Properties

Label 900.2.k.n.307.2
Level $900$
Weight $2$
Character 900.307
Analytic conductor $7.187$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(307,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.426337261060096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.2
Root \(-0.760198 - 1.19252i\) of defining polynomial
Character \(\chi\) \(=\) 900.307
Dual form 900.2.k.n.343.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.19252 + 0.760198i) q^{2} +(0.844199 - 1.81310i) q^{4} +(0.611393 - 0.611393i) q^{7} +(0.371591 + 2.80391i) q^{8} +5.12822i q^{11} +(-1.76156 + 1.76156i) q^{13} +(-0.264318 + 1.19388i) q^{14} +(-2.57466 - 3.06123i) q^{16} +(-3.76156 - 3.76156i) q^{17} +1.22279 q^{19} +(-3.89846 - 6.11549i) q^{22} +(1.07700 + 1.07700i) q^{23} +(0.761557 - 3.43982i) q^{26} +(-0.592379 - 1.62465i) q^{28} +0.864641i q^{29} +7.81086i q^{31} +(5.39747 + 1.69333i) q^{32} +(7.34525 + 1.62620i) q^{34} +(1.76156 + 1.76156i) q^{37} +(-1.45820 + 0.929560i) q^{38} -5.52311 q^{41} +(6.20522 + 6.20522i) q^{43} +(9.29797 + 4.32924i) q^{44} +(-2.10308 - 0.465611i) q^{46} +(-2.29979 + 2.29979i) q^{47} +6.25240i q^{49} +(1.70677 + 4.68098i) q^{52} +(-2.62620 + 2.62620i) q^{53} +(1.94148 + 1.48710i) q^{56} +(-0.657298 - 1.03110i) q^{58} -0.528636 q^{59} +4.98168 q^{61} +(-5.93780 - 9.31460i) q^{62} +(-7.72384 + 2.08382i) q^{64} +(-6.20522 + 6.20522i) q^{67} +(-9.99558 + 3.64457i) q^{68} -8.10243i q^{71} +(2.25240 - 2.25240i) q^{73} +(-3.43982 - 0.761557i) q^{74} +(1.03228 - 2.21703i) q^{76} +(3.13536 + 3.13536i) q^{77} -15.9133 q^{79} +(6.58641 - 4.19866i) q^{82} +(7.95665 + 7.95665i) q^{83} +(-12.1170 - 2.68264i) q^{86} +(-14.3791 + 1.90560i) q^{88} +7.25240i q^{89} +2.15401i q^{91} +(2.86192 - 1.04351i) q^{92} +(0.994247 - 4.49084i) q^{94} +(-0.793833 - 0.793833i) q^{97} +(-4.75306 - 7.45610i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{8} + 4 q^{13} + 12 q^{16} - 20 q^{17} - 12 q^{22} - 16 q^{26} + 4 q^{28} + 20 q^{32} - 4 q^{37} + 16 q^{38} - 16 q^{41} - 40 q^{46} + 8 q^{52} + 4 q^{53} + 64 q^{56} + 20 q^{58} - 32 q^{61}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.19252 + 0.760198i −0.843238 + 0.537541i
\(3\) 0 0
\(4\) 0.844199 1.81310i 0.422099 0.906550i
\(5\) 0 0
\(6\) 0 0
\(7\) 0.611393 0.611393i 0.231085 0.231085i −0.582060 0.813145i \(-0.697753\pi\)
0.813145 + 0.582060i \(0.197753\pi\)
\(8\) 0.371591 + 2.80391i 0.131377 + 0.991332i
\(9\) 0 0
\(10\) 0 0
\(11\) 5.12822i 1.54622i 0.634274 + 0.773108i \(0.281299\pi\)
−0.634274 + 0.773108i \(0.718701\pi\)
\(12\) 0 0
\(13\) −1.76156 + 1.76156i −0.488568 + 0.488568i −0.907854 0.419286i \(-0.862280\pi\)
0.419286 + 0.907854i \(0.362280\pi\)
\(14\) −0.264318 + 1.19388i −0.0706419 + 0.319077i
\(15\) 0 0
\(16\) −2.57466 3.06123i −0.643664 0.765308i
\(17\) −3.76156 3.76156i −0.912312 0.912312i 0.0841421 0.996454i \(-0.473185\pi\)
−0.996454 + 0.0841421i \(0.973185\pi\)
\(18\) 0 0
\(19\) 1.22279 0.280527 0.140263 0.990114i \(-0.455205\pi\)
0.140263 + 0.990114i \(0.455205\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −3.89846 6.11549i −0.831154 1.30383i
\(23\) 1.07700 + 1.07700i 0.224571 + 0.224571i 0.810420 0.585849i \(-0.199239\pi\)
−0.585849 + 0.810420i \(0.699239\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.761557 3.43982i 0.149354 0.674604i
\(27\) 0 0
\(28\) −0.592379 1.62465i −0.111949 0.307031i
\(29\) 0.864641i 0.160560i 0.996772 + 0.0802799i \(0.0255814\pi\)
−0.996772 + 0.0802799i \(0.974419\pi\)
\(30\) 0 0
\(31\) 7.81086i 1.40287i 0.712732 + 0.701436i \(0.247457\pi\)
−0.712732 + 0.701436i \(0.752543\pi\)
\(32\) 5.39747 + 1.69333i 0.954146 + 0.299341i
\(33\) 0 0
\(34\) 7.34525 + 1.62620i 1.25970 + 0.278891i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.76156 + 1.76156i 0.289598 + 0.289598i 0.836921 0.547323i \(-0.184353\pi\)
−0.547323 + 0.836921i \(0.684353\pi\)
\(38\) −1.45820 + 0.929560i −0.236551 + 0.150795i
\(39\) 0 0
\(40\) 0 0
\(41\) −5.52311 −0.862566 −0.431283 0.902217i \(-0.641939\pi\)
−0.431283 + 0.902217i \(0.641939\pi\)
\(42\) 0 0
\(43\) 6.20522 + 6.20522i 0.946288 + 0.946288i 0.998629 0.0523416i \(-0.0166685\pi\)
−0.0523416 + 0.998629i \(0.516668\pi\)
\(44\) 9.29797 + 4.32924i 1.40172 + 0.652657i
\(45\) 0 0
\(46\) −2.10308 0.465611i −0.310083 0.0686506i
\(47\) −2.29979 + 2.29979i −0.335459 + 0.335459i −0.854655 0.519196i \(-0.826231\pi\)
0.519196 + 0.854655i \(0.326231\pi\)
\(48\) 0 0
\(49\) 6.25240i 0.893199i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.70677 + 4.68098i 0.236687 + 0.649135i
\(53\) −2.62620 + 2.62620i −0.360736 + 0.360736i −0.864084 0.503348i \(-0.832101\pi\)
0.503348 + 0.864084i \(0.332101\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.94148 + 1.48710i 0.259441 + 0.198723i
\(57\) 0 0
\(58\) −0.657298 1.03110i −0.0863075 0.135390i
\(59\) −0.528636 −0.0688225 −0.0344113 0.999408i \(-0.510956\pi\)
−0.0344113 + 0.999408i \(0.510956\pi\)
\(60\) 0 0
\(61\) 4.98168 0.637838 0.318919 0.947782i \(-0.396680\pi\)
0.318919 + 0.947782i \(0.396680\pi\)
\(62\) −5.93780 9.31460i −0.754101 1.18295i
\(63\) 0 0
\(64\) −7.72384 + 2.08382i −0.965480 + 0.260477i
\(65\) 0 0
\(66\) 0 0
\(67\) −6.20522 + 6.20522i −0.758089 + 0.758089i −0.975974 0.217886i \(-0.930084\pi\)
0.217886 + 0.975974i \(0.430084\pi\)
\(68\) −9.99558 + 3.64457i −1.21214 + 0.441969i
\(69\) 0 0
\(70\) 0 0
\(71\) 8.10243i 0.961581i −0.876835 0.480791i \(-0.840350\pi\)
0.876835 0.480791i \(-0.159650\pi\)
\(72\) 0 0
\(73\) 2.25240 2.25240i 0.263623 0.263623i −0.562901 0.826524i \(-0.690315\pi\)
0.826524 + 0.562901i \(0.190315\pi\)
\(74\) −3.43982 0.761557i −0.399871 0.0885292i
\(75\) 0 0
\(76\) 1.03228 2.21703i 0.118410 0.254311i
\(77\) 3.13536 + 3.13536i 0.357307 + 0.357307i
\(78\) 0 0
\(79\) −15.9133 −1.79039 −0.895193 0.445680i \(-0.852962\pi\)
−0.895193 + 0.445680i \(0.852962\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 6.58641 4.19866i 0.727348 0.463664i
\(83\) 7.95665 + 7.95665i 0.873355 + 0.873355i 0.992836 0.119481i \(-0.0381231\pi\)
−0.119481 + 0.992836i \(0.538123\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −12.1170 2.68264i −1.30661 0.289277i
\(87\) 0 0
\(88\) −14.3791 + 1.90560i −1.53281 + 0.203138i
\(89\) 7.25240i 0.768752i 0.923177 + 0.384376i \(0.125583\pi\)
−0.923177 + 0.384376i \(0.874417\pi\)
\(90\) 0 0
\(91\) 2.15401i 0.225801i
\(92\) 2.86192 1.04351i 0.298376 0.108793i
\(93\) 0 0
\(94\) 0.994247 4.49084i 0.102549 0.463195i
\(95\) 0 0
\(96\) 0 0
\(97\) −0.793833 0.793833i −0.0806015 0.0806015i 0.665657 0.746258i \(-0.268152\pi\)
−0.746258 + 0.665657i \(0.768152\pi\)
\(98\) −4.75306 7.45610i −0.480131 0.753179i
\(99\) 0 0
\(100\) 0 0
\(101\) 10.1170 1.00668 0.503341 0.864088i \(-0.332104\pi\)
0.503341 + 0.864088i \(0.332104\pi\)
\(102\) 0 0
\(103\) 3.82267 + 3.82267i 0.376659 + 0.376659i 0.869895 0.493236i \(-0.164186\pi\)
−0.493236 + 0.869895i \(0.664186\pi\)
\(104\) −5.59383 4.28467i −0.548520 0.420147i
\(105\) 0 0
\(106\) 1.13536 5.12822i 0.110276 0.498097i
\(107\) −5.51107 + 5.51107i −0.532775 + 0.532775i −0.921397 0.388622i \(-0.872951\pi\)
0.388622 + 0.921397i \(0.372951\pi\)
\(108\) 0 0
\(109\) 7.31695i 0.700836i −0.936593 0.350418i \(-0.886039\pi\)
0.936593 0.350418i \(-0.113961\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.44575 0.297490i −0.325592 0.0281101i
\(113\) −0.509161 + 0.509161i −0.0478978 + 0.0478978i −0.730650 0.682752i \(-0.760783\pi\)
0.682752 + 0.730650i \(0.260783\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.56768 + 0.729929i 0.145555 + 0.0677722i
\(117\) 0 0
\(118\) 0.630408 0.401868i 0.0580337 0.0369949i
\(119\) −4.59958 −0.421643
\(120\) 0 0
\(121\) −15.2986 −1.39078
\(122\) −5.94074 + 3.78706i −0.537849 + 0.342864i
\(123\) 0 0
\(124\) 14.1619 + 6.59392i 1.27177 + 0.592152i
\(125\) 0 0
\(126\) 0 0
\(127\) −7.49103 + 7.49103i −0.664722 + 0.664722i −0.956489 0.291767i \(-0.905757\pi\)
0.291767 + 0.956489i \(0.405757\pi\)
\(128\) 7.62671 8.35664i 0.674112 0.738629i
\(129\) 0 0
\(130\) 0 0
\(131\) 13.9964i 1.22287i 0.791296 + 0.611434i \(0.209407\pi\)
−0.791296 + 0.611434i \(0.790593\pi\)
\(132\) 0 0
\(133\) 0.747604 0.747604i 0.0648255 0.0648255i
\(134\) 2.68264 12.1170i 0.231745 1.04675i
\(135\) 0 0
\(136\) 9.14931 11.9448i 0.784547 1.02426i
\(137\) 7.01395 + 7.01395i 0.599242 + 0.599242i 0.940111 0.340869i \(-0.110721\pi\)
−0.340869 + 0.940111i \(0.610721\pi\)
\(138\) 0 0
\(139\) 2.28006 0.193392 0.0966960 0.995314i \(-0.469173\pi\)
0.0966960 + 0.995314i \(0.469173\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.15945 + 9.66229i 0.516889 + 0.810842i
\(143\) −9.03365 9.03365i −0.755432 0.755432i
\(144\) 0 0
\(145\) 0 0
\(146\) −0.973757 + 4.39829i −0.0805887 + 0.364005i
\(147\) 0 0
\(148\) 4.68098 1.70677i 0.384774 0.140296i
\(149\) 10.1170i 0.828820i −0.910090 0.414410i \(-0.863988\pi\)
0.910090 0.414410i \(-0.136012\pi\)
\(150\) 0 0
\(151\) 7.93691i 0.645897i 0.946417 + 0.322948i \(0.104674\pi\)
−0.946417 + 0.322948i \(0.895326\pi\)
\(152\) 0.454377 + 3.42859i 0.0368548 + 0.278095i
\(153\) 0 0
\(154\) −6.12247 1.35548i −0.493362 0.109228i
\(155\) 0 0
\(156\) 0 0
\(157\) −9.01395 9.01395i −0.719392 0.719392i 0.249089 0.968481i \(-0.419869\pi\)
−0.968481 + 0.249089i \(0.919869\pi\)
\(158\) 18.9769 12.0972i 1.50972 0.962405i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.31695 0.103790
\(162\) 0 0
\(163\) −13.0849 13.0849i −1.02489 1.02489i −0.999682 0.0252033i \(-0.991977\pi\)
−0.0252033 0.999682i \(-0.508023\pi\)
\(164\) −4.66261 + 10.0140i −0.364088 + 0.781958i
\(165\) 0 0
\(166\) −15.5371 3.43982i −1.20591 0.266982i
\(167\) 11.3334 11.3334i 0.877008 0.877008i −0.116216 0.993224i \(-0.537076\pi\)
0.993224 + 0.116216i \(0.0370765\pi\)
\(168\) 0 0
\(169\) 6.79383i 0.522603i
\(170\) 0 0
\(171\) 0 0
\(172\) 16.4891 6.01224i 1.25728 0.458429i
\(173\) 7.96772 7.96772i 0.605775 0.605775i −0.336064 0.941839i \(-0.609096\pi\)
0.941839 + 0.336064i \(0.109096\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 15.6987 13.2034i 1.18333 0.995244i
\(177\) 0 0
\(178\) −5.51325 8.64861i −0.413236 0.648241i
\(179\) −12.6475 −0.945320 −0.472660 0.881245i \(-0.656706\pi\)
−0.472660 + 0.881245i \(0.656706\pi\)
\(180\) 0 0
\(181\) 7.72928 0.574513 0.287256 0.957854i \(-0.407257\pi\)
0.287256 + 0.957854i \(0.407257\pi\)
\(182\) −1.63747 2.56869i −0.121378 0.190404i
\(183\) 0 0
\(184\) −2.61962 + 3.42003i −0.193121 + 0.252128i
\(185\) 0 0
\(186\) 0 0
\(187\) 19.2901 19.2901i 1.41063 1.41063i
\(188\) 2.22827 + 6.11123i 0.162513 + 0.445707i
\(189\) 0 0
\(190\) 0 0
\(191\) 7.04516i 0.509770i 0.966971 + 0.254885i \(0.0820376\pi\)
−0.966971 + 0.254885i \(0.917962\pi\)
\(192\) 0 0
\(193\) 11.5048 11.5048i 0.828133 0.828133i −0.159125 0.987258i \(-0.550867\pi\)
0.987258 + 0.159125i \(0.0508674\pi\)
\(194\) 1.55013 + 0.343190i 0.111293 + 0.0246396i
\(195\) 0 0
\(196\) 11.3362 + 5.27827i 0.809730 + 0.377019i
\(197\) 7.87859 + 7.87859i 0.561327 + 0.561327i 0.929684 0.368358i \(-0.120080\pi\)
−0.368358 + 0.929684i \(0.620080\pi\)
\(198\) 0 0
\(199\) 11.4792 0.813741 0.406870 0.913486i \(-0.366620\pi\)
0.406870 + 0.913486i \(0.366620\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −12.0648 + 7.69095i −0.848873 + 0.541133i
\(203\) 0.528636 + 0.528636i 0.0371030 + 0.0371030i
\(204\) 0 0
\(205\) 0 0
\(206\) −7.46460 1.65262i −0.520083 0.115143i
\(207\) 0 0
\(208\) 9.92794 + 0.857132i 0.688379 + 0.0594314i
\(209\) 6.27072i 0.433755i
\(210\) 0 0
\(211\) 5.49134i 0.378039i −0.981973 0.189020i \(-0.939469\pi\)
0.981973 0.189020i \(-0.0605310\pi\)
\(212\) 2.54452 + 6.97859i 0.174759 + 0.479292i
\(213\) 0 0
\(214\) 2.38255 10.7616i 0.162868 0.735645i
\(215\) 0 0
\(216\) 0 0
\(217\) 4.77551 + 4.77551i 0.324183 + 0.324183i
\(218\) 5.56233 + 8.72559i 0.376728 + 0.590972i
\(219\) 0 0
\(220\) 0 0
\(221\) 13.2524 0.891453
\(222\) 0 0
\(223\) 10.8678 + 10.8678i 0.727764 + 0.727764i 0.970174 0.242410i \(-0.0779380\pi\)
−0.242410 + 0.970174i \(0.577938\pi\)
\(224\) 4.33526 2.26469i 0.289662 0.151316i
\(225\) 0 0
\(226\) 0.220121 0.994247i 0.0146422 0.0661363i
\(227\) 4.98244 4.98244i 0.330696 0.330696i −0.522155 0.852851i \(-0.674872\pi\)
0.852851 + 0.522155i \(0.174872\pi\)
\(228\) 0 0
\(229\) 25.7572i 1.70208i −0.525098 0.851041i \(-0.675972\pi\)
0.525098 0.851041i \(-0.324028\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.42438 + 0.321293i −0.159168 + 0.0210939i
\(233\) −0.715328 + 0.715328i −0.0468627 + 0.0468627i −0.730150 0.683287i \(-0.760550\pi\)
0.683287 + 0.730150i \(0.260550\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.446274 + 0.958469i −0.0290499 + 0.0623910i
\(237\) 0 0
\(238\) 5.48509 3.49659i 0.355545 0.226650i
\(239\) 26.9354 1.74231 0.871154 0.491009i \(-0.163372\pi\)
0.871154 + 0.491009i \(0.163372\pi\)
\(240\) 0 0
\(241\) 14.0925 0.907775 0.453887 0.891059i \(-0.350037\pi\)
0.453887 + 0.891059i \(0.350037\pi\)
\(242\) 18.2439 11.6300i 1.17276 0.747603i
\(243\) 0 0
\(244\) 4.20553 9.03228i 0.269231 0.578232i
\(245\) 0 0
\(246\) 0 0
\(247\) −2.15401 + 2.15401i −0.137056 + 0.137056i
\(248\) −21.9010 + 2.90245i −1.39071 + 0.184306i
\(249\) 0 0
\(250\) 0 0
\(251\) 17.2471i 1.08863i −0.838882 0.544314i \(-0.816790\pi\)
0.838882 0.544314i \(-0.183210\pi\)
\(252\) 0 0
\(253\) −5.52311 + 5.52311i −0.347235 + 0.347235i
\(254\) 3.23853 14.6279i 0.203203 0.917834i
\(255\) 0 0
\(256\) −2.74229 + 15.7632i −0.171393 + 0.985203i
\(257\) −15.0140 15.0140i −0.936545 0.936545i 0.0615588 0.998103i \(-0.480393\pi\)
−0.998103 + 0.0615588i \(0.980393\pi\)
\(258\) 0 0
\(259\) 2.15401 0.133844
\(260\) 0 0
\(261\) 0 0
\(262\) −10.6400 16.6909i −0.657341 1.03117i
\(263\) −6.73386 6.73386i −0.415228 0.415228i 0.468327 0.883555i \(-0.344857\pi\)
−0.883555 + 0.468327i \(0.844857\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.323204 + 1.45986i −0.0198169 + 0.0895096i
\(267\) 0 0
\(268\) 6.01224 + 16.4891i 0.367256 + 1.00723i
\(269\) 25.7047i 1.56724i −0.621238 0.783622i \(-0.713370\pi\)
0.621238 0.783622i \(-0.286630\pi\)
\(270\) 0 0
\(271\) 0.931222i 0.0565677i −0.999600 0.0282839i \(-0.990996\pi\)
0.999600 0.0282839i \(-0.00900423\pi\)
\(272\) −1.83029 + 21.1997i −0.110977 + 1.28542i
\(273\) 0 0
\(274\) −13.6963 3.03228i −0.827421 0.183186i
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0602 + 22.0602i 1.32547 + 1.32547i 0.909277 + 0.416190i \(0.136635\pi\)
0.416190 + 0.909277i \(0.363365\pi\)
\(278\) −2.71901 + 1.73330i −0.163075 + 0.103956i
\(279\) 0 0
\(280\) 0 0
\(281\) −8.56934 −0.511204 −0.255602 0.966782i \(-0.582274\pi\)
−0.255602 + 0.966782i \(0.582274\pi\)
\(282\) 0 0
\(283\) −11.5705 11.5705i −0.687796 0.687796i 0.273949 0.961744i \(-0.411670\pi\)
−0.961744 + 0.273949i \(0.911670\pi\)
\(284\) −14.6905 6.84006i −0.871721 0.405883i
\(285\) 0 0
\(286\) 17.6402 + 3.90543i 1.04308 + 0.230933i
\(287\) −3.37680 + 3.37680i −0.199326 + 0.199326i
\(288\) 0 0
\(289\) 11.2986i 0.664625i
\(290\) 0 0
\(291\) 0 0
\(292\) −2.18235 5.98529i −0.127712 0.350262i
\(293\) 12.8969 12.8969i 0.753446 0.753446i −0.221675 0.975121i \(-0.571152\pi\)
0.975121 + 0.221675i \(0.0711523\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.28467 + 5.59383i −0.249041 + 0.325135i
\(297\) 0 0
\(298\) 7.69095 + 12.0648i 0.445525 + 0.698892i
\(299\) −3.79441 −0.219436
\(300\) 0 0
\(301\) 7.58767 0.437346
\(302\) −6.03362 9.46491i −0.347196 0.544644i
\(303\) 0 0
\(304\) −3.14826 3.74324i −0.180565 0.214689i
\(305\) 0 0
\(306\) 0 0
\(307\) −1.60564 + 1.60564i −0.0916387 + 0.0916387i −0.751440 0.659801i \(-0.770640\pi\)
0.659801 + 0.751440i \(0.270640\pi\)
\(308\) 8.33158 3.03785i 0.474736 0.173098i
\(309\) 0 0
\(310\) 0 0
\(311\) 19.4161i 1.10099i −0.834839 0.550494i \(-0.814439\pi\)
0.834839 0.550494i \(-0.185561\pi\)
\(312\) 0 0
\(313\) −17.7110 + 17.7110i −1.00108 + 1.00108i −0.00108322 + 0.999999i \(0.500345\pi\)
−0.999999 + 0.00108322i \(0.999655\pi\)
\(314\) 17.6017 + 3.89692i 0.993321 + 0.219916i
\(315\) 0 0
\(316\) −13.4340 + 28.8524i −0.755721 + 1.62307i
\(317\) −7.78946 7.78946i −0.437500 0.437500i 0.453670 0.891170i \(-0.350115\pi\)
−0.891170 + 0.453670i \(0.850115\pi\)
\(318\) 0 0
\(319\) −4.43407 −0.248260
\(320\) 0 0
\(321\) 0 0
\(322\) −1.57048 + 1.00114i −0.0875196 + 0.0557914i
\(323\) −4.59958 4.59958i −0.255928 0.255928i
\(324\) 0 0
\(325\) 0 0
\(326\) 25.5510 + 5.65685i 1.41514 + 0.313304i
\(327\) 0 0
\(328\) −2.05234 15.4863i −0.113322 0.855089i
\(329\) 2.81215i 0.155039i
\(330\) 0 0
\(331\) 31.7005i 1.74242i −0.490912 0.871209i \(-0.663336\pi\)
0.490912 0.871209i \(-0.336664\pi\)
\(332\) 21.1432 7.70919i 1.16038 0.423097i
\(333\) 0 0
\(334\) −4.89968 + 22.1310i −0.268098 + 1.21095i
\(335\) 0 0
\(336\) 0 0
\(337\) −18.9634 18.9634i −1.03300 1.03300i −0.999437 0.0335632i \(-0.989314\pi\)
−0.0335632 0.999437i \(-0.510686\pi\)
\(338\) −5.16466 8.10177i −0.280920 0.440678i
\(339\) 0 0
\(340\) 0 0
\(341\) −40.0558 −2.16914
\(342\) 0 0
\(343\) 8.10243 + 8.10243i 0.437490 + 0.437490i
\(344\) −15.0931 + 19.7047i −0.813765 + 1.06241i
\(345\) 0 0
\(346\) −3.44461 + 15.5587i −0.185183 + 0.836441i
\(347\) −7.71957 + 7.71957i −0.414408 + 0.414408i −0.883271 0.468863i \(-0.844664\pi\)
0.468863 + 0.883271i \(0.344664\pi\)
\(348\) 0 0
\(349\) 27.0741i 1.44925i 0.689146 + 0.724623i \(0.257986\pi\)
−0.689146 + 0.724623i \(0.742014\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8.68375 + 27.6794i −0.462846 + 1.47532i
\(353\) −9.96772 + 9.96772i −0.530528 + 0.530528i −0.920730 0.390201i \(-0.872405\pi\)
0.390201 + 0.920730i \(0.372405\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 13.1493 + 6.12247i 0.696912 + 0.324490i
\(357\) 0 0
\(358\) 15.0824 9.61461i 0.797129 0.508148i
\(359\) −14.2334 −0.751211 −0.375606 0.926780i \(-0.622565\pi\)
−0.375606 + 0.926780i \(0.622565\pi\)
\(360\) 0 0
\(361\) −17.5048 −0.921305
\(362\) −9.21731 + 5.87578i −0.484451 + 0.308824i
\(363\) 0 0
\(364\) 3.90543 + 1.81841i 0.204700 + 0.0953107i
\(365\) 0 0
\(366\) 0 0
\(367\) −2.89145 + 2.89145i −0.150933 + 0.150933i −0.778534 0.627602i \(-0.784037\pi\)
0.627602 + 0.778534i \(0.284037\pi\)
\(368\) 0.524045 6.06988i 0.0273177 0.316414i
\(369\) 0 0
\(370\) 0 0
\(371\) 3.21128i 0.166721i
\(372\) 0 0
\(373\) 11.2847 11.2847i 0.584298 0.584298i −0.351783 0.936081i \(-0.614425\pi\)
0.936081 + 0.351783i \(0.114425\pi\)
\(374\) −8.33950 + 37.6681i −0.431225 + 1.94777i
\(375\) 0 0
\(376\) −7.30299 5.59383i −0.376623 0.288480i
\(377\) −1.52311 1.52311i −0.0784444 0.0784444i
\(378\) 0 0
\(379\) 15.4562 0.793932 0.396966 0.917833i \(-0.370063\pi\)
0.396966 + 0.917833i \(0.370063\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −5.35571 8.40148i −0.274022 0.429857i
\(383\) 12.5562 + 12.5562i 0.641593 + 0.641593i 0.950947 0.309354i \(-0.100113\pi\)
−0.309354 + 0.950947i \(0.600113\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.97376 + 22.4656i −0.253158 + 1.14347i
\(387\) 0 0
\(388\) −2.10945 + 0.769144i −0.107091 + 0.0390474i
\(389\) 5.16327i 0.261788i 0.991396 + 0.130894i \(0.0417848\pi\)
−0.991396 + 0.130894i \(0.958215\pi\)
\(390\) 0 0
\(391\) 8.10243i 0.409757i
\(392\) −17.5312 + 2.32333i −0.885458 + 0.117346i
\(393\) 0 0
\(394\) −15.3847 3.40608i −0.775068 0.171596i
\(395\) 0 0
\(396\) 0 0
\(397\) 3.46293 + 3.46293i 0.173800 + 0.173800i 0.788646 0.614847i \(-0.210782\pi\)
−0.614847 + 0.788646i \(0.710782\pi\)
\(398\) −13.6892 + 8.72648i −0.686177 + 0.437419i
\(399\) 0 0
\(400\) 0 0
\(401\) −3.49521 −0.174542 −0.0872712 0.996185i \(-0.527815\pi\)
−0.0872712 + 0.996185i \(0.527815\pi\)
\(402\) 0 0
\(403\) −13.7593 13.7593i −0.685399 0.685399i
\(404\) 8.54079 18.3432i 0.424920 0.912608i
\(405\) 0 0
\(406\) −1.03228 0.228540i −0.0512310 0.0113423i
\(407\) −9.03365 + 9.03365i −0.447781 + 0.447781i
\(408\) 0 0
\(409\) 14.8034i 0.731982i −0.930618 0.365991i \(-0.880730\pi\)
0.930618 0.365991i \(-0.119270\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 10.1580 3.70379i 0.500448 0.182473i
\(413\) −0.323204 + 0.323204i −0.0159039 + 0.0159039i
\(414\) 0 0
\(415\) 0 0
\(416\) −12.4908 + 6.52505i −0.612414 + 0.319917i
\(417\) 0 0
\(418\) −4.76699 7.47795i −0.233161 0.365758i
\(419\) 19.0701 0.931634 0.465817 0.884881i \(-0.345760\pi\)
0.465817 + 0.884881i \(0.345760\pi\)
\(420\) 0 0
\(421\) −20.8034 −1.01390 −0.506948 0.861976i \(-0.669226\pi\)
−0.506948 + 0.861976i \(0.669226\pi\)
\(422\) 4.17450 + 6.54852i 0.203212 + 0.318777i
\(423\) 0 0
\(424\) −8.33950 6.38776i −0.405002 0.310217i
\(425\) 0 0
\(426\) 0 0
\(427\) 3.04577 3.04577i 0.147395 0.147395i
\(428\) 5.33968 + 14.6446i 0.258103 + 0.707872i
\(429\) 0 0
\(430\) 0 0
\(431\) 15.3302i 0.738428i −0.929344 0.369214i \(-0.879627\pi\)
0.929344 0.369214i \(-0.120373\pi\)
\(432\) 0 0
\(433\) −16.2803 + 16.2803i −0.782381 + 0.782381i −0.980232 0.197851i \(-0.936604\pi\)
0.197851 + 0.980232i \(0.436604\pi\)
\(434\) −9.32521 2.06455i −0.447625 0.0991016i
\(435\) 0 0
\(436\) −13.2663 6.17696i −0.635343 0.295823i
\(437\) 1.31695 + 1.31695i 0.0629981 + 0.0629981i
\(438\) 0 0
\(439\) 24.6554 1.17674 0.588368 0.808593i \(-0.299770\pi\)
0.588368 + 0.808593i \(0.299770\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −15.8037 + 10.0744i −0.751706 + 0.479192i
\(443\) 1.77116 + 1.77116i 0.0841501 + 0.0841501i 0.747929 0.663779i \(-0.231048\pi\)
−0.663779 + 0.747929i \(0.731048\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −21.2218 4.69839i −1.00488 0.222475i
\(447\) 0 0
\(448\) −3.44827 + 5.99634i −0.162916 + 0.283300i
\(449\) 33.1512i 1.56450i 0.622963 + 0.782251i \(0.285929\pi\)
−0.622963 + 0.782251i \(0.714071\pi\)
\(450\) 0 0
\(451\) 28.3237i 1.33371i
\(452\) 0.493326 + 1.35299i 0.0232041 + 0.0636394i
\(453\) 0 0
\(454\) −2.15401 + 9.72928i −0.101093 + 0.456618i
\(455\) 0 0
\(456\) 0 0
\(457\) 7.50479 + 7.50479i 0.351059 + 0.351059i 0.860504 0.509444i \(-0.170149\pi\)
−0.509444 + 0.860504i \(0.670149\pi\)
\(458\) 19.5806 + 30.7159i 0.914939 + 1.43526i
\(459\) 0 0
\(460\) 0 0
\(461\) 27.0216 1.25852 0.629262 0.777193i \(-0.283357\pi\)
0.629262 + 0.777193i \(0.283357\pi\)
\(462\) 0 0
\(463\) −27.7123 27.7123i −1.28790 1.28790i −0.936059 0.351843i \(-0.885555\pi\)
−0.351843 0.936059i \(-0.614445\pi\)
\(464\) 2.64687 2.22615i 0.122878 0.103347i
\(465\) 0 0
\(466\) 0.309251 1.39683i 0.0143258 0.0647070i
\(467\) −2.00823 + 2.00823i −0.0929296 + 0.0929296i −0.752043 0.659114i \(-0.770932\pi\)
0.659114 + 0.752043i \(0.270932\pi\)
\(468\) 0 0
\(469\) 7.58767i 0.350366i
\(470\) 0 0
\(471\) 0 0
\(472\) −0.196436 1.48225i −0.00904172 0.0682260i
\(473\) −31.8217 + 31.8217i −1.46317 + 1.46317i
\(474\) 0 0
\(475\) 0 0
\(476\) −3.88296 + 8.33950i −0.177975 + 0.382240i
\(477\) 0 0
\(478\) −32.1210 + 20.4763i −1.46918 + 0.936562i
\(479\) 13.7593 0.628678 0.314339 0.949311i \(-0.398217\pi\)
0.314339 + 0.949311i \(0.398217\pi\)
\(480\) 0 0
\(481\) −6.20617 −0.282977
\(482\) −16.8055 + 10.7131i −0.765470 + 0.487966i
\(483\) 0 0
\(484\) −12.9151 + 27.7379i −0.587049 + 1.26081i
\(485\) 0 0
\(486\) 0 0
\(487\) 24.3355 24.3355i 1.10275 1.10275i 0.108671 0.994078i \(-0.465340\pi\)
0.994078 0.108671i \(-0.0346596\pi\)
\(488\) 1.85115 + 13.9682i 0.0837975 + 0.632310i
\(489\) 0 0
\(490\) 0 0
\(491\) 28.8918i 1.30387i 0.758275 + 0.651935i \(0.226043\pi\)
−0.758275 + 0.651935i \(0.773957\pi\)
\(492\) 0 0
\(493\) 3.25240 3.25240i 0.146481 0.146481i
\(494\) 0.931222 4.20617i 0.0418977 0.189244i
\(495\) 0 0
\(496\) 23.9109 20.1103i 1.07363 0.902979i
\(497\) −4.95377 4.95377i −0.222207 0.222207i
\(498\) 0 0
\(499\) −12.5365 −0.561211 −0.280605 0.959823i \(-0.590535\pi\)
−0.280605 + 0.959823i \(0.590535\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 13.1112 + 20.5675i 0.585182 + 0.917972i
\(503\) −9.01392 9.01392i −0.401911 0.401911i 0.476995 0.878906i \(-0.341726\pi\)
−0.878906 + 0.476995i \(0.841726\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.38776 10.7851i 0.106149 0.479455i
\(507\) 0 0
\(508\) 7.25806 + 19.9059i 0.322025 + 0.883182i
\(509\) 22.5448i 0.999279i 0.866233 + 0.499640i \(0.166534\pi\)
−0.866233 + 0.499640i \(0.833466\pi\)
\(510\) 0 0
\(511\) 2.75420i 0.121839i
\(512\) −8.71295 20.8826i −0.385062 0.922891i
\(513\) 0 0
\(514\) 29.3180 + 6.49084i 1.29316 + 0.286299i
\(515\) 0 0
\(516\) 0 0
\(517\) −11.7938 11.7938i −0.518692 0.518692i
\(518\) −2.56869 + 1.63747i −0.112862 + 0.0719464i
\(519\) 0 0
\(520\) 0 0
\(521\) 18.9046 0.828226 0.414113 0.910225i \(-0.364092\pi\)
0.414113 + 0.910225i \(0.364092\pi\)
\(522\) 0 0
\(523\) 21.8269 + 21.8269i 0.954426 + 0.954426i 0.999006 0.0445800i \(-0.0141949\pi\)
−0.0445800 + 0.999006i \(0.514195\pi\)
\(524\) 25.3768 + 11.8157i 1.10859 + 0.516172i
\(525\) 0 0
\(526\) 13.1493 + 2.91118i 0.573337 + 0.126934i
\(527\) 29.3810 29.3810i 1.27986 1.27986i
\(528\) 0 0
\(529\) 20.6801i 0.899136i
\(530\) 0 0
\(531\) 0 0
\(532\) −0.724353 1.98661i −0.0314047 0.0861303i
\(533\) 9.72928 9.72928i 0.421422 0.421422i
\(534\) 0 0
\(535\) 0 0
\(536\) −19.7047 15.0931i −0.851114 0.651922i
\(537\) 0 0
\(538\) 19.5407 + 30.6533i 0.842457 + 1.32156i
\(539\) −32.0637 −1.38108
\(540\) 0 0
\(541\) 7.85838 0.337858 0.168929 0.985628i \(-0.445969\pi\)
0.168929 + 0.985628i \(0.445969\pi\)
\(542\) 0.707913 + 1.11050i 0.0304075 + 0.0477000i
\(543\) 0 0
\(544\) −13.9333 26.6724i −0.597387 1.14357i
\(545\) 0 0
\(546\) 0 0
\(547\) −17.8105 + 17.8105i −0.761522 + 0.761522i −0.976597 0.215076i \(-0.931000\pi\)
0.215076 + 0.976597i \(0.431000\pi\)
\(548\) 18.6382 6.79582i 0.796183 0.290303i
\(549\) 0 0
\(550\) 0 0
\(551\) 1.05727i 0.0450413i
\(552\) 0 0
\(553\) −9.72928 + 9.72928i −0.413731 + 0.413731i
\(554\) −43.0773 9.53707i −1.83018 0.405191i
\(555\) 0 0
\(556\) 1.92482 4.13397i 0.0816307 0.175319i
\(557\) 23.3372 + 23.3372i 0.988827 + 0.988827i 0.999938 0.0111112i \(-0.00353686\pi\)
−0.0111112 + 0.999938i \(0.503537\pi\)
\(558\) 0 0
\(559\) −21.8617 −0.924652
\(560\) 0 0
\(561\) 0 0
\(562\) 10.2191 6.51439i 0.431067 0.274793i
\(563\) −5.27400 5.27400i −0.222273 0.222273i 0.587182 0.809455i \(-0.300237\pi\)
−0.809455 + 0.587182i \(0.800237\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 22.5939 + 5.00217i 0.949693 + 0.210257i
\(567\) 0 0
\(568\) 22.7185 3.01079i 0.953247 0.126330i
\(569\) 28.5606i 1.19732i −0.801002 0.598661i \(-0.795699\pi\)
0.801002 0.598661i \(-0.204301\pi\)
\(570\) 0 0
\(571\) 32.2837i 1.35103i 0.737347 + 0.675515i \(0.236078\pi\)
−0.737347 + 0.675515i \(0.763922\pi\)
\(572\) −24.0051 + 8.75270i −1.00370 + 0.365969i
\(573\) 0 0
\(574\) 1.45986 6.59392i 0.0609333 0.275225i
\(575\) 0 0
\(576\) 0 0
\(577\) −27.0279 27.0279i −1.12519 1.12519i −0.990949 0.134237i \(-0.957142\pi\)
−0.134237 0.990949i \(-0.542858\pi\)
\(578\) −8.58919 13.4738i −0.357263 0.560437i
\(579\) 0 0
\(580\) 0 0
\(581\) 9.72928 0.403639
\(582\) 0 0
\(583\) −13.4677 13.4677i −0.557776 0.557776i
\(584\) 7.15249 + 5.47855i 0.295972 + 0.226704i
\(585\) 0 0
\(586\) −5.57560 + 25.1840i −0.230326 + 1.04034i
\(587\) 17.1558 17.1558i 0.708096 0.708096i −0.258039 0.966135i \(-0.583076\pi\)
0.966135 + 0.258039i \(0.0830761\pi\)
\(588\) 0 0
\(589\) 9.55102i 0.393543i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.857132 9.92794i 0.0352279 0.408036i
\(593\) −21.5833 + 21.5833i −0.886320 + 0.886320i −0.994167 0.107848i \(-0.965604\pi\)
0.107848 + 0.994167i \(0.465604\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18.3432 8.54079i −0.751366 0.349844i
\(597\) 0 0
\(598\) 4.52490 2.88450i 0.185037 0.117956i
\(599\) 23.7636 0.970955 0.485478 0.874249i \(-0.338646\pi\)
0.485478 + 0.874249i \(0.338646\pi\)
\(600\) 0 0
\(601\) 22.1695 0.904314 0.452157 0.891938i \(-0.350655\pi\)
0.452157 + 0.891938i \(0.350655\pi\)
\(602\) −9.04843 + 5.76813i −0.368786 + 0.235091i
\(603\) 0 0
\(604\) 14.3904 + 6.70033i 0.585537 + 0.272633i
\(605\) 0 0
\(606\) 0 0
\(607\) −9.35348 + 9.35348i −0.379646 + 0.379646i −0.870974 0.491328i \(-0.836511\pi\)
0.491328 + 0.870974i \(0.336511\pi\)
\(608\) 6.59995 + 2.07058i 0.267663 + 0.0839731i
\(609\) 0 0
\(610\) 0 0
\(611\) 8.10243i 0.327789i
\(612\) 0 0
\(613\) 24.1247 24.1247i 0.974389 0.974389i −0.0252913 0.999680i \(-0.508051\pi\)
0.999680 + 0.0252913i \(0.00805134\pi\)
\(614\) 0.694151 3.13536i 0.0280137 0.126533i
\(615\) 0 0
\(616\) −7.62620 + 9.95634i −0.307268 + 0.401152i
\(617\) 3.82611 + 3.82611i 0.154033 + 0.154033i 0.779917 0.625883i \(-0.215261\pi\)
−0.625883 + 0.779917i \(0.715261\pi\)
\(618\) 0 0
\(619\) 30.1297 1.21101 0.605507 0.795840i \(-0.292971\pi\)
0.605507 + 0.795840i \(0.292971\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 14.7601 + 23.1541i 0.591826 + 0.928395i
\(623\) 4.43407 + 4.43407i 0.177647 + 0.177647i
\(624\) 0 0
\(625\) 0 0
\(626\) 7.65681 34.5845i 0.306028 1.38227i
\(627\) 0 0
\(628\) −23.9528 + 8.73362i −0.955819 + 0.348509i
\(629\) 13.2524i 0.528408i
\(630\) 0 0
\(631\) 21.5701i 0.858694i 0.903140 + 0.429347i \(0.141256\pi\)
−0.903140 + 0.429347i \(0.858744\pi\)
\(632\) −5.91324 44.6195i −0.235216 1.77487i
\(633\) 0 0
\(634\) 15.2106 + 3.36754i 0.604090 + 0.133742i
\(635\) 0 0
\(636\) 0 0
\(637\) −11.0140 11.0140i −0.436389 0.436389i
\(638\) 5.28771 3.37077i 0.209342 0.133450i
\(639\) 0 0
\(640\) 0 0
\(641\) −48.3911 −1.91133 −0.955666 0.294452i \(-0.904863\pi\)
−0.955666 + 0.294452i \(0.904863\pi\)
\(642\) 0 0
\(643\) 23.3413 + 23.3413i 0.920491 + 0.920491i 0.997064 0.0765729i \(-0.0243978\pi\)
−0.0765729 + 0.997064i \(0.524398\pi\)
\(644\) 1.11177 2.38776i 0.0438097 0.0940907i
\(645\) 0 0
\(646\) 8.98168 + 1.98849i 0.353379 + 0.0782362i
\(647\) −32.4465 + 32.4465i −1.27560 + 1.27560i −0.332501 + 0.943103i \(0.607892\pi\)
−0.943103 + 0.332501i \(0.892108\pi\)
\(648\) 0 0
\(649\) 2.71096i 0.106414i
\(650\) 0 0
\(651\) 0 0
\(652\) −34.7704 + 12.6779i −1.36171 + 0.496506i
\(653\) 18.4725 18.4725i 0.722885 0.722885i −0.246307 0.969192i \(-0.579217\pi\)
0.969192 + 0.246307i \(0.0792170\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 14.2201 + 16.9075i 0.555202 + 0.660128i
\(657\) 0 0
\(658\) −2.13779 3.35355i −0.0833399 0.130735i
\(659\) 47.5028 1.85045 0.925223 0.379423i \(-0.123878\pi\)
0.925223 + 0.379423i \(0.123878\pi\)
\(660\) 0 0
\(661\) −46.1204 −1.79387 −0.896937 0.442158i \(-0.854213\pi\)
−0.896937 + 0.442158i \(0.854213\pi\)
\(662\) 24.0987 + 37.8035i 0.936621 + 1.46927i
\(663\) 0 0
\(664\) −19.3531 + 25.2663i −0.751046 + 0.980525i
\(665\) 0 0
\(666\) 0 0
\(667\) −0.931222 + 0.931222i −0.0360571 + 0.0360571i
\(668\) −10.9810 30.1163i −0.424867 1.16524i
\(669\) 0 0
\(670\) 0 0
\(671\) 25.5471i 0.986236i
\(672\) 0 0
\(673\) −3.60599 + 3.60599i −0.139001 + 0.139001i −0.773183 0.634183i \(-0.781337\pi\)
0.634183 + 0.773183i \(0.281337\pi\)
\(674\) 37.0300 + 8.19825i 1.42634 + 0.315785i
\(675\) 0 0
\(676\) 12.3179 + 5.73535i 0.473765 + 0.220590i
\(677\) −8.26635 8.26635i −0.317702 0.317702i 0.530182 0.847884i \(-0.322124\pi\)
−0.847884 + 0.530182i \(0.822124\pi\)
\(678\) 0 0
\(679\) −0.970688 −0.0372516
\(680\) 0 0
\(681\) 0 0
\(682\) 47.7673 30.4503i 1.82910 1.16600i
\(683\) −8.43079 8.43079i −0.322595 0.322595i 0.527167 0.849762i \(-0.323254\pi\)
−0.849762 + 0.527167i \(0.823254\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −15.8217 3.50285i −0.604077 0.133739i
\(687\) 0 0
\(688\) 3.01932 34.9719i 0.115110 1.33329i
\(689\) 9.25240i 0.352488i
\(690\) 0 0
\(691\) 21.9182i 0.833809i 0.908950 + 0.416905i \(0.136885\pi\)
−0.908950 + 0.416905i \(0.863115\pi\)
\(692\) −7.71993 21.1726i −0.293468 0.804862i
\(693\) 0 0
\(694\) 3.33733 15.0741i 0.126683 0.572206i
\(695\) 0 0
\(696\) 0 0
\(697\) 20.7755 + 20.7755i 0.786929 + 0.786929i
\(698\) −20.5817 32.2864i −0.779029 1.22206i
\(699\) 0 0
\(700\) 0 0
\(701\) 21.8184 0.824070 0.412035 0.911168i \(-0.364818\pi\)
0.412035 + 0.911168i \(0.364818\pi\)
\(702\) 0 0
\(703\) 2.15401 + 2.15401i 0.0812400 + 0.0812400i
\(704\) −10.6863 39.6095i −0.402754 1.49284i
\(705\) 0 0
\(706\) 4.30925 19.4641i 0.162181 0.732542i
\(707\) 6.18549 6.18549i 0.232629 0.232629i
\(708\) 0 0
\(709\) 31.7938i 1.19404i −0.802225 0.597021i \(-0.796351\pi\)
0.802225 0.597021i \(-0.203649\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −20.3351 + 2.69493i −0.762089 + 0.100997i
\(713\) −8.41233 + 8.41233i −0.315044 + 0.315044i
\(714\) 0 0
\(715\) 0 0
\(716\) −10.6770 + 22.9312i −0.399019 + 0.856979i
\(717\) 0 0
\(718\) 16.9736 10.8202i 0.633450 0.403807i
\(719\) −52.0874 −1.94253 −0.971265 0.237999i \(-0.923508\pi\)
−0.971265 + 0.237999i \(0.923508\pi\)
\(720\) 0 0
\(721\) 4.67432 0.174081
\(722\) 20.8748 13.3071i 0.776879 0.495239i
\(723\) 0 0
\(724\) 6.52505 14.0140i 0.242502 0.520824i
\(725\) 0 0
\(726\) 0 0
\(727\) 8.13069 8.13069i 0.301551 0.301551i −0.540070 0.841620i \(-0.681602\pi\)
0.841620 + 0.540070i \(0.181602\pi\)
\(728\) −6.03965 + 0.800411i −0.223844 + 0.0296652i
\(729\) 0 0
\(730\) 0 0
\(731\) 46.6826i 1.72662i
\(732\) 0 0
\(733\) 29.9956 29.9956i 1.10791 1.10791i 0.114489 0.993424i \(-0.463477\pi\)
0.993424 0.114489i \(-0.0365232\pi\)
\(734\) 1.25003 5.64618i 0.0461396 0.208404i
\(735\) 0 0
\(736\) 3.98937 + 7.63682i 0.147050 + 0.281497i
\(737\) −31.8217 31.8217i −1.17217 1.17217i
\(738\) 0 0
\(739\) −39.4719 −1.45200 −0.725999 0.687696i \(-0.758622\pi\)
−0.725999 + 0.687696i \(0.758622\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.44121 3.82951i −0.0896196 0.140586i
\(743\) 12.2252 + 12.2252i 0.448499 + 0.448499i 0.894855 0.446356i \(-0.147279\pi\)
−0.446356 + 0.894855i \(0.647279\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −4.87859 + 22.0358i −0.178618 + 0.806786i
\(747\) 0 0
\(748\) −18.6902 51.2595i −0.683380 1.87423i
\(749\) 6.73887i 0.246233i
\(750\) 0 0
\(751\) 28.9069i 1.05483i −0.849609 0.527413i \(-0.823162\pi\)
0.849609 0.527413i \(-0.176838\pi\)
\(752\) 12.9614 + 1.11902i 0.472652 + 0.0408066i
\(753\) 0 0
\(754\) 2.97421 + 0.658473i 0.108314 + 0.0239802i
\(755\) 0 0
\(756\) 0 0
\(757\) 16.2018 + 16.2018i 0.588864 + 0.588864i 0.937324 0.348459i \(-0.113295\pi\)
−0.348459 + 0.937324i \(0.613295\pi\)
\(758\) −18.4318 + 11.7498i −0.669474 + 0.426771i
\(759\) 0 0
\(760\) 0 0
\(761\) 6.64641 0.240932 0.120466 0.992717i \(-0.461561\pi\)
0.120466 + 0.992717i \(0.461561\pi\)
\(762\) 0 0
\(763\) −4.47353 4.47353i −0.161953 0.161953i
\(764\) 12.7736 + 5.94751i 0.462131 + 0.215173i
\(765\) 0 0
\(766\) −24.5187 5.42831i −0.885898 0.196133i
\(767\) 0.931222 0.931222i 0.0336245 0.0336245i
\(768\) 0 0
\(769\) 29.3449i 1.05820i 0.848559 + 0.529101i \(0.177471\pi\)
−0.848559 + 0.529101i \(0.822529\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −11.1470 30.5717i −0.401189 1.10030i
\(773\) 37.5833 37.5833i 1.35178 1.35178i 0.468104 0.883674i \(-0.344937\pi\)
0.883674 0.468104i \(-0.155063\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.93086 2.52082i 0.0693137 0.0904921i
\(777\) 0 0
\(778\) −3.92510 6.15729i −0.140722 0.220749i
\(779\) −6.75359 −0.241973
\(780\) 0 0
\(781\) 41.5510 1.48681
\(782\) 6.15945 + 9.66229i 0.220261 + 0.345523i
\(783\) 0 0
\(784\) 19.1400 16.0978i 0.683573 0.574920i
\(785\) 0 0
\(786\) 0 0
\(787\) 7.59353 7.59353i 0.270680 0.270680i −0.558694 0.829374i \(-0.688697\pi\)
0.829374 + 0.558694i \(0.188697\pi\)
\(788\) 20.9358 7.63357i 0.745806 0.271935i
\(789\) 0 0
\(790\) 0 0
\(791\) 0.622595i 0.0221369i
\(792\) 0 0
\(793\) −8.77551 + 8.77551i −0.311628 + 0.311628i
\(794\) −6.76212 1.49710i −0.239979 0.0531300i
\(795\) 0 0
\(796\) 9.69075 20.8130i 0.343479 0.737696i
\(797\) 27.4908 + 27.4908i 0.973775 + 0.973775i 0.999665 0.0258893i \(-0.00824175\pi\)
−0.0258893 + 0.999665i \(0.508242\pi\)
\(798\) 0 0
\(799\) 17.3016 0.612086
\(800\) 0 0
\(801\) 0 0
\(802\) 4.16810 2.65705i 0.147181 0.0938237i
\(803\) 11.5508 + 11.5508i 0.407618 + 0.407618i
\(804\) 0 0
\(805\) 0 0
\(806\) 26.8680 + 5.94842i 0.946384 + 0.209524i
\(807\) 0 0
\(808\) 3.75940 + 28.3673i 0.132255 + 0.997957i
\(809\) 47.7205i 1.67776i 0.544313 + 0.838882i \(0.316791\pi\)
−0.544313 + 0.838882i \(0.683209\pi\)
\(810\) 0 0
\(811\) 37.3179i 1.31041i 0.755451 + 0.655205i \(0.227418\pi\)
−0.755451 + 0.655205i \(0.772582\pi\)
\(812\) 1.40474 0.512195i 0.0492968 0.0179745i
\(813\) 0 0
\(814\) 3.90543 17.6402i 0.136885 0.618287i
\(815\) 0 0
\(816\) 0 0
\(817\) 7.58767 + 7.58767i 0.265459 + 0.265459i
\(818\) 11.2535 + 17.6533i 0.393470 + 0.617235i
\(819\) 0 0
\(820\) 0 0
\(821\) 0.686380 0.0239548 0.0119774 0.999928i \(-0.496187\pi\)
0.0119774 + 0.999928i \(0.496187\pi\)
\(822\) 0 0
\(823\) 27.2553 + 27.2553i 0.950059 + 0.950059i 0.998811 0.0487521i \(-0.0155244\pi\)
−0.0487521 + 0.998811i \(0.515524\pi\)
\(824\) −9.29797 + 12.1389i −0.323910 + 0.422879i
\(825\) 0 0
\(826\) 0.139728 0.631126i 0.00486175 0.0219597i
\(827\) −31.4437 + 31.4437i −1.09341 + 1.09341i −0.0982432 + 0.995162i \(0.531322\pi\)
−0.995162 + 0.0982432i \(0.968678\pi\)
\(828\) 0 0
\(829\) 0.270718i 0.00940243i −0.999989 0.00470122i \(-0.998504\pi\)
0.999989 0.00470122i \(-0.00149645\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 9.93522 17.2767i 0.344442 0.598964i
\(833\) 23.5187 23.5187i 0.814876 0.814876i
\(834\) 0 0
\(835\) 0 0
\(836\) 11.3694 + 5.29373i 0.393220 + 0.183088i
\(837\) 0 0
\(838\) −22.7414 + 14.4970i −0.785589 + 0.500792i
\(839\) −31.0214 −1.07098 −0.535489 0.844542i \(-0.679873\pi\)
−0.535489 + 0.844542i \(0.679873\pi\)
\(840\) 0 0
\(841\) 28.2524 0.974221
\(842\) 24.8085 15.8147i 0.854956 0.545011i
\(843\) 0 0
\(844\) −9.95634 4.63578i −0.342711 0.159570i
\(845\) 0 0
\(846\) 0 0
\(847\) −9.35348 + 9.35348i −0.321389 + 0.321389i
\(848\) 14.8010 + 1.27785i 0.508267 + 0.0438814i
\(849\) 0 0
\(850\) 0 0
\(851\) 3.79441i 0.130071i
\(852\) 0 0
\(853\) −3.82611 + 3.82611i −0.131003 + 0.131003i −0.769568 0.638565i \(-0.779528\pi\)
0.638565 + 0.769568i \(0.279528\pi\)
\(854\) −1.31675 + 5.94751i −0.0450581 + 0.203520i
\(855\) 0 0
\(856\) −17.5004 13.4047i −0.598152 0.458163i
\(857\) 20.7711 + 20.7711i 0.709529 + 0.709529i 0.966436 0.256907i \(-0.0827035\pi\)
−0.256907 + 0.966436i \(0.582704\pi\)
\(858\) 0 0
\(859\) 1.69693 0.0578985 0.0289492 0.999581i \(-0.490784\pi\)
0.0289492 + 0.999581i \(0.490784\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 11.6540 + 18.2815i 0.396935 + 0.622670i
\(863\) 5.92869 + 5.92869i 0.201815 + 0.201815i 0.800777 0.598962i \(-0.204420\pi\)
−0.598962 + 0.800777i \(0.704420\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 7.03831 31.7908i 0.239171 1.08030i
\(867\) 0 0
\(868\) 12.6900 4.62699i 0.430725 0.157050i
\(869\) 81.6068i 2.76832i
\(870\) 0 0
\(871\) 21.8617i 0.740756i
\(872\) 20.5161 2.71891i 0.694762 0.0920740i
\(873\) 0 0
\(874\) −2.57162 0.569343i −0.0869865 0.0192583i
\(875\) 0 0
\(876\) 0 0
\(877\) 10.0323 + 10.0323i 0.338766 + 0.338766i 0.855903 0.517137i \(-0.173002\pi\)
−0.517137 + 0.855903i \(0.673002\pi\)
\(878\) −29.4020 + 18.7430i −0.992269 + 0.632544i
\(879\) 0 0
\(880\) 0 0
\(881\) 29.8130 1.00443 0.502213 0.864744i \(-0.332519\pi\)
0.502213 + 0.864744i \(0.332519\pi\)
\(882\) 0 0
\(883\) 5.56557 + 5.56557i 0.187296 + 0.187296i 0.794526 0.607230i \(-0.207719\pi\)
−0.607230 + 0.794526i \(0.707719\pi\)
\(884\) 11.1877 24.0279i 0.376282 0.808146i
\(885\) 0 0
\(886\) −3.45856 0.765707i −0.116193 0.0257244i
\(887\) 8.59630 8.59630i 0.288636 0.288636i −0.547905 0.836541i \(-0.684574\pi\)
0.836541 + 0.547905i \(0.184574\pi\)
\(888\) 0 0
\(889\) 9.15994i 0.307214i
\(890\) 0 0
\(891\) 0 0
\(892\) 28.8791 10.5298i 0.966943 0.352565i
\(893\) −2.81215 + 2.81215i −0.0941052 + 0.0941052i
\(894\) 0 0
\(895\) 0 0
\(896\) −0.446274 9.77211i −0.0149090 0.326463i
\(897\) 0 0
\(898\) −25.2015 39.5334i −0.840984 1.31925i
\(899\) −6.75359 −0.225245
\(900\) 0 0
\(901\) 19.7572 0.658207
\(902\) 21.5316 + 33.7766i 0.716925 + 1.12464i
\(903\) 0 0
\(904\) −1.61684 1.23844i −0.0537754 0.0411900i
\(905\) 0 0
\(906\) 0 0
\(907\) −31.6263 + 31.6263i −1.05013 + 1.05013i −0.0514592 + 0.998675i \(0.516387\pi\)
−0.998675 + 0.0514592i \(0.983613\pi\)
\(908\) −4.82748 13.2398i −0.160206 0.439379i
\(909\) 0 0
\(910\) 0 0
\(911\) 42.2656i 1.40032i 0.713985 + 0.700161i \(0.246888\pi\)
−0.713985 + 0.700161i \(0.753112\pi\)
\(912\) 0 0
\(913\) −40.8034 + 40.8034i −1.35040 + 1.35040i
\(914\) −14.6547 3.24448i −0.484735 0.107318i
\(915\) 0 0
\(916\) −46.7003 21.7442i −1.54302 0.718448i
\(917\) 8.55728 + 8.55728i 0.282586 + 0.282586i
\(918\) 0 0
\(919\) −31.2829 −1.03193 −0.515964 0.856610i \(-0.672566\pi\)
−0.515964 + 0.856610i \(0.672566\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −32.2238 + 20.5418i −1.06123 + 0.676508i
\(923\) 14.2729 + 14.2729i 0.469798 + 0.469798i
\(924\) 0 0
\(925\) 0 0
\(926\) 54.1143 + 11.9806i 1.77831 + 0.393707i
\(927\) 0 0
\(928\) −1.46412 + 4.66687i −0.0480621 + 0.153198i
\(929\) 22.1050i 0.725241i −0.931937 0.362620i \(-0.881882\pi\)
0.931937 0.362620i \(-0.118118\pi\)
\(930\) 0 0
\(931\) 7.64535i 0.250566i
\(932\) 0.693082 + 1.90084i 0.0227026 + 0.0622641i
\(933\) 0 0
\(934\) 0.868197 3.92150i 0.0284083 0.128315i
\(935\) 0 0
\(936\) 0 0
\(937\) 15.2986 + 15.2986i 0.499784 + 0.499784i 0.911371 0.411586i \(-0.135025\pi\)
−0.411586 + 0.911371i \(0.635025\pi\)
\(938\) −5.76813 9.04843i −0.188336 0.295442i
\(939\) 0 0
\(940\) 0 0
\(941\) −25.5264 −0.832138 −0.416069 0.909333i \(-0.636593\pi\)
−0.416069 + 0.909333i \(0.636593\pi\)
\(942\) 0 0
\(943\) −5.94842 5.94842i −0.193707 0.193707i
\(944\) 1.36106 + 1.61828i 0.0442986 + 0.0526704i
\(945\) 0 0
\(946\) 13.7572 62.1388i 0.447285 2.02031i
\(947\) 11.9881 11.9881i 0.389562 0.389562i −0.484969 0.874531i \(-0.661169\pi\)
0.874531 + 0.484969i \(0.161169\pi\)
\(948\) 0 0
\(949\) 7.93545i 0.257596i
\(950\) 0 0
\(951\) 0 0
\(952\) −1.70916 12.8968i −0.0553943 0.417988i
\(953\) 5.99563 5.99563i 0.194218 0.194218i −0.603298 0.797516i \(-0.706147\pi\)
0.797516 + 0.603298i \(0.206147\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 22.7389 48.8366i 0.735427 1.57949i
\(957\) 0 0
\(958\) −16.4082 + 10.4598i −0.530125 + 0.337940i
\(959\) 8.57657 0.276952
\(960\) 0 0
\(961\) −30.0096 −0.968051
\(962\) 7.40097 4.71791i 0.238617 0.152112i
\(963\) 0 0
\(964\) 11.8968 25.5510i 0.383171 0.822943i
\(965\) 0 0
\(966\) 0 0
\(967\) 1.66866 1.66866i 0.0536606 0.0536606i −0.679767 0.733428i \(-0.737919\pi\)
0.733428 + 0.679767i \(0.237919\pi\)
\(968\) −5.68483 42.8960i −0.182717 1.37873i
\(969\) 0 0
\(970\) 0 0
\(971\) 4.79719i 0.153949i −0.997033 0.0769745i \(-0.975474\pi\)
0.997033 0.0769745i \(-0.0245260\pi\)
\(972\) 0 0
\(973\) 1.39401 1.39401i 0.0446900 0.0446900i
\(974\) −10.5208 + 47.5204i −0.337107 + 1.52265i
\(975\) 0 0
\(976\) −12.8261 15.2501i −0.410554 0.488143i
\(977\) −25.0140 25.0140i −0.800267 0.800267i 0.182870 0.983137i \(-0.441461\pi\)
−0.983137 + 0.182870i \(0.941461\pi\)
\(978\) 0 0
\(979\) −37.1919 −1.18866
\(980\) 0 0
\(981\) 0 0
\(982\) −21.9635 34.4540i −0.700884 1.09947i
\(983\) −30.9151 30.9151i −0.986038 0.986038i 0.0138655 0.999904i \(-0.495586\pi\)
−0.999904 + 0.0138655i \(0.995586\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1.40608 + 6.35101i −0.0447786 + 0.202257i
\(987\) 0 0
\(988\) 2.08702 + 5.72384i 0.0663969 + 0.182100i
\(989\) 13.3661i 0.425017i
\(990\) 0 0
\(991\) 26.5873i 0.844575i −0.906462 0.422287i \(-0.861227\pi\)
0.906462 0.422287i \(-0.138773\pi\)
\(992\) −13.2264 + 42.1589i −0.419937 + 1.33855i
\(993\) 0 0
\(994\) 9.67331 + 2.14162i 0.306819 + 0.0679280i
\(995\) 0 0
\(996\) 0 0
\(997\) 2.47252 + 2.47252i 0.0783054 + 0.0783054i 0.745175 0.666869i \(-0.232366\pi\)
−0.666869 + 0.745175i \(0.732366\pi\)
\(998\) 14.9500 9.53021i 0.473234 0.301674i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.k.n.307.2 12
3.2 odd 2 300.2.j.d.7.5 12
4.3 odd 2 inner 900.2.k.n.307.5 12
5.2 odd 4 180.2.k.e.163.2 12
5.3 odd 4 inner 900.2.k.n.343.5 12
5.4 even 2 180.2.k.e.127.5 12
12.11 even 2 300.2.j.d.7.2 12
15.2 even 4 60.2.j.a.43.5 yes 12
15.8 even 4 300.2.j.d.43.2 12
15.14 odd 2 60.2.j.a.7.2 12
20.3 even 4 inner 900.2.k.n.343.2 12
20.7 even 4 180.2.k.e.163.5 12
20.19 odd 2 180.2.k.e.127.2 12
60.23 odd 4 300.2.j.d.43.5 12
60.47 odd 4 60.2.j.a.43.2 yes 12
60.59 even 2 60.2.j.a.7.5 yes 12
120.29 odd 2 960.2.w.g.127.2 12
120.59 even 2 960.2.w.g.127.5 12
120.77 even 4 960.2.w.g.703.5 12
120.107 odd 4 960.2.w.g.703.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.2.j.a.7.2 12 15.14 odd 2
60.2.j.a.7.5 yes 12 60.59 even 2
60.2.j.a.43.2 yes 12 60.47 odd 4
60.2.j.a.43.5 yes 12 15.2 even 4
180.2.k.e.127.2 12 20.19 odd 2
180.2.k.e.127.5 12 5.4 even 2
180.2.k.e.163.2 12 5.2 odd 4
180.2.k.e.163.5 12 20.7 even 4
300.2.j.d.7.2 12 12.11 even 2
300.2.j.d.7.5 12 3.2 odd 2
300.2.j.d.43.2 12 15.8 even 4
300.2.j.d.43.5 12 60.23 odd 4
900.2.k.n.307.2 12 1.1 even 1 trivial
900.2.k.n.307.5 12 4.3 odd 2 inner
900.2.k.n.343.2 12 20.3 even 4 inner
900.2.k.n.343.5 12 5.3 odd 4 inner
960.2.w.g.127.2 12 120.29 odd 2
960.2.w.g.127.5 12 120.59 even 2
960.2.w.g.703.2 12 120.107 odd 4
960.2.w.g.703.5 12 120.77 even 4