Properties

Label 912.6.a.d
Level 912912
Weight 66
Character orbit 912.a
Self dual yes
Analytic conductor 146.270146.270
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,6,Mod(1,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 912=24319 912 = 2^{4} \cdot 3 \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 912.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 146.270043669146.270043669
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 57)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q9q3+6q5+176q7+81q9+496q11178q1354q15+202q17+361q191584q214396q233089q25729q275902q295760q314464q33++40176q99+O(q100) q - 9 q^{3} + 6 q^{5} + 176 q^{7} + 81 q^{9} + 496 q^{11} - 178 q^{13} - 54 q^{15} + 202 q^{17} + 361 q^{19} - 1584 q^{21} - 4396 q^{23} - 3089 q^{25} - 729 q^{27} - 5902 q^{29} - 5760 q^{31} - 4464 q^{33}+ \cdots + 40176 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −9.00000 0 6.00000 0 176.000 0 81.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.6.a.d 1
4.b odd 2 1 57.6.a.b 1
12.b even 2 1 171.6.a.a 1
76.d even 2 1 1083.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.6.a.b 1 4.b odd 2 1
171.6.a.a 1 12.b even 2 1
912.6.a.d 1 1.a even 1 1 trivial
1083.6.a.a 1 76.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T56 T_{5} - 6 acting on S6new(Γ0(912))S_{6}^{\mathrm{new}}(\Gamma_0(912)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+9 T + 9 Copy content Toggle raw display
55 T6 T - 6 Copy content Toggle raw display
77 T176 T - 176 Copy content Toggle raw display
1111 T496 T - 496 Copy content Toggle raw display
1313 T+178 T + 178 Copy content Toggle raw display
1717 T202 T - 202 Copy content Toggle raw display
1919 T361 T - 361 Copy content Toggle raw display
2323 T+4396 T + 4396 Copy content Toggle raw display
2929 T+5902 T + 5902 Copy content Toggle raw display
3131 T+5760 T + 5760 Copy content Toggle raw display
3737 T+3906 T + 3906 Copy content Toggle raw display
4141 T15774 T - 15774 Copy content Toggle raw display
4343 T7492 T - 7492 Copy content Toggle raw display
4747 T7452 T - 7452 Copy content Toggle raw display
5353 T+29014 T + 29014 Copy content Toggle raw display
5959 T+13604 T + 13604 Copy content Toggle raw display
6161 T+12466 T + 12466 Copy content Toggle raw display
6767 T+43436 T + 43436 Copy content Toggle raw display
7171 T+28800 T + 28800 Copy content Toggle raw display
7373 T80746 T - 80746 Copy content Toggle raw display
7979 T+76456 T + 76456 Copy content Toggle raw display
8383 T56880 T - 56880 Copy content Toggle raw display
8989 T+103266 T + 103266 Copy content Toggle raw display
9797 T82490 T - 82490 Copy content Toggle raw display
show more
show less