162\) 0 0
\(163\) 3.55499e16i 0.910817i 0.890282 + 0.455409i \(0.150507\pi\)
−0.890282 + 0.455409i \(0.849493\pi\)
\(164\) −2.03600e16 −0.498253
\(165\) 0 0
\(166\) −2.64898e16 −0.591926
\(167\) 2.57661e16i 0.550396i −0.961388 0.275198i \(-0.911257\pi\)
0.961388 0.275198i \(-0.0887435\pi\)
\(168\) 0 0
\(169\) −5.97921e16 −1.16814
\(170\) −1.39240e16 + 1.94029e16i −0.260254 + 0.362661i
\(171\) 0 0
\(172\) 7.51036e15i 0.128587i
\(173\) 3.02340e16i 0.495622i −0.968808 0.247811i \(-0.920289\pi\)
0.968808 0.247811i \(-0.0797112\pi\)
\(174\) 0 0
\(175\) −2.48467e16 + 8.39647e15i −0.373666 + 0.126273i
\(176\) 7.25675e15 0.104568
\(177\) 0 0
\(178\) 4.41047e16i 0.583895i
\(179\) 5.56050e16 0.705855 0.352928 0.935651i \(-0.385186\pi\)
0.352928 + 0.935651i \(0.385186\pi\)
\(180\) 0 0
\(181\) −1.60583e17 −1.87547 −0.937734 0.347355i \(-0.887080\pi\)
−0.937734 + 0.347355i \(0.887080\pi\)
\(182\) 3.66461e16i 0.410670i
\(183\) 0 0
\(184\) −2.62311e16 −0.270822
\(185\) 1.89762e16 + 1.36178e16i 0.188114 + 0.134996i
\(186\) 0 0
\(187\) 2.88728e16i 0.264044i
\(188\) 3.78609e16i 0.332665i
\(189\) 0 0
\(190\) −4.17545e16 2.99641e16i −0.338884 0.243192i
\(191\) −1.51816e17 −1.18459 −0.592294 0.805722i \(-0.701777\pi\)
−0.592294 + 0.805722i \(0.701777\pi\)
\(192\) 0 0
\(193\) 1.44443e17i 1.04236i 0.853448 + 0.521179i \(0.174507\pi\)
−0.853448 + 0.521179i \(0.825493\pi\)
\(194\) 7.44822e16 0.517058
\(195\) 0 0
\(196\) −6.56831e16 −0.422215
\(197\) 1.69239e17i 1.04714i −0.851984 0.523568i \(-0.824601\pi\)
0.851984 0.523568i \(-0.175399\pi\)
\(198\) 0 0
\(199\) −1.12029e17 −0.642587 −0.321294 0.946980i \(-0.604118\pi\)
−0.321294 + 0.946980i \(0.604118\pi\)
\(200\) 6.06316e16 2.04893e16i 0.334945 0.113188i
\(201\) 0 0
\(202\) 2.37191e17i 1.21608i
\(203\) 4.67352e16i 0.230900i
\(204\) 0 0
\(205\) −1.26569e17 + 1.76372e17i −0.580995 + 0.809609i
\(206\) −1.02792e17 −0.454940
\(207\) 0 0
\(208\) 8.94249e16i 0.368115i
\(209\) −6.21334e16 −0.246733
\(210\) 0 0
\(211\) −6.14009e16 −0.227016 −0.113508 0.993537i \(-0.536209\pi\)
−0.113508 + 0.993537i \(0.536209\pi\)
\(212\) 2.72991e16i 0.0974158i
\(213\) 0 0
\(214\) −2.36593e17 −0.786862
\(215\) −6.50597e16 4.66884e16i −0.208941 0.149941i
\(216\) 0 0
\(217\) 9.05399e16i 0.271264i
\(218\) 2.83935e16i 0.0821854i
\(219\) 0 0
\(220\) 4.51118e16 6.28627e16i 0.121933 0.169911i
\(221\) −3.55799e17 −0.929529
\(222\) 0 0
\(223\) 3.63890e17i 0.888553i −0.895890 0.444277i \(-0.853461\pi\)
0.895890 0.444277i \(-0.146539\pi\)
\(224\) −2.95290e16 −0.0697251
\(225\) 0 0
\(226\) 1.54218e17 0.340661
\(227\) 6.60092e17i 1.41062i −0.708899 0.705310i \(-0.750808\pi\)
0.708899 0.705310i \(-0.249192\pi\)
\(228\) 0 0
\(229\) −2.90949e16 −0.0582171 −0.0291086 0.999576i \(-0.509267\pi\)
−0.0291086 + 0.999576i \(0.509267\pi\)
\(230\) −1.63067e17 + 2.27231e17i −0.315796 + 0.440057i
\(231\) 0 0
\(232\) 1.14045e17i 0.206973i
\(233\) 1.46706e17i 0.257798i 0.991658 + 0.128899i \(0.0411443\pi\)
−0.991658 + 0.128899i \(0.958856\pi\)
\(234\) 0 0
\(235\) 3.27976e17 + 2.35363e17i 0.540546 + 0.387909i
\(236\) 4.26214e17 0.680436
\(237\) 0 0
\(238\) 1.17489e17i 0.176063i
\(239\) −2.90604e17 −0.422005 −0.211002 0.977486i \(-0.567673\pi\)
−0.211002 + 0.977486i \(0.567673\pi\)
\(240\) 0 0
\(241\) 3.82729e17 0.522112 0.261056 0.965324i \(-0.415929\pi\)
0.261056 + 0.965324i \(0.415929\pi\)
\(242\) 4.41144e17i 0.583399i
\(243\) 0 0
\(244\) 3.19990e17 0.397844
\(245\) −4.08321e17 + 5.68990e17i −0.492330 + 0.686055i
\(246\) 0 0
\(247\) 7.65669e17i 0.868588i
\(248\) 2.20938e17i 0.243155i
\(249\) 0 0
\(250\) 1.99427e17 6.52603e17i 0.206649 0.676237i
\(251\) 1.84707e18 1.85751 0.928753 0.370700i \(-0.120882\pi\)
0.928753 + 0.370700i \(0.120882\pi\)
\(252\) 0 0
\(253\) 3.38134e17i 0.320395i
\(254\) 1.00637e18 0.925775
\(255\) 0 0
\(256\) 7.20576e16 0.0625000
\(257\) 1.17826e16i 0.00992529i −0.999988 0.00496264i \(-0.998420\pi\)
0.999988 0.00496264i \(-0.00157967\pi\)
\(258\) 0 0
\(259\) −1.14905e17 −0.0913252
\(260\) 7.74657e17 + 5.55913e17i 0.598149 + 0.429246i
\(261\) 0 0
\(262\) 8.22555e17i 0.599660i
\(263\) 6.41407e17i 0.454428i 0.973845 + 0.227214i \(0.0729617\pi\)
−0.973845 + 0.227214i \(0.927038\pi\)
\(264\) 0 0
\(265\) 2.36483e17 + 1.69706e17i 0.158291 + 0.113593i
\(266\) 2.52832e17 0.164521
\(267\) 0 0
\(268\) 3.80210e17i 0.233891i
\(269\) 2.41211e16 0.0144296 0.00721482 0.999974i \(-0.497703\pi\)
0.00721482 + 0.999974i \(0.497703\pi\)
\(270\) 0 0
\(271\) 2.86280e18 1.62002 0.810011 0.586415i \(-0.199461\pi\)
0.810011 + 0.586415i \(0.199461\pi\)
\(272\) 2.86699e17i 0.157819i
\(273\) 0 0
\(274\) 8.48241e17 0.441967
\(275\) −2.64119e17 7.81576e17i −0.133907 0.396256i
\(276\) 0 0
\(277\) 1.70365e18i 0.818053i 0.912523 + 0.409026i \(0.134132\pi\)
−0.912523 + 0.409026i \(0.865868\pi\)
\(278\) 2.66116e18i 1.24375i
\(279\) 0 0
\(280\) −1.83568e17 + 2.55800e17i −0.0813041 + 0.113296i
\(281\) −1.55561e18 −0.670815 −0.335408 0.942073i \(-0.608874\pi\)
−0.335408 + 0.942073i \(0.608874\pi\)
\(282\) 0 0
\(283\) 3.94412e18i 1.61270i −0.591442 0.806348i \(-0.701441\pi\)
0.591442 0.806348i \(-0.298559\pi\)
\(284\) −1.41612e18 −0.563914
\(285\) 0 0
\(286\) 1.15274e18 0.435497
\(287\) 1.06797e18i 0.393047i
\(288\) 0 0
\(289\) 1.72172e18 0.601490
\(290\) 9.87928e17 + 7.08961e17i 0.336310 + 0.241345i
\(291\) 0 0
\(292\) 2.10218e18i 0.679671i
\(293\) 5.07795e18i 1.60022i −0.599850 0.800112i \(-0.704773\pi\)
0.599850 0.800112i \(-0.295227\pi\)
\(294\) 0 0
\(295\) 2.64957e18 3.69214e18i 0.793434 1.10564i
\(296\) 2.80394e17 0.0818618
\(297\) 0 0
\(298\) 1.63797e18i 0.454658i
\(299\) −4.16683e18 −1.12790
\(300\) 0 0
\(301\) 3.93950e17 0.101436
\(302\) 2.45131e18i 0.615668i
\(303\) 0 0
\(304\) −6.16968e17 −0.147472
\(305\) 1.98923e18 2.77196e18i 0.463912 0.646455i
\(306\) 0 0
\(307\) 4.64657e18i 1.03180i −0.856649 0.515899i \(-0.827458\pi\)
0.856649 0.515899i \(-0.172542\pi\)
\(308\) 3.80646e17i 0.0824881i
\(309\) 0 0
\(310\) 1.91391e18 + 1.37347e18i 0.395101 + 0.283534i
\(311\) −8.91857e18 −1.79718 −0.898591 0.438787i \(-0.855408\pi\)
−0.898591 + 0.438787i \(0.855408\pi\)
\(312\) 0 0
\(313\) 8.86194e16i 0.0170195i −0.999964 0.00850974i \(-0.997291\pi\)
0.999964 0.00850974i \(-0.00270877\pi\)
\(314\) 6.98694e18 1.31013
\(315\) 0 0
\(316\) 1.75954e18 0.314591
\(317\) 2.49965e18i 0.436450i −0.975898 0.218225i \(-0.929973\pi\)
0.975898 0.218225i \(-0.0700266\pi\)
\(318\) 0 0
\(319\) 1.47010e18 0.244859
\(320\) 4.47948e17 6.24210e17i 0.0728791 0.101556i
\(321\) 0 0
\(322\) 1.37593e18i 0.213638i
\(323\) 2.45476e18i 0.372383i
\(324\) 0 0
\(325\) 9.63135e18 3.25473e18i 1.39496 0.471401i
\(326\) 4.55039e18 0.644045
\(327\) 0 0
\(328\) 2.60608e18i 0.352318i
\(329\) −1.98596e18 −0.262423
\(330\) 0 0
\(331\) 7.07818e18 0.893740 0.446870 0.894599i \(-0.352539\pi\)
0.446870 + 0.894599i \(0.352539\pi\)
\(332\) 3.39069e18i 0.418555i
\(333\) 0 0
\(334\) −3.29806e18 −0.389189
\(335\) −3.29363e18 2.36359e18i −0.380048 0.272732i
\(336\) 0 0
\(337\) 1.78640e18i 0.197131i 0.995131 + 0.0985655i \(0.0314254\pi\)
−0.995131 + 0.0985655i \(0.968575\pi\)
\(338\) 7.65339e18i 0.825997i
\(339\) 0 0
\(340\) 2.48357e18 + 1.78227e18i 0.256440 + 0.184027i
\(341\) 2.84801e18 0.287663
\(342\) 0 0
\(343\) 7.52544e18i 0.727489i
\(344\) −9.61327e17 −0.0909249
\(345\) 0 0
\(346\) −3.86996e18 −0.350457
\(347\) 1.31311e19i 1.16367i −0.813306 0.581837i \(-0.802334\pi\)
0.813306 0.581837i \(-0.197666\pi\)
\(348\) 0 0
\(349\) −1.61974e19 −1.37485 −0.687423 0.726258i \(-0.741258\pi\)
−0.687423 + 0.726258i \(0.741258\pi\)
\(350\) 1.07475e18 + 3.18038e18i 0.0892886 + 0.264222i
\(351\) 0 0
\(352\) 9.28863e17i 0.0739404i
\(353\) 1.71943e19i 1.33990i −0.742404 0.669952i \(-0.766315\pi\)
0.742404 0.669952i \(-0.233685\pi\)
\(354\) 0 0
\(355\) −8.80336e18 + 1.22674e19i −0.657560 + 0.916301i
\(356\) 5.64540e18 0.412876
\(357\) 0 0
\(358\) 7.11743e18i 0.499115i
\(359\) −4.25951e18 −0.292517 −0.146259 0.989246i \(-0.546723\pi\)
−0.146259 + 0.989246i \(0.546723\pi\)
\(360\) 0 0
\(361\) −9.89855e18 −0.652030
\(362\) 2.05546e19i 1.32616i
\(363\) 0 0
\(364\) −4.69070e18 −0.290387
\(365\) −1.82105e19 1.30683e19i −1.10440 0.792541i
\(366\) 0 0
\(367\) 1.68237e19i 0.979326i 0.871912 + 0.489663i \(0.162880\pi\)
−0.871912 + 0.489663i \(0.837120\pi\)
\(368\) 3.35759e18i 0.191500i
\(369\) 0 0
\(370\) 1.74308e18 2.42896e18i 0.0954563 0.133017i
\(371\) −1.43195e18 −0.0768464
\(372\) 0 0
\(373\) 2.75947e19i 1.42236i 0.703011 + 0.711179i \(0.251838\pi\)
−0.703011 + 0.711179i \(0.748162\pi\)
\(374\) 3.69571e18 0.186707
\(375\) 0 0
\(376\) 4.84619e18 0.235230
\(377\) 1.81160e19i 0.861991i
\(378\) 0 0
\(379\) −3.23762e19 −1.48058 −0.740290 0.672287i \(-0.765312\pi\)
−0.740290 + 0.672287i \(0.765312\pi\)
\(380\) −3.83540e18 + 5.34458e18i −0.171963 + 0.239628i
\(381\) 0 0
\(382\) 1.94324e19i 0.837630i
\(383\) 7.04626e18i 0.297830i 0.988850 + 0.148915i \(0.0475780\pi\)
−0.988850 + 0.148915i \(0.952422\pi\)
\(384\) 0 0
\(385\) 3.29741e18 + 2.36630e18i 0.134035 + 0.0961865i
\(386\) 1.84887e19 0.737058
\(387\) 0 0
\(388\) 9.53372e18i 0.365615i
\(389\) −5.85397e18 −0.220206 −0.110103 0.993920i \(-0.535118\pi\)
−0.110103 + 0.993920i \(0.535118\pi\)
\(390\) 0 0
\(391\) −1.33590e19 −0.483557
\(392\) 8.40744e18i 0.298551i
\(393\) 0 0
\(394\) −2.16625e19 −0.740437
\(395\) 1.09382e19 1.52423e19i 0.366834 0.511178i
\(396\) 0 0
\(397\) 1.70576e19i 0.550795i −0.961330 0.275398i \(-0.911191\pi\)
0.961330 0.275398i \(-0.0888095\pi\)
\(398\) 1.43397e19i 0.454378i
\(399\) 0 0
\(400\) −2.62263e18 7.76084e18i −0.0800363 0.236842i
\(401\) −2.11603e19 −0.633780 −0.316890 0.948462i \(-0.602639\pi\)
−0.316890 + 0.948462i \(0.602639\pi\)
\(402\) 0 0
\(403\) 3.50961e19i 1.01268i
\(404\) 3.03605e19 0.859901
\(405\) 0 0
\(406\) −5.98211e18 −0.163271
\(407\) 3.61444e18i 0.0968463i
\(408\) 0 0
\(409\) −6.47265e19 −1.67170 −0.835849 0.548960i \(-0.815024\pi\)
−0.835849 + 0.548960i \(0.815024\pi\)
\(410\) 2.25756e19 + 1.62008e19i 0.572480 + 0.410826i
\(411\) 0 0
\(412\) 1.31574e19i 0.321691i
\(413\) 2.23567e19i 0.536762i
\(414\) 0 0
\(415\) 2.93724e19 + 2.10783e19i 0.680108 + 0.488062i
\(416\) 1.14464e19 0.260296
\(417\) 0 0
\(418\) 7.95307e18i 0.174467i
\(419\) 4.27154e19 0.920407 0.460203 0.887814i \(-0.347777\pi\)
0.460203 + 0.887814i \(0.347777\pi\)
\(420\) 0 0
\(421\) 1.54679e19 0.321601 0.160800 0.986987i \(-0.448592\pi\)
0.160800 + 0.986987i \(0.448592\pi\)
\(422\) 7.85931e18i 0.160524i
\(423\) 0 0
\(424\) 3.49428e18 0.0688833
\(425\) 3.08784e19 1.04348e19i 0.598051 0.202100i
\(426\) 0 0
\(427\) 1.67848e19i 0.313839i
\(428\) 3.02839e19i 0.556396i
\(429\) 0 0
\(430\) −5.97612e18 + 8.32764e18i −0.106024 + 0.147744i
\(431\) −2.89773e19 −0.505217 −0.252609 0.967569i \(-0.581289\pi\)
−0.252609 + 0.967569i \(0.581289\pi\)
\(432\) 0 0
\(433\) 1.87806e19i 0.316264i 0.987418 + 0.158132i \(0.0505472\pi\)
−0.987418 + 0.158132i \(0.949453\pi\)
\(434\) −1.15891e19 −0.191812
\(435\) 0 0
\(436\) −3.63436e18 −0.0581139
\(437\) 2.87482e19i 0.451855i
\(438\) 0 0
\(439\) −1.15218e20 −1.74999 −0.874994 0.484135i \(-0.839135\pi\)
−0.874994 + 0.484135i \(0.839135\pi\)
\(440\) −8.04642e18 5.77431e18i −0.120146 0.0862194i
\(441\) 0 0
\(442\) 4.55423e19i 0.657276i
\(443\) 5.72248e19i 0.812000i −0.913873 0.406000i \(-0.866923\pi\)
0.913873 0.406000i \(-0.133077\pi\)
\(444\) 0 0
\(445\) 3.50948e19 4.89042e19i 0.481441 0.670882i
\(446\) −4.65779e19 −0.628302
\(447\) 0 0
\(448\) 3.77972e18i 0.0493031i
\(449\) −7.48033e19 −0.959562 −0.479781 0.877388i \(-0.659284\pi\)
−0.479781 + 0.877388i \(0.659284\pi\)
\(450\) 0 0
\(451\) 3.35939e19 0.416808
\(452\) 1.97399e19i 0.240884i
\(453\) 0 0
\(454\) −8.44917e19 −0.997460
\(455\) −2.91599e19 + 4.06339e19i −0.338611 + 0.471849i
\(456\) 0 0
\(457\) 7.11712e19i 0.799711i −0.916578 0.399855i \(-0.869060\pi\)
0.916578 0.399855i \(-0.130940\pi\)
\(458\) 3.72415e18i 0.0411657i
\(459\) 0 0
\(460\) 2.90856e19 + 2.08725e19i 0.311168 + 0.223301i
\(461\) 7.11766e18 0.0749170 0.0374585 0.999298i \(-0.488074\pi\)
0.0374585 + 0.999298i \(0.488074\pi\)
\(462\) 0 0
\(463\) 7.40604e19i 0.754621i −0.926087 0.377310i \(-0.876849\pi\)
0.926087 0.377310i \(-0.123151\pi\)
\(464\) 1.45977e19 0.146352
\(465\) 0 0
\(466\) 1.87784e19 0.182291
\(467\) 1.02562e20i 0.979740i −0.871795 0.489870i \(-0.837044\pi\)
0.871795 0.489870i \(-0.162956\pi\)
\(468\) 0 0
\(469\) 1.99436e19 0.184505
\(470\) 3.01265e19 4.19809e19i 0.274293 0.382224i
\(471\) 0 0
\(472\) 5.45554e19i 0.481141i
\(473\) 1.23920e19i 0.107568i
\(474\) 0 0
\(475\) 2.24554e19 + 6.64495e19i 0.188850 + 0.558843i
\(476\) −1.50386e19 −0.124496
\(477\) 0 0
\(478\) 3.71973e19i 0.298402i
\(479\) −2.01268e20 −1.58949 −0.794745 0.606944i \(-0.792395\pi\)
−0.794745 + 0.606944i \(0.792395\pi\)
\(480\) 0 0
\(481\) 4.45408e19 0.340933
\(482\) 4.89893e19i 0.369189i
\(483\) 0 0
\(484\) 5.64665e19 0.412525
\(485\) −8.25873e19 5.92667e19i −0.594087 0.426331i
\(486\) 0 0
\(487\) 1.36673e20i 0.953272i 0.879101 + 0.476636i \(0.158144\pi\)
−0.879101 + 0.476636i \(0.841856\pi\)
\(488\) 4.09587e19i 0.281318i
\(489\) 0 0
\(490\) 7.28307e19 + 5.22651e19i 0.485114 + 0.348130i
\(491\) 1.82306e20 1.19588 0.597941 0.801540i \(-0.295986\pi\)
0.597941 + 0.801540i \(0.295986\pi\)
\(492\) 0 0
\(493\) 5.80806e19i 0.369555i
\(494\) −9.80057e19 −0.614185
\(495\) 0 0
\(496\) 2.82800e19 0.171936
\(497\) 7.42813e19i 0.444843i
\(498\) 0 0
\(499\) 6.31125e19 0.366742 0.183371 0.983044i \(-0.441299\pi\)
0.183371 + 0.983044i \(0.441299\pi\)
\(500\) −8.35331e19 2.55266e19i −0.478172 0.146123i
\(501\) 0 0
\(502\) 2.36425e20i 1.31345i
\(503\) 2.02483e20i 1.10823i 0.832441 + 0.554114i \(0.186943\pi\)
−0.832441 + 0.554114i \(0.813057\pi\)
\(504\) 0 0
\(505\) 1.88737e20 2.63002e20i 1.00270 1.39725i
\(506\) 4.32812e19 0.226553
\(507\) 0 0
\(508\) 1.28816e20i 0.654622i
\(509\) 3.75426e20 1.87993 0.939963 0.341278i \(-0.110860\pi\)
0.939963 + 0.341278i \(0.110860\pi\)
\(510\) 0 0
\(511\) 1.10268e20 0.536158
\(512\) 9.22337e18i 0.0441942i
\(513\) 0 0
\(514\) −1.50817e18 −0.00701824
\(515\) 1.13978e20 + 8.17931e19i 0.522715 + 0.375113i
\(516\) 0 0
\(517\) 6.24702e19i 0.278288i
\(518\) 1.47078e19i 0.0645767i
\(519\) 0 0
\(520\) 7.11568e19 9.91560e19i 0.303523 0.422955i
\(521\) 5.21506e19 0.219268 0.109634 0.993972i \(-0.465032\pi\)
0.109634 + 0.993972i \(0.465032\pi\)
\(522\) 0 0
\(523\) 4.64603e20i 1.89810i −0.315122 0.949051i \(-0.602045\pi\)
0.315122 0.949051i \(-0.397955\pi\)
\(524\) −1.05287e20 −0.424024
\(525\) 0 0
\(526\) 8.21000e19 0.321329
\(527\) 1.12519e20i 0.434157i
\(528\) 0 0
\(529\) 1.10186e20 0.413245
\(530\) 2.17223e19 3.02698e19i 0.0803225 0.111928i
\(531\) 0 0
\(532\) 3.23625e19i 0.116334i
\(533\) 4.13978e20i 1.46731i
\(534\) 0 0
\(535\) 2.62339e20 + 1.88261e20i 0.904086 + 0.648794i
\(536\) −4.86669e19 −0.165386
\(537\) 0 0
\(538\) 3.08750e18i 0.0102033i
\(539\) 1.08377e20 0.353199
\(540\) 0 0
\(541\) 2.98521e20 0.946227 0.473113 0.881002i \(-0.343130\pi\)
0.473113 + 0.881002i \(0.343130\pi\)
\(542\) 3.66438e20i 1.14553i
\(543\) 0 0
\(544\) 3.66975e19 0.111595
\(545\) −2.25931e19 + 3.14832e19i −0.0677646 + 0.0944291i
\(546\) 0 0
\(547\) 5.47189e18i 0.0159673i −0.999968 0.00798367i \(-0.997459\pi\)
0.999968 0.00798367i \(-0.00254131\pi\)
\(548\) 1.08575e20i 0.312518i
\(549\) 0 0
\(550\) −1.00042e20 + 3.38072e19i −0.280195 + 0.0946867i
\(551\) −1.24988e20 −0.345327
\(552\) 0 0
\(553\) 9.22951e19i 0.248165i
\(554\) 2.18067e20 0.578451
\(555\) 0 0
\(556\) 3.40628e20 0.879467
\(557\) 2.03377e20i 0.518068i 0.965868 + 0.259034i \(0.0834042\pi\)
−0.965868 + 0.259034i \(0.916596\pi\)
\(558\) 0 0
\(559\) −1.52707e20 −0.378679
\(560\) 3.27424e19 + 2.34967e19i 0.0801125 + 0.0574907i
\(561\) 0 0
\(562\) 1.99118e20i 0.474338i
\(563\) 5.03111e20i 1.18264i 0.806438 + 0.591318i \(0.201392\pi\)
−0.806438 + 0.591318i \(0.798608\pi\)
\(564\) 0 0
\(565\) −1.71000e20 1.22714e20i −0.391411 0.280886i
\(566\) −5.04848e20 −1.14035
\(567\) 0 0
\(568\) 1.81263e20i 0.398747i
\(569\) 1.59793e19 0.0346909 0.0173455 0.999850i \(-0.494478\pi\)
0.0173455 + 0.999850i \(0.494478\pi\)
\(570\) 0 0
\(571\) 1.81893e20 0.384633 0.192316 0.981333i \(-0.438400\pi\)
0.192316 + 0.981333i \(0.438400\pi\)
\(572\) 1.47550e20i 0.307943i
\(573\) 0 0
\(574\) −1.36700e20 −0.277926
\(575\) 3.61623e20 1.22204e20i 0.725684 0.245231i
\(576\) 0 0
\(577\) 3.75638e20i 0.734431i −0.930136 0.367215i \(-0.880311\pi\)
0.930136 0.367215i \(-0.119689\pi\)
\(578\) 2.20380e20i 0.425318i
\(579\) 0 0
\(580\) 9.07471e19 1.26455e20i 0.170656 0.237807i
\(581\) −1.77856e20 −0.330177
\(582\) 0 0
\(583\) 4.50433e19i 0.0814922i
\(584\) −2.69079e20 −0.480600
\(585\) 0 0
\(586\) −6.49977e20 −1.13153
\(587\) 1.37943e20i 0.237090i 0.992949 + 0.118545i \(0.0378231\pi\)
−0.992949 + 0.118545i \(0.962177\pi\)
\(588\) 0 0
\(589\) −2.42138e20 −0.405694
\(590\) −4.72594e20 3.39145e20i −0.781805 0.561042i
\(591\) 0 0
\(592\) 3.58905e19i 0.0578850i
\(593\) 7.57480e20i 1.20632i 0.797622 + 0.603158i \(0.206091\pi\)
−0.797622 + 0.603158i \(0.793909\pi\)
\(594\) 0 0
\(595\) −9.34876e19 + 1.30274e20i −0.145170 + 0.202292i
\(596\) 2.09661e20 0.321492
\(597\) 0 0
\(598\) 5.33354e20i 0.797548i
\(599\) 8.21801e20 1.21357 0.606786 0.794865i \(-0.292458\pi\)
0.606786 + 0.794865i \(0.292458\pi\)
\(600\) 0 0
\(601\) −3.23051e20 −0.465279 −0.232639 0.972563i \(-0.574736\pi\)
−0.232639 + 0.972563i \(0.574736\pi\)
\(602\) 5.04255e19i 0.0717261i
\(603\) 0 0
\(604\) 3.13768e20 0.435343
\(605\) 3.51026e20 4.89149e20i 0.481031 0.670311i
\(606\) 0 0
\(607\) 5.29352e20i 0.707667i −0.935308 0.353834i \(-0.884878\pi\)
0.935308 0.353834i \(-0.115122\pi\)
\(608\) 7.89719e19i 0.104279i
\(609\) 0 0
\(610\) −3.54811e20 2.54621e20i −0.457113 0.328035i
\(611\) 7.69820e20 0.979671
\(612\) 0 0
\(613\) 9.88168e20i 1.22709i 0.789659 + 0.613546i \(0.210257\pi\)
−0.789659 + 0.613546i \(0.789743\pi\)
\(614\) −5.94761e20 −0.729591
\(615\) 0 0
\(616\) 4.87227e19 0.0583279
\(617\) 8.93886e19i 0.105717i 0.998602 + 0.0528583i \(0.0168332\pi\)
−0.998602 + 0.0528583i \(0.983167\pi\)
\(618\) 0 0
\(619\) 5.54375e20 0.639917 0.319958 0.947432i \(-0.396331\pi\)
0.319958 + 0.947432i \(0.396331\pi\)
\(620\) 1.75804e20 2.44980e20i 0.200489 0.279379i
\(621\) 0 0
\(622\) 1.14158e21i 1.27080i
\(623\) 2.96125e20i 0.325697i
\(624\) 0 0
\(625\) −7.40415e20 + 5.64932e20i −0.795014 + 0.606591i
\(626\) −1.13433e19 −0.0120346
\(627\) 0 0
\(628\) 8.94329e20i 0.926403i
\(629\) 1.42799e20 0.146166
\(630\) 0 0
\(631\) −1.05355e21 −1.05302 −0.526508 0.850170i \(-0.676499\pi\)
−0.526508 + 0.850170i \(0.676499\pi\)
\(632\) 2.25221e20i 0.222449i
\(633\) 0 0
\(634\) −3.19955e20 −0.308617
\(635\) −1.11588e21 8.00786e20i −1.06369 0.763332i
\(636\) 0 0
\(637\) 1.33553e21i 1.24339i
\(638\) 1.88173e20i 0.173142i
\(639\) 0 0
\(640\) −7.98989e19 5.73374e19i −0.0718110 0.0515333i
\(641\) 2.33787e20 0.207675 0.103838 0.994594i \(-0.466888\pi\)
0.103838 + 0.994594i \(0.466888\pi\)
\(642\) 0 0
\(643\) 9.14471e20i 0.793575i −0.917911 0.396787i \(-0.870125\pi\)
0.917911 0.396787i \(-0.129875\pi\)
\(644\) −1.76119e20 −0.151065
\(645\) 0 0
\(646\) −3.14209e20 −0.263315
\(647\) 3.67188e20i 0.304163i 0.988368 + 0.152082i \(0.0485976\pi\)
−0.988368 + 0.152082i \(0.951402\pi\)
\(648\) 0 0
\(649\) −7.03250e20 −0.569212
\(650\) −4.16606e20 1.23281e21i −0.333331 0.986387i
\(651\) 0 0
\(652\) 5.82450e20i 0.455409i
\(653\) 2.70806e20i 0.209319i 0.994508 + 0.104660i \(0.0333753\pi\)
−0.994508 + 0.104660i \(0.966625\pi\)
\(654\) 0 0
\(655\) −6.54520e20 + 9.12065e20i −0.494440 + 0.688995i
\(656\) 3.33579e20 0.249126
\(657\) 0 0
\(658\) 2.54203e20i 0.185561i
\(659\) −2.63065e21 −1.89855 −0.949276 0.314444i \(-0.898182\pi\)
−0.949276 + 0.314444i \(0.898182\pi\)
\(660\) 0 0
\(661\) −8.05298e20 −0.568128 −0.284064 0.958805i \(-0.591683\pi\)
−0.284064 + 0.958805i \(0.591683\pi\)
\(662\) 9.06006e20i 0.631970i
\(663\) 0 0
\(664\) 4.34008e20 0.295963
\(665\) −2.80345e20 2.01183e20i −0.189030 0.135653i
\(666\) 0 0
\(667\) 6.80192e20i 0.448423i
\(668\) 4.22152e20i 0.275198i
\(669\) 0 0
\(670\) −3.02539e20 + 4.21585e20i −0.192851 + 0.268735i
\(671\) −5.27981e20 −0.332812
\(672\) 0 0
\(673\) 2.04040e21i 1.25778i 0.777496 + 0.628888i \(0.216490\pi\)
−0.777496 + 0.628888i \(0.783510\pi\)
\(674\) 2.28660e20 0.139393
\(675\) 0 0
\(676\) 9.79633e20 0.584068
\(677\) 2.49652e21i 1.47204i −0.676960 0.736019i \(-0.736703\pi\)
0.676960 0.736019i \(-0.263297\pi\)
\(678\) 0 0
\(679\) 5.00083e20 0.288415
\(680\) 2.28131e20 3.17898e20i 0.130127 0.181330i
\(681\) 0 0
\(682\) 3.64546e20i 0.203409i
\(683\) 3.19332e21i 1.76233i 0.472810 + 0.881164i \(0.343240\pi\)
−0.472810 + 0.881164i \(0.656760\pi\)
\(684\) 0 0
\(685\) −9.40547e20 6.74959e20i −0.507810 0.364417i
\(686\) −9.63257e20 −0.514412
\(687\) 0 0
\(688\) 1.23050e20i 0.0642936i
\(689\) 5.55069e20 0.286881
\(690\) 0 0
\(691\) −2.76401e21 −1.39783 −0.698915 0.715205i \(-0.746333\pi\)
−0.698915 + 0.715205i \(0.746333\pi\)
\(692\) 4.95354e20i 0.247811i
\(693\) 0 0
\(694\) −1.68078e21 −0.822841
\(695\) 2.11753e21 2.95074e21i 1.02552 1.42904i
\(696\) 0 0
\(697\) 1.32723e21i 0.629070i
\(698\) 2.07326e21i 0.972162i
\(699\) 0 0
\(700\) 4.07088e20 1.37568e20i 0.186833 0.0631366i
\(701\) 4.85335e20 0.220372 0.110186 0.993911i \(-0.464855\pi\)
0.110186 + 0.993911i \(0.464855\pi\)
\(702\) 0 0
\(703\) 3.07300e20i 0.136583i
\(704\) −1.18895e20 −0.0522838
\(705\) 0 0
\(706\) −2.20087e21 −0.947455
\(707\) 1.59253e21i 0.678333i
\(708\) 0 0
\(709\) 1.76272e21 0.735085 0.367542 0.930007i \(-0.380199\pi\)
0.367542 + 0.930007i \(0.380199\pi\)
\(710\) 1.57022e21 + 1.12683e21i 0.647923 + 0.464965i
\(711\) 0 0
\(712\) 7.22612e20i 0.291948i
\(713\) 1.31773e21i 0.526812i
\(714\) 0 0
\(715\) −1.27818e21 9.17252e20i −0.500375 0.359082i
\(716\) −9.11032e20 −0.352928
\(717\) 0 0
\(718\) 5.45218e20i 0.206841i
\(719\) 2.94680e21 1.10633 0.553163 0.833073i \(-0.313421\pi\)
0.553163 + 0.833073i \(0.313421\pi\)
\(720\) 0 0
\(721\) −6.90157e20 −0.253766
\(722\) 1.26701e21i 0.461055i
\(723\) 0 0
\(724\) 2.63099e21 0.937734
\(725\) −5.31302e20 1.57222e21i −0.187416 0.554598i
\(726\) 0 0
\(727\) 3.91178e19i 0.0135166i −0.999977 0.00675829i \(-0.997849\pi\)
0.999977 0.00675829i \(-0.00215125\pi\)
\(728\) 6.00410e20i 0.205335i
\(729\) 0 0
\(730\) −1.67274e21 + 2.33094e21i −0.560411 + 0.780925i
\(731\) −4.89584e20 −0.162348
\(732\) 0 0
\(733\) 2.31162e21i 0.750994i −0.926824 0.375497i \(-0.877472\pi\)
0.926824 0.375497i \(-0.122528\pi\)
\(734\) 2.15344e21 0.692488
\(735\) 0 0
\(736\) 4.29771e20 0.135411
\(737\) 6.27344e20i 0.195659i
\(738\) 0 0
\(739\) 3.98170e21 1.21685 0.608423 0.793613i \(-0.291803\pi\)
0.608423 + 0.793613i \(0.291803\pi\)
\(740\) −3.10907e20 2.23114e20i −0.0940572 0.0674978i
\(741\) 0 0
\(742\) 1.83290e20i 0.0543386i
\(743\) 4.07217e21i 1.19512i 0.801826 + 0.597558i \(0.203862\pi\)
−0.801826 + 0.597558i \(0.796138\pi\)
\(744\) 0 0
\(745\) 1.30336e21 1.81622e21i 0.374881 0.522391i
\(746\) 3.53212e21 1.00576
\(747\) 0 0
\(748\) 4.73051e20i 0.132022i
\(749\) −1.58852e21 −0.438913
\(750\) 0 0
\(751\) 3.86005e21 1.04543 0.522713 0.852509i \(-0.324920\pi\)
0.522713 + 0.852509i \(0.324920\pi\)
\(752\) 6.20313e20i 0.166332i
\(753\) 0 0
\(754\) 2.31885e21 0.609520
\(755\) 1.95055e21 2.71806e21i 0.507638 0.707387i
\(756\) 0 0
\(757\) 2.80787e21i 0.716403i −0.933644 0.358202i \(-0.883390\pi\)
0.933644 0.358202i \(-0.116610\pi\)
\(758\) 4.14416e21i 1.04693i
\(759\) 0 0
\(760\) 6.84106e20 + 4.90931e20i 0.169442 + 0.121596i
\(761\) −2.34918e21 −0.576145 −0.288072 0.957609i \(-0.593014\pi\)
−0.288072 + 0.957609i \(0.593014\pi\)
\(762\) 0 0
\(763\) 1.90637e20i 0.0458431i
\(764\) 2.48735e21 0.592294
\(765\) 0 0
\(766\) 9.01922e20 0.210597
\(767\) 8.66615e21i 2.00383i
\(768\) 0 0
\(769\) 5.48498e21 1.24373 0.621867 0.783123i \(-0.286374\pi\)
0.621867 + 0.783123i \(0.286374\pi\)
\(770\) 3.02886e20 4.22068e20i 0.0680141 0.0947768i
\(771\) 0 0
\(772\) 2.36655e21i 0.521179i
\(773\) 7.45803e21i 1.62659i 0.581851 + 0.813295i \(0.302329\pi\)
−0.581851 + 0.813295i \(0.697671\pi\)
\(774\) 0 0
\(775\) −1.02929e21 3.04585e21i −0.220178 0.651548i
\(776\) −1.22032e21 −0.258529
\(777\) 0 0
\(778\) 7.49308e20i 0.155709i
\(779\) −2.85615e21 −0.587828
\(780\) 0 0
\(781\) 2.33659e21 0.471736
\(782\) 1.70995e21i 0.341927i
\(783\) 0 0
\(784\) 1.07615e21 0.211107
\(785\) −7.74726e21 5.55962e21i −1.50531 1.08025i
\(786\) 0 0
\(787\) 5.05701e21i 0.964013i −0.876168 0.482007i \(-0.839908\pi\)
0.876168 0.482007i \(-0.160092\pi\)
\(788\) 2.77281e21i 0.523568i
\(789\) 0 0
\(790\) −1.95101e21 1.40009e21i −0.361457 0.259391i
\(791\) 1.03544e21 0.190021
\(792\) 0 0
\(793\) 6.50631e21i 1.17162i
\(794\) −2.18338e21 −0.389471
\(795\) 0 0
\(796\) 1.83548e21 0.321294
\(797\) 9.99891e21i 1.73386i −0.498426 0.866932i \(-0.666089\pi\)
0.498426 0.866932i \(-0.333911\pi\)
\(798\) 0 0
\(799\) 2.46807e21 0.420007
\(800\) −9.93388e20 + 3.35697e20i −0.167473 + 0.0565942i
\(801\) 0 0
\(802\) 2.70851e21i 0.448150i
\(803\) 3.46858e21i 0.568572i
\(804\) 0 0
\(805\) −1.09485e21 + 1.52566e21i −0.176151 + 0.245464i
\(806\) 4.49230e21 0.716070
\(807\) 0 0
\(808\) 3.88614e21i 0.608042i
\(809\) −1.42599e21 −0.221056 −0.110528 0.993873i \(-0.535254\pi\)
−0.110528 + 0.993873i \(0.535254\pi\)
\(810\) 0 0
\(811\) 5.78120e21 0.879754 0.439877 0.898058i \(-0.355022\pi\)
0.439877 + 0.898058i \(0.355022\pi\)
\(812\) 7.65710e20i 0.115450i
\(813\) 0 0
\(814\) −4.62649e20 −0.0684807
\(815\) −5.04556e21 3.62082e21i −0.739992 0.531037i
\(816\) 0 0
\(817\) 1.05357e21i 0.151705i
\(818\) 8.28500e21i 1.18207i
\(819\) 0 0
\(820\) 2.07370e21 2.88968e21i 0.290498 0.404805i
\(821\) −2.77692e21 −0.385470 −0.192735 0.981251i \(-0.561736\pi\)
−0.192735 + 0.981251i \(0.561736\pi\)
\(822\) 0 0
\(823\) 1.24862e22i 1.70189i 0.525258 + 0.850943i \(0.323969\pi\)
−0.525258 + 0.850943i \(0.676031\pi\)
\(824\) 1.68414e21 0.227470
\(825\) 0 0
\(826\) 2.86165e21 0.379548
\(827\) 9.62865e21i 1.26553i −0.774342 0.632767i \(-0.781919\pi\)
0.774342 0.632767i \(-0.218081\pi\)
\(828\) 0 0
\(829\) 3.86204e21 0.498492 0.249246 0.968440i \(-0.419817\pi\)
0.249246 + 0.968440i \(0.419817\pi\)
\(830\) 2.69803e21 3.75966e21i 0.345112 0.480909i
\(831\) 0 0
\(832\) 1.46514e21i 0.184057i
\(833\) 4.28174e21i 0.533068i
\(834\) 0 0
\(835\) 3.65696e21 + 2.62432e21i 0.447169 + 0.320899i
\(836\) 1.01799e21 0.123367
\(837\) 0 0
\(838\) 5.46758e21i 0.650826i
\(839\) −2.06355e21 −0.243444 −0.121722 0.992564i \(-0.538842\pi\)
−0.121722 + 0.992564i \(0.538842\pi\)
\(840\) 0 0
\(841\) −5.67193e21 −0.657296
\(842\) 1.97990e21i 0.227406i
\(843\) 0 0
\(844\) 1.00599e21 0.113508
\(845\) 6.08992e21 8.48622e21i 0.681062 0.949050i
\(846\) 0 0
\(847\) 2.96190e21i 0.325420i
\(848\) 4.47268e20i 0.0487079i
\(849\) 0 0
\(850\) −1.33565e21 3.95244e21i −0.142906 0.422886i
\(851\) 1.67235e21 0.177360
\(852\) 0 0
\(853\) 1.41542e22i 1.47492i −0.675390 0.737461i \(-0.736025\pi\)
0.675390 0.737461i \(-0.263975\pi\)
\(854\) 2.14845e21 0.221918
\(855\) 0 0
\(856\) 3.87634e21 0.393431
\(857\) 1.25937e22i 1.26706i −0.773720 0.633528i \(-0.781606\pi\)
0.773720 0.633528i \(-0.218394\pi\)
\(858\) 0 0
\(859\) −8.84870e21 −0.874845 −0.437422 0.899256i \(-0.644108\pi\)
−0.437422 + 0.899256i \(0.644108\pi\)
\(860\) 1.06594e21 + 7.64943e20i 0.104470 + 0.0749706i
\(861\) 0 0
\(862\) 3.70909e21i 0.357243i
\(863\) 1.47249e22i 1.40595i 0.711214 + 0.702975i \(0.248146\pi\)
−0.711214 + 0.702975i \(0.751854\pi\)
\(864\) 0 0
\(865\) 4.29108e21 + 3.07939e21i 0.402667 + 0.288964i
\(866\) 2.40392e21 0.223633
\(867\) 0 0
\(868\) 1.48340e21i 0.135632i
\(869\) −2.90323e21 −0.263168
\(870\) 0 0
\(871\) −7.73076e21 −0.688789
\(872\) 4.65199e20i 0.0410927i
\(873\) 0 0
\(874\) −3.67977e21 −0.319510
\(875\) 1.33898e21 4.38166e21i 0.115269 0.377206i
\(876\) 0 0
\(877\) 4.07982e21i 0.345258i 0.984987 + 0.172629i \(0.0552262\pi\)
−0.984987 + 0.172629i \(0.944774\pi\)
\(878\) 1.47479e22i 1.23743i
\(879\) 0 0
\(880\) −7.39112e20 + 1.02994e21i −0.0609663 + 0.0849557i
\(881\) −1.67856e22 −1.37284 −0.686418 0.727208i \(-0.740818\pi\)
−0.686418 + 0.727208i \(0.740818\pi\)
\(882\) 0 0
\(883\) 9.14394e21i 0.735238i 0.929976 + 0.367619i \(0.119827\pi\)
−0.929976 + 0.367619i \(0.880173\pi\)
\(884\) 5.82941e21 0.464764
\(885\) 0 0
\(886\) −7.32477e21 −0.574171
\(887\) 8.73083e21i 0.678623i 0.940674 + 0.339311i \(0.110194\pi\)
−0.940674 + 0.339311i \(0.889806\pi\)
\(888\) 0 0
\(889\) 6.75691e21 0.516398
\(890\) −6.25973e21 4.49214e21i −0.474385 0.340430i
\(891\) 0 0
\(892\) 5.96197e21i 0.444277i
\(893\) 5.31121e21i 0.392471i
\(894\) 0 0
\(895\) −5.66346e21 + 7.89195e21i −0.411537 + 0.573471i
\(896\) 4.83804e20 0.0348626
\(897\) 0 0
\(898\) 9.57482e21i 0.678513i
\(899\) 5.72908e21 0.402612
\(900\) 0 0
\(901\) 1.77957e21 0.122993
\(902\) 4.30002e21i 0.294728i
\(903\) 0 0
\(904\) −2.52671e21 −0.170330
\(905\) 1.63556e22 2.27913e22i 1.09346 1.52372i
\(906\) 0 0
\(907\) 2.03388e22i 1.33743i −0.743519 0.668715i \(-0.766845\pi\)
0.743519 0.668715i \(-0.233155\pi\)
\(908\) 1.08149e22i 0.705310i
\(909\) 0 0
\(910\) 5.20114e21 + 3.73247e21i 0.333648 + 0.239434i
\(911\) −8.19631e21 −0.521472 −0.260736 0.965410i \(-0.583965\pi\)
−0.260736 + 0.965410i \(0.583965\pi\)
\(912\) 0 0
\(913\) 5.59461e21i 0.350138i
\(914\) −9.10991e21 −0.565481
\(915\) 0 0
\(916\) 4.76691e20 0.0291086
\(917\) 5.52274e21i 0.334491i
\(918\) 0 0
\(919\) −1.16604e22 −0.694777 −0.347389 0.937721i \(-0.612932\pi\)
−0.347389 + 0.937721i \(0.612932\pi\)
\(920\) 2.67169e21 3.72296e21i 0.157898 0.220029i
\(921\) 0 0
\(922\) 9.11060e20i 0.0529743i
\(923\) 2.87938e22i 1.66068i
\(924\) 0 0
\(925\) −3.86552e21 + 1.30628e21i −0.219354 + 0.0741265i
\(926\) −9.47973e21 −0.533597
\(927\) 0 0
\(928\) 1.86851e21i 0.103487i
\(929\) −3.18554e21 −0.175011 −0.0875056 0.996164i \(-0.527890\pi\)
−0.0875056 + 0.996164i \(0.527890\pi\)
\(930\) 0 0
\(931\) −9.21418e21 −0.498120
\(932\) 2.40364e21i 0.128899i
\(933\) 0 0
\(934\) −1.31280e22 −0.692781
\(935\) −4.09788e21 2.94074e21i −0.214522 0.153946i
\(936\) 0 0
\(937\) 1.91960e22i 0.988928i 0.869198 + 0.494464i \(0.164636\pi\)
−0.869198 + 0.494464i \(0.835364\pi\)
\(938\) 2.55278e21i 0.130464i
\(939\) 0 0
\(940\) −5.37356e21 3.85619e21i −0.270273 0.193955i
\(941\) 2.90690e22 1.45047 0.725233 0.688503i \(-0.241732\pi\)
0.725233 + 0.688503i \(0.241732\pi\)
\(942\) 0 0
\(943\) 1.55434e22i 0.763323i
\(944\) −6.98309e21 −0.340218
\(945\) 0 0
\(946\) 1.58618e21 0.0760623
\(947\) 3.51817e21i 0.167376i 0.996492 + 0.0836878i \(0.0266698\pi\)
−0.996492 + 0.0836878i \(0.973330\pi\)
\(948\) 0 0
\(949\) −4.27433e22 −2.00158
\(950\) 8.50554e21 2.87428e21i 0.395162 0.133537i
\(951\) 0 0
\(952\) 1.92493e21i 0.0880316i
\(953\) 4.14849e22i 1.88232i 0.337960 + 0.941161i \(0.390263\pi\)
−0.337960 + 0.941161i \(0.609737\pi\)
\(954\) 0 0
\(955\) 1.54627e22 2.15471e22i 0.690653 0.962416i
\(956\) 4.76125e21 0.211002
\(957\) 0 0
\(958\) 2.57623e22i 1.12394i
\(959\) 5.69520e21 0.246530
\(960\) 0 0
\(961\) −1.23664e22 −0.527007
\(962\) 5.70122e21i 0.241076i
\(963\) 0 0
\(964\) −6.27063e21 −0.261056
\(965\) −2.05006e22 1.47118e22i −0.846862 0.607729i
\(966\) 0 0
\(967\) 3.12652e22i 1.27163i 0.771840 + 0.635817i \(0.219337\pi\)
−0.771840 + 0.635817i \(0.780663\pi\)
\(968\) 7.22771e21i 0.291699i
\(969\) 0 0
\(970\) −7.58613e21 + 1.05712e22i −0.301462 + 0.420083i
\(971\) 2.79145e22 1.10074 0.550370 0.834921i \(-0.314487\pi\)
0.550370 + 0.834921i \(0.314487\pi\)
\(972\) 0 0
\(973\) 1.78673e22i 0.693767i
\(974\) 1.74942e22 0.674065
\(975\) 0 0
\(976\) −5.24272e21 −0.198922
\(977\) 8.12156e21i 0.305795i 0.988242 + 0.152898i \(0.0488604\pi\)
−0.988242 + 0.152898i \(0.951140\pi\)
\(978\) 0 0
\(979\) −9.31488e21 −0.345388
\(980\) 6.68993e21 9.32233e21i 0.246165 0.343028i
\(981\) 0 0
\(982\) 2.33351e22i 0.845617i
\(983\) 5.00817e22i 1.80106i 0.434794 + 0.900530i \(0.356821\pi\)
−0.434794 + 0.900530i \(0.643179\pi\)
\(984\) 0 0
\(985\) 2.40199e22 + 1.72372e22i 0.850744 + 0.610515i
\(986\) 7.43431e21 0.261315
\(987\) 0 0
\(988\) 1.25447e22i 0.434294i
\(989\) −5.73361e21 −0.196995
\(990\) 0 0
\(991\) −1.98490e22 −0.671717 −0.335859 0.941912i \(-0.609026\pi\)
−0.335859 + 0.941912i \(0.609026\pi\)
\(992\) 3.61985e21i 0.121577i
\(993\) 0 0
\(994\) −9.50801e21 −0.314552
\(995\) 1.14103e22 1.59001e22i 0.374649 0.522069i
\(996\) 0 0
\(997\) 3.50665e22i 1.13417i 0.823659 + 0.567086i \(0.191929\pi\)
−0.823659 + 0.567086i \(0.808071\pi\)
\(998\) 8.07839e21i 0.259326i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.16.c.e.19.3 16
3.2 odd 2 inner 90.16.c.e.19.14 yes 16
5.4 even 2 inner 90.16.c.e.19.11 yes 16
15.14 odd 2 inner 90.16.c.e.19.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.16.c.e.19.3 16 1.1 even 1 trivial
90.16.c.e.19.6 yes 16 15.14 odd 2 inner
90.16.c.e.19.11 yes 16 5.4 even 2 inner
90.16.c.e.19.14 yes 16 3.2 odd 2 inner