Properties

Label 180.2.k.e.127.5
Level $180$
Weight $2$
Character 180.127
Analytic conductor $1.437$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [180,2,Mod(127,180)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(180, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("180.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 180.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.43730723638\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.426337261060096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.5
Root \(1.19252 - 0.760198i\) of defining polynomial
Character \(\chi\) \(=\) 180.127
Dual form 180.2.k.e.163.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19252 - 0.760198i) q^{2} +(0.844199 - 1.81310i) q^{4} +(-0.432320 - 2.19388i) q^{5} +(-0.611393 + 0.611393i) q^{7} +(-0.371591 - 2.80391i) q^{8} +O(q^{10})\) \(q+(1.19252 - 0.760198i) q^{2} +(0.844199 - 1.81310i) q^{4} +(-0.432320 - 2.19388i) q^{5} +(-0.611393 + 0.611393i) q^{7} +(-0.371591 - 2.80391i) q^{8} +(-2.18333 - 2.28759i) q^{10} +5.12822i q^{11} +(1.76156 - 1.76156i) q^{13} +(-0.264318 + 1.19388i) q^{14} +(-2.57466 - 3.06123i) q^{16} +(3.76156 + 3.76156i) q^{17} +1.22279 q^{19} +(-4.34268 - 1.06823i) q^{20} +(3.89846 + 6.11549i) q^{22} +(-1.07700 - 1.07700i) q^{23} +(-4.62620 + 1.89692i) q^{25} +(0.761557 - 3.43982i) q^{26} +(0.592379 + 1.62465i) q^{28} +0.864641i q^{29} +7.81086i q^{31} +(-5.39747 - 1.69333i) q^{32} +(7.34525 + 1.62620i) q^{34} +(1.60564 + 1.07700i) q^{35} +(-1.76156 - 1.76156i) q^{37} +(1.45820 - 0.929560i) q^{38} +(-5.99079 + 2.02741i) q^{40} -5.52311 q^{41} +(-6.20522 - 6.20522i) q^{43} +(9.29797 + 4.32924i) q^{44} +(-2.10308 - 0.465611i) q^{46} +(2.29979 - 2.29979i) q^{47} +6.25240i q^{49} +(-4.07479 + 5.77893i) q^{50} +(-1.70677 - 4.68098i) q^{52} +(2.62620 - 2.62620i) q^{53} +(11.2507 - 2.21703i) q^{55} +(1.94148 + 1.48710i) q^{56} +(0.657298 + 1.03110i) q^{58} -0.528636 q^{59} +4.98168 q^{61} +(5.93780 + 9.31460i) q^{62} +(-7.72384 + 2.08382i) q^{64} +(-4.62620 - 3.10308i) q^{65} +(6.20522 - 6.20522i) q^{67} +(9.99558 - 3.64457i) q^{68} +(2.73349 + 0.0637434i) q^{70} -8.10243i q^{71} +(-2.25240 + 2.25240i) q^{73} +(-3.43982 - 0.761557i) q^{74} +(1.03228 - 2.21703i) q^{76} +(-3.13536 - 3.13536i) q^{77} -15.9133 q^{79} +(-5.60289 + 6.97191i) q^{80} +(-6.58641 + 4.19866i) q^{82} +(-7.95665 - 7.95665i) q^{83} +(6.62620 - 9.87859i) q^{85} +(-12.1170 - 2.68264i) q^{86} +(14.3791 - 1.90560i) q^{88} +7.25240i q^{89} +2.15401i q^{91} +(-2.86192 + 1.04351i) q^{92} +(0.994247 - 4.49084i) q^{94} +(-0.528636 - 2.68264i) q^{95} +(0.793833 + 0.793833i) q^{97} +(4.75306 + 7.45610i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 12 q^{8} - 8 q^{10} - 4 q^{13} + 12 q^{16} + 20 q^{17} - 20 q^{20} + 12 q^{22} - 20 q^{25} - 16 q^{26} - 4 q^{28} - 20 q^{32} + 4 q^{37} - 16 q^{38} - 8 q^{40} - 16 q^{41} - 40 q^{46} + 16 q^{50} - 8 q^{52} - 4 q^{53} + 64 q^{56} - 20 q^{58} - 32 q^{61} + 56 q^{62} - 20 q^{65} + 16 q^{68} + 44 q^{70} + 44 q^{73} + 8 q^{76} - 48 q^{77} - 4 q^{80} + 16 q^{82} + 44 q^{85} - 64 q^{86} + 60 q^{88} - 56 q^{92} - 20 q^{97} - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19252 0.760198i 0.843238 0.537541i
\(3\) 0 0
\(4\) 0.844199 1.81310i 0.422099 0.906550i
\(5\) −0.432320 2.19388i −0.193340 0.981132i
\(6\) 0 0
\(7\) −0.611393 + 0.611393i −0.231085 + 0.231085i −0.813145 0.582060i \(-0.802247\pi\)
0.582060 + 0.813145i \(0.302247\pi\)
\(8\) −0.371591 2.80391i −0.131377 0.991332i
\(9\) 0 0
\(10\) −2.18333 2.28759i −0.690430 0.723399i
\(11\) 5.12822i 1.54622i 0.634274 + 0.773108i \(0.281299\pi\)
−0.634274 + 0.773108i \(0.718701\pi\)
\(12\) 0 0
\(13\) 1.76156 1.76156i 0.488568 0.488568i −0.419286 0.907854i \(-0.637720\pi\)
0.907854 + 0.419286i \(0.137720\pi\)
\(14\) −0.264318 + 1.19388i −0.0706419 + 0.319077i
\(15\) 0 0
\(16\) −2.57466 3.06123i −0.643664 0.765308i
\(17\) 3.76156 + 3.76156i 0.912312 + 0.912312i 0.996454 0.0841421i \(-0.0268150\pi\)
−0.0841421 + 0.996454i \(0.526815\pi\)
\(18\) 0 0
\(19\) 1.22279 0.280527 0.140263 0.990114i \(-0.455205\pi\)
0.140263 + 0.990114i \(0.455205\pi\)
\(20\) −4.34268 1.06823i −0.971053 0.238863i
\(21\) 0 0
\(22\) 3.89846 + 6.11549i 0.831154 + 1.30383i
\(23\) −1.07700 1.07700i −0.224571 0.224571i 0.585849 0.810420i \(-0.300761\pi\)
−0.810420 + 0.585849i \(0.800761\pi\)
\(24\) 0 0
\(25\) −4.62620 + 1.89692i −0.925240 + 0.379383i
\(26\) 0.761557 3.43982i 0.149354 0.674604i
\(27\) 0 0
\(28\) 0.592379 + 1.62465i 0.111949 + 0.307031i
\(29\) 0.864641i 0.160560i 0.996772 + 0.0802799i \(0.0255814\pi\)
−0.996772 + 0.0802799i \(0.974419\pi\)
\(30\) 0 0
\(31\) 7.81086i 1.40287i 0.712732 + 0.701436i \(0.247457\pi\)
−0.712732 + 0.701436i \(0.752543\pi\)
\(32\) −5.39747 1.69333i −0.954146 0.299341i
\(33\) 0 0
\(34\) 7.34525 + 1.62620i 1.25970 + 0.278891i
\(35\) 1.60564 + 1.07700i 0.271403 + 0.182047i
\(36\) 0 0
\(37\) −1.76156 1.76156i −0.289598 0.289598i 0.547323 0.836921i \(-0.315647\pi\)
−0.836921 + 0.547323i \(0.815647\pi\)
\(38\) 1.45820 0.929560i 0.236551 0.150795i
\(39\) 0 0
\(40\) −5.99079 + 2.02741i −0.947227 + 0.320562i
\(41\) −5.52311 −0.862566 −0.431283 0.902217i \(-0.641939\pi\)
−0.431283 + 0.902217i \(0.641939\pi\)
\(42\) 0 0
\(43\) −6.20522 6.20522i −0.946288 0.946288i 0.0523416 0.998629i \(-0.483332\pi\)
−0.998629 + 0.0523416i \(0.983332\pi\)
\(44\) 9.29797 + 4.32924i 1.40172 + 0.652657i
\(45\) 0 0
\(46\) −2.10308 0.465611i −0.310083 0.0686506i
\(47\) 2.29979 2.29979i 0.335459 0.335459i −0.519196 0.854655i \(-0.673769\pi\)
0.854655 + 0.519196i \(0.173769\pi\)
\(48\) 0 0
\(49\) 6.25240i 0.893199i
\(50\) −4.07479 + 5.77893i −0.576263 + 0.817264i
\(51\) 0 0
\(52\) −1.70677 4.68098i −0.236687 0.649135i
\(53\) 2.62620 2.62620i 0.360736 0.360736i −0.503348 0.864084i \(-0.667899\pi\)
0.864084 + 0.503348i \(0.167899\pi\)
\(54\) 0 0
\(55\) 11.2507 2.21703i 1.51704 0.298945i
\(56\) 1.94148 + 1.48710i 0.259441 + 0.198723i
\(57\) 0 0
\(58\) 0.657298 + 1.03110i 0.0863075 + 0.135390i
\(59\) −0.528636 −0.0688225 −0.0344113 0.999408i \(-0.510956\pi\)
−0.0344113 + 0.999408i \(0.510956\pi\)
\(60\) 0 0
\(61\) 4.98168 0.637838 0.318919 0.947782i \(-0.396680\pi\)
0.318919 + 0.947782i \(0.396680\pi\)
\(62\) 5.93780 + 9.31460i 0.754101 + 1.18295i
\(63\) 0 0
\(64\) −7.72384 + 2.08382i −0.965480 + 0.260477i
\(65\) −4.62620 3.10308i −0.573809 0.384890i
\(66\) 0 0
\(67\) 6.20522 6.20522i 0.758089 0.758089i −0.217886 0.975974i \(-0.569916\pi\)
0.975974 + 0.217886i \(0.0699160\pi\)
\(68\) 9.99558 3.64457i 1.21214 0.441969i
\(69\) 0 0
\(70\) 2.73349 + 0.0637434i 0.326715 + 0.00761879i
\(71\) 8.10243i 0.961581i −0.876835 0.480791i \(-0.840350\pi\)
0.876835 0.480791i \(-0.159650\pi\)
\(72\) 0 0
\(73\) −2.25240 + 2.25240i −0.263623 + 0.263623i −0.826524 0.562901i \(-0.809685\pi\)
0.562901 + 0.826524i \(0.309685\pi\)
\(74\) −3.43982 0.761557i −0.399871 0.0885292i
\(75\) 0 0
\(76\) 1.03228 2.21703i 0.118410 0.254311i
\(77\) −3.13536 3.13536i −0.357307 0.357307i
\(78\) 0 0
\(79\) −15.9133 −1.79039 −0.895193 0.445680i \(-0.852962\pi\)
−0.895193 + 0.445680i \(0.852962\pi\)
\(80\) −5.60289 + 6.97191i −0.626423 + 0.779484i
\(81\) 0 0
\(82\) −6.58641 + 4.19866i −0.727348 + 0.463664i
\(83\) −7.95665 7.95665i −0.873355 0.873355i 0.119481 0.992836i \(-0.461877\pi\)
−0.992836 + 0.119481i \(0.961877\pi\)
\(84\) 0 0
\(85\) 6.62620 9.87859i 0.718712 1.07148i
\(86\) −12.1170 2.68264i −1.30661 0.289277i
\(87\) 0 0
\(88\) 14.3791 1.90560i 1.53281 0.203138i
\(89\) 7.25240i 0.768752i 0.923177 + 0.384376i \(0.125583\pi\)
−0.923177 + 0.384376i \(0.874417\pi\)
\(90\) 0 0
\(91\) 2.15401i 0.225801i
\(92\) −2.86192 + 1.04351i −0.298376 + 0.108793i
\(93\) 0 0
\(94\) 0.994247 4.49084i 0.102549 0.463195i
\(95\) −0.528636 2.68264i −0.0542369 0.275234i
\(96\) 0 0
\(97\) 0.793833 + 0.793833i 0.0806015 + 0.0806015i 0.746258 0.665657i \(-0.231848\pi\)
−0.665657 + 0.746258i \(0.731848\pi\)
\(98\) 4.75306 + 7.45610i 0.480131 + 0.753179i
\(99\) 0 0
\(100\) −0.466135 + 9.98913i −0.0466135 + 0.998913i
\(101\) 10.1170 1.00668 0.503341 0.864088i \(-0.332104\pi\)
0.503341 + 0.864088i \(0.332104\pi\)
\(102\) 0 0
\(103\) −3.82267 3.82267i −0.376659 0.376659i 0.493236 0.869895i \(-0.335814\pi\)
−0.869895 + 0.493236i \(0.835814\pi\)
\(104\) −5.59383 4.28467i −0.548520 0.420147i
\(105\) 0 0
\(106\) 1.13536 5.12822i 0.110276 0.498097i
\(107\) 5.51107 5.51107i 0.532775 0.532775i −0.388622 0.921397i \(-0.627049\pi\)
0.921397 + 0.388622i \(0.127049\pi\)
\(108\) 0 0
\(109\) 7.31695i 0.700836i −0.936593 0.350418i \(-0.886039\pi\)
0.936593 0.350418i \(-0.113961\pi\)
\(110\) 11.7313 11.1966i 1.11853 1.06755i
\(111\) 0 0
\(112\) 3.44575 + 0.297490i 0.325592 + 0.0281101i
\(113\) 0.509161 0.509161i 0.0478978 0.0478978i −0.682752 0.730650i \(-0.739217\pi\)
0.730650 + 0.682752i \(0.239217\pi\)
\(114\) 0 0
\(115\) −1.89721 + 2.82843i −0.176915 + 0.263752i
\(116\) 1.56768 + 0.729929i 0.145555 + 0.0677722i
\(117\) 0 0
\(118\) −0.630408 + 0.401868i −0.0580337 + 0.0369949i
\(119\) −4.59958 −0.421643
\(120\) 0 0
\(121\) −15.2986 −1.39078
\(122\) 5.94074 3.78706i 0.537849 0.342864i
\(123\) 0 0
\(124\) 14.1619 + 6.59392i 1.27177 + 0.592152i
\(125\) 6.16160 + 9.32924i 0.551110 + 0.834432i
\(126\) 0 0
\(127\) 7.49103 7.49103i 0.664722 0.664722i −0.291767 0.956489i \(-0.594243\pi\)
0.956489 + 0.291767i \(0.0942433\pi\)
\(128\) −7.62671 + 8.35664i −0.674112 + 0.738629i
\(129\) 0 0
\(130\) −7.87578 0.183659i −0.690752 0.0161079i
\(131\) 13.9964i 1.22287i 0.791296 + 0.611434i \(0.209407\pi\)
−0.791296 + 0.611434i \(0.790593\pi\)
\(132\) 0 0
\(133\) −0.747604 + 0.747604i −0.0648255 + 0.0648255i
\(134\) 2.68264 12.1170i 0.231745 1.04675i
\(135\) 0 0
\(136\) 9.14931 11.9448i 0.784547 1.02426i
\(137\) −7.01395 7.01395i −0.599242 0.599242i 0.340869 0.940111i \(-0.389279\pi\)
−0.940111 + 0.340869i \(0.889279\pi\)
\(138\) 0 0
\(139\) 2.28006 0.193392 0.0966960 0.995314i \(-0.469173\pi\)
0.0966960 + 0.995314i \(0.469173\pi\)
\(140\) 3.30820 2.00198i 0.279594 0.169198i
\(141\) 0 0
\(142\) −6.15945 9.66229i −0.516889 0.810842i
\(143\) 9.03365 + 9.03365i 0.755432 + 0.755432i
\(144\) 0 0
\(145\) 1.89692 0.373802i 0.157530 0.0310426i
\(146\) −0.973757 + 4.39829i −0.0805887 + 0.364005i
\(147\) 0 0
\(148\) −4.68098 + 1.70677i −0.384774 + 0.140296i
\(149\) 10.1170i 0.828820i −0.910090 0.414410i \(-0.863988\pi\)
0.910090 0.414410i \(-0.136012\pi\)
\(150\) 0 0
\(151\) 7.93691i 0.645897i 0.946417 + 0.322948i \(0.104674\pi\)
−0.946417 + 0.322948i \(0.895326\pi\)
\(152\) −0.454377 3.42859i −0.0368548 0.278095i
\(153\) 0 0
\(154\) −6.12247 1.35548i −0.493362 0.109228i
\(155\) 17.1361 3.37680i 1.37640 0.271231i
\(156\) 0 0
\(157\) 9.01395 + 9.01395i 0.719392 + 0.719392i 0.968481 0.249089i \(-0.0801311\pi\)
−0.249089 + 0.968481i \(0.580131\pi\)
\(158\) −18.9769 + 12.0972i −1.50972 + 0.962405i
\(159\) 0 0
\(160\) −1.38152 + 12.5734i −0.109219 + 0.994018i
\(161\) 1.31695 0.103790
\(162\) 0 0
\(163\) 13.0849 + 13.0849i 1.02489 + 1.02489i 0.999682 + 0.0252033i \(0.00802331\pi\)
0.0252033 + 0.999682i \(0.491977\pi\)
\(164\) −4.66261 + 10.0140i −0.364088 + 0.781958i
\(165\) 0 0
\(166\) −15.5371 3.43982i −1.20591 0.266982i
\(167\) −11.3334 + 11.3334i −0.877008 + 0.877008i −0.993224 0.116216i \(-0.962924\pi\)
0.116216 + 0.993224i \(0.462924\pi\)
\(168\) 0 0
\(169\) 6.79383i 0.522603i
\(170\) 0.392177 16.8176i 0.0300786 1.28985i
\(171\) 0 0
\(172\) −16.4891 + 6.01224i −1.25728 + 0.458429i
\(173\) −7.96772 + 7.96772i −0.605775 + 0.605775i −0.941839 0.336064i \(-0.890904\pi\)
0.336064 + 0.941839i \(0.390904\pi\)
\(174\) 0 0
\(175\) 1.66866 3.98819i 0.126139 0.301479i
\(176\) 15.6987 13.2034i 1.18333 0.995244i
\(177\) 0 0
\(178\) 5.51325 + 8.64861i 0.413236 + 0.648241i
\(179\) −12.6475 −0.945320 −0.472660 0.881245i \(-0.656706\pi\)
−0.472660 + 0.881245i \(0.656706\pi\)
\(180\) 0 0
\(181\) 7.72928 0.574513 0.287256 0.957854i \(-0.407257\pi\)
0.287256 + 0.957854i \(0.407257\pi\)
\(182\) 1.63747 + 2.56869i 0.121378 + 0.190404i
\(183\) 0 0
\(184\) −2.61962 + 3.42003i −0.193121 + 0.252128i
\(185\) −3.10308 + 4.62620i −0.228143 + 0.340125i
\(186\) 0 0
\(187\) −19.2901 + 19.2901i −1.41063 + 1.41063i
\(188\) −2.22827 6.11123i −0.162513 0.445707i
\(189\) 0 0
\(190\) −2.66975 2.79723i −0.193684 0.202933i
\(191\) 7.04516i 0.509770i 0.966971 + 0.254885i \(0.0820376\pi\)
−0.966971 + 0.254885i \(0.917962\pi\)
\(192\) 0 0
\(193\) −11.5048 + 11.5048i −0.828133 + 0.828133i −0.987258 0.159125i \(-0.949133\pi\)
0.159125 + 0.987258i \(0.449133\pi\)
\(194\) 1.55013 + 0.343190i 0.111293 + 0.0246396i
\(195\) 0 0
\(196\) 11.3362 + 5.27827i 0.809730 + 0.377019i
\(197\) −7.87859 7.87859i −0.561327 0.561327i 0.368358 0.929684i \(-0.379920\pi\)
−0.929684 + 0.368358i \(0.879920\pi\)
\(198\) 0 0
\(199\) 11.4792 0.813741 0.406870 0.913486i \(-0.366620\pi\)
0.406870 + 0.913486i \(0.366620\pi\)
\(200\) 7.03784 + 12.2666i 0.497650 + 0.867378i
\(201\) 0 0
\(202\) 12.0648 7.69095i 0.848873 0.541133i
\(203\) −0.528636 0.528636i −0.0371030 0.0371030i
\(204\) 0 0
\(205\) 2.38776 + 12.1170i 0.166768 + 0.846291i
\(206\) −7.46460 1.65262i −0.520083 0.115143i
\(207\) 0 0
\(208\) −9.92794 0.857132i −0.688379 0.0594314i
\(209\) 6.27072i 0.433755i
\(210\) 0 0
\(211\) 5.49134i 0.378039i −0.981973 0.189020i \(-0.939469\pi\)
0.981973 0.189020i \(-0.0605310\pi\)
\(212\) −2.54452 6.97859i −0.174759 0.479292i
\(213\) 0 0
\(214\) 2.38255 10.7616i 0.162868 0.735645i
\(215\) −10.9309 + 16.2961i −0.745478 + 1.11139i
\(216\) 0 0
\(217\) −4.77551 4.77551i −0.324183 0.324183i
\(218\) −5.56233 8.72559i −0.376728 0.590972i
\(219\) 0 0
\(220\) 5.47811 22.2702i 0.369334 1.50146i
\(221\) 13.2524 0.891453
\(222\) 0 0
\(223\) −10.8678 10.8678i −0.727764 0.727764i 0.242410 0.970174i \(-0.422062\pi\)
−0.970174 + 0.242410i \(0.922062\pi\)
\(224\) 4.33526 2.26469i 0.289662 0.151316i
\(225\) 0 0
\(226\) 0.220121 0.994247i 0.0146422 0.0661363i
\(227\) −4.98244 + 4.98244i −0.330696 + 0.330696i −0.852851 0.522155i \(-0.825128\pi\)
0.522155 + 0.852851i \(0.325128\pi\)
\(228\) 0 0
\(229\) 25.7572i 1.70208i −0.525098 0.851041i \(-0.675972\pi\)
0.525098 0.851041i \(-0.324028\pi\)
\(230\) −0.112288 + 4.81520i −0.00740403 + 0.317505i
\(231\) 0 0
\(232\) 2.42438 0.321293i 0.159168 0.0210939i
\(233\) 0.715328 0.715328i 0.0468627 0.0468627i −0.683287 0.730150i \(-0.739450\pi\)
0.730150 + 0.683287i \(0.239450\pi\)
\(234\) 0 0
\(235\) −6.03971 4.05121i −0.393987 0.264272i
\(236\) −0.446274 + 0.958469i −0.0290499 + 0.0623910i
\(237\) 0 0
\(238\) −5.48509 + 3.49659i −0.355545 + 0.226650i
\(239\) 26.9354 1.74231 0.871154 0.491009i \(-0.163372\pi\)
0.871154 + 0.491009i \(0.163372\pi\)
\(240\) 0 0
\(241\) 14.0925 0.907775 0.453887 0.891059i \(-0.350037\pi\)
0.453887 + 0.891059i \(0.350037\pi\)
\(242\) −18.2439 + 11.6300i −1.17276 + 0.747603i
\(243\) 0 0
\(244\) 4.20553 9.03228i 0.269231 0.578232i
\(245\) 13.7170 2.70304i 0.876346 0.172691i
\(246\) 0 0
\(247\) 2.15401 2.15401i 0.137056 0.137056i
\(248\) 21.9010 2.90245i 1.39071 0.184306i
\(249\) 0 0
\(250\) 14.4399 + 6.44125i 0.913259 + 0.407380i
\(251\) 17.2471i 1.08863i −0.838882 0.544314i \(-0.816790\pi\)
0.838882 0.544314i \(-0.183210\pi\)
\(252\) 0 0
\(253\) 5.52311 5.52311i 0.347235 0.347235i
\(254\) 3.23853 14.6279i 0.203203 0.917834i
\(255\) 0 0
\(256\) −2.74229 + 15.7632i −0.171393 + 0.985203i
\(257\) 15.0140 + 15.0140i 0.936545 + 0.936545i 0.998103 0.0615588i \(-0.0196072\pi\)
−0.0615588 + 0.998103i \(0.519607\pi\)
\(258\) 0 0
\(259\) 2.15401 0.133844
\(260\) −9.53163 + 5.76814i −0.591127 + 0.357725i
\(261\) 0 0
\(262\) 10.6400 + 16.6909i 0.657341 + 1.03117i
\(263\) 6.73386 + 6.73386i 0.415228 + 0.415228i 0.883555 0.468327i \(-0.155143\pi\)
−0.468327 + 0.883555i \(0.655143\pi\)
\(264\) 0 0
\(265\) −6.89692 4.62620i −0.423674 0.284185i
\(266\) −0.323204 + 1.45986i −0.0198169 + 0.0895096i
\(267\) 0 0
\(268\) −6.01224 16.4891i −0.367256 1.00723i
\(269\) 25.7047i 1.56724i −0.621238 0.783622i \(-0.713370\pi\)
0.621238 0.783622i \(-0.286630\pi\)
\(270\) 0 0
\(271\) 0.931222i 0.0565677i −0.999600 0.0282839i \(-0.990996\pi\)
0.999600 0.0282839i \(-0.00900423\pi\)
\(272\) 1.83029 21.1997i 0.110977 1.28542i
\(273\) 0 0
\(274\) −13.6963 3.03228i −0.827421 0.183186i
\(275\) −9.72780 23.7242i −0.586608 1.43062i
\(276\) 0 0
\(277\) −22.0602 22.0602i −1.32547 1.32547i −0.909277 0.416190i \(-0.863365\pi\)
−0.416190 0.909277i \(-0.636635\pi\)
\(278\) 2.71901 1.73330i 0.163075 0.103956i
\(279\) 0 0
\(280\) 2.42318 4.90228i 0.144813 0.292967i
\(281\) −8.56934 −0.511204 −0.255602 0.966782i \(-0.582274\pi\)
−0.255602 + 0.966782i \(0.582274\pi\)
\(282\) 0 0
\(283\) 11.5705 + 11.5705i 0.687796 + 0.687796i 0.961744 0.273949i \(-0.0883299\pi\)
−0.273949 + 0.961744i \(0.588330\pi\)
\(284\) −14.6905 6.84006i −0.871721 0.405883i
\(285\) 0 0
\(286\) 17.6402 + 3.90543i 1.04308 + 0.230933i
\(287\) 3.37680 3.37680i 0.199326 0.199326i
\(288\) 0 0
\(289\) 11.2986i 0.664625i
\(290\) 1.97794 1.88780i 0.116149 0.110855i
\(291\) 0 0
\(292\) 2.18235 + 5.98529i 0.127712 + 0.350262i
\(293\) −12.8969 + 12.8969i −0.753446 + 0.753446i −0.975121 0.221675i \(-0.928848\pi\)
0.221675 + 0.975121i \(0.428848\pi\)
\(294\) 0 0
\(295\) 0.228540 + 1.15976i 0.0133061 + 0.0675240i
\(296\) −4.28467 + 5.59383i −0.249041 + 0.325135i
\(297\) 0 0
\(298\) −7.69095 12.0648i −0.445525 0.698892i
\(299\) −3.79441 −0.219436
\(300\) 0 0
\(301\) 7.58767 0.437346
\(302\) 6.03362 + 9.46491i 0.347196 + 0.544644i
\(303\) 0 0
\(304\) −3.14826 3.74324i −0.180565 0.214689i
\(305\) −2.15368 10.9292i −0.123319 0.625804i
\(306\) 0 0
\(307\) 1.60564 1.60564i 0.0916387 0.0916387i −0.659801 0.751440i \(-0.729360\pi\)
0.751440 + 0.659801i \(0.229360\pi\)
\(308\) −8.33158 + 3.03785i −0.474736 + 0.173098i
\(309\) 0 0
\(310\) 17.8681 17.0537i 1.01484 0.968585i
\(311\) 19.4161i 1.10099i −0.834839 0.550494i \(-0.814439\pi\)
0.834839 0.550494i \(-0.185561\pi\)
\(312\) 0 0
\(313\) 17.7110 17.7110i 1.00108 1.00108i 0.00108322 0.999999i \(-0.499655\pi\)
0.999999 0.00108322i \(-0.000344798\pi\)
\(314\) 17.6017 + 3.89692i 0.993321 + 0.219916i
\(315\) 0 0
\(316\) −13.4340 + 28.8524i −0.755721 + 1.62307i
\(317\) 7.78946 + 7.78946i 0.437500 + 0.437500i 0.891170 0.453670i \(-0.149885\pi\)
−0.453670 + 0.891170i \(0.649885\pi\)
\(318\) 0 0
\(319\) −4.43407 −0.248260
\(320\) 7.91081 + 16.0443i 0.442228 + 0.896903i
\(321\) 0 0
\(322\) 1.57048 1.00114i 0.0875196 0.0557914i
\(323\) 4.59958 + 4.59958i 0.255928 + 0.255928i
\(324\) 0 0
\(325\) −4.80779 + 11.4908i −0.266688 + 0.637397i
\(326\) 25.5510 + 5.65685i 1.41514 + 0.313304i
\(327\) 0 0
\(328\) 2.05234 + 15.4863i 0.113322 + 0.855089i
\(329\) 2.81215i 0.155039i
\(330\) 0 0
\(331\) 31.7005i 1.74242i −0.490912 0.871209i \(-0.663336\pi\)
0.490912 0.871209i \(-0.336664\pi\)
\(332\) −21.1432 + 7.70919i −1.16038 + 0.423097i
\(333\) 0 0
\(334\) −4.89968 + 22.1310i −0.268098 + 1.21095i
\(335\) −16.2961 10.9309i −0.890353 0.597216i
\(336\) 0 0
\(337\) 18.9634 + 18.9634i 1.03300 + 1.03300i 0.999437 + 0.0335632i \(0.0106855\pi\)
0.0335632 + 0.999437i \(0.489314\pi\)
\(338\) 5.16466 + 8.10177i 0.280920 + 0.440678i
\(339\) 0 0
\(340\) −12.3170 20.3535i −0.667985 1.10382i
\(341\) −40.0558 −2.16914
\(342\) 0 0
\(343\) −8.10243 8.10243i −0.437490 0.437490i
\(344\) −15.0931 + 19.7047i −0.813765 + 1.06241i
\(345\) 0 0
\(346\) −3.44461 + 15.5587i −0.185183 + 0.836441i
\(347\) 7.71957 7.71957i 0.414408 0.414408i −0.468863 0.883271i \(-0.655336\pi\)
0.883271 + 0.468863i \(0.155336\pi\)
\(348\) 0 0
\(349\) 27.0741i 1.44925i 0.689146 + 0.724623i \(0.257986\pi\)
−0.689146 + 0.724623i \(0.742014\pi\)
\(350\) −1.04190 6.02450i −0.0556918 0.322023i
\(351\) 0 0
\(352\) 8.68375 27.6794i 0.462846 1.47532i
\(353\) 9.96772 9.96772i 0.530528 0.530528i −0.390201 0.920730i \(-0.627595\pi\)
0.920730 + 0.390201i \(0.127595\pi\)
\(354\) 0 0
\(355\) −17.7757 + 3.50285i −0.943438 + 0.185912i
\(356\) 13.1493 + 6.12247i 0.696912 + 0.324490i
\(357\) 0 0
\(358\) −15.0824 + 9.61461i −0.797129 + 0.508148i
\(359\) −14.2334 −0.751211 −0.375606 0.926780i \(-0.622565\pi\)
−0.375606 + 0.926780i \(0.622565\pi\)
\(360\) 0 0
\(361\) −17.5048 −0.921305
\(362\) 9.21731 5.87578i 0.484451 0.308824i
\(363\) 0 0
\(364\) 3.90543 + 1.81841i 0.204700 + 0.0953107i
\(365\) 5.91524 + 3.96772i 0.309618 + 0.207680i
\(366\) 0 0
\(367\) 2.89145 2.89145i 0.150933 0.150933i −0.627602 0.778534i \(-0.715963\pi\)
0.778534 + 0.627602i \(0.215963\pi\)
\(368\) −0.524045 + 6.06988i −0.0273177 + 0.316414i
\(369\) 0 0
\(370\) −0.183659 + 7.87578i −0.00954795 + 0.409442i
\(371\) 3.21128i 0.166721i
\(372\) 0 0
\(373\) −11.2847 + 11.2847i −0.584298 + 0.584298i −0.936081 0.351783i \(-0.885575\pi\)
0.351783 + 0.936081i \(0.385575\pi\)
\(374\) −8.33950 + 37.6681i −0.431225 + 1.94777i
\(375\) 0 0
\(376\) −7.30299 5.59383i −0.376623 0.288480i
\(377\) 1.52311 + 1.52311i 0.0784444 + 0.0784444i
\(378\) 0 0
\(379\) 15.4562 0.793932 0.396966 0.917833i \(-0.370063\pi\)
0.396966 + 0.917833i \(0.370063\pi\)
\(380\) −5.31017 1.30622i −0.272406 0.0670075i
\(381\) 0 0
\(382\) 5.35571 + 8.40148i 0.274022 + 0.429857i
\(383\) −12.5562 12.5562i −0.641593 0.641593i 0.309354 0.950947i \(-0.399887\pi\)
−0.950947 + 0.309354i \(0.899887\pi\)
\(384\) 0 0
\(385\) −5.52311 + 8.23407i −0.281484 + 0.419647i
\(386\) −4.97376 + 22.4656i −0.253158 + 1.14347i
\(387\) 0 0
\(388\) 2.10945 0.769144i 0.107091 0.0390474i
\(389\) 5.16327i 0.261788i 0.991396 + 0.130894i \(0.0417848\pi\)
−0.991396 + 0.130894i \(0.958215\pi\)
\(390\) 0 0
\(391\) 8.10243i 0.409757i
\(392\) 17.5312 2.32333i 0.885458 0.117346i
\(393\) 0 0
\(394\) −15.3847 3.40608i −0.775068 0.171596i
\(395\) 6.87964 + 34.9118i 0.346152 + 1.75660i
\(396\) 0 0
\(397\) −3.46293 3.46293i −0.173800 0.173800i 0.614847 0.788646i \(-0.289218\pi\)
−0.788646 + 0.614847i \(0.789218\pi\)
\(398\) 13.6892 8.72648i 0.686177 0.437419i
\(399\) 0 0
\(400\) 17.7178 + 9.27796i 0.885889 + 0.463898i
\(401\) −3.49521 −0.174542 −0.0872712 0.996185i \(-0.527815\pi\)
−0.0872712 + 0.996185i \(0.527815\pi\)
\(402\) 0 0
\(403\) 13.7593 + 13.7593i 0.685399 + 0.685399i
\(404\) 8.54079 18.3432i 0.424920 0.912608i
\(405\) 0 0
\(406\) −1.03228 0.228540i −0.0512310 0.0113423i
\(407\) 9.03365 9.03365i 0.447781 0.447781i
\(408\) 0 0
\(409\) 14.8034i 0.731982i −0.930618 0.365991i \(-0.880730\pi\)
0.930618 0.365991i \(-0.119270\pi\)
\(410\) 12.0588 + 12.6346i 0.595541 + 0.623979i
\(411\) 0 0
\(412\) −10.1580 + 3.70379i −0.500448 + 0.182473i
\(413\) 0.323204 0.323204i 0.0159039 0.0159039i
\(414\) 0 0
\(415\) −14.0161 + 20.8957i −0.688023 + 1.02573i
\(416\) −12.4908 + 6.52505i −0.612414 + 0.319917i
\(417\) 0 0
\(418\) 4.76699 + 7.47795i 0.233161 + 0.365758i
\(419\) 19.0701 0.931634 0.465817 0.884881i \(-0.345760\pi\)
0.465817 + 0.884881i \(0.345760\pi\)
\(420\) 0 0
\(421\) −20.8034 −1.01390 −0.506948 0.861976i \(-0.669226\pi\)
−0.506948 + 0.861976i \(0.669226\pi\)
\(422\) −4.17450 6.54852i −0.203212 0.318777i
\(423\) 0 0
\(424\) −8.33950 6.38776i −0.405002 0.310217i
\(425\) −24.5371 10.2663i −1.19022 0.497991i
\(426\) 0 0
\(427\) −3.04577 + 3.04577i −0.147395 + 0.147395i
\(428\) −5.33968 14.6446i −0.258103 0.707872i
\(429\) 0 0
\(430\) −0.646951 + 27.7431i −0.0311988 + 1.33789i
\(431\) 15.3302i 0.738428i −0.929344 0.369214i \(-0.879627\pi\)
0.929344 0.369214i \(-0.120373\pi\)
\(432\) 0 0
\(433\) 16.2803 16.2803i 0.782381 0.782381i −0.197851 0.980232i \(-0.563396\pi\)
0.980232 + 0.197851i \(0.0633961\pi\)
\(434\) −9.32521 2.06455i −0.447625 0.0991016i
\(435\) 0 0
\(436\) −13.2663 6.17696i −0.635343 0.295823i
\(437\) −1.31695 1.31695i −0.0629981 0.0629981i
\(438\) 0 0
\(439\) 24.6554 1.17674 0.588368 0.808593i \(-0.299770\pi\)
0.588368 + 0.808593i \(0.299770\pi\)
\(440\) −10.3970 30.7221i −0.495659 1.46462i
\(441\) 0 0
\(442\) 15.8037 10.0744i 0.751706 0.479192i
\(443\) −1.77116 1.77116i −0.0841501 0.0841501i 0.663779 0.747929i \(-0.268952\pi\)
−0.747929 + 0.663779i \(0.768952\pi\)
\(444\) 0 0
\(445\) 15.9109 3.13536i 0.754248 0.148630i
\(446\) −21.2218 4.69839i −1.00488 0.222475i
\(447\) 0 0
\(448\) 3.44827 5.99634i 0.162916 0.283300i
\(449\) 33.1512i 1.56450i 0.622963 + 0.782251i \(0.285929\pi\)
−0.622963 + 0.782251i \(0.714071\pi\)
\(450\) 0 0
\(451\) 28.3237i 1.33371i
\(452\) −0.493326 1.35299i −0.0232041 0.0636394i
\(453\) 0 0
\(454\) −2.15401 + 9.72928i −0.101093 + 0.456618i
\(455\) 4.72563 0.931222i 0.221541 0.0436564i
\(456\) 0 0
\(457\) −7.50479 7.50479i −0.351059 0.351059i 0.509444 0.860504i \(-0.329851\pi\)
−0.860504 + 0.509444i \(0.829851\pi\)
\(458\) −19.5806 30.7159i −0.914939 1.43526i
\(459\) 0 0
\(460\) 3.52660 + 5.82758i 0.164429 + 0.271712i
\(461\) 27.0216 1.25852 0.629262 0.777193i \(-0.283357\pi\)
0.629262 + 0.777193i \(0.283357\pi\)
\(462\) 0 0
\(463\) 27.7123 + 27.7123i 1.28790 + 1.28790i 0.936059 + 0.351843i \(0.114445\pi\)
0.351843 + 0.936059i \(0.385555\pi\)
\(464\) 2.64687 2.22615i 0.122878 0.103347i
\(465\) 0 0
\(466\) 0.309251 1.39683i 0.0143258 0.0647070i
\(467\) 2.00823 2.00823i 0.0929296 0.0929296i −0.659114 0.752043i \(-0.729068\pi\)
0.752043 + 0.659114i \(0.229068\pi\)
\(468\) 0 0
\(469\) 7.58767i 0.350366i
\(470\) −10.2822 0.239774i −0.474282 0.0110600i
\(471\) 0 0
\(472\) 0.196436 + 1.48225i 0.00904172 + 0.0682260i
\(473\) 31.8217 31.8217i 1.46317 1.46317i
\(474\) 0 0
\(475\) −5.65685 + 2.31952i −0.259554 + 0.106427i
\(476\) −3.88296 + 8.33950i −0.177975 + 0.382240i
\(477\) 0 0
\(478\) 32.1210 20.4763i 1.46918 0.936562i
\(479\) 13.7593 0.628678 0.314339 0.949311i \(-0.398217\pi\)
0.314339 + 0.949311i \(0.398217\pi\)
\(480\) 0 0
\(481\) −6.20617 −0.282977
\(482\) 16.8055 10.7131i 0.765470 0.487966i
\(483\) 0 0
\(484\) −12.9151 + 27.7379i −0.587049 + 1.26081i
\(485\) 1.39838 2.08476i 0.0634972 0.0946641i
\(486\) 0 0
\(487\) −24.3355 + 24.3355i −1.10275 + 1.10275i −0.108671 + 0.994078i \(0.534660\pi\)
−0.994078 + 0.108671i \(0.965340\pi\)
\(488\) −1.85115 13.9682i −0.0837975 0.632310i
\(489\) 0 0
\(490\) 14.3029 13.6510i 0.646140 0.616691i
\(491\) 28.8918i 1.30387i 0.758275 + 0.651935i \(0.226043\pi\)
−0.758275 + 0.651935i \(0.773957\pi\)
\(492\) 0 0
\(493\) −3.25240 + 3.25240i −0.146481 + 0.146481i
\(494\) 0.931222 4.20617i 0.0418977 0.189244i
\(495\) 0 0
\(496\) 23.9109 20.1103i 1.07363 0.902979i
\(497\) 4.95377 + 4.95377i 0.222207 + 0.222207i
\(498\) 0 0
\(499\) −12.5365 −0.561211 −0.280605 0.959823i \(-0.590535\pi\)
−0.280605 + 0.959823i \(0.590535\pi\)
\(500\) 22.1164 3.29586i 0.989078 0.147395i
\(501\) 0 0
\(502\) −13.1112 20.5675i −0.585182 0.917972i
\(503\) 9.01392 + 9.01392i 0.401911 + 0.401911i 0.878906 0.476995i \(-0.158274\pi\)
−0.476995 + 0.878906i \(0.658274\pi\)
\(504\) 0 0
\(505\) −4.37380 22.1955i −0.194632 0.987689i
\(506\) 2.38776 10.7851i 0.106149 0.479455i
\(507\) 0 0
\(508\) −7.25806 19.9059i −0.322025 0.883182i
\(509\) 22.5448i 0.999279i 0.866233 + 0.499640i \(0.166534\pi\)
−0.866233 + 0.499640i \(0.833466\pi\)
\(510\) 0 0
\(511\) 2.75420i 0.121839i
\(512\) 8.71295 + 20.8826i 0.385062 + 0.922891i
\(513\) 0 0
\(514\) 29.3180 + 6.49084i 1.29316 + 0.286299i
\(515\) −6.73386 + 10.0391i −0.296729 + 0.442376i
\(516\) 0 0
\(517\) 11.7938 + 11.7938i 0.518692 + 0.518692i
\(518\) 2.56869 1.63747i 0.112862 0.0719464i
\(519\) 0 0
\(520\) −6.98172 + 14.1245i −0.306169 + 0.619402i
\(521\) 18.9046 0.828226 0.414113 0.910225i \(-0.364092\pi\)
0.414113 + 0.910225i \(0.364092\pi\)
\(522\) 0 0
\(523\) −21.8269 21.8269i −0.954426 0.954426i 0.0445800 0.999006i \(-0.485805\pi\)
−0.999006 + 0.0445800i \(0.985805\pi\)
\(524\) 25.3768 + 11.8157i 1.10859 + 0.516172i
\(525\) 0 0
\(526\) 13.1493 + 2.91118i 0.573337 + 0.126934i
\(527\) −29.3810 + 29.3810i −1.27986 + 1.27986i
\(528\) 0 0
\(529\) 20.6801i 0.899136i
\(530\) −11.7415 0.273805i −0.510019 0.0118933i
\(531\) 0 0
\(532\) 0.724353 + 1.98661i 0.0314047 + 0.0861303i
\(533\) −9.72928 + 9.72928i −0.421422 + 0.421422i
\(534\) 0 0
\(535\) −14.4732 9.70807i −0.625730 0.419716i
\(536\) −19.7047 15.0931i −0.851114 0.651922i
\(537\) 0 0
\(538\) −19.5407 30.6533i −0.842457 1.32156i
\(539\) −32.0637 −1.38108
\(540\) 0 0
\(541\) 7.85838 0.337858 0.168929 0.985628i \(-0.445969\pi\)
0.168929 + 0.985628i \(0.445969\pi\)
\(542\) −0.707913 1.11050i −0.0304075 0.0477000i
\(543\) 0 0
\(544\) −13.9333 26.6724i −0.597387 1.14357i
\(545\) −16.0525 + 3.16327i −0.687613 + 0.135499i
\(546\) 0 0
\(547\) 17.8105 17.8105i 0.761522 0.761522i −0.215076 0.976597i \(-0.569000\pi\)
0.976597 + 0.215076i \(0.0689998\pi\)
\(548\) −18.6382 + 6.79582i −0.796183 + 0.290303i
\(549\) 0 0
\(550\) −29.6356 20.8964i −1.26367 0.891027i
\(551\) 1.05727i 0.0450413i
\(552\) 0 0
\(553\) 9.72928 9.72928i 0.413731 0.413731i
\(554\) −43.0773 9.53707i −1.83018 0.405191i
\(555\) 0 0
\(556\) 1.92482 4.13397i 0.0816307 0.175319i
\(557\) −23.3372 23.3372i −0.988827 0.988827i 0.0111112 0.999938i \(-0.496463\pi\)
−0.999938 + 0.0111112i \(0.996463\pi\)
\(558\) 0 0
\(559\) −21.8617 −0.924652
\(560\) −0.837010 7.68815i −0.0353701 0.324884i
\(561\) 0 0
\(562\) −10.2191 + 6.51439i −0.431067 + 0.274793i
\(563\) 5.27400 + 5.27400i 0.222273 + 0.222273i 0.809455 0.587182i \(-0.199763\pi\)
−0.587182 + 0.809455i \(0.699763\pi\)
\(564\) 0 0
\(565\) −1.33716 0.896916i −0.0562546 0.0377336i
\(566\) 22.5939 + 5.00217i 0.949693 + 0.210257i
\(567\) 0 0
\(568\) −22.7185 + 3.01079i −0.953247 + 0.126330i
\(569\) 28.5606i 1.19732i −0.801002 0.598661i \(-0.795699\pi\)
0.801002 0.598661i \(-0.204301\pi\)
\(570\) 0 0
\(571\) 32.2837i 1.35103i 0.737347 + 0.675515i \(0.236078\pi\)
−0.737347 + 0.675515i \(0.763922\pi\)
\(572\) 24.0051 8.75270i 1.00370 0.365969i
\(573\) 0 0
\(574\) 1.45986 6.59392i 0.0609333 0.275225i
\(575\) 7.02542 + 2.93945i 0.292980 + 0.122583i
\(576\) 0 0
\(577\) 27.0279 + 27.0279i 1.12519 + 1.12519i 0.990949 + 0.134237i \(0.0428584\pi\)
0.134237 + 0.990949i \(0.457142\pi\)
\(578\) 8.58919 + 13.4738i 0.357263 + 0.560437i
\(579\) 0 0
\(580\) 0.923635 3.75486i 0.0383518 0.155912i
\(581\) 9.72928 0.403639
\(582\) 0 0
\(583\) 13.4677 + 13.4677i 0.557776 + 0.557776i
\(584\) 7.15249 + 5.47855i 0.295972 + 0.226704i
\(585\) 0 0
\(586\) −5.57560 + 25.1840i −0.230326 + 1.04034i
\(587\) −17.1558 + 17.1558i −0.708096 + 0.708096i −0.966135 0.258039i \(-0.916924\pi\)
0.258039 + 0.966135i \(0.416924\pi\)
\(588\) 0 0
\(589\) 9.55102i 0.393543i
\(590\) 1.15419 + 1.20930i 0.0475171 + 0.0497862i
\(591\) 0 0
\(592\) −0.857132 + 9.92794i −0.0352279 + 0.408036i
\(593\) 21.5833 21.5833i 0.886320 0.886320i −0.107848 0.994167i \(-0.534396\pi\)
0.994167 + 0.107848i \(0.0343959\pi\)
\(594\) 0 0
\(595\) 1.98849 + 10.0909i 0.0815203 + 0.413687i
\(596\) −18.3432 8.54079i −0.751366 0.349844i
\(597\) 0 0
\(598\) −4.52490 + 2.88450i −0.185037 + 0.117956i
\(599\) 23.7636 0.970955 0.485478 0.874249i \(-0.338646\pi\)
0.485478 + 0.874249i \(0.338646\pi\)
\(600\) 0 0
\(601\) 22.1695 0.904314 0.452157 0.891938i \(-0.350655\pi\)
0.452157 + 0.891938i \(0.350655\pi\)
\(602\) 9.04843 5.76813i 0.368786 0.235091i
\(603\) 0 0
\(604\) 14.3904 + 6.70033i 0.585537 + 0.272633i
\(605\) 6.61391 + 33.5633i 0.268894 + 1.36454i
\(606\) 0 0
\(607\) 9.35348 9.35348i 0.379646 0.379646i −0.491328 0.870974i \(-0.663489\pi\)
0.870974 + 0.491328i \(0.163489\pi\)
\(608\) −6.59995 2.07058i −0.267663 0.0839731i
\(609\) 0 0
\(610\) −10.8767 11.3960i −0.440383 0.461412i
\(611\) 8.10243i 0.327789i
\(612\) 0 0
\(613\) −24.1247 + 24.1247i −0.974389 + 0.974389i −0.999680 0.0252913i \(-0.991949\pi\)
0.0252913 + 0.999680i \(0.491949\pi\)
\(614\) 0.694151 3.13536i 0.0280137 0.126533i
\(615\) 0 0
\(616\) −7.62620 + 9.95634i −0.307268 + 0.401152i
\(617\) −3.82611 3.82611i −0.154033 0.154033i 0.625883 0.779917i \(-0.284739\pi\)
−0.779917 + 0.625883i \(0.784739\pi\)
\(618\) 0 0
\(619\) 30.1297 1.21101 0.605507 0.795840i \(-0.292971\pi\)
0.605507 + 0.795840i \(0.292971\pi\)
\(620\) 8.34379 33.9201i 0.335095 1.36226i
\(621\) 0 0
\(622\) −14.7601 23.1541i −0.591826 0.928395i
\(623\) −4.43407 4.43407i −0.177647 0.177647i
\(624\) 0 0
\(625\) 17.8034 17.5510i 0.712137 0.702041i
\(626\) 7.65681 34.5845i 0.306028 1.38227i
\(627\) 0 0
\(628\) 23.9528 8.73362i 0.955819 0.348509i
\(629\) 13.2524i 0.528408i
\(630\) 0 0
\(631\) 21.5701i 0.858694i 0.903140 + 0.429347i \(0.141256\pi\)
−0.903140 + 0.429347i \(0.858744\pi\)
\(632\) 5.91324 + 44.6195i 0.235216 + 1.77487i
\(633\) 0 0
\(634\) 15.2106 + 3.36754i 0.604090 + 0.133742i
\(635\) −19.6729 13.1959i −0.780697 0.523663i
\(636\) 0 0
\(637\) 11.0140 + 11.0140i 0.436389 + 0.436389i
\(638\) −5.28771 + 3.37077i −0.209342 + 0.133450i
\(639\) 0 0
\(640\) 21.6306 + 13.1193i 0.855025 + 0.518586i
\(641\) −48.3911 −1.91133 −0.955666 0.294452i \(-0.904863\pi\)
−0.955666 + 0.294452i \(0.904863\pi\)
\(642\) 0 0
\(643\) −23.3413 23.3413i −0.920491 0.920491i 0.0765729 0.997064i \(-0.475602\pi\)
−0.997064 + 0.0765729i \(0.975602\pi\)
\(644\) 1.11177 2.38776i 0.0438097 0.0940907i
\(645\) 0 0
\(646\) 8.98168 + 1.98849i 0.353379 + 0.0782362i
\(647\) 32.4465 32.4465i 1.27560 1.27560i 0.332501 0.943103i \(-0.392108\pi\)
0.943103 0.332501i \(-0.107892\pi\)
\(648\) 0 0
\(649\) 2.71096i 0.106414i
\(650\) 3.00194 + 17.3579i 0.117746 + 0.680833i
\(651\) 0 0
\(652\) 34.7704 12.6779i 1.36171 0.496506i
\(653\) −18.4725 + 18.4725i −0.722885 + 0.722885i −0.969192 0.246307i \(-0.920783\pi\)
0.246307 + 0.969192i \(0.420783\pi\)
\(654\) 0 0
\(655\) 30.7063 6.05091i 1.19979 0.236429i
\(656\) 14.2201 + 16.9075i 0.555202 + 0.660128i
\(657\) 0 0
\(658\) 2.13779 + 3.35355i 0.0833399 + 0.130735i
\(659\) 47.5028 1.85045 0.925223 0.379423i \(-0.123878\pi\)
0.925223 + 0.379423i \(0.123878\pi\)
\(660\) 0 0
\(661\) −46.1204 −1.79387 −0.896937 0.442158i \(-0.854213\pi\)
−0.896937 + 0.442158i \(0.854213\pi\)
\(662\) −24.0987 37.8035i −0.936621 1.46927i
\(663\) 0 0
\(664\) −19.3531 + 25.2663i −0.751046 + 0.980525i
\(665\) 1.96336 + 1.31695i 0.0761357 + 0.0510690i
\(666\) 0 0
\(667\) 0.931222 0.931222i 0.0360571 0.0360571i
\(668\) 10.9810 + 30.1163i 0.424867 + 1.16524i
\(669\) 0 0
\(670\) −27.7431 0.646951i −1.07181 0.0249939i
\(671\) 25.5471i 0.986236i
\(672\) 0 0
\(673\) 3.60599 3.60599i 0.139001 0.139001i −0.634183 0.773183i \(-0.718663\pi\)
0.773183 + 0.634183i \(0.218663\pi\)
\(674\) 37.0300 + 8.19825i 1.42634 + 0.315785i
\(675\) 0 0
\(676\) 12.3179 + 5.73535i 0.473765 + 0.220590i
\(677\) 8.26635 + 8.26635i 0.317702 + 0.317702i 0.847884 0.530182i \(-0.177876\pi\)
−0.530182 + 0.847884i \(0.677876\pi\)
\(678\) 0 0
\(679\) −0.970688 −0.0372516
\(680\) −30.1609 14.9085i −1.15662 0.571714i
\(681\) 0 0
\(682\) −47.7673 + 30.4503i −1.82910 + 1.16600i
\(683\) 8.43079 + 8.43079i 0.322595 + 0.322595i 0.849762 0.527167i \(-0.176746\pi\)
−0.527167 + 0.849762i \(0.676746\pi\)
\(684\) 0 0
\(685\) −12.3555 + 18.4200i −0.472079 + 0.703793i
\(686\) −15.8217 3.50285i −0.604077 0.133739i
\(687\) 0 0
\(688\) −3.01932 + 34.9719i −0.115110 + 1.33329i
\(689\) 9.25240i 0.352488i
\(690\) 0 0
\(691\) 21.9182i 0.833809i 0.908950 + 0.416905i \(0.136885\pi\)
−0.908950 + 0.416905i \(0.863115\pi\)
\(692\) 7.71993 + 21.1726i 0.293468 + 0.804862i
\(693\) 0 0
\(694\) 3.33733 15.0741i 0.126683 0.572206i
\(695\) −0.985716 5.00217i −0.0373903 0.189743i
\(696\) 0 0
\(697\) −20.7755 20.7755i −0.786929 0.786929i
\(698\) 20.5817 + 32.2864i 0.779029 + 1.22206i
\(699\) 0 0
\(700\) −5.82230 6.39228i −0.220062 0.241605i
\(701\) 21.8184 0.824070 0.412035 0.911168i \(-0.364818\pi\)
0.412035 + 0.911168i \(0.364818\pi\)
\(702\) 0 0
\(703\) −2.15401 2.15401i −0.0812400 0.0812400i
\(704\) −10.6863 39.6095i −0.402754 1.49284i
\(705\) 0 0
\(706\) 4.30925 19.4641i 0.162181 0.732542i
\(707\) −6.18549 + 6.18549i −0.232629 + 0.232629i
\(708\) 0 0
\(709\) 31.7938i 1.19404i −0.802225 0.597021i \(-0.796351\pi\)
0.802225 0.597021i \(-0.203649\pi\)
\(710\) −18.5350 + 17.6903i −0.695607 + 0.663904i
\(711\) 0 0
\(712\) 20.3351 2.69493i 0.762089 0.100997i
\(713\) 8.41233 8.41233i 0.315044 0.315044i
\(714\) 0 0
\(715\) 15.9133 23.7242i 0.595123 0.887233i
\(716\) −10.6770 + 22.9312i −0.399019 + 0.856979i
\(717\) 0 0
\(718\) −16.9736 + 10.8202i −0.633450 + 0.403807i
\(719\) −52.0874 −1.94253 −0.971265 0.237999i \(-0.923508\pi\)
−0.971265 + 0.237999i \(0.923508\pi\)
\(720\) 0 0
\(721\) 4.67432 0.174081
\(722\) −20.8748 + 13.3071i −0.776879 + 0.495239i
\(723\) 0 0
\(724\) 6.52505 14.0140i 0.242502 0.520824i
\(725\) −1.64015 4.00000i −0.0609137 0.148556i
\(726\) 0 0
\(727\) −8.13069 + 8.13069i −0.301551 + 0.301551i −0.841620 0.540070i \(-0.818398\pi\)
0.540070 + 0.841620i \(0.318398\pi\)
\(728\) 6.03965 0.800411i 0.223844 0.0296652i
\(729\) 0 0
\(730\) 10.0703 + 0.234833i 0.372718 + 0.00869156i
\(731\) 46.6826i 1.72662i
\(732\) 0 0
\(733\) −29.9956 + 29.9956i −1.10791 + 1.10791i −0.114489 + 0.993424i \(0.536523\pi\)
−0.993424 + 0.114489i \(0.963477\pi\)
\(734\) 1.25003 5.64618i 0.0461396 0.208404i
\(735\) 0 0
\(736\) 3.98937 + 7.63682i 0.147050 + 0.281497i
\(737\) 31.8217 + 31.8217i 1.17217 + 1.17217i
\(738\) 0 0
\(739\) −39.4719 −1.45200 −0.725999 0.687696i \(-0.758622\pi\)
−0.725999 + 0.687696i \(0.758622\pi\)
\(740\) 5.76814 + 9.53163i 0.212041 + 0.350390i
\(741\) 0 0
\(742\) 2.44121 + 3.82951i 0.0896196 + 0.140586i
\(743\) −12.2252 12.2252i −0.448499 0.448499i 0.446356 0.894855i \(-0.352721\pi\)
−0.894855 + 0.446356i \(0.852721\pi\)
\(744\) 0 0
\(745\) −22.1955 + 4.37380i −0.813182 + 0.160244i
\(746\) −4.87859 + 22.0358i −0.178618 + 0.806786i
\(747\) 0 0
\(748\) 18.6902 + 51.2595i 0.683380 + 1.87423i
\(749\) 6.73887i 0.246233i
\(750\) 0 0
\(751\) 28.9069i 1.05483i −0.849609 0.527413i \(-0.823162\pi\)
0.849609 0.527413i \(-0.176838\pi\)
\(752\) −12.9614 1.11902i −0.472652 0.0408066i
\(753\) 0 0
\(754\) 2.97421 + 0.658473i 0.108314 + 0.0239802i
\(755\) 17.4126 3.43129i 0.633710 0.124877i
\(756\) 0 0
\(757\) −16.2018 16.2018i −0.588864 0.588864i 0.348459 0.937324i \(-0.386705\pi\)
−0.937324 + 0.348459i \(0.886705\pi\)
\(758\) 18.4318 11.7498i 0.669474 0.426771i
\(759\) 0 0
\(760\) −7.32546 + 2.47909i −0.265722 + 0.0899262i
\(761\) 6.64641 0.240932 0.120466 0.992717i \(-0.461561\pi\)
0.120466 + 0.992717i \(0.461561\pi\)
\(762\) 0 0
\(763\) 4.47353 + 4.47353i 0.161953 + 0.161953i
\(764\) 12.7736 + 5.94751i 0.462131 + 0.215173i
\(765\) 0 0
\(766\) −24.5187 5.42831i −0.885898 0.196133i
\(767\) −0.931222 + 0.931222i −0.0336245 + 0.0336245i
\(768\) 0 0
\(769\) 29.3449i 1.05820i 0.848559 + 0.529101i \(0.177471\pi\)
−0.848559 + 0.529101i \(0.822529\pi\)
\(770\) −0.326890 + 14.0179i −0.0117803 + 0.505172i
\(771\) 0 0
\(772\) 11.1470 + 30.5717i 0.401189 + 1.10030i
\(773\) −37.5833 + 37.5833i −1.35178 + 1.35178i −0.468104 + 0.883674i \(0.655063\pi\)
−0.883674 + 0.468104i \(0.844937\pi\)
\(774\) 0 0
\(775\) −14.8166 36.1346i −0.532226 1.29799i
\(776\) 1.93086 2.52082i 0.0693137 0.0904921i
\(777\) 0 0
\(778\) 3.92510 + 6.15729i 0.140722 + 0.220749i
\(779\) −6.75359 −0.241973
\(780\) 0 0
\(781\) 41.5510 1.48681
\(782\) −6.15945 9.66229i −0.220261 0.345523i
\(783\) 0 0
\(784\) 19.1400 16.0978i 0.683573 0.574920i
\(785\) 15.8786 23.6724i 0.566731 0.844905i
\(786\) 0 0
\(787\) −7.59353 + 7.59353i −0.270680 + 0.270680i −0.829374 0.558694i \(-0.811303\pi\)
0.558694 + 0.829374i \(0.311303\pi\)
\(788\) −20.9358 + 7.63357i −0.745806 + 0.271935i
\(789\) 0 0
\(790\) 34.7440 + 36.4031i 1.23614 + 1.29516i
\(791\) 0.622595i 0.0221369i
\(792\) 0 0
\(793\) 8.77551 8.77551i 0.311628 0.311628i
\(794\) −6.76212 1.49710i −0.239979 0.0531300i
\(795\) 0 0
\(796\) 9.69075 20.8130i 0.343479 0.737696i
\(797\) −27.4908 27.4908i −0.973775 0.973775i 0.0258893 0.999665i \(-0.491758\pi\)
−0.999665 + 0.0258893i \(0.991758\pi\)
\(798\) 0 0
\(799\) 17.3016 0.612086
\(800\) 28.1818 2.40487i 0.996379 0.0850251i
\(801\) 0 0
\(802\) −4.16810 + 2.65705i −0.147181 + 0.0938237i
\(803\) −11.5508 11.5508i −0.407618 0.407618i
\(804\) 0 0
\(805\) −0.569343 2.88922i −0.0200667 0.101832i
\(806\) 26.8680 + 5.94842i 0.946384 + 0.209524i
\(807\) 0 0
\(808\) −3.75940 28.3673i −0.132255 0.997957i
\(809\) 47.7205i 1.67776i 0.544313 + 0.838882i \(0.316791\pi\)
−0.544313 + 0.838882i \(0.683209\pi\)
\(810\) 0 0
\(811\) 37.3179i 1.31041i 0.755451 + 0.655205i \(0.227418\pi\)
−0.755451 + 0.655205i \(0.772582\pi\)
\(812\) −1.40474 + 0.512195i −0.0492968 + 0.0179745i
\(813\) 0 0
\(814\) 3.90543 17.6402i 0.136885 0.618287i
\(815\) 23.0497 34.3634i 0.807397 1.20370i
\(816\) 0 0
\(817\) −7.58767 7.58767i −0.265459 0.265459i
\(818\) −11.2535 17.6533i −0.393470 0.617235i
\(819\) 0 0
\(820\) 23.9851 + 5.89995i 0.837597 + 0.206035i
\(821\) 0.686380 0.0239548 0.0119774 0.999928i \(-0.496187\pi\)
0.0119774 + 0.999928i \(0.496187\pi\)
\(822\) 0 0
\(823\) −27.2553 27.2553i −0.950059 0.950059i 0.0487521 0.998811i \(-0.484476\pi\)
−0.998811 + 0.0487521i \(0.984476\pi\)
\(824\) −9.29797 + 12.1389i −0.323910 + 0.422879i
\(825\) 0 0
\(826\) 0.139728 0.631126i 0.00486175 0.0219597i
\(827\) 31.4437 31.4437i 1.09341 1.09341i 0.0982432 0.995162i \(-0.468678\pi\)
0.995162 0.0982432i \(-0.0313223\pi\)
\(828\) 0 0
\(829\) 0.270718i 0.00940243i −0.999989 0.00470122i \(-0.998504\pi\)
0.999989 0.00470122i \(-0.00149645\pi\)
\(830\) −0.829553 + 35.5735i −0.0287942 + 1.23478i
\(831\) 0 0
\(832\) −9.93522 + 17.2767i −0.344442 + 0.598964i
\(833\) −23.5187 + 23.5187i −0.814876 + 0.814876i
\(834\) 0 0
\(835\) 29.7639 + 19.9645i 1.03002 + 0.690900i
\(836\) 11.3694 + 5.29373i 0.393220 + 0.183088i
\(837\) 0 0
\(838\) 22.7414 14.4970i 0.785589 0.500792i
\(839\) −31.0214 −1.07098 −0.535489 0.844542i \(-0.679873\pi\)
−0.535489 + 0.844542i \(0.679873\pi\)
\(840\) 0 0
\(841\) 28.2524 0.974221
\(842\) −24.8085 + 15.8147i −0.854956 + 0.545011i
\(843\) 0 0
\(844\) −9.95634 4.63578i −0.342711 0.159570i
\(845\) 14.9048 2.93711i 0.512742 0.101040i
\(846\) 0 0
\(847\) 9.35348 9.35348i 0.321389 0.321389i
\(848\) −14.8010 1.27785i −0.508267 0.0438814i
\(849\) 0 0
\(850\) −37.0654 + 6.41021i −1.27133 + 0.219869i
\(851\) 3.79441i 0.130071i
\(852\) 0 0
\(853\) 3.82611 3.82611i 0.131003 0.131003i −0.638565 0.769568i \(-0.720472\pi\)
0.769568 + 0.638565i \(0.220472\pi\)
\(854\) −1.31675 + 5.94751i −0.0450581 + 0.203520i
\(855\) 0 0
\(856\) −17.5004 13.4047i −0.598152 0.458163i
\(857\) −20.7711 20.7711i −0.709529 0.709529i 0.256907 0.966436i \(-0.417296\pi\)
−0.966436 + 0.256907i \(0.917296\pi\)
\(858\) 0 0
\(859\) 1.69693 0.0578985 0.0289492 0.999581i \(-0.490784\pi\)
0.0289492 + 0.999581i \(0.490784\pi\)
\(860\) 20.3187 + 33.5759i 0.692862 + 1.14493i
\(861\) 0 0
\(862\) −11.6540 18.2815i −0.396935 0.622670i
\(863\) −5.92869 5.92869i −0.201815 0.201815i 0.598962 0.800777i \(-0.295580\pi\)
−0.800777 + 0.598962i \(0.795580\pi\)
\(864\) 0 0
\(865\) 20.9248 + 14.0356i 0.711465 + 0.477225i
\(866\) 7.03831 31.7908i 0.239171 1.08030i
\(867\) 0 0
\(868\) −12.6900 + 4.62699i −0.430725 + 0.157050i
\(869\) 81.6068i 2.76832i
\(870\) 0 0
\(871\) 21.8617i 0.740756i
\(872\) −20.5161 + 2.71891i −0.694762 + 0.0920740i
\(873\) 0 0
\(874\) −2.57162 0.569343i −0.0869865 0.0192583i
\(875\) −9.47100 1.93667i −0.320178 0.0654714i
\(876\) 0 0
\(877\) −10.0323 10.0323i −0.338766 0.338766i 0.517137 0.855903i \(-0.326998\pi\)
−0.855903 + 0.517137i \(0.826998\pi\)
\(878\) 29.4020 18.7430i 0.992269 0.632544i
\(879\) 0 0
\(880\) −35.7535 28.7329i −1.20525 0.968585i
\(881\) 29.8130 1.00443 0.502213 0.864744i \(-0.332519\pi\)
0.502213 + 0.864744i \(0.332519\pi\)
\(882\) 0 0
\(883\) −5.56557 5.56557i −0.187296 0.187296i 0.607230 0.794526i \(-0.292281\pi\)
−0.794526 + 0.607230i \(0.792281\pi\)
\(884\) 11.1877 24.0279i 0.376282 0.808146i
\(885\) 0 0
\(886\) −3.45856 0.765707i −0.116193 0.0257244i
\(887\) −8.59630 + 8.59630i −0.288636 + 0.288636i −0.836541 0.547905i \(-0.815426\pi\)
0.547905 + 0.836541i \(0.315426\pi\)
\(888\) 0 0
\(889\) 9.15994i 0.307214i
\(890\) 16.5905 15.8344i 0.556115 0.530770i
\(891\) 0 0
\(892\) −28.8791 + 10.5298i −0.966943 + 0.352565i
\(893\) 2.81215 2.81215i 0.0941052 0.0941052i
\(894\) 0 0
\(895\) 5.46778 + 27.7471i 0.182768 + 0.927483i
\(896\) −0.446274 9.77211i −0.0149090 0.326463i
\(897\) 0 0
\(898\) 25.2015 + 39.5334i 0.840984 + 1.31925i
\(899\) −6.75359 −0.225245
\(900\) 0 0
\(901\) 19.7572 0.658207
\(902\) −21.5316 33.7766i −0.716925 1.12464i
\(903\) 0 0
\(904\) −1.61684 1.23844i −0.0537754 0.0411900i
\(905\) −3.34153 16.9571i −0.111076 0.563673i
\(906\) 0 0
\(907\) 31.6263 31.6263i 1.05013 1.05013i 0.0514592 0.998675i \(-0.483613\pi\)
0.998675 0.0514592i \(-0.0163872\pi\)
\(908\) 4.82748 + 13.2398i 0.160206 + 0.439379i
\(909\) 0 0
\(910\) 4.92749 4.70291i 0.163345 0.155900i
\(911\) 42.2656i 1.40032i 0.713985 + 0.700161i \(0.246888\pi\)
−0.713985 + 0.700161i \(0.753112\pi\)
\(912\) 0 0
\(913\) 40.8034 40.8034i 1.35040 1.35040i
\(914\) −14.6547 3.24448i −0.484735 0.107318i
\(915\) 0 0
\(916\) −46.7003 21.7442i −1.54302 0.718448i
\(917\) −8.55728 8.55728i −0.282586 0.282586i
\(918\) 0 0
\(919\) −31.2829 −1.03193 −0.515964 0.856610i \(-0.672566\pi\)
−0.515964 + 0.856610i \(0.672566\pi\)
\(920\) 8.63564 + 4.26858i 0.284709 + 0.140731i
\(921\) 0 0
\(922\) 32.2238 20.5418i 1.06123 0.676508i
\(923\) −14.2729 14.2729i −0.469798 0.469798i
\(924\) 0 0
\(925\) 11.4908 + 4.80779i 0.377816 + 0.158079i
\(926\) 54.1143 + 11.9806i 1.77831 + 0.393707i
\(927\) 0 0
\(928\) 1.46412 4.66687i 0.0480621 0.153198i
\(929\) 22.1050i 0.725241i −0.931937 0.362620i \(-0.881882\pi\)
0.931937 0.362620i \(-0.118118\pi\)
\(930\) 0 0
\(931\) 7.64535i 0.250566i
\(932\) −0.693082 1.90084i −0.0227026 0.0622641i
\(933\) 0 0
\(934\) 0.868197 3.92150i 0.0284083 0.128315i
\(935\) 50.6596 + 33.9806i 1.65675 + 1.11128i
\(936\) 0 0
\(937\) −15.2986 15.2986i −0.499784 0.499784i 0.411586 0.911371i \(-0.364975\pi\)
−0.911371 + 0.411586i \(0.864975\pi\)
\(938\) 5.76813 + 9.04843i 0.188336 + 0.295442i
\(939\) 0 0
\(940\) −12.4440 + 7.53056i −0.405877 + 0.245620i
\(941\) −25.5264 −0.832138 −0.416069 0.909333i \(-0.636593\pi\)
−0.416069 + 0.909333i \(0.636593\pi\)
\(942\) 0 0
\(943\) 5.94842 + 5.94842i 0.193707 + 0.193707i
\(944\) 1.36106 + 1.61828i 0.0442986 + 0.0526704i
\(945\) 0 0
\(946\) 13.7572 62.1388i 0.447285 2.02031i
\(947\) −11.9881 + 11.9881i −0.389562 + 0.389562i −0.874531 0.484969i \(-0.838831\pi\)
0.484969 + 0.874531i \(0.338831\pi\)
\(948\) 0 0
\(949\) 7.93545i 0.257596i
\(950\) −4.98260 + 7.06640i −0.161657 + 0.229264i
\(951\) 0 0
\(952\) 1.70916 + 12.8968i 0.0553943 + 0.417988i
\(953\) −5.99563 + 5.99563i −0.194218 + 0.194218i −0.797516 0.603298i \(-0.793853\pi\)
0.603298 + 0.797516i \(0.293853\pi\)
\(954\) 0 0
\(955\) 15.4562 3.04577i 0.500151 0.0985586i
\(956\) 22.7389 48.8366i 0.735427 1.57949i
\(957\) 0 0
\(958\) 16.4082 10.4598i 0.530125 0.337940i
\(959\) 8.57657 0.276952
\(960\) 0 0
\(961\) −30.0096 −0.968051
\(962\) −7.40097 + 4.71791i −0.238617 + 0.152112i
\(963\) 0 0
\(964\) 11.8968 25.5510i 0.383171 0.822943i
\(965\) 30.2139 + 20.2663i 0.972619 + 0.652397i
\(966\) 0 0
\(967\) −1.66866 + 1.66866i −0.0536606 + 0.0536606i −0.733428 0.679767i \(-0.762081\pi\)
0.679767 + 0.733428i \(0.262081\pi\)
\(968\) 5.68483 + 42.8960i 0.182717 + 1.37873i
\(969\) 0 0
\(970\) 0.0827643 3.54916i 0.00265740 0.113957i
\(971\) 4.79719i 0.153949i −0.997033 0.0769745i \(-0.975474\pi\)
0.997033 0.0769745i \(-0.0245260\pi\)
\(972\) 0 0
\(973\) −1.39401 + 1.39401i −0.0446900 + 0.0446900i
\(974\) −10.5208 + 47.5204i −0.337107 + 1.52265i
\(975\) 0 0
\(976\) −12.8261 15.2501i −0.410554 0.488143i
\(977\) 25.0140 + 25.0140i 0.800267 + 0.800267i 0.983137 0.182870i \(-0.0585387\pi\)
−0.182870 + 0.983137i \(0.558539\pi\)
\(978\) 0 0
\(979\) −37.1919 −1.18866
\(980\) 6.67899 27.1522i 0.213353 0.867344i
\(981\) 0 0
\(982\) 21.9635 + 34.4540i 0.700884 + 1.09947i
\(983\) 30.9151 + 30.9151i 0.986038 + 0.986038i 0.999904 0.0138655i \(-0.00441368\pi\)
−0.0138655 + 0.999904i \(0.504414\pi\)
\(984\) 0 0
\(985\) −13.8786 + 20.6907i −0.442209 + 0.659262i
\(986\) −1.40608 + 6.35101i −0.0447786 + 0.202257i
\(987\) 0 0
\(988\) −2.08702 5.72384i −0.0663969 0.182100i
\(989\) 13.3661i 0.425017i
\(990\) 0 0
\(991\) 26.5873i 0.844575i −0.906462 0.422287i \(-0.861227\pi\)
0.906462 0.422287i \(-0.138773\pi\)
\(992\) 13.2264 42.1589i 0.419937 1.33855i
\(993\) 0 0
\(994\) 9.67331 + 2.14162i 0.306819 + 0.0679280i
\(995\) −4.96270 25.1840i −0.157328 0.798387i
\(996\) 0 0
\(997\) −2.47252 2.47252i −0.0783054 0.0783054i 0.666869 0.745175i \(-0.267634\pi\)
−0.745175 + 0.666869i \(0.767634\pi\)
\(998\) −14.9500 + 9.53021i −0.473234 + 0.301674i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.2.k.e.127.5 12
3.2 odd 2 60.2.j.a.7.2 12
4.3 odd 2 inner 180.2.k.e.127.2 12
5.2 odd 4 900.2.k.n.343.5 12
5.3 odd 4 inner 180.2.k.e.163.2 12
5.4 even 2 900.2.k.n.307.2 12
12.11 even 2 60.2.j.a.7.5 yes 12
15.2 even 4 300.2.j.d.43.2 12
15.8 even 4 60.2.j.a.43.5 yes 12
15.14 odd 2 300.2.j.d.7.5 12
20.3 even 4 inner 180.2.k.e.163.5 12
20.7 even 4 900.2.k.n.343.2 12
20.19 odd 2 900.2.k.n.307.5 12
24.5 odd 2 960.2.w.g.127.2 12
24.11 even 2 960.2.w.g.127.5 12
60.23 odd 4 60.2.j.a.43.2 yes 12
60.47 odd 4 300.2.j.d.43.5 12
60.59 even 2 300.2.j.d.7.2 12
120.53 even 4 960.2.w.g.703.5 12
120.83 odd 4 960.2.w.g.703.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.2.j.a.7.2 12 3.2 odd 2
60.2.j.a.7.5 yes 12 12.11 even 2
60.2.j.a.43.2 yes 12 60.23 odd 4
60.2.j.a.43.5 yes 12 15.8 even 4
180.2.k.e.127.2 12 4.3 odd 2 inner
180.2.k.e.127.5 12 1.1 even 1 trivial
180.2.k.e.163.2 12 5.3 odd 4 inner
180.2.k.e.163.5 12 20.3 even 4 inner
300.2.j.d.7.2 12 60.59 even 2
300.2.j.d.7.5 12 15.14 odd 2
300.2.j.d.43.2 12 15.2 even 4
300.2.j.d.43.5 12 60.47 odd 4
900.2.k.n.307.2 12 5.4 even 2
900.2.k.n.307.5 12 20.19 odd 2
900.2.k.n.343.2 12 20.7 even 4
900.2.k.n.343.5 12 5.2 odd 4
960.2.w.g.127.2 12 24.5 odd 2
960.2.w.g.127.5 12 24.11 even 2
960.2.w.g.703.2 12 120.83 odd 4
960.2.w.g.703.5 12 120.53 even 4