Properties

Label 900.2.k.n.343.5
Level $900$
Weight $2$
Character 900.343
Analytic conductor $7.187$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(307,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.426337261060096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.5
Root \(1.19252 - 0.760198i\) of defining polynomial
Character \(\chi\) \(=\) 900.343
Dual form 900.2.k.n.307.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.760198 + 1.19252i) q^{2} +(-0.844199 + 1.81310i) q^{4} +(-0.611393 - 0.611393i) q^{7} +(-2.80391 + 0.371591i) q^{8} +5.12822i q^{11} +(-1.76156 - 1.76156i) q^{13} +(0.264318 - 1.19388i) q^{14} +(-2.57466 - 3.06123i) q^{16} +(-3.76156 + 3.76156i) q^{17} -1.22279 q^{19} +(-6.11549 + 3.89846i) q^{22} +(-1.07700 + 1.07700i) q^{23} +(0.761557 - 3.43982i) q^{26} +(1.62465 - 0.592379i) q^{28} -0.864641i q^{29} +7.81086i q^{31} +(1.69333 - 5.39747i) q^{32} +(-7.34525 - 1.62620i) q^{34} +(1.76156 - 1.76156i) q^{37} +(-0.929560 - 1.45820i) q^{38} -5.52311 q^{41} +(-6.20522 + 6.20522i) q^{43} +(-9.29797 - 4.32924i) q^{44} +(-2.10308 - 0.465611i) q^{46} +(2.29979 + 2.29979i) q^{47} -6.25240i q^{49} +(4.68098 - 1.70677i) q^{52} +(-2.62620 - 2.62620i) q^{53} +(1.94148 + 1.48710i) q^{56} +(1.03110 - 0.657298i) q^{58} +0.528636 q^{59} +4.98168 q^{61} +(-9.31460 + 5.93780i) q^{62} +(7.72384 - 2.08382i) q^{64} +(6.20522 + 6.20522i) q^{67} +(-3.64457 - 9.99558i) q^{68} -8.10243i q^{71} +(2.25240 + 2.25240i) q^{73} +(3.43982 + 0.761557i) q^{74} +(1.03228 - 2.21703i) q^{76} +(3.13536 - 3.13536i) q^{77} +15.9133 q^{79} +(-4.19866 - 6.58641i) q^{82} +(-7.95665 + 7.95665i) q^{83} +(-12.1170 - 2.68264i) q^{86} +(-1.90560 - 14.3791i) q^{88} -7.25240i q^{89} +2.15401i q^{91} +(-1.04351 - 2.86192i) q^{92} +(-0.994247 + 4.49084i) q^{94} +(-0.793833 + 0.793833i) q^{97} +(7.45610 - 4.75306i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{8} + 4 q^{13} + 12 q^{16} - 20 q^{17} - 12 q^{22} - 16 q^{26} + 4 q^{28} + 20 q^{32} - 4 q^{37} + 16 q^{38} - 16 q^{41} - 40 q^{46} + 8 q^{52} + 4 q^{53} + 64 q^{56} + 20 q^{58} - 32 q^{61}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.760198 + 1.19252i 0.537541 + 0.843238i
\(3\) 0 0
\(4\) −0.844199 + 1.81310i −0.422099 + 0.906550i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.611393 0.611393i −0.231085 0.231085i 0.582060 0.813145i \(-0.302247\pi\)
−0.813145 + 0.582060i \(0.802247\pi\)
\(8\) −2.80391 + 0.371591i −0.991332 + 0.131377i
\(9\) 0 0
\(10\) 0 0
\(11\) 5.12822i 1.54622i 0.634274 + 0.773108i \(0.281299\pi\)
−0.634274 + 0.773108i \(0.718701\pi\)
\(12\) 0 0
\(13\) −1.76156 1.76156i −0.488568 0.488568i 0.419286 0.907854i \(-0.362280\pi\)
−0.907854 + 0.419286i \(0.862280\pi\)
\(14\) 0.264318 1.19388i 0.0706419 0.319077i
\(15\) 0 0
\(16\) −2.57466 3.06123i −0.643664 0.765308i
\(17\) −3.76156 + 3.76156i −0.912312 + 0.912312i −0.996454 0.0841421i \(-0.973185\pi\)
0.0841421 + 0.996454i \(0.473185\pi\)
\(18\) 0 0
\(19\) −1.22279 −0.280527 −0.140263 0.990114i \(-0.544795\pi\)
−0.140263 + 0.990114i \(0.544795\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −6.11549 + 3.89846i −1.30383 + 0.831154i
\(23\) −1.07700 + 1.07700i −0.224571 + 0.224571i −0.810420 0.585849i \(-0.800761\pi\)
0.585849 + 0.810420i \(0.300761\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.761557 3.43982i 0.149354 0.674604i
\(27\) 0 0
\(28\) 1.62465 0.592379i 0.307031 0.111949i
\(29\) 0.864641i 0.160560i −0.996772 0.0802799i \(-0.974419\pi\)
0.996772 0.0802799i \(-0.0255814\pi\)
\(30\) 0 0
\(31\) 7.81086i 1.40287i 0.712732 + 0.701436i \(0.247457\pi\)
−0.712732 + 0.701436i \(0.752543\pi\)
\(32\) 1.69333 5.39747i 0.299341 0.954146i
\(33\) 0 0
\(34\) −7.34525 1.62620i −1.25970 0.278891i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.76156 1.76156i 0.289598 0.289598i −0.547323 0.836921i \(-0.684353\pi\)
0.836921 + 0.547323i \(0.184353\pi\)
\(38\) −0.929560 1.45820i −0.150795 0.236551i
\(39\) 0 0
\(40\) 0 0
\(41\) −5.52311 −0.862566 −0.431283 0.902217i \(-0.641939\pi\)
−0.431283 + 0.902217i \(0.641939\pi\)
\(42\) 0 0
\(43\) −6.20522 + 6.20522i −0.946288 + 0.946288i −0.998629 0.0523416i \(-0.983332\pi\)
0.0523416 + 0.998629i \(0.483332\pi\)
\(44\) −9.29797 4.32924i −1.40172 0.652657i
\(45\) 0 0
\(46\) −2.10308 0.465611i −0.310083 0.0686506i
\(47\) 2.29979 + 2.29979i 0.335459 + 0.335459i 0.854655 0.519196i \(-0.173769\pi\)
−0.519196 + 0.854655i \(0.673769\pi\)
\(48\) 0 0
\(49\) 6.25240i 0.893199i
\(50\) 0 0
\(51\) 0 0
\(52\) 4.68098 1.70677i 0.649135 0.236687i
\(53\) −2.62620 2.62620i −0.360736 0.360736i 0.503348 0.864084i \(-0.332101\pi\)
−0.864084 + 0.503348i \(0.832101\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.94148 + 1.48710i 0.259441 + 0.198723i
\(57\) 0 0
\(58\) 1.03110 0.657298i 0.135390 0.0863075i
\(59\) 0.528636 0.0688225 0.0344113 0.999408i \(-0.489044\pi\)
0.0344113 + 0.999408i \(0.489044\pi\)
\(60\) 0 0
\(61\) 4.98168 0.637838 0.318919 0.947782i \(-0.396680\pi\)
0.318919 + 0.947782i \(0.396680\pi\)
\(62\) −9.31460 + 5.93780i −1.18295 + 0.754101i
\(63\) 0 0
\(64\) 7.72384 2.08382i 0.965480 0.260477i
\(65\) 0 0
\(66\) 0 0
\(67\) 6.20522 + 6.20522i 0.758089 + 0.758089i 0.975974 0.217886i \(-0.0699160\pi\)
−0.217886 + 0.975974i \(0.569916\pi\)
\(68\) −3.64457 9.99558i −0.441969 1.21214i
\(69\) 0 0
\(70\) 0 0
\(71\) 8.10243i 0.961581i −0.876835 0.480791i \(-0.840350\pi\)
0.876835 0.480791i \(-0.159650\pi\)
\(72\) 0 0
\(73\) 2.25240 + 2.25240i 0.263623 + 0.263623i 0.826524 0.562901i \(-0.190315\pi\)
−0.562901 + 0.826524i \(0.690315\pi\)
\(74\) 3.43982 + 0.761557i 0.399871 + 0.0885292i
\(75\) 0 0
\(76\) 1.03228 2.21703i 0.118410 0.254311i
\(77\) 3.13536 3.13536i 0.357307 0.357307i
\(78\) 0 0
\(79\) 15.9133 1.79039 0.895193 0.445680i \(-0.147038\pi\)
0.895193 + 0.445680i \(0.147038\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −4.19866 6.58641i −0.463664 0.727348i
\(83\) −7.95665 + 7.95665i −0.873355 + 0.873355i −0.992836 0.119481i \(-0.961877\pi\)
0.119481 + 0.992836i \(0.461877\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −12.1170 2.68264i −1.30661 0.289277i
\(87\) 0 0
\(88\) −1.90560 14.3791i −0.203138 1.53281i
\(89\) 7.25240i 0.768752i −0.923177 0.384376i \(-0.874417\pi\)
0.923177 0.384376i \(-0.125583\pi\)
\(90\) 0 0
\(91\) 2.15401i 0.225801i
\(92\) −1.04351 2.86192i −0.108793 0.298376i
\(93\) 0 0
\(94\) −0.994247 + 4.49084i −0.102549 + 0.463195i
\(95\) 0 0
\(96\) 0 0
\(97\) −0.793833 + 0.793833i −0.0806015 + 0.0806015i −0.746258 0.665657i \(-0.768152\pi\)
0.665657 + 0.746258i \(0.268152\pi\)
\(98\) 7.45610 4.75306i 0.753179 0.480131i
\(99\) 0 0
\(100\) 0 0
\(101\) 10.1170 1.00668 0.503341 0.864088i \(-0.332104\pi\)
0.503341 + 0.864088i \(0.332104\pi\)
\(102\) 0 0
\(103\) −3.82267 + 3.82267i −0.376659 + 0.376659i −0.869895 0.493236i \(-0.835814\pi\)
0.493236 + 0.869895i \(0.335814\pi\)
\(104\) 5.59383 + 4.28467i 0.548520 + 0.420147i
\(105\) 0 0
\(106\) 1.13536 5.12822i 0.110276 0.498097i
\(107\) 5.51107 + 5.51107i 0.532775 + 0.532775i 0.921397 0.388622i \(-0.127049\pi\)
−0.388622 + 0.921397i \(0.627049\pi\)
\(108\) 0 0
\(109\) 7.31695i 0.700836i 0.936593 + 0.350418i \(0.113961\pi\)
−0.936593 + 0.350418i \(0.886039\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.297490 + 3.44575i −0.0281101 + 0.325592i
\(113\) −0.509161 0.509161i −0.0478978 0.0478978i 0.682752 0.730650i \(-0.260783\pi\)
−0.730650 + 0.682752i \(0.760783\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.56768 + 0.729929i 0.145555 + 0.0677722i
\(117\) 0 0
\(118\) 0.401868 + 0.630408i 0.0369949 + 0.0580337i
\(119\) 4.59958 0.421643
\(120\) 0 0
\(121\) −15.2986 −1.39078
\(122\) 3.78706 + 5.94074i 0.342864 + 0.537849i
\(123\) 0 0
\(124\) −14.1619 6.59392i −1.27177 0.592152i
\(125\) 0 0
\(126\) 0 0
\(127\) 7.49103 + 7.49103i 0.664722 + 0.664722i 0.956489 0.291767i \(-0.0942433\pi\)
−0.291767 + 0.956489i \(0.594243\pi\)
\(128\) 8.35664 + 7.62671i 0.738629 + 0.674112i
\(129\) 0 0
\(130\) 0 0
\(131\) 13.9964i 1.22287i 0.791296 + 0.611434i \(0.209407\pi\)
−0.791296 + 0.611434i \(0.790593\pi\)
\(132\) 0 0
\(133\) 0.747604 + 0.747604i 0.0648255 + 0.0648255i
\(134\) −2.68264 + 12.1170i −0.231745 + 1.04675i
\(135\) 0 0
\(136\) 9.14931 11.9448i 0.784547 1.02426i
\(137\) 7.01395 7.01395i 0.599242 0.599242i −0.340869 0.940111i \(-0.610721\pi\)
0.940111 + 0.340869i \(0.110721\pi\)
\(138\) 0 0
\(139\) −2.28006 −0.193392 −0.0966960 0.995314i \(-0.530827\pi\)
−0.0966960 + 0.995314i \(0.530827\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 9.66229 6.15945i 0.810842 0.516889i
\(143\) 9.03365 9.03365i 0.755432 0.755432i
\(144\) 0 0
\(145\) 0 0
\(146\) −0.973757 + 4.39829i −0.0805887 + 0.364005i
\(147\) 0 0
\(148\) 1.70677 + 4.68098i 0.140296 + 0.384774i
\(149\) 10.1170i 0.828820i 0.910090 + 0.414410i \(0.136012\pi\)
−0.910090 + 0.414410i \(0.863988\pi\)
\(150\) 0 0
\(151\) 7.93691i 0.645897i 0.946417 + 0.322948i \(0.104674\pi\)
−0.946417 + 0.322948i \(0.895326\pi\)
\(152\) 3.42859 0.454377i 0.278095 0.0368548i
\(153\) 0 0
\(154\) 6.12247 + 1.35548i 0.493362 + 0.109228i
\(155\) 0 0
\(156\) 0 0
\(157\) −9.01395 + 9.01395i −0.719392 + 0.719392i −0.968481 0.249089i \(-0.919869\pi\)
0.249089 + 0.968481i \(0.419869\pi\)
\(158\) 12.0972 + 18.9769i 0.962405 + 1.50972i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.31695 0.103790
\(162\) 0 0
\(163\) 13.0849 13.0849i 1.02489 1.02489i 0.0252033 0.999682i \(-0.491977\pi\)
0.999682 0.0252033i \(-0.00802331\pi\)
\(164\) 4.66261 10.0140i 0.364088 0.781958i
\(165\) 0 0
\(166\) −15.5371 3.43982i −1.20591 0.266982i
\(167\) −11.3334 11.3334i −0.877008 0.877008i 0.116216 0.993224i \(-0.462924\pi\)
−0.993224 + 0.116216i \(0.962924\pi\)
\(168\) 0 0
\(169\) 6.79383i 0.522603i
\(170\) 0 0
\(171\) 0 0
\(172\) −6.01224 16.4891i −0.458429 1.25728i
\(173\) 7.96772 + 7.96772i 0.605775 + 0.605775i 0.941839 0.336064i \(-0.109096\pi\)
−0.336064 + 0.941839i \(0.609096\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 15.6987 13.2034i 1.18333 0.995244i
\(177\) 0 0
\(178\) 8.64861 5.51325i 0.648241 0.413236i
\(179\) 12.6475 0.945320 0.472660 0.881245i \(-0.343294\pi\)
0.472660 + 0.881245i \(0.343294\pi\)
\(180\) 0 0
\(181\) 7.72928 0.574513 0.287256 0.957854i \(-0.407257\pi\)
0.287256 + 0.957854i \(0.407257\pi\)
\(182\) −2.56869 + 1.63747i −0.190404 + 0.121378i
\(183\) 0 0
\(184\) 2.61962 3.42003i 0.193121 0.252128i
\(185\) 0 0
\(186\) 0 0
\(187\) −19.2901 19.2901i −1.41063 1.41063i
\(188\) −6.11123 + 2.22827i −0.445707 + 0.162513i
\(189\) 0 0
\(190\) 0 0
\(191\) 7.04516i 0.509770i 0.966971 + 0.254885i \(0.0820376\pi\)
−0.966971 + 0.254885i \(0.917962\pi\)
\(192\) 0 0
\(193\) 11.5048 + 11.5048i 0.828133 + 0.828133i 0.987258 0.159125i \(-0.0508674\pi\)
−0.159125 + 0.987258i \(0.550867\pi\)
\(194\) −1.55013 0.343190i −0.111293 0.0246396i
\(195\) 0 0
\(196\) 11.3362 + 5.27827i 0.809730 + 0.377019i
\(197\) 7.87859 7.87859i 0.561327 0.561327i −0.368358 0.929684i \(-0.620080\pi\)
0.929684 + 0.368358i \(0.120080\pi\)
\(198\) 0 0
\(199\) −11.4792 −0.813741 −0.406870 0.913486i \(-0.633380\pi\)
−0.406870 + 0.913486i \(0.633380\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 7.69095 + 12.0648i 0.541133 + 0.848873i
\(203\) −0.528636 + 0.528636i −0.0371030 + 0.0371030i
\(204\) 0 0
\(205\) 0 0
\(206\) −7.46460 1.65262i −0.520083 0.115143i
\(207\) 0 0
\(208\) −0.857132 + 9.92794i −0.0594314 + 0.688379i
\(209\) 6.27072i 0.433755i
\(210\) 0 0
\(211\) 5.49134i 0.378039i −0.981973 0.189020i \(-0.939469\pi\)
0.981973 0.189020i \(-0.0605310\pi\)
\(212\) 6.97859 2.54452i 0.479292 0.174759i
\(213\) 0 0
\(214\) −2.38255 + 10.7616i −0.162868 + 0.735645i
\(215\) 0 0
\(216\) 0 0
\(217\) 4.77551 4.77551i 0.324183 0.324183i
\(218\) −8.72559 + 5.56233i −0.590972 + 0.376728i
\(219\) 0 0
\(220\) 0 0
\(221\) 13.2524 0.891453
\(222\) 0 0
\(223\) −10.8678 + 10.8678i −0.727764 + 0.727764i −0.970174 0.242410i \(-0.922062\pi\)
0.242410 + 0.970174i \(0.422062\pi\)
\(224\) −4.33526 + 2.26469i −0.289662 + 0.151316i
\(225\) 0 0
\(226\) 0.220121 0.994247i 0.0146422 0.0661363i
\(227\) −4.98244 4.98244i −0.330696 0.330696i 0.522155 0.852851i \(-0.325128\pi\)
−0.852851 + 0.522155i \(0.825128\pi\)
\(228\) 0 0
\(229\) 25.7572i 1.70208i 0.525098 + 0.851041i \(0.324028\pi\)
−0.525098 + 0.851041i \(0.675972\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.321293 + 2.42438i 0.0210939 + 0.159168i
\(233\) −0.715328 0.715328i −0.0468627 0.0468627i 0.683287 0.730150i \(-0.260550\pi\)
−0.730150 + 0.683287i \(0.760550\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.446274 + 0.958469i −0.0290499 + 0.0623910i
\(237\) 0 0
\(238\) 3.49659 + 5.48509i 0.226650 + 0.355545i
\(239\) −26.9354 −1.74231 −0.871154 0.491009i \(-0.836628\pi\)
−0.871154 + 0.491009i \(0.836628\pi\)
\(240\) 0 0
\(241\) 14.0925 0.907775 0.453887 0.891059i \(-0.350037\pi\)
0.453887 + 0.891059i \(0.350037\pi\)
\(242\) −11.6300 18.2439i −0.747603 1.17276i
\(243\) 0 0
\(244\) −4.20553 + 9.03228i −0.269231 + 0.578232i
\(245\) 0 0
\(246\) 0 0
\(247\) 2.15401 + 2.15401i 0.137056 + 0.137056i
\(248\) −2.90245 21.9010i −0.184306 1.39071i
\(249\) 0 0
\(250\) 0 0
\(251\) 17.2471i 1.08863i −0.838882 0.544314i \(-0.816790\pi\)
0.838882 0.544314i \(-0.183210\pi\)
\(252\) 0 0
\(253\) −5.52311 5.52311i −0.347235 0.347235i
\(254\) −3.23853 + 14.6279i −0.203203 + 0.917834i
\(255\) 0 0
\(256\) −2.74229 + 15.7632i −0.171393 + 0.985203i
\(257\) −15.0140 + 15.0140i −0.936545 + 0.936545i −0.998103 0.0615588i \(-0.980393\pi\)
0.0615588 + 0.998103i \(0.480393\pi\)
\(258\) 0 0
\(259\) −2.15401 −0.133844
\(260\) 0 0
\(261\) 0 0
\(262\) −16.6909 + 10.6400i −1.03117 + 0.657341i
\(263\) 6.73386 6.73386i 0.415228 0.415228i −0.468327 0.883555i \(-0.655143\pi\)
0.883555 + 0.468327i \(0.155143\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.323204 + 1.45986i −0.0198169 + 0.0895096i
\(267\) 0 0
\(268\) −16.4891 + 6.01224i −1.00723 + 0.367256i
\(269\) 25.7047i 1.56724i 0.621238 + 0.783622i \(0.286630\pi\)
−0.621238 + 0.783622i \(0.713370\pi\)
\(270\) 0 0
\(271\) 0.931222i 0.0565677i −0.999600 0.0282839i \(-0.990996\pi\)
0.999600 0.0282839i \(-0.00900423\pi\)
\(272\) 21.1997 + 1.83029i 1.28542 + 0.110977i
\(273\) 0 0
\(274\) 13.6963 + 3.03228i 0.827421 + 0.183186i
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0602 22.0602i 1.32547 1.32547i 0.416190 0.909277i \(-0.363365\pi\)
0.909277 0.416190i \(-0.136635\pi\)
\(278\) −1.73330 2.71901i −0.103956 0.163075i
\(279\) 0 0
\(280\) 0 0
\(281\) −8.56934 −0.511204 −0.255602 0.966782i \(-0.582274\pi\)
−0.255602 + 0.966782i \(0.582274\pi\)
\(282\) 0 0
\(283\) 11.5705 11.5705i 0.687796 0.687796i −0.273949 0.961744i \(-0.588330\pi\)
0.961744 + 0.273949i \(0.0883299\pi\)
\(284\) 14.6905 + 6.84006i 0.871721 + 0.405883i
\(285\) 0 0
\(286\) 17.6402 + 3.90543i 1.04308 + 0.230933i
\(287\) 3.37680 + 3.37680i 0.199326 + 0.199326i
\(288\) 0 0
\(289\) 11.2986i 0.664625i
\(290\) 0 0
\(291\) 0 0
\(292\) −5.98529 + 2.18235i −0.350262 + 0.127712i
\(293\) 12.8969 + 12.8969i 0.753446 + 0.753446i 0.975121 0.221675i \(-0.0711523\pi\)
−0.221675 + 0.975121i \(0.571152\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.28467 + 5.59383i −0.249041 + 0.325135i
\(297\) 0 0
\(298\) −12.0648 + 7.69095i −0.698892 + 0.445525i
\(299\) 3.79441 0.219436
\(300\) 0 0
\(301\) 7.58767 0.437346
\(302\) −9.46491 + 6.03362i −0.544644 + 0.347196i
\(303\) 0 0
\(304\) 3.14826 + 3.74324i 0.180565 + 0.214689i
\(305\) 0 0
\(306\) 0 0
\(307\) 1.60564 + 1.60564i 0.0916387 + 0.0916387i 0.751440 0.659801i \(-0.229360\pi\)
−0.659801 + 0.751440i \(0.729360\pi\)
\(308\) 3.03785 + 8.33158i 0.173098 + 0.474736i
\(309\) 0 0
\(310\) 0 0
\(311\) 19.4161i 1.10099i −0.834839 0.550494i \(-0.814439\pi\)
0.834839 0.550494i \(-0.185561\pi\)
\(312\) 0 0
\(313\) −17.7110 17.7110i −1.00108 1.00108i −0.999999 0.00108322i \(-0.999655\pi\)
−0.00108322 0.999999i \(-0.500345\pi\)
\(314\) −17.6017 3.89692i −0.993321 0.219916i
\(315\) 0 0
\(316\) −13.4340 + 28.8524i −0.755721 + 1.62307i
\(317\) −7.78946 + 7.78946i −0.437500 + 0.437500i −0.891170 0.453670i \(-0.850115\pi\)
0.453670 + 0.891170i \(0.350115\pi\)
\(318\) 0 0
\(319\) 4.43407 0.248260
\(320\) 0 0
\(321\) 0 0
\(322\) 1.00114 + 1.57048i 0.0557914 + 0.0875196i
\(323\) 4.59958 4.59958i 0.255928 0.255928i
\(324\) 0 0
\(325\) 0 0
\(326\) 25.5510 + 5.65685i 1.41514 + 0.313304i
\(327\) 0 0
\(328\) 15.4863 2.05234i 0.855089 0.113322i
\(329\) 2.81215i 0.155039i
\(330\) 0 0
\(331\) 31.7005i 1.74242i −0.490912 0.871209i \(-0.663336\pi\)
0.490912 0.871209i \(-0.336664\pi\)
\(332\) −7.70919 21.1432i −0.423097 1.16038i
\(333\) 0 0
\(334\) 4.89968 22.1310i 0.268098 1.21095i
\(335\) 0 0
\(336\) 0 0
\(337\) −18.9634 + 18.9634i −1.03300 + 1.03300i −0.0335632 + 0.999437i \(0.510686\pi\)
−0.999437 + 0.0335632i \(0.989314\pi\)
\(338\) 8.10177 5.16466i 0.440678 0.280920i
\(339\) 0 0
\(340\) 0 0
\(341\) −40.0558 −2.16914
\(342\) 0 0
\(343\) −8.10243 + 8.10243i −0.437490 + 0.437490i
\(344\) 15.0931 19.7047i 0.813765 1.06241i
\(345\) 0 0
\(346\) −3.44461 + 15.5587i −0.185183 + 0.836441i
\(347\) 7.71957 + 7.71957i 0.414408 + 0.414408i 0.883271 0.468863i \(-0.155336\pi\)
−0.468863 + 0.883271i \(0.655336\pi\)
\(348\) 0 0
\(349\) 27.0741i 1.44925i −0.689146 0.724623i \(-0.742014\pi\)
0.689146 0.724623i \(-0.257986\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 27.6794 + 8.68375i 1.47532 + 0.462846i
\(353\) −9.96772 9.96772i −0.530528 0.530528i 0.390201 0.920730i \(-0.372405\pi\)
−0.920730 + 0.390201i \(0.872405\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 13.1493 + 6.12247i 0.696912 + 0.324490i
\(357\) 0 0
\(358\) 9.61461 + 15.0824i 0.508148 + 0.797129i
\(359\) 14.2334 0.751211 0.375606 0.926780i \(-0.377435\pi\)
0.375606 + 0.926780i \(0.377435\pi\)
\(360\) 0 0
\(361\) −17.5048 −0.921305
\(362\) 5.87578 + 9.21731i 0.308824 + 0.484451i
\(363\) 0 0
\(364\) −3.90543 1.81841i −0.204700 0.0953107i
\(365\) 0 0
\(366\) 0 0
\(367\) 2.89145 + 2.89145i 0.150933 + 0.150933i 0.778534 0.627602i \(-0.215963\pi\)
−0.627602 + 0.778534i \(0.715963\pi\)
\(368\) 6.06988 + 0.524045i 0.316414 + 0.0273177i
\(369\) 0 0
\(370\) 0 0
\(371\) 3.21128i 0.166721i
\(372\) 0 0
\(373\) 11.2847 + 11.2847i 0.584298 + 0.584298i 0.936081 0.351783i \(-0.114425\pi\)
−0.351783 + 0.936081i \(0.614425\pi\)
\(374\) 8.33950 37.6681i 0.431225 1.94777i
\(375\) 0 0
\(376\) −7.30299 5.59383i −0.376623 0.288480i
\(377\) −1.52311 + 1.52311i −0.0784444 + 0.0784444i
\(378\) 0 0
\(379\) −15.4562 −0.793932 −0.396966 0.917833i \(-0.629937\pi\)
−0.396966 + 0.917833i \(0.629937\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −8.40148 + 5.35571i −0.429857 + 0.274022i
\(383\) −12.5562 + 12.5562i −0.641593 + 0.641593i −0.950947 0.309354i \(-0.899887\pi\)
0.309354 + 0.950947i \(0.399887\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.97376 + 22.4656i −0.253158 + 1.14347i
\(387\) 0 0
\(388\) −0.769144 2.10945i −0.0390474 0.107091i
\(389\) 5.16327i 0.261788i −0.991396 0.130894i \(-0.958215\pi\)
0.991396 0.130894i \(-0.0417848\pi\)
\(390\) 0 0
\(391\) 8.10243i 0.409757i
\(392\) 2.32333 + 17.5312i 0.117346 + 0.885458i
\(393\) 0 0
\(394\) 15.3847 + 3.40608i 0.775068 + 0.171596i
\(395\) 0 0
\(396\) 0 0
\(397\) 3.46293 3.46293i 0.173800 0.173800i −0.614847 0.788646i \(-0.710782\pi\)
0.788646 + 0.614847i \(0.210782\pi\)
\(398\) −8.72648 13.6892i −0.437419 0.686177i
\(399\) 0 0
\(400\) 0 0
\(401\) −3.49521 −0.174542 −0.0872712 0.996185i \(-0.527815\pi\)
−0.0872712 + 0.996185i \(0.527815\pi\)
\(402\) 0 0
\(403\) 13.7593 13.7593i 0.685399 0.685399i
\(404\) −8.54079 + 18.3432i −0.424920 + 0.912608i
\(405\) 0 0
\(406\) −1.03228 0.228540i −0.0512310 0.0113423i
\(407\) 9.03365 + 9.03365i 0.447781 + 0.447781i
\(408\) 0 0
\(409\) 14.8034i 0.731982i 0.930618 + 0.365991i \(0.119270\pi\)
−0.930618 + 0.365991i \(0.880730\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3.70379 10.1580i −0.182473 0.500448i
\(413\) −0.323204 0.323204i −0.0159039 0.0159039i
\(414\) 0 0
\(415\) 0 0
\(416\) −12.4908 + 6.52505i −0.612414 + 0.319917i
\(417\) 0 0
\(418\) 7.47795 4.76699i 0.365758 0.233161i
\(419\) −19.0701 −0.931634 −0.465817 0.884881i \(-0.654240\pi\)
−0.465817 + 0.884881i \(0.654240\pi\)
\(420\) 0 0
\(421\) −20.8034 −1.01390 −0.506948 0.861976i \(-0.669226\pi\)
−0.506948 + 0.861976i \(0.669226\pi\)
\(422\) 6.54852 4.17450i 0.318777 0.203212i
\(423\) 0 0
\(424\) 8.33950 + 6.38776i 0.405002 + 0.310217i
\(425\) 0 0
\(426\) 0 0
\(427\) −3.04577 3.04577i −0.147395 0.147395i
\(428\) −14.6446 + 5.33968i −0.707872 + 0.258103i
\(429\) 0 0
\(430\) 0 0
\(431\) 15.3302i 0.738428i −0.929344 0.369214i \(-0.879627\pi\)
0.929344 0.369214i \(-0.120373\pi\)
\(432\) 0 0
\(433\) −16.2803 16.2803i −0.782381 0.782381i 0.197851 0.980232i \(-0.436604\pi\)
−0.980232 + 0.197851i \(0.936604\pi\)
\(434\) 9.32521 + 2.06455i 0.447625 + 0.0991016i
\(435\) 0 0
\(436\) −13.2663 6.17696i −0.635343 0.295823i
\(437\) 1.31695 1.31695i 0.0629981 0.0629981i
\(438\) 0 0
\(439\) −24.6554 −1.17674 −0.588368 0.808593i \(-0.700230\pi\)
−0.588368 + 0.808593i \(0.700230\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 10.0744 + 15.8037i 0.479192 + 0.751706i
\(443\) −1.77116 + 1.77116i −0.0841501 + 0.0841501i −0.747929 0.663779i \(-0.768952\pi\)
0.663779 + 0.747929i \(0.268952\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −21.2218 4.69839i −1.00488 0.222475i
\(447\) 0 0
\(448\) −5.99634 3.44827i −0.283300 0.162916i
\(449\) 33.1512i 1.56450i −0.622963 0.782251i \(-0.714071\pi\)
0.622963 0.782251i \(-0.285929\pi\)
\(450\) 0 0
\(451\) 28.3237i 1.33371i
\(452\) 1.35299 0.493326i 0.0636394 0.0232041i
\(453\) 0 0
\(454\) 2.15401 9.72928i 0.101093 0.456618i
\(455\) 0 0
\(456\) 0 0
\(457\) 7.50479 7.50479i 0.351059 0.351059i −0.509444 0.860504i \(-0.670149\pi\)
0.860504 + 0.509444i \(0.170149\pi\)
\(458\) −30.7159 + 19.5806i −1.43526 + 0.914939i
\(459\) 0 0
\(460\) 0 0
\(461\) 27.0216 1.25852 0.629262 0.777193i \(-0.283357\pi\)
0.629262 + 0.777193i \(0.283357\pi\)
\(462\) 0 0
\(463\) 27.7123 27.7123i 1.28790 1.28790i 0.351843 0.936059i \(-0.385555\pi\)
0.936059 0.351843i \(-0.114445\pi\)
\(464\) −2.64687 + 2.22615i −0.122878 + 0.103347i
\(465\) 0 0
\(466\) 0.309251 1.39683i 0.0143258 0.0647070i
\(467\) 2.00823 + 2.00823i 0.0929296 + 0.0929296i 0.752043 0.659114i \(-0.229068\pi\)
−0.659114 + 0.752043i \(0.729068\pi\)
\(468\) 0 0
\(469\) 7.58767i 0.350366i
\(470\) 0 0
\(471\) 0 0
\(472\) −1.48225 + 0.196436i −0.0682260 + 0.00904172i
\(473\) −31.8217 31.8217i −1.46317 1.46317i
\(474\) 0 0
\(475\) 0 0
\(476\) −3.88296 + 8.33950i −0.177975 + 0.382240i
\(477\) 0 0
\(478\) −20.4763 32.1210i −0.936562 1.46918i
\(479\) −13.7593 −0.628678 −0.314339 0.949311i \(-0.601783\pi\)
−0.314339 + 0.949311i \(0.601783\pi\)
\(480\) 0 0
\(481\) −6.20617 −0.282977
\(482\) 10.7131 + 16.8055i 0.487966 + 0.765470i
\(483\) 0 0
\(484\) 12.9151 27.7379i 0.587049 1.26081i
\(485\) 0 0
\(486\) 0 0
\(487\) −24.3355 24.3355i −1.10275 1.10275i −0.994078 0.108671i \(-0.965340\pi\)
−0.108671 0.994078i \(-0.534660\pi\)
\(488\) −13.9682 + 1.85115i −0.632310 + 0.0837975i
\(489\) 0 0
\(490\) 0 0
\(491\) 28.8918i 1.30387i 0.758275 + 0.651935i \(0.226043\pi\)
−0.758275 + 0.651935i \(0.773957\pi\)
\(492\) 0 0
\(493\) 3.25240 + 3.25240i 0.146481 + 0.146481i
\(494\) −0.931222 + 4.20617i −0.0418977 + 0.189244i
\(495\) 0 0
\(496\) 23.9109 20.1103i 1.07363 0.902979i
\(497\) −4.95377 + 4.95377i −0.222207 + 0.222207i
\(498\) 0 0
\(499\) 12.5365 0.561211 0.280605 0.959823i \(-0.409465\pi\)
0.280605 + 0.959823i \(0.409465\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 20.5675 13.1112i 0.917972 0.585182i
\(503\) 9.01392 9.01392i 0.401911 0.401911i −0.476995 0.878906i \(-0.658274\pi\)
0.878906 + 0.476995i \(0.158274\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.38776 10.7851i 0.106149 0.479455i
\(507\) 0 0
\(508\) −19.9059 + 7.25806i −0.883182 + 0.322025i
\(509\) 22.5448i 0.999279i −0.866233 0.499640i \(-0.833466\pi\)
0.866233 0.499640i \(-0.166534\pi\)
\(510\) 0 0
\(511\) 2.75420i 0.121839i
\(512\) −20.8826 + 8.71295i −0.922891 + 0.385062i
\(513\) 0 0
\(514\) −29.3180 6.49084i −1.29316 0.286299i
\(515\) 0 0
\(516\) 0 0
\(517\) −11.7938 + 11.7938i −0.518692 + 0.518692i
\(518\) −1.63747 2.56869i −0.0719464 0.112862i
\(519\) 0 0
\(520\) 0 0
\(521\) 18.9046 0.828226 0.414113 0.910225i \(-0.364092\pi\)
0.414113 + 0.910225i \(0.364092\pi\)
\(522\) 0 0
\(523\) −21.8269 + 21.8269i −0.954426 + 0.954426i −0.999006 0.0445800i \(-0.985805\pi\)
0.0445800 + 0.999006i \(0.485805\pi\)
\(524\) −25.3768 11.8157i −1.10859 0.516172i
\(525\) 0 0
\(526\) 13.1493 + 2.91118i 0.573337 + 0.126934i
\(527\) −29.3810 29.3810i −1.27986 1.27986i
\(528\) 0 0
\(529\) 20.6801i 0.899136i
\(530\) 0 0
\(531\) 0 0
\(532\) −1.98661 + 0.724353i −0.0861303 + 0.0314047i
\(533\) 9.72928 + 9.72928i 0.421422 + 0.421422i
\(534\) 0 0
\(535\) 0 0
\(536\) −19.7047 15.0931i −0.851114 0.651922i
\(537\) 0 0
\(538\) −30.6533 + 19.5407i −1.32156 + 0.842457i
\(539\) 32.0637 1.38108
\(540\) 0 0
\(541\) 7.85838 0.337858 0.168929 0.985628i \(-0.445969\pi\)
0.168929 + 0.985628i \(0.445969\pi\)
\(542\) 1.11050 0.707913i 0.0477000 0.0304075i
\(543\) 0 0
\(544\) 13.9333 + 26.6724i 0.597387 + 1.14357i
\(545\) 0 0
\(546\) 0 0
\(547\) 17.8105 + 17.8105i 0.761522 + 0.761522i 0.976597 0.215076i \(-0.0689998\pi\)
−0.215076 + 0.976597i \(0.569000\pi\)
\(548\) 6.79582 + 18.6382i 0.290303 + 0.796183i
\(549\) 0 0
\(550\) 0 0
\(551\) 1.05727i 0.0450413i
\(552\) 0 0
\(553\) −9.72928 9.72928i −0.413731 0.413731i
\(554\) 43.0773 + 9.53707i 1.83018 + 0.405191i
\(555\) 0 0
\(556\) 1.92482 4.13397i 0.0816307 0.175319i
\(557\) 23.3372 23.3372i 0.988827 0.988827i −0.0111112 0.999938i \(-0.503537\pi\)
0.999938 + 0.0111112i \(0.00353686\pi\)
\(558\) 0 0
\(559\) 21.8617 0.924652
\(560\) 0 0
\(561\) 0 0
\(562\) −6.51439 10.2191i −0.274793 0.431067i
\(563\) 5.27400 5.27400i 0.222273 0.222273i −0.587182 0.809455i \(-0.699763\pi\)
0.809455 + 0.587182i \(0.199763\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 22.5939 + 5.00217i 0.949693 + 0.210257i
\(567\) 0 0
\(568\) 3.01079 + 22.7185i 0.126330 + 0.953247i
\(569\) 28.5606i 1.19732i 0.801002 + 0.598661i \(0.204301\pi\)
−0.801002 + 0.598661i \(0.795699\pi\)
\(570\) 0 0
\(571\) 32.2837i 1.35103i 0.737347 + 0.675515i \(0.236078\pi\)
−0.737347 + 0.675515i \(0.763922\pi\)
\(572\) 8.75270 + 24.0051i 0.365969 + 1.00370i
\(573\) 0 0
\(574\) −1.45986 + 6.59392i −0.0609333 + 0.275225i
\(575\) 0 0
\(576\) 0 0
\(577\) −27.0279 + 27.0279i −1.12519 + 1.12519i −0.134237 + 0.990949i \(0.542858\pi\)
−0.990949 + 0.134237i \(0.957142\pi\)
\(578\) 13.4738 8.58919i 0.560437 0.357263i
\(579\) 0 0
\(580\) 0 0
\(581\) 9.72928 0.403639
\(582\) 0 0
\(583\) 13.4677 13.4677i 0.557776 0.557776i
\(584\) −7.15249 5.47855i −0.295972 0.226704i
\(585\) 0 0
\(586\) −5.57560 + 25.1840i −0.230326 + 1.04034i
\(587\) −17.1558 17.1558i −0.708096 0.708096i 0.258039 0.966135i \(-0.416924\pi\)
−0.966135 + 0.258039i \(0.916924\pi\)
\(588\) 0 0
\(589\) 9.55102i 0.393543i
\(590\) 0 0
\(591\) 0 0
\(592\) −9.92794 0.857132i −0.408036 0.0352279i
\(593\) −21.5833 21.5833i −0.886320 0.886320i 0.107848 0.994167i \(-0.465604\pi\)
−0.994167 + 0.107848i \(0.965604\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18.3432 8.54079i −0.751366 0.349844i
\(597\) 0 0
\(598\) 2.88450 + 4.52490i 0.117956 + 0.185037i
\(599\) −23.7636 −0.970955 −0.485478 0.874249i \(-0.661354\pi\)
−0.485478 + 0.874249i \(0.661354\pi\)
\(600\) 0 0
\(601\) 22.1695 0.904314 0.452157 0.891938i \(-0.350655\pi\)
0.452157 + 0.891938i \(0.350655\pi\)
\(602\) 5.76813 + 9.04843i 0.235091 + 0.368786i
\(603\) 0 0
\(604\) −14.3904 6.70033i −0.585537 0.272633i
\(605\) 0 0
\(606\) 0 0
\(607\) 9.35348 + 9.35348i 0.379646 + 0.379646i 0.870974 0.491328i \(-0.163489\pi\)
−0.491328 + 0.870974i \(0.663489\pi\)
\(608\) −2.07058 + 6.59995i −0.0839731 + 0.267663i
\(609\) 0 0
\(610\) 0 0
\(611\) 8.10243i 0.327789i
\(612\) 0 0
\(613\) 24.1247 + 24.1247i 0.974389 + 0.974389i 0.999680 0.0252913i \(-0.00805134\pi\)
−0.0252913 + 0.999680i \(0.508051\pi\)
\(614\) −0.694151 + 3.13536i −0.0280137 + 0.126533i
\(615\) 0 0
\(616\) −7.62620 + 9.95634i −0.307268 + 0.401152i
\(617\) 3.82611 3.82611i 0.154033 0.154033i −0.625883 0.779917i \(-0.715261\pi\)
0.779917 + 0.625883i \(0.215261\pi\)
\(618\) 0 0
\(619\) −30.1297 −1.21101 −0.605507 0.795840i \(-0.707029\pi\)
−0.605507 + 0.795840i \(0.707029\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 23.1541 14.7601i 0.928395 0.591826i
\(623\) −4.43407 + 4.43407i −0.177647 + 0.177647i
\(624\) 0 0
\(625\) 0 0
\(626\) 7.65681 34.5845i 0.306028 1.38227i
\(627\) 0 0
\(628\) −8.73362 23.9528i −0.348509 0.955819i
\(629\) 13.2524i 0.528408i
\(630\) 0 0
\(631\) 21.5701i 0.858694i 0.903140 + 0.429347i \(0.141256\pi\)
−0.903140 + 0.429347i \(0.858744\pi\)
\(632\) −44.6195 + 5.91324i −1.77487 + 0.235216i
\(633\) 0 0
\(634\) −15.2106 3.36754i −0.604090 0.133742i
\(635\) 0 0
\(636\) 0 0
\(637\) −11.0140 + 11.0140i −0.436389 + 0.436389i
\(638\) 3.37077 + 5.28771i 0.133450 + 0.209342i
\(639\) 0 0
\(640\) 0 0
\(641\) −48.3911 −1.91133 −0.955666 0.294452i \(-0.904863\pi\)
−0.955666 + 0.294452i \(0.904863\pi\)
\(642\) 0 0
\(643\) −23.3413 + 23.3413i −0.920491 + 0.920491i −0.997064 0.0765729i \(-0.975602\pi\)
0.0765729 + 0.997064i \(0.475602\pi\)
\(644\) −1.11177 + 2.38776i −0.0438097 + 0.0940907i
\(645\) 0 0
\(646\) 8.98168 + 1.98849i 0.353379 + 0.0782362i
\(647\) 32.4465 + 32.4465i 1.27560 + 1.27560i 0.943103 + 0.332501i \(0.107892\pi\)
0.332501 + 0.943103i \(0.392108\pi\)
\(648\) 0 0
\(649\) 2.71096i 0.106414i
\(650\) 0 0
\(651\) 0 0
\(652\) 12.6779 + 34.7704i 0.496506 + 1.36171i
\(653\) 18.4725 + 18.4725i 0.722885 + 0.722885i 0.969192 0.246307i \(-0.0792170\pi\)
−0.246307 + 0.969192i \(0.579217\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 14.2201 + 16.9075i 0.555202 + 0.660128i
\(657\) 0 0
\(658\) 3.35355 2.13779i 0.130735 0.0833399i
\(659\) −47.5028 −1.85045 −0.925223 0.379423i \(-0.876122\pi\)
−0.925223 + 0.379423i \(0.876122\pi\)
\(660\) 0 0
\(661\) −46.1204 −1.79387 −0.896937 0.442158i \(-0.854213\pi\)
−0.896937 + 0.442158i \(0.854213\pi\)
\(662\) 37.8035 24.0987i 1.46927 0.936621i
\(663\) 0 0
\(664\) 19.3531 25.2663i 0.751046 0.980525i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.931222 + 0.931222i 0.0360571 + 0.0360571i
\(668\) 30.1163 10.9810i 1.16524 0.424867i
\(669\) 0 0
\(670\) 0 0
\(671\) 25.5471i 0.986236i
\(672\) 0 0
\(673\) −3.60599 3.60599i −0.139001 0.139001i 0.634183 0.773183i \(-0.281337\pi\)
−0.773183 + 0.634183i \(0.781337\pi\)
\(674\) −37.0300 8.19825i −1.42634 0.315785i
\(675\) 0 0
\(676\) 12.3179 + 5.73535i 0.473765 + 0.220590i
\(677\) −8.26635 + 8.26635i −0.317702 + 0.317702i −0.847884 0.530182i \(-0.822124\pi\)
0.530182 + 0.847884i \(0.322124\pi\)
\(678\) 0 0
\(679\) 0.970688 0.0372516
\(680\) 0 0
\(681\) 0 0
\(682\) −30.4503 47.7673i −1.16600 1.82910i
\(683\) 8.43079 8.43079i 0.322595 0.322595i −0.527167 0.849762i \(-0.676746\pi\)
0.849762 + 0.527167i \(0.176746\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −15.8217 3.50285i −0.604077 0.133739i
\(687\) 0 0
\(688\) 34.9719 + 3.01932i 1.33329 + 0.115110i
\(689\) 9.25240i 0.352488i
\(690\) 0 0
\(691\) 21.9182i 0.833809i 0.908950 + 0.416905i \(0.136885\pi\)
−0.908950 + 0.416905i \(0.863115\pi\)
\(692\) −21.1726 + 7.71993i −0.804862 + 0.293468i
\(693\) 0 0
\(694\) −3.33733 + 15.0741i −0.126683 + 0.572206i
\(695\) 0 0
\(696\) 0 0
\(697\) 20.7755 20.7755i 0.786929 0.786929i
\(698\) 32.2864 20.5817i 1.22206 0.779029i
\(699\) 0 0
\(700\) 0 0
\(701\) 21.8184 0.824070 0.412035 0.911168i \(-0.364818\pi\)
0.412035 + 0.911168i \(0.364818\pi\)
\(702\) 0 0
\(703\) −2.15401 + 2.15401i −0.0812400 + 0.0812400i
\(704\) 10.6863 + 39.6095i 0.402754 + 1.49284i
\(705\) 0 0
\(706\) 4.30925 19.4641i 0.162181 0.732542i
\(707\) −6.18549 6.18549i −0.232629 0.232629i
\(708\) 0 0
\(709\) 31.7938i 1.19404i 0.802225 + 0.597021i \(0.203649\pi\)
−0.802225 + 0.597021i \(0.796351\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 2.69493 + 20.3351i 0.100997 + 0.762089i
\(713\) −8.41233 8.41233i −0.315044 0.315044i
\(714\) 0 0
\(715\) 0 0
\(716\) −10.6770 + 22.9312i −0.399019 + 0.856979i
\(717\) 0 0
\(718\) 10.8202 + 16.9736i 0.403807 + 0.633450i
\(719\) 52.0874 1.94253 0.971265 0.237999i \(-0.0764916\pi\)
0.971265 + 0.237999i \(0.0764916\pi\)
\(720\) 0 0
\(721\) 4.67432 0.174081
\(722\) −13.3071 20.8748i −0.495239 0.776879i
\(723\) 0 0
\(724\) −6.52505 + 14.0140i −0.242502 + 0.520824i
\(725\) 0 0
\(726\) 0 0
\(727\) −8.13069 8.13069i −0.301551 0.301551i 0.540070 0.841620i \(-0.318398\pi\)
−0.841620 + 0.540070i \(0.818398\pi\)
\(728\) −0.800411 6.03965i −0.0296652 0.223844i
\(729\) 0 0
\(730\) 0 0
\(731\) 46.6826i 1.72662i
\(732\) 0 0
\(733\) 29.9956 + 29.9956i 1.10791 + 1.10791i 0.993424 + 0.114489i \(0.0365232\pi\)
0.114489 + 0.993424i \(0.463477\pi\)
\(734\) −1.25003 + 5.64618i −0.0461396 + 0.208404i
\(735\) 0 0
\(736\) 3.98937 + 7.63682i 0.147050 + 0.281497i
\(737\) −31.8217 + 31.8217i −1.17217 + 1.17217i
\(738\) 0 0
\(739\) 39.4719 1.45200 0.725999 0.687696i \(-0.241378\pi\)
0.725999 + 0.687696i \(0.241378\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −3.82951 + 2.44121i −0.140586 + 0.0896196i
\(743\) −12.2252 + 12.2252i −0.448499 + 0.448499i −0.894855 0.446356i \(-0.852721\pi\)
0.446356 + 0.894855i \(0.352721\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −4.87859 + 22.0358i −0.178618 + 0.806786i
\(747\) 0 0
\(748\) 51.2595 18.6902i 1.87423 0.683380i
\(749\) 6.73887i 0.246233i
\(750\) 0 0
\(751\) 28.9069i 1.05483i −0.849609 0.527413i \(-0.823162\pi\)
0.849609 0.527413i \(-0.176838\pi\)
\(752\) 1.11902 12.9614i 0.0408066 0.472652i
\(753\) 0 0
\(754\) −2.97421 0.658473i −0.108314 0.0239802i
\(755\) 0 0
\(756\) 0 0
\(757\) 16.2018 16.2018i 0.588864 0.588864i −0.348459 0.937324i \(-0.613295\pi\)
0.937324 + 0.348459i \(0.113295\pi\)
\(758\) −11.7498 18.4318i −0.426771 0.669474i
\(759\) 0 0
\(760\) 0 0
\(761\) 6.64641 0.240932 0.120466 0.992717i \(-0.461561\pi\)
0.120466 + 0.992717i \(0.461561\pi\)
\(762\) 0 0
\(763\) 4.47353 4.47353i 0.161953 0.161953i
\(764\) −12.7736 5.94751i −0.462131 0.215173i
\(765\) 0 0
\(766\) −24.5187 5.42831i −0.885898 0.196133i
\(767\) −0.931222 0.931222i −0.0336245 0.0336245i
\(768\) 0 0
\(769\) 29.3449i 1.05820i −0.848559 0.529101i \(-0.822529\pi\)
0.848559 0.529101i \(-0.177471\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −30.5717 + 11.1470i −1.10030 + 0.401189i
\(773\) 37.5833 + 37.5833i 1.35178 + 1.35178i 0.883674 + 0.468104i \(0.155063\pi\)
0.468104 + 0.883674i \(0.344937\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.93086 2.52082i 0.0693137 0.0904921i
\(777\) 0 0
\(778\) 6.15729 3.92510i 0.220749 0.140722i
\(779\) 6.75359 0.241973
\(780\) 0 0
\(781\) 41.5510 1.48681
\(782\) 9.66229 6.15945i 0.345523 0.220261i
\(783\) 0 0
\(784\) −19.1400 + 16.0978i −0.683573 + 0.574920i
\(785\) 0 0
\(786\) 0 0
\(787\) −7.59353 7.59353i −0.270680 0.270680i 0.558694 0.829374i \(-0.311303\pi\)
−0.829374 + 0.558694i \(0.811303\pi\)
\(788\) 7.63357 + 20.9358i 0.271935 + 0.745806i
\(789\) 0 0
\(790\) 0 0
\(791\) 0.622595i 0.0221369i
\(792\) 0 0
\(793\) −8.77551 8.77551i −0.311628 0.311628i
\(794\) 6.76212 + 1.49710i 0.239979 + 0.0531300i
\(795\) 0 0
\(796\) 9.69075 20.8130i 0.343479 0.737696i
\(797\) 27.4908 27.4908i 0.973775 0.973775i −0.0258893 0.999665i \(-0.508242\pi\)
0.999665 + 0.0258893i \(0.00824175\pi\)
\(798\) 0 0
\(799\) −17.3016 −0.612086
\(800\) 0 0
\(801\) 0 0
\(802\) −2.65705 4.16810i −0.0938237 0.147181i
\(803\) −11.5508 + 11.5508i −0.407618 + 0.407618i
\(804\) 0 0
\(805\) 0 0
\(806\) 26.8680 + 5.94842i 0.946384 + 0.209524i
\(807\) 0 0
\(808\) −28.3673 + 3.75940i −0.997957 + 0.132255i
\(809\) 47.7205i 1.67776i −0.544313 0.838882i \(-0.683209\pi\)
0.544313 0.838882i \(-0.316791\pi\)
\(810\) 0 0
\(811\) 37.3179i 1.31041i 0.755451 + 0.655205i \(0.227418\pi\)
−0.755451 + 0.655205i \(0.772582\pi\)
\(812\) −0.512195 1.40474i −0.0179745 0.0492968i
\(813\) 0 0
\(814\) −3.90543 + 17.6402i −0.136885 + 0.618287i
\(815\) 0 0
\(816\) 0 0
\(817\) 7.58767 7.58767i 0.265459 0.265459i
\(818\) −17.6533 + 11.2535i −0.617235 + 0.393470i
\(819\) 0 0
\(820\) 0 0
\(821\) 0.686380 0.0239548 0.0119774 0.999928i \(-0.496187\pi\)
0.0119774 + 0.999928i \(0.496187\pi\)
\(822\) 0 0
\(823\) −27.2553 + 27.2553i −0.950059 + 0.950059i −0.998811 0.0487521i \(-0.984476\pi\)
0.0487521 + 0.998811i \(0.484476\pi\)
\(824\) 9.29797 12.1389i 0.323910 0.422879i
\(825\) 0 0
\(826\) 0.139728 0.631126i 0.00486175 0.0219597i
\(827\) 31.4437 + 31.4437i 1.09341 + 1.09341i 0.995162 + 0.0982432i \(0.0313223\pi\)
0.0982432 + 0.995162i \(0.468678\pi\)
\(828\) 0 0
\(829\) 0.270718i 0.00940243i 0.999989 + 0.00470122i \(0.00149645\pi\)
−0.999989 + 0.00470122i \(0.998504\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −17.2767 9.93522i −0.598964 0.344442i
\(833\) 23.5187 + 23.5187i 0.814876 + 0.814876i
\(834\) 0 0
\(835\) 0 0
\(836\) 11.3694 + 5.29373i 0.393220 + 0.183088i
\(837\) 0 0
\(838\) −14.4970 22.7414i −0.500792 0.785589i
\(839\) 31.0214 1.07098 0.535489 0.844542i \(-0.320127\pi\)
0.535489 + 0.844542i \(0.320127\pi\)
\(840\) 0 0
\(841\) 28.2524 0.974221
\(842\) −15.8147 24.8085i −0.545011 0.854956i
\(843\) 0 0
\(844\) 9.95634 + 4.63578i 0.342711 + 0.159570i
\(845\) 0 0
\(846\) 0 0
\(847\) 9.35348 + 9.35348i 0.321389 + 0.321389i
\(848\) −1.27785 + 14.8010i −0.0438814 + 0.508267i
\(849\) 0 0
\(850\) 0 0
\(851\) 3.79441i 0.130071i
\(852\) 0 0
\(853\) −3.82611 3.82611i −0.131003 0.131003i 0.638565 0.769568i \(-0.279528\pi\)
−0.769568 + 0.638565i \(0.779528\pi\)
\(854\) 1.31675 5.94751i 0.0450581 0.203520i
\(855\) 0 0
\(856\) −17.5004 13.4047i −0.598152 0.458163i
\(857\) 20.7711 20.7711i 0.709529 0.709529i −0.256907 0.966436i \(-0.582704\pi\)
0.966436 + 0.256907i \(0.0827035\pi\)
\(858\) 0 0
\(859\) −1.69693 −0.0578985 −0.0289492 0.999581i \(-0.509216\pi\)
−0.0289492 + 0.999581i \(0.509216\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 18.2815 11.6540i 0.622670 0.396935i
\(863\) −5.92869 + 5.92869i −0.201815 + 0.201815i −0.800777 0.598962i \(-0.795580\pi\)
0.598962 + 0.800777i \(0.295580\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 7.03831 31.7908i 0.239171 1.08030i
\(867\) 0 0
\(868\) 4.62699 + 12.6900i 0.157050 + 0.430725i
\(869\) 81.6068i 2.76832i
\(870\) 0 0
\(871\) 21.8617i 0.740756i
\(872\) −2.71891 20.5161i −0.0920740 0.694762i
\(873\) 0 0
\(874\) 2.57162 + 0.569343i 0.0869865 + 0.0192583i
\(875\) 0 0
\(876\) 0 0
\(877\) 10.0323 10.0323i 0.338766 0.338766i −0.517137 0.855903i \(-0.673002\pi\)
0.855903 + 0.517137i \(0.173002\pi\)
\(878\) −18.7430 29.4020i −0.632544 0.992269i
\(879\) 0 0
\(880\) 0 0
\(881\) 29.8130 1.00443 0.502213 0.864744i \(-0.332519\pi\)
0.502213 + 0.864744i \(0.332519\pi\)
\(882\) 0 0
\(883\) −5.56557 + 5.56557i −0.187296 + 0.187296i −0.794526 0.607230i \(-0.792281\pi\)
0.607230 + 0.794526i \(0.292281\pi\)
\(884\) −11.1877 + 24.0279i −0.376282 + 0.808146i
\(885\) 0 0
\(886\) −3.45856 0.765707i −0.116193 0.0257244i
\(887\) −8.59630 8.59630i −0.288636 0.288636i 0.547905 0.836541i \(-0.315426\pi\)
−0.836541 + 0.547905i \(0.815426\pi\)
\(888\) 0 0
\(889\) 9.15994i 0.307214i
\(890\) 0 0
\(891\) 0 0
\(892\) −10.5298 28.8791i −0.352565 0.966943i
\(893\) −2.81215 2.81215i −0.0941052 0.0941052i
\(894\) 0 0
\(895\) 0 0
\(896\) −0.446274 9.77211i −0.0149090 0.326463i
\(897\) 0 0
\(898\) 39.5334 25.2015i 1.31925 0.840984i
\(899\) 6.75359 0.225245
\(900\) 0 0
\(901\) 19.7572 0.658207
\(902\) 33.7766 21.5316i 1.12464 0.716925i
\(903\) 0 0
\(904\) 1.61684 + 1.23844i 0.0537754 + 0.0411900i
\(905\) 0 0
\(906\) 0 0
\(907\) 31.6263 + 31.6263i 1.05013 + 1.05013i 0.998675 + 0.0514592i \(0.0163872\pi\)
0.0514592 + 0.998675i \(0.483613\pi\)
\(908\) 13.2398 4.82748i 0.439379 0.160206i
\(909\) 0 0
\(910\) 0 0
\(911\) 42.2656i 1.40032i 0.713985 + 0.700161i \(0.246888\pi\)
−0.713985 + 0.700161i \(0.753112\pi\)
\(912\) 0 0
\(913\) −40.8034 40.8034i −1.35040 1.35040i
\(914\) 14.6547 + 3.24448i 0.484735 + 0.107318i
\(915\) 0 0
\(916\) −46.7003 21.7442i −1.54302 0.718448i
\(917\) 8.55728 8.55728i 0.282586 0.282586i
\(918\) 0 0
\(919\) 31.2829 1.03193 0.515964 0.856610i \(-0.327434\pi\)
0.515964 + 0.856610i \(0.327434\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 20.5418 + 32.2238i 0.676508 + 1.06123i
\(923\) −14.2729 + 14.2729i −0.469798 + 0.469798i
\(924\) 0 0
\(925\) 0 0
\(926\) 54.1143 + 11.9806i 1.77831 + 0.393707i
\(927\) 0 0
\(928\) −4.66687 1.46412i −0.153198 0.0480621i
\(929\) 22.1050i 0.725241i 0.931937 + 0.362620i \(0.118118\pi\)
−0.931937 + 0.362620i \(0.881882\pi\)
\(930\) 0 0
\(931\) 7.64535i 0.250566i
\(932\) 1.90084 0.693082i 0.0622641 0.0227026i
\(933\) 0 0
\(934\) −0.868197 + 3.92150i −0.0284083 + 0.128315i
\(935\) 0 0
\(936\) 0 0
\(937\) 15.2986 15.2986i 0.499784 0.499784i −0.411586 0.911371i \(-0.635025\pi\)
0.911371 + 0.411586i \(0.135025\pi\)
\(938\) 9.04843 5.76813i 0.295442 0.188336i
\(939\) 0 0
\(940\) 0 0
\(941\) −25.5264 −0.832138 −0.416069 0.909333i \(-0.636593\pi\)
−0.416069 + 0.909333i \(0.636593\pi\)
\(942\) 0 0
\(943\) 5.94842 5.94842i 0.193707 0.193707i
\(944\) −1.36106 1.61828i −0.0442986 0.0526704i
\(945\) 0 0
\(946\) 13.7572 62.1388i 0.447285 2.02031i
\(947\) −11.9881 11.9881i −0.389562 0.389562i 0.484969 0.874531i \(-0.338831\pi\)
−0.874531 + 0.484969i \(0.838831\pi\)
\(948\) 0 0
\(949\) 7.93545i 0.257596i
\(950\) 0 0
\(951\) 0 0
\(952\) −12.8968 + 1.70916i −0.417988 + 0.0553943i
\(953\) 5.99563 + 5.99563i 0.194218 + 0.194218i 0.797516 0.603298i \(-0.206147\pi\)
−0.603298 + 0.797516i \(0.706147\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 22.7389 48.8366i 0.735427 1.57949i
\(957\) 0 0
\(958\) −10.4598 16.4082i −0.337940 0.530125i
\(959\) −8.57657 −0.276952
\(960\) 0 0
\(961\) −30.0096 −0.968051
\(962\) −4.71791 7.40097i −0.152112 0.238617i
\(963\) 0 0
\(964\) −11.8968 + 25.5510i −0.383171 + 0.822943i
\(965\) 0 0
\(966\) 0 0
\(967\) −1.66866 1.66866i −0.0536606 0.0536606i 0.679767 0.733428i \(-0.262081\pi\)
−0.733428 + 0.679767i \(0.762081\pi\)
\(968\) 42.8960 5.68483i 1.37873 0.182717i
\(969\) 0 0
\(970\) 0 0
\(971\) 4.79719i 0.153949i −0.997033 0.0769745i \(-0.975474\pi\)
0.997033 0.0769745i \(-0.0245260\pi\)
\(972\) 0 0
\(973\) 1.39401 + 1.39401i 0.0446900 + 0.0446900i
\(974\) 10.5208 47.5204i 0.337107 1.52265i
\(975\) 0 0
\(976\) −12.8261 15.2501i −0.410554 0.488143i
\(977\) −25.0140 + 25.0140i −0.800267 + 0.800267i −0.983137 0.182870i \(-0.941461\pi\)
0.182870 + 0.983137i \(0.441461\pi\)
\(978\) 0 0
\(979\) 37.1919 1.18866
\(980\) 0 0
\(981\) 0 0
\(982\) −34.4540 + 21.9635i −1.09947 + 0.700884i
\(983\) 30.9151 30.9151i 0.986038 0.986038i −0.0138655 0.999904i \(-0.504414\pi\)
0.999904 + 0.0138655i \(0.00441368\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1.40608 + 6.35101i −0.0447786 + 0.202257i
\(987\) 0 0
\(988\) −5.72384 + 2.08702i −0.182100 + 0.0663969i
\(989\) 13.3661i 0.425017i
\(990\) 0 0
\(991\) 26.5873i 0.844575i −0.906462 0.422287i \(-0.861227\pi\)
0.906462 0.422287i \(-0.138773\pi\)
\(992\) 42.1589 + 13.2264i 1.33855 + 0.419937i
\(993\) 0 0
\(994\) −9.67331 2.14162i −0.306819 0.0679280i
\(995\) 0 0
\(996\) 0 0
\(997\) 2.47252 2.47252i 0.0783054 0.0783054i −0.666869 0.745175i \(-0.732366\pi\)
0.745175 + 0.666869i \(0.232366\pi\)
\(998\) 9.53021 + 14.9500i 0.301674 + 0.473234i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.k.n.343.5 12
3.2 odd 2 300.2.j.d.43.2 12
4.3 odd 2 inner 900.2.k.n.343.2 12
5.2 odd 4 inner 900.2.k.n.307.2 12
5.3 odd 4 180.2.k.e.127.5 12
5.4 even 2 180.2.k.e.163.2 12
12.11 even 2 300.2.j.d.43.5 12
15.2 even 4 300.2.j.d.7.5 12
15.8 even 4 60.2.j.a.7.2 12
15.14 odd 2 60.2.j.a.43.5 yes 12
20.3 even 4 180.2.k.e.127.2 12
20.7 even 4 inner 900.2.k.n.307.5 12
20.19 odd 2 180.2.k.e.163.5 12
60.23 odd 4 60.2.j.a.7.5 yes 12
60.47 odd 4 300.2.j.d.7.2 12
60.59 even 2 60.2.j.a.43.2 yes 12
120.29 odd 2 960.2.w.g.703.5 12
120.53 even 4 960.2.w.g.127.2 12
120.59 even 2 960.2.w.g.703.2 12
120.83 odd 4 960.2.w.g.127.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.2.j.a.7.2 12 15.8 even 4
60.2.j.a.7.5 yes 12 60.23 odd 4
60.2.j.a.43.2 yes 12 60.59 even 2
60.2.j.a.43.5 yes 12 15.14 odd 2
180.2.k.e.127.2 12 20.3 even 4
180.2.k.e.127.5 12 5.3 odd 4
180.2.k.e.163.2 12 5.4 even 2
180.2.k.e.163.5 12 20.19 odd 2
300.2.j.d.7.2 12 60.47 odd 4
300.2.j.d.7.5 12 15.2 even 4
300.2.j.d.43.2 12 3.2 odd 2
300.2.j.d.43.5 12 12.11 even 2
900.2.k.n.307.2 12 5.2 odd 4 inner
900.2.k.n.307.5 12 20.7 even 4 inner
900.2.k.n.343.2 12 4.3 odd 2 inner
900.2.k.n.343.5 12 1.1 even 1 trivial
960.2.w.g.127.2 12 120.53 even 4
960.2.w.g.127.5 12 120.83 odd 4
960.2.w.g.703.2 12 120.59 even 2
960.2.w.g.703.5 12 120.29 odd 2