Properties

Label 912.6.a.f.1.1
Level $912$
Weight $6$
Character 912.1
Self dual yes
Analytic conductor $146.270$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,6,Mod(1,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.270043669\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 912.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +21.0000 q^{5} +143.000 q^{7} +81.0000 q^{9} +205.000 q^{11} -78.0000 q^{13} +189.000 q^{15} -2125.00 q^{17} -361.000 q^{19} +1287.00 q^{21} -20.0000 q^{23} -2684.00 q^{25} +729.000 q^{27} -4866.00 q^{29} +1098.00 q^{31} +1845.00 q^{33} +3003.00 q^{35} -15128.0 q^{37} -702.000 q^{39} -9400.00 q^{41} -20073.0 q^{43} +1701.00 q^{45} -14105.0 q^{47} +3642.00 q^{49} -19125.0 q^{51} +26386.0 q^{53} +4305.00 q^{55} -3249.00 q^{57} +13216.0 q^{59} -2293.00 q^{61} +11583.0 q^{63} -1638.00 q^{65} -35976.0 q^{67} -180.000 q^{69} -10180.0 q^{71} +33109.0 q^{73} -24156.0 q^{75} +29315.0 q^{77} +53888.0 q^{79} +6561.00 q^{81} -75196.0 q^{83} -44625.0 q^{85} -43794.0 q^{87} +20618.0 q^{89} -11154.0 q^{91} +9882.00 q^{93} -7581.00 q^{95} -84130.0 q^{97} +16605.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 21.0000 0.375659 0.187830 0.982202i \(-0.439855\pi\)
0.187830 + 0.982202i \(0.439855\pi\)
\(6\) 0 0
\(7\) 143.000 1.10304 0.551520 0.834162i \(-0.314048\pi\)
0.551520 + 0.834162i \(0.314048\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 205.000 0.510825 0.255413 0.966832i \(-0.417789\pi\)
0.255413 + 0.966832i \(0.417789\pi\)
\(12\) 0 0
\(13\) −78.0000 −0.128008 −0.0640039 0.997950i \(-0.520387\pi\)
−0.0640039 + 0.997950i \(0.520387\pi\)
\(14\) 0 0
\(15\) 189.000 0.216887
\(16\) 0 0
\(17\) −2125.00 −1.78335 −0.891675 0.452676i \(-0.850469\pi\)
−0.891675 + 0.452676i \(0.850469\pi\)
\(18\) 0 0
\(19\) −361.000 −0.229416
\(20\) 0 0
\(21\) 1287.00 0.636840
\(22\) 0 0
\(23\) −20.0000 −0.00788334 −0.00394167 0.999992i \(-0.501255\pi\)
−0.00394167 + 0.999992i \(0.501255\pi\)
\(24\) 0 0
\(25\) −2684.00 −0.858880
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −4866.00 −1.07443 −0.537214 0.843446i \(-0.680523\pi\)
−0.537214 + 0.843446i \(0.680523\pi\)
\(30\) 0 0
\(31\) 1098.00 0.205210 0.102605 0.994722i \(-0.467282\pi\)
0.102605 + 0.994722i \(0.467282\pi\)
\(32\) 0 0
\(33\) 1845.00 0.294925
\(34\) 0 0
\(35\) 3003.00 0.414367
\(36\) 0 0
\(37\) −15128.0 −1.81667 −0.908337 0.418238i \(-0.862648\pi\)
−0.908337 + 0.418238i \(0.862648\pi\)
\(38\) 0 0
\(39\) −702.000 −0.0739053
\(40\) 0 0
\(41\) −9400.00 −0.873310 −0.436655 0.899629i \(-0.643837\pi\)
−0.436655 + 0.899629i \(0.643837\pi\)
\(42\) 0 0
\(43\) −20073.0 −1.65555 −0.827773 0.561063i \(-0.810392\pi\)
−0.827773 + 0.561063i \(0.810392\pi\)
\(44\) 0 0
\(45\) 1701.00 0.125220
\(46\) 0 0
\(47\) −14105.0 −0.931383 −0.465692 0.884947i \(-0.654194\pi\)
−0.465692 + 0.884947i \(0.654194\pi\)
\(48\) 0 0
\(49\) 3642.00 0.216695
\(50\) 0 0
\(51\) −19125.0 −1.02962
\(52\) 0 0
\(53\) 26386.0 1.29028 0.645140 0.764064i \(-0.276799\pi\)
0.645140 + 0.764064i \(0.276799\pi\)
\(54\) 0 0
\(55\) 4305.00 0.191896
\(56\) 0 0
\(57\) −3249.00 −0.132453
\(58\) 0 0
\(59\) 13216.0 0.494277 0.247138 0.968980i \(-0.420510\pi\)
0.247138 + 0.968980i \(0.420510\pi\)
\(60\) 0 0
\(61\) −2293.00 −0.0789004 −0.0394502 0.999222i \(-0.512561\pi\)
−0.0394502 + 0.999222i \(0.512561\pi\)
\(62\) 0 0
\(63\) 11583.0 0.367680
\(64\) 0 0
\(65\) −1638.00 −0.0480873
\(66\) 0 0
\(67\) −35976.0 −0.979097 −0.489549 0.871976i \(-0.662838\pi\)
−0.489549 + 0.871976i \(0.662838\pi\)
\(68\) 0 0
\(69\) −180.000 −0.00455145
\(70\) 0 0
\(71\) −10180.0 −0.239664 −0.119832 0.992794i \(-0.538236\pi\)
−0.119832 + 0.992794i \(0.538236\pi\)
\(72\) 0 0
\(73\) 33109.0 0.727175 0.363587 0.931560i \(-0.381552\pi\)
0.363587 + 0.931560i \(0.381552\pi\)
\(74\) 0 0
\(75\) −24156.0 −0.495875
\(76\) 0 0
\(77\) 29315.0 0.563460
\(78\) 0 0
\(79\) 53888.0 0.971459 0.485729 0.874109i \(-0.338554\pi\)
0.485729 + 0.874109i \(0.338554\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −75196.0 −1.19812 −0.599059 0.800705i \(-0.704458\pi\)
−0.599059 + 0.800705i \(0.704458\pi\)
\(84\) 0 0
\(85\) −44625.0 −0.669932
\(86\) 0 0
\(87\) −43794.0 −0.620321
\(88\) 0 0
\(89\) 20618.0 0.275913 0.137956 0.990438i \(-0.455947\pi\)
0.137956 + 0.990438i \(0.455947\pi\)
\(90\) 0 0
\(91\) −11154.0 −0.141198
\(92\) 0 0
\(93\) 9882.00 0.118478
\(94\) 0 0
\(95\) −7581.00 −0.0861822
\(96\) 0 0
\(97\) −84130.0 −0.907866 −0.453933 0.891036i \(-0.649979\pi\)
−0.453933 + 0.891036i \(0.649979\pi\)
\(98\) 0 0
\(99\) 16605.0 0.170275
\(100\) 0 0
\(101\) 163714. 1.59692 0.798459 0.602050i \(-0.205649\pi\)
0.798459 + 0.602050i \(0.205649\pi\)
\(102\) 0 0
\(103\) 139062. 1.29156 0.645781 0.763523i \(-0.276532\pi\)
0.645781 + 0.763523i \(0.276532\pi\)
\(104\) 0 0
\(105\) 27027.0 0.239235
\(106\) 0 0
\(107\) −124690. −1.05286 −0.526432 0.850217i \(-0.676470\pi\)
−0.526432 + 0.850217i \(0.676470\pi\)
\(108\) 0 0
\(109\) −11836.0 −0.0954198 −0.0477099 0.998861i \(-0.515192\pi\)
−0.0477099 + 0.998861i \(0.515192\pi\)
\(110\) 0 0
\(111\) −136152. −1.04886
\(112\) 0 0
\(113\) 57674.0 0.424897 0.212449 0.977172i \(-0.431856\pi\)
0.212449 + 0.977172i \(0.431856\pi\)
\(114\) 0 0
\(115\) −420.000 −0.00296145
\(116\) 0 0
\(117\) −6318.00 −0.0426692
\(118\) 0 0
\(119\) −303875. −1.96711
\(120\) 0 0
\(121\) −119026. −0.739058
\(122\) 0 0
\(123\) −84600.0 −0.504206
\(124\) 0 0
\(125\) −121989. −0.698306
\(126\) 0 0
\(127\) −134314. −0.738945 −0.369472 0.929242i \(-0.620462\pi\)
−0.369472 + 0.929242i \(0.620462\pi\)
\(128\) 0 0
\(129\) −180657. −0.955830
\(130\) 0 0
\(131\) 365955. 1.86316 0.931578 0.363540i \(-0.118432\pi\)
0.931578 + 0.363540i \(0.118432\pi\)
\(132\) 0 0
\(133\) −51623.0 −0.253055
\(134\) 0 0
\(135\) 15309.0 0.0722957
\(136\) 0 0
\(137\) 44763.0 0.203759 0.101880 0.994797i \(-0.467514\pi\)
0.101880 + 0.994797i \(0.467514\pi\)
\(138\) 0 0
\(139\) 422179. 1.85336 0.926680 0.375852i \(-0.122650\pi\)
0.926680 + 0.375852i \(0.122650\pi\)
\(140\) 0 0
\(141\) −126945. −0.537734
\(142\) 0 0
\(143\) −15990.0 −0.0653896
\(144\) 0 0
\(145\) −102186. −0.403619
\(146\) 0 0
\(147\) 32778.0 0.125109
\(148\) 0 0
\(149\) −41741.0 −0.154027 −0.0770136 0.997030i \(-0.524538\pi\)
−0.0770136 + 0.997030i \(0.524538\pi\)
\(150\) 0 0
\(151\) 41240.0 0.147189 0.0735947 0.997288i \(-0.476553\pi\)
0.0735947 + 0.997288i \(0.476553\pi\)
\(152\) 0 0
\(153\) −172125. −0.594450
\(154\) 0 0
\(155\) 23058.0 0.0770890
\(156\) 0 0
\(157\) −345954. −1.12013 −0.560066 0.828448i \(-0.689224\pi\)
−0.560066 + 0.828448i \(0.689224\pi\)
\(158\) 0 0
\(159\) 237474. 0.744943
\(160\) 0 0
\(161\) −2860.00 −0.00869564
\(162\) 0 0
\(163\) 298144. 0.878936 0.439468 0.898258i \(-0.355167\pi\)
0.439468 + 0.898258i \(0.355167\pi\)
\(164\) 0 0
\(165\) 38745.0 0.110791
\(166\) 0 0
\(167\) 73290.0 0.203354 0.101677 0.994817i \(-0.467579\pi\)
0.101677 + 0.994817i \(0.467579\pi\)
\(168\) 0 0
\(169\) −365209. −0.983614
\(170\) 0 0
\(171\) −29241.0 −0.0764719
\(172\) 0 0
\(173\) 282102. 0.716623 0.358312 0.933602i \(-0.383353\pi\)
0.358312 + 0.933602i \(0.383353\pi\)
\(174\) 0 0
\(175\) −383812. −0.947378
\(176\) 0 0
\(177\) 118944. 0.285371
\(178\) 0 0
\(179\) −193946. −0.452427 −0.226213 0.974078i \(-0.572635\pi\)
−0.226213 + 0.974078i \(0.572635\pi\)
\(180\) 0 0
\(181\) −283446. −0.643093 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(182\) 0 0
\(183\) −20637.0 −0.0455532
\(184\) 0 0
\(185\) −317688. −0.682451
\(186\) 0 0
\(187\) −435625. −0.910980
\(188\) 0 0
\(189\) 104247. 0.212280
\(190\) 0 0
\(191\) −50495.0 −0.100153 −0.0500766 0.998745i \(-0.515947\pi\)
−0.0500766 + 0.998745i \(0.515947\pi\)
\(192\) 0 0
\(193\) 231092. 0.446572 0.223286 0.974753i \(-0.428322\pi\)
0.223286 + 0.974753i \(0.428322\pi\)
\(194\) 0 0
\(195\) −14742.0 −0.0277632
\(196\) 0 0
\(197\) −452482. −0.830684 −0.415342 0.909665i \(-0.636338\pi\)
−0.415342 + 0.909665i \(0.636338\pi\)
\(198\) 0 0
\(199\) 207199. 0.370898 0.185449 0.982654i \(-0.440626\pi\)
0.185449 + 0.982654i \(0.440626\pi\)
\(200\) 0 0
\(201\) −323784. −0.565282
\(202\) 0 0
\(203\) −695838. −1.18514
\(204\) 0 0
\(205\) −197400. −0.328067
\(206\) 0 0
\(207\) −1620.00 −0.00262778
\(208\) 0 0
\(209\) −74005.0 −0.117191
\(210\) 0 0
\(211\) −985948. −1.52457 −0.762286 0.647240i \(-0.775923\pi\)
−0.762286 + 0.647240i \(0.775923\pi\)
\(212\) 0 0
\(213\) −91620.0 −0.138370
\(214\) 0 0
\(215\) −421533. −0.621921
\(216\) 0 0
\(217\) 157014. 0.226354
\(218\) 0 0
\(219\) 297981. 0.419835
\(220\) 0 0
\(221\) 165750. 0.228283
\(222\) 0 0
\(223\) −177756. −0.239366 −0.119683 0.992812i \(-0.538188\pi\)
−0.119683 + 0.992812i \(0.538188\pi\)
\(224\) 0 0
\(225\) −217404. −0.286293
\(226\) 0 0
\(227\) −276382. −0.355996 −0.177998 0.984031i \(-0.556962\pi\)
−0.177998 + 0.984031i \(0.556962\pi\)
\(228\) 0 0
\(229\) 986125. 1.24263 0.621317 0.783559i \(-0.286598\pi\)
0.621317 + 0.783559i \(0.286598\pi\)
\(230\) 0 0
\(231\) 263835. 0.325314
\(232\) 0 0
\(233\) −116691. −0.140815 −0.0704073 0.997518i \(-0.522430\pi\)
−0.0704073 + 0.997518i \(0.522430\pi\)
\(234\) 0 0
\(235\) −296205. −0.349883
\(236\) 0 0
\(237\) 484992. 0.560872
\(238\) 0 0
\(239\) 1.25870e6 1.42537 0.712685 0.701484i \(-0.247479\pi\)
0.712685 + 0.701484i \(0.247479\pi\)
\(240\) 0 0
\(241\) −143492. −0.159142 −0.0795710 0.996829i \(-0.525355\pi\)
−0.0795710 + 0.996829i \(0.525355\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 76482.0 0.0814037
\(246\) 0 0
\(247\) 28158.0 0.0293670
\(248\) 0 0
\(249\) −676764. −0.691734
\(250\) 0 0
\(251\) 884163. 0.885825 0.442913 0.896565i \(-0.353945\pi\)
0.442913 + 0.896565i \(0.353945\pi\)
\(252\) 0 0
\(253\) −4100.00 −0.00402701
\(254\) 0 0
\(255\) −401625. −0.386786
\(256\) 0 0
\(257\) 1.04230e6 0.984370 0.492185 0.870491i \(-0.336198\pi\)
0.492185 + 0.870491i \(0.336198\pi\)
\(258\) 0 0
\(259\) −2.16330e6 −2.00386
\(260\) 0 0
\(261\) −394146. −0.358142
\(262\) 0 0
\(263\) −998121. −0.889803 −0.444901 0.895580i \(-0.646761\pi\)
−0.444901 + 0.895580i \(0.646761\pi\)
\(264\) 0 0
\(265\) 554106. 0.484706
\(266\) 0 0
\(267\) 185562. 0.159298
\(268\) 0 0
\(269\) 1.73550e6 1.46232 0.731162 0.682204i \(-0.238978\pi\)
0.731162 + 0.682204i \(0.238978\pi\)
\(270\) 0 0
\(271\) 1.01674e6 0.840982 0.420491 0.907297i \(-0.361858\pi\)
0.420491 + 0.907297i \(0.361858\pi\)
\(272\) 0 0
\(273\) −100386. −0.0815204
\(274\) 0 0
\(275\) −550220. −0.438737
\(276\) 0 0
\(277\) −1.37870e6 −1.07962 −0.539810 0.841787i \(-0.681504\pi\)
−0.539810 + 0.841787i \(0.681504\pi\)
\(278\) 0 0
\(279\) 88938.0 0.0684033
\(280\) 0 0
\(281\) −2.09789e6 −1.58495 −0.792476 0.609903i \(-0.791208\pi\)
−0.792476 + 0.609903i \(0.791208\pi\)
\(282\) 0 0
\(283\) 215963. 0.160293 0.0801463 0.996783i \(-0.474461\pi\)
0.0801463 + 0.996783i \(0.474461\pi\)
\(284\) 0 0
\(285\) −68229.0 −0.0497573
\(286\) 0 0
\(287\) −1.34420e6 −0.963295
\(288\) 0 0
\(289\) 3.09577e6 2.18034
\(290\) 0 0
\(291\) −757170. −0.524156
\(292\) 0 0
\(293\) −2.47872e6 −1.68678 −0.843389 0.537304i \(-0.819443\pi\)
−0.843389 + 0.537304i \(0.819443\pi\)
\(294\) 0 0
\(295\) 277536. 0.185680
\(296\) 0 0
\(297\) 149445. 0.0983083
\(298\) 0 0
\(299\) 1560.00 0.00100913
\(300\) 0 0
\(301\) −2.87044e6 −1.82613
\(302\) 0 0
\(303\) 1.47343e6 0.921981
\(304\) 0 0
\(305\) −48153.0 −0.0296397
\(306\) 0 0
\(307\) −495420. −0.300004 −0.150002 0.988686i \(-0.547928\pi\)
−0.150002 + 0.988686i \(0.547928\pi\)
\(308\) 0 0
\(309\) 1.25156e6 0.745684
\(310\) 0 0
\(311\) −2.15964e6 −1.26614 −0.633070 0.774095i \(-0.718205\pi\)
−0.633070 + 0.774095i \(0.718205\pi\)
\(312\) 0 0
\(313\) −1.34757e6 −0.777482 −0.388741 0.921347i \(-0.627090\pi\)
−0.388741 + 0.921347i \(0.627090\pi\)
\(314\) 0 0
\(315\) 243243. 0.138122
\(316\) 0 0
\(317\) −1.01166e6 −0.565440 −0.282720 0.959203i \(-0.591237\pi\)
−0.282720 + 0.959203i \(0.591237\pi\)
\(318\) 0 0
\(319\) −997530. −0.548844
\(320\) 0 0
\(321\) −1.12221e6 −0.607871
\(322\) 0 0
\(323\) 767125. 0.409129
\(324\) 0 0
\(325\) 209352. 0.109943
\(326\) 0 0
\(327\) −106524. −0.0550907
\(328\) 0 0
\(329\) −2.01702e6 −1.02735
\(330\) 0 0
\(331\) 1.57062e6 0.787954 0.393977 0.919120i \(-0.371099\pi\)
0.393977 + 0.919120i \(0.371099\pi\)
\(332\) 0 0
\(333\) −1.22537e6 −0.605558
\(334\) 0 0
\(335\) −755496. −0.367807
\(336\) 0 0
\(337\) 2.16228e6 1.03714 0.518570 0.855035i \(-0.326464\pi\)
0.518570 + 0.855035i \(0.326464\pi\)
\(338\) 0 0
\(339\) 519066. 0.245315
\(340\) 0 0
\(341\) 225090. 0.104826
\(342\) 0 0
\(343\) −1.88259e6 −0.864016
\(344\) 0 0
\(345\) −3780.00 −0.00170980
\(346\) 0 0
\(347\) −4.16873e6 −1.85858 −0.929288 0.369356i \(-0.879578\pi\)
−0.929288 + 0.369356i \(0.879578\pi\)
\(348\) 0 0
\(349\) 722845. 0.317674 0.158837 0.987305i \(-0.449226\pi\)
0.158837 + 0.987305i \(0.449226\pi\)
\(350\) 0 0
\(351\) −56862.0 −0.0246351
\(352\) 0 0
\(353\) 1.45102e6 0.619780 0.309890 0.950772i \(-0.399708\pi\)
0.309890 + 0.950772i \(0.399708\pi\)
\(354\) 0 0
\(355\) −213780. −0.0900319
\(356\) 0 0
\(357\) −2.73488e6 −1.13571
\(358\) 0 0
\(359\) −517179. −0.211790 −0.105895 0.994377i \(-0.533771\pi\)
−0.105895 + 0.994377i \(0.533771\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 0 0
\(363\) −1.07123e6 −0.426695
\(364\) 0 0
\(365\) 695289. 0.273170
\(366\) 0 0
\(367\) 3.59392e6 1.39285 0.696423 0.717631i \(-0.254774\pi\)
0.696423 + 0.717631i \(0.254774\pi\)
\(368\) 0 0
\(369\) −761400. −0.291103
\(370\) 0 0
\(371\) 3.77320e6 1.42323
\(372\) 0 0
\(373\) −1.77578e6 −0.660870 −0.330435 0.943829i \(-0.607195\pi\)
−0.330435 + 0.943829i \(0.607195\pi\)
\(374\) 0 0
\(375\) −1.09790e6 −0.403167
\(376\) 0 0
\(377\) 379548. 0.137535
\(378\) 0 0
\(379\) −2.48464e6 −0.888516 −0.444258 0.895899i \(-0.646533\pi\)
−0.444258 + 0.895899i \(0.646533\pi\)
\(380\) 0 0
\(381\) −1.20883e6 −0.426630
\(382\) 0 0
\(383\) −1.70987e6 −0.595614 −0.297807 0.954626i \(-0.596255\pi\)
−0.297807 + 0.954626i \(0.596255\pi\)
\(384\) 0 0
\(385\) 615615. 0.211669
\(386\) 0 0
\(387\) −1.62591e6 −0.551849
\(388\) 0 0
\(389\) −244715. −0.0819949 −0.0409974 0.999159i \(-0.513054\pi\)
−0.0409974 + 0.999159i \(0.513054\pi\)
\(390\) 0 0
\(391\) 42500.0 0.0140588
\(392\) 0 0
\(393\) 3.29359e6 1.07569
\(394\) 0 0
\(395\) 1.13165e6 0.364938
\(396\) 0 0
\(397\) −4.11195e6 −1.30940 −0.654698 0.755890i \(-0.727204\pi\)
−0.654698 + 0.755890i \(0.727204\pi\)
\(398\) 0 0
\(399\) −464607. −0.146101
\(400\) 0 0
\(401\) −1.87955e6 −0.583704 −0.291852 0.956464i \(-0.594271\pi\)
−0.291852 + 0.956464i \(0.594271\pi\)
\(402\) 0 0
\(403\) −85644.0 −0.0262684
\(404\) 0 0
\(405\) 137781. 0.0417399
\(406\) 0 0
\(407\) −3.10124e6 −0.928003
\(408\) 0 0
\(409\) −2.68258e6 −0.792948 −0.396474 0.918046i \(-0.629766\pi\)
−0.396474 + 0.918046i \(0.629766\pi\)
\(410\) 0 0
\(411\) 402867. 0.117641
\(412\) 0 0
\(413\) 1.88989e6 0.545206
\(414\) 0 0
\(415\) −1.57912e6 −0.450084
\(416\) 0 0
\(417\) 3.79961e6 1.07004
\(418\) 0 0
\(419\) 5.70599e6 1.58780 0.793900 0.608048i \(-0.208047\pi\)
0.793900 + 0.608048i \(0.208047\pi\)
\(420\) 0 0
\(421\) −4.24578e6 −1.16749 −0.583744 0.811938i \(-0.698413\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(422\) 0 0
\(423\) −1.14250e6 −0.310461
\(424\) 0 0
\(425\) 5.70350e6 1.53168
\(426\) 0 0
\(427\) −327899. −0.0870303
\(428\) 0 0
\(429\) −143910. −0.0377527
\(430\) 0 0
\(431\) 1.28341e6 0.332793 0.166396 0.986059i \(-0.446787\pi\)
0.166396 + 0.986059i \(0.446787\pi\)
\(432\) 0 0
\(433\) −6.39182e6 −1.63834 −0.819171 0.573549i \(-0.805566\pi\)
−0.819171 + 0.573549i \(0.805566\pi\)
\(434\) 0 0
\(435\) −919674. −0.233029
\(436\) 0 0
\(437\) 7220.00 0.00180856
\(438\) 0 0
\(439\) −1.27464e6 −0.315664 −0.157832 0.987466i \(-0.550451\pi\)
−0.157832 + 0.987466i \(0.550451\pi\)
\(440\) 0 0
\(441\) 295002. 0.0722318
\(442\) 0 0
\(443\) −2.35546e6 −0.570253 −0.285126 0.958490i \(-0.592036\pi\)
−0.285126 + 0.958490i \(0.592036\pi\)
\(444\) 0 0
\(445\) 432978. 0.103649
\(446\) 0 0
\(447\) −375669. −0.0889276
\(448\) 0 0
\(449\) 7.99412e6 1.87135 0.935675 0.352863i \(-0.114792\pi\)
0.935675 + 0.352863i \(0.114792\pi\)
\(450\) 0 0
\(451\) −1.92700e6 −0.446108
\(452\) 0 0
\(453\) 371160. 0.0849798
\(454\) 0 0
\(455\) −234234. −0.0530422
\(456\) 0 0
\(457\) −3.03844e6 −0.680550 −0.340275 0.940326i \(-0.610520\pi\)
−0.340275 + 0.940326i \(0.610520\pi\)
\(458\) 0 0
\(459\) −1.54912e6 −0.343206
\(460\) 0 0
\(461\) −5.98744e6 −1.31217 −0.656084 0.754688i \(-0.727788\pi\)
−0.656084 + 0.754688i \(0.727788\pi\)
\(462\) 0 0
\(463\) −8.05385e6 −1.74603 −0.873014 0.487695i \(-0.837838\pi\)
−0.873014 + 0.487695i \(0.837838\pi\)
\(464\) 0 0
\(465\) 207522. 0.0445074
\(466\) 0 0
\(467\) 8.29332e6 1.75969 0.879845 0.475261i \(-0.157646\pi\)
0.879845 + 0.475261i \(0.157646\pi\)
\(468\) 0 0
\(469\) −5.14457e6 −1.07998
\(470\) 0 0
\(471\) −3.11359e6 −0.646709
\(472\) 0 0
\(473\) −4.11496e6 −0.845694
\(474\) 0 0
\(475\) 968924. 0.197041
\(476\) 0 0
\(477\) 2.13727e6 0.430093
\(478\) 0 0
\(479\) 4.58472e6 0.913007 0.456503 0.889722i \(-0.349102\pi\)
0.456503 + 0.889722i \(0.349102\pi\)
\(480\) 0 0
\(481\) 1.17998e6 0.232548
\(482\) 0 0
\(483\) −25740.0 −0.00502043
\(484\) 0 0
\(485\) −1.76673e6 −0.341048
\(486\) 0 0
\(487\) −55304.0 −0.0105666 −0.00528329 0.999986i \(-0.501682\pi\)
−0.00528329 + 0.999986i \(0.501682\pi\)
\(488\) 0 0
\(489\) 2.68330e6 0.507454
\(490\) 0 0
\(491\) 6.88932e6 1.28965 0.644826 0.764329i \(-0.276930\pi\)
0.644826 + 0.764329i \(0.276930\pi\)
\(492\) 0 0
\(493\) 1.03402e7 1.91608
\(494\) 0 0
\(495\) 348705. 0.0639654
\(496\) 0 0
\(497\) −1.45574e6 −0.264358
\(498\) 0 0
\(499\) −5.61676e6 −1.00980 −0.504899 0.863179i \(-0.668470\pi\)
−0.504899 + 0.863179i \(0.668470\pi\)
\(500\) 0 0
\(501\) 659610. 0.117407
\(502\) 0 0
\(503\) 5.16131e6 0.909578 0.454789 0.890599i \(-0.349715\pi\)
0.454789 + 0.890599i \(0.349715\pi\)
\(504\) 0 0
\(505\) 3.43799e6 0.599897
\(506\) 0 0
\(507\) −3.28688e6 −0.567890
\(508\) 0 0
\(509\) −1.81839e6 −0.311094 −0.155547 0.987828i \(-0.549714\pi\)
−0.155547 + 0.987828i \(0.549714\pi\)
\(510\) 0 0
\(511\) 4.73459e6 0.802102
\(512\) 0 0
\(513\) −263169. −0.0441511
\(514\) 0 0
\(515\) 2.92030e6 0.485188
\(516\) 0 0
\(517\) −2.89152e6 −0.475774
\(518\) 0 0
\(519\) 2.53892e6 0.413743
\(520\) 0 0
\(521\) 1.10957e7 1.79085 0.895424 0.445215i \(-0.146873\pi\)
0.895424 + 0.445215i \(0.146873\pi\)
\(522\) 0 0
\(523\) 7.51297e6 1.20104 0.600520 0.799610i \(-0.294960\pi\)
0.600520 + 0.799610i \(0.294960\pi\)
\(524\) 0 0
\(525\) −3.45431e6 −0.546969
\(526\) 0 0
\(527\) −2.33325e6 −0.365961
\(528\) 0 0
\(529\) −6.43594e6 −0.999938
\(530\) 0 0
\(531\) 1.07050e6 0.164759
\(532\) 0 0
\(533\) 733200. 0.111790
\(534\) 0 0
\(535\) −2.61849e6 −0.395518
\(536\) 0 0
\(537\) −1.74551e6 −0.261209
\(538\) 0 0
\(539\) 746610. 0.110693
\(540\) 0 0
\(541\) 3.15622e6 0.463632 0.231816 0.972760i \(-0.425533\pi\)
0.231816 + 0.972760i \(0.425533\pi\)
\(542\) 0 0
\(543\) −2.55101e6 −0.371290
\(544\) 0 0
\(545\) −248556. −0.0358454
\(546\) 0 0
\(547\) 1.17063e7 1.67283 0.836417 0.548094i \(-0.184647\pi\)
0.836417 + 0.548094i \(0.184647\pi\)
\(548\) 0 0
\(549\) −185733. −0.0263001
\(550\) 0 0
\(551\) 1.75663e6 0.246491
\(552\) 0 0
\(553\) 7.70598e6 1.07156
\(554\) 0 0
\(555\) −2.85919e6 −0.394013
\(556\) 0 0
\(557\) 5.56111e6 0.759493 0.379746 0.925091i \(-0.376011\pi\)
0.379746 + 0.925091i \(0.376011\pi\)
\(558\) 0 0
\(559\) 1.56569e6 0.211923
\(560\) 0 0
\(561\) −3.92062e6 −0.525954
\(562\) 0 0
\(563\) 1.17669e7 1.56456 0.782280 0.622928i \(-0.214057\pi\)
0.782280 + 0.622928i \(0.214057\pi\)
\(564\) 0 0
\(565\) 1.21115e6 0.159617
\(566\) 0 0
\(567\) 938223. 0.122560
\(568\) 0 0
\(569\) 6.49649e6 0.841198 0.420599 0.907247i \(-0.361820\pi\)
0.420599 + 0.907247i \(0.361820\pi\)
\(570\) 0 0
\(571\) 7.15432e6 0.918286 0.459143 0.888362i \(-0.348157\pi\)
0.459143 + 0.888362i \(0.348157\pi\)
\(572\) 0 0
\(573\) −454455. −0.0578235
\(574\) 0 0
\(575\) 53680.0 0.00677085
\(576\) 0 0
\(577\) −8.50781e6 −1.06385 −0.531923 0.846793i \(-0.678530\pi\)
−0.531923 + 0.846793i \(0.678530\pi\)
\(578\) 0 0
\(579\) 2.07983e6 0.257829
\(580\) 0 0
\(581\) −1.07530e7 −1.32157
\(582\) 0 0
\(583\) 5.40913e6 0.659107
\(584\) 0 0
\(585\) −132678. −0.0160291
\(586\) 0 0
\(587\) 854707. 0.102382 0.0511908 0.998689i \(-0.483698\pi\)
0.0511908 + 0.998689i \(0.483698\pi\)
\(588\) 0 0
\(589\) −396378. −0.0470784
\(590\) 0 0
\(591\) −4.07234e6 −0.479596
\(592\) 0 0
\(593\) −5.55213e6 −0.648370 −0.324185 0.945994i \(-0.605090\pi\)
−0.324185 + 0.945994i \(0.605090\pi\)
\(594\) 0 0
\(595\) −6.38138e6 −0.738962
\(596\) 0 0
\(597\) 1.86479e6 0.214138
\(598\) 0 0
\(599\) 1.30669e6 0.148801 0.0744003 0.997228i \(-0.476296\pi\)
0.0744003 + 0.997228i \(0.476296\pi\)
\(600\) 0 0
\(601\) −7.94858e6 −0.897643 −0.448821 0.893621i \(-0.648156\pi\)
−0.448821 + 0.893621i \(0.648156\pi\)
\(602\) 0 0
\(603\) −2.91406e6 −0.326366
\(604\) 0 0
\(605\) −2.49955e6 −0.277634
\(606\) 0 0
\(607\) −2.83746e6 −0.312578 −0.156289 0.987711i \(-0.549953\pi\)
−0.156289 + 0.987711i \(0.549953\pi\)
\(608\) 0 0
\(609\) −6.26254e6 −0.684238
\(610\) 0 0
\(611\) 1.10019e6 0.119224
\(612\) 0 0
\(613\) 1.49674e7 1.60877 0.804387 0.594106i \(-0.202494\pi\)
0.804387 + 0.594106i \(0.202494\pi\)
\(614\) 0 0
\(615\) −1.77660e6 −0.189410
\(616\) 0 0
\(617\) −3.59751e6 −0.380443 −0.190221 0.981741i \(-0.560921\pi\)
−0.190221 + 0.981741i \(0.560921\pi\)
\(618\) 0 0
\(619\) −6.74758e6 −0.707818 −0.353909 0.935280i \(-0.615148\pi\)
−0.353909 + 0.935280i \(0.615148\pi\)
\(620\) 0 0
\(621\) −14580.0 −0.00151715
\(622\) 0 0
\(623\) 2.94837e6 0.304342
\(624\) 0 0
\(625\) 5.82573e6 0.596555
\(626\) 0 0
\(627\) −666045. −0.0676604
\(628\) 0 0
\(629\) 3.21470e7 3.23977
\(630\) 0 0
\(631\) −1.36044e7 −1.36021 −0.680103 0.733117i \(-0.738065\pi\)
−0.680103 + 0.733117i \(0.738065\pi\)
\(632\) 0 0
\(633\) −8.87353e6 −0.880212
\(634\) 0 0
\(635\) −2.82059e6 −0.277592
\(636\) 0 0
\(637\) −284076. −0.0277387
\(638\) 0 0
\(639\) −824580. −0.0798878
\(640\) 0 0
\(641\) 1.91221e7 1.83819 0.919097 0.394030i \(-0.128920\pi\)
0.919097 + 0.394030i \(0.128920\pi\)
\(642\) 0 0
\(643\) −8.38738e6 −0.800016 −0.400008 0.916512i \(-0.630993\pi\)
−0.400008 + 0.916512i \(0.630993\pi\)
\(644\) 0 0
\(645\) −3.79380e6 −0.359066
\(646\) 0 0
\(647\) −7.90221e6 −0.742143 −0.371072 0.928604i \(-0.621010\pi\)
−0.371072 + 0.928604i \(0.621010\pi\)
\(648\) 0 0
\(649\) 2.70928e6 0.252489
\(650\) 0 0
\(651\) 1.41313e6 0.130686
\(652\) 0 0
\(653\) −279213. −0.0256243 −0.0128122 0.999918i \(-0.504078\pi\)
−0.0128122 + 0.999918i \(0.504078\pi\)
\(654\) 0 0
\(655\) 7.68506e6 0.699912
\(656\) 0 0
\(657\) 2.68183e6 0.242392
\(658\) 0 0
\(659\) 6.82671e6 0.612348 0.306174 0.951976i \(-0.400951\pi\)
0.306174 + 0.951976i \(0.400951\pi\)
\(660\) 0 0
\(661\) 1.85059e7 1.64742 0.823712 0.567008i \(-0.191899\pi\)
0.823712 + 0.567008i \(0.191899\pi\)
\(662\) 0 0
\(663\) 1.49175e6 0.131799
\(664\) 0 0
\(665\) −1.08408e6 −0.0950623
\(666\) 0 0
\(667\) 97320.0 0.00847008
\(668\) 0 0
\(669\) −1.59980e6 −0.138198
\(670\) 0 0
\(671\) −470065. −0.0403043
\(672\) 0 0
\(673\) 1.25059e7 1.06433 0.532166 0.846640i \(-0.321378\pi\)
0.532166 + 0.846640i \(0.321378\pi\)
\(674\) 0 0
\(675\) −1.95664e6 −0.165292
\(676\) 0 0
\(677\) 5.47029e6 0.458710 0.229355 0.973343i \(-0.426338\pi\)
0.229355 + 0.973343i \(0.426338\pi\)
\(678\) 0 0
\(679\) −1.20306e7 −1.00141
\(680\) 0 0
\(681\) −2.48744e6 −0.205534
\(682\) 0 0
\(683\) −1.02415e7 −0.840061 −0.420031 0.907510i \(-0.637981\pi\)
−0.420031 + 0.907510i \(0.637981\pi\)
\(684\) 0 0
\(685\) 940023. 0.0765442
\(686\) 0 0
\(687\) 8.87512e6 0.717435
\(688\) 0 0
\(689\) −2.05811e6 −0.165166
\(690\) 0 0
\(691\) −1.84945e6 −0.147349 −0.0736744 0.997282i \(-0.523473\pi\)
−0.0736744 + 0.997282i \(0.523473\pi\)
\(692\) 0 0
\(693\) 2.37452e6 0.187820
\(694\) 0 0
\(695\) 8.86576e6 0.696232
\(696\) 0 0
\(697\) 1.99750e7 1.55742
\(698\) 0 0
\(699\) −1.05022e6 −0.0812993
\(700\) 0 0
\(701\) 1.65813e7 1.27445 0.637226 0.770677i \(-0.280082\pi\)
0.637226 + 0.770677i \(0.280082\pi\)
\(702\) 0 0
\(703\) 5.46121e6 0.416774
\(704\) 0 0
\(705\) −2.66584e6 −0.202005
\(706\) 0 0
\(707\) 2.34111e7 1.76146
\(708\) 0 0
\(709\) 1.10501e7 0.825562 0.412781 0.910830i \(-0.364558\pi\)
0.412781 + 0.910830i \(0.364558\pi\)
\(710\) 0 0
\(711\) 4.36493e6 0.323820
\(712\) 0 0
\(713\) −21960.0 −0.00161774
\(714\) 0 0
\(715\) −335790. −0.0245642
\(716\) 0 0
\(717\) 1.13283e7 0.822938
\(718\) 0 0
\(719\) −1.02255e7 −0.737669 −0.368835 0.929495i \(-0.620243\pi\)
−0.368835 + 0.929495i \(0.620243\pi\)
\(720\) 0 0
\(721\) 1.98859e7 1.42464
\(722\) 0 0
\(723\) −1.29143e6 −0.0918807
\(724\) 0 0
\(725\) 1.30603e7 0.922804
\(726\) 0 0
\(727\) −2.61985e7 −1.83840 −0.919202 0.393787i \(-0.871165\pi\)
−0.919202 + 0.393787i \(0.871165\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 4.26551e7 2.95242
\(732\) 0 0
\(733\) −2.56029e7 −1.76007 −0.880033 0.474913i \(-0.842480\pi\)
−0.880033 + 0.474913i \(0.842480\pi\)
\(734\) 0 0
\(735\) 688338. 0.0469984
\(736\) 0 0
\(737\) −7.37508e6 −0.500147
\(738\) 0 0
\(739\) 2.10847e7 1.42022 0.710112 0.704089i \(-0.248644\pi\)
0.710112 + 0.704089i \(0.248644\pi\)
\(740\) 0 0
\(741\) 253422. 0.0169550
\(742\) 0 0
\(743\) −8.71807e6 −0.579360 −0.289680 0.957124i \(-0.593549\pi\)
−0.289680 + 0.957124i \(0.593549\pi\)
\(744\) 0 0
\(745\) −876561. −0.0578617
\(746\) 0 0
\(747\) −6.09088e6 −0.399373
\(748\) 0 0
\(749\) −1.78307e7 −1.16135
\(750\) 0 0
\(751\) 1.26501e7 0.818452 0.409226 0.912433i \(-0.365799\pi\)
0.409226 + 0.912433i \(0.365799\pi\)
\(752\) 0 0
\(753\) 7.95747e6 0.511431
\(754\) 0 0
\(755\) 866040. 0.0552931
\(756\) 0 0
\(757\) −5.69653e6 −0.361302 −0.180651 0.983547i \(-0.557821\pi\)
−0.180651 + 0.983547i \(0.557821\pi\)
\(758\) 0 0
\(759\) −36900.0 −0.00232499
\(760\) 0 0
\(761\) −2.51658e7 −1.57525 −0.787625 0.616155i \(-0.788690\pi\)
−0.787625 + 0.616155i \(0.788690\pi\)
\(762\) 0 0
\(763\) −1.69255e6 −0.105252
\(764\) 0 0
\(765\) −3.61462e6 −0.223311
\(766\) 0 0
\(767\) −1.03085e6 −0.0632712
\(768\) 0 0
\(769\) −2.35673e7 −1.43713 −0.718563 0.695462i \(-0.755200\pi\)
−0.718563 + 0.695462i \(0.755200\pi\)
\(770\) 0 0
\(771\) 9.38066e6 0.568326
\(772\) 0 0
\(773\) 1.61071e7 0.969548 0.484774 0.874639i \(-0.338902\pi\)
0.484774 + 0.874639i \(0.338902\pi\)
\(774\) 0 0
\(775\) −2.94703e6 −0.176251
\(776\) 0 0
\(777\) −1.94697e7 −1.15693
\(778\) 0 0
\(779\) 3.39340e6 0.200351
\(780\) 0 0
\(781\) −2.08690e6 −0.122426
\(782\) 0 0
\(783\) −3.54731e6 −0.206774
\(784\) 0 0
\(785\) −7.26503e6 −0.420788
\(786\) 0 0
\(787\) 8.09622e6 0.465956 0.232978 0.972482i \(-0.425153\pi\)
0.232978 + 0.972482i \(0.425153\pi\)
\(788\) 0 0
\(789\) −8.98309e6 −0.513728
\(790\) 0 0
\(791\) 8.24738e6 0.468678
\(792\) 0 0
\(793\) 178854. 0.0100999
\(794\) 0 0
\(795\) 4.98695e6 0.279845
\(796\) 0 0
\(797\) 2.23729e7 1.24760 0.623800 0.781584i \(-0.285588\pi\)
0.623800 + 0.781584i \(0.285588\pi\)
\(798\) 0 0
\(799\) 2.99731e7 1.66098
\(800\) 0 0
\(801\) 1.67006e6 0.0919709
\(802\) 0 0
\(803\) 6.78735e6 0.371459
\(804\) 0 0
\(805\) −60060.0 −0.00326660
\(806\) 0 0
\(807\) 1.56195e7 0.844273
\(808\) 0 0
\(809\) 915669. 0.0491889 0.0245945 0.999698i \(-0.492171\pi\)
0.0245945 + 0.999698i \(0.492171\pi\)
\(810\) 0 0
\(811\) 3.00496e7 1.60430 0.802151 0.597121i \(-0.203689\pi\)
0.802151 + 0.597121i \(0.203689\pi\)
\(812\) 0 0
\(813\) 9.15066e6 0.485541
\(814\) 0 0
\(815\) 6.26102e6 0.330180
\(816\) 0 0
\(817\) 7.24635e6 0.379808
\(818\) 0 0
\(819\) −903474. −0.0470658
\(820\) 0 0
\(821\) 3.25959e6 0.168774 0.0843868 0.996433i \(-0.473107\pi\)
0.0843868 + 0.996433i \(0.473107\pi\)
\(822\) 0 0
\(823\) −2.63514e7 −1.35614 −0.678068 0.734999i \(-0.737183\pi\)
−0.678068 + 0.734999i \(0.737183\pi\)
\(824\) 0 0
\(825\) −4.95198e6 −0.253305
\(826\) 0 0
\(827\) −3.88895e6 −0.197728 −0.0988640 0.995101i \(-0.531521\pi\)
−0.0988640 + 0.995101i \(0.531521\pi\)
\(828\) 0 0
\(829\) −2.49909e7 −1.26298 −0.631488 0.775385i \(-0.717556\pi\)
−0.631488 + 0.775385i \(0.717556\pi\)
\(830\) 0 0
\(831\) −1.24083e7 −0.623319
\(832\) 0 0
\(833\) −7.73925e6 −0.386444
\(834\) 0 0
\(835\) 1.53909e6 0.0763920
\(836\) 0 0
\(837\) 800442. 0.0394926
\(838\) 0 0
\(839\) 2.77733e6 0.136214 0.0681072 0.997678i \(-0.478304\pi\)
0.0681072 + 0.997678i \(0.478304\pi\)
\(840\) 0 0
\(841\) 3.16681e6 0.154394
\(842\) 0 0
\(843\) −1.88810e7 −0.915072
\(844\) 0 0
\(845\) −7.66939e6 −0.369504
\(846\) 0 0
\(847\) −1.70207e7 −0.815210
\(848\) 0 0
\(849\) 1.94367e6 0.0925449
\(850\) 0 0
\(851\) 302560. 0.0143215
\(852\) 0 0
\(853\) 1.63379e6 0.0768820 0.0384410 0.999261i \(-0.487761\pi\)
0.0384410 + 0.999261i \(0.487761\pi\)
\(854\) 0 0
\(855\) −614061. −0.0287274
\(856\) 0 0
\(857\) 2.45037e7 1.13967 0.569836 0.821758i \(-0.307007\pi\)
0.569836 + 0.821758i \(0.307007\pi\)
\(858\) 0 0
\(859\) −1.45576e7 −0.673143 −0.336572 0.941658i \(-0.609267\pi\)
−0.336572 + 0.941658i \(0.609267\pi\)
\(860\) 0 0
\(861\) −1.20978e7 −0.556158
\(862\) 0 0
\(863\) −1.76706e7 −0.807651 −0.403826 0.914836i \(-0.632320\pi\)
−0.403826 + 0.914836i \(0.632320\pi\)
\(864\) 0 0
\(865\) 5.92414e6 0.269206
\(866\) 0 0
\(867\) 2.78619e7 1.25882
\(868\) 0 0
\(869\) 1.10470e7 0.496245
\(870\) 0 0
\(871\) 2.80613e6 0.125332
\(872\) 0 0
\(873\) −6.81453e6 −0.302622
\(874\) 0 0
\(875\) −1.74444e7 −0.770259
\(876\) 0 0
\(877\) −4.46464e7 −1.96014 −0.980070 0.198650i \(-0.936344\pi\)
−0.980070 + 0.198650i \(0.936344\pi\)
\(878\) 0 0
\(879\) −2.23084e7 −0.973861
\(880\) 0 0
\(881\) −1.97316e7 −0.856490 −0.428245 0.903663i \(-0.640868\pi\)
−0.428245 + 0.903663i \(0.640868\pi\)
\(882\) 0 0
\(883\) 2.12686e7 0.917989 0.458994 0.888439i \(-0.348210\pi\)
0.458994 + 0.888439i \(0.348210\pi\)
\(884\) 0 0
\(885\) 2.49782e6 0.107202
\(886\) 0 0
\(887\) 3.40623e7 1.45367 0.726835 0.686813i \(-0.240991\pi\)
0.726835 + 0.686813i \(0.240991\pi\)
\(888\) 0 0
\(889\) −1.92069e7 −0.815085
\(890\) 0 0
\(891\) 1.34500e6 0.0567583
\(892\) 0 0
\(893\) 5.09190e6 0.213674
\(894\) 0 0
\(895\) −4.07287e6 −0.169958
\(896\) 0 0
\(897\) 14040.0 0.000582621 0
\(898\) 0 0
\(899\) −5.34287e6 −0.220483
\(900\) 0 0
\(901\) −5.60702e7 −2.30102
\(902\) 0 0
\(903\) −2.58340e7 −1.05432
\(904\) 0 0
\(905\) −5.95237e6 −0.241584
\(906\) 0 0
\(907\) 1.59880e7 0.645323 0.322662 0.946514i \(-0.395422\pi\)
0.322662 + 0.946514i \(0.395422\pi\)
\(908\) 0 0
\(909\) 1.32608e7 0.532306
\(910\) 0 0
\(911\) −2.70045e7 −1.07805 −0.539026 0.842289i \(-0.681208\pi\)
−0.539026 + 0.842289i \(0.681208\pi\)
\(912\) 0 0
\(913\) −1.54152e7 −0.612029
\(914\) 0 0
\(915\) −433377. −0.0171125
\(916\) 0 0
\(917\) 5.23316e7 2.05514
\(918\) 0 0
\(919\) 6.71840e6 0.262408 0.131204 0.991355i \(-0.458116\pi\)
0.131204 + 0.991355i \(0.458116\pi\)
\(920\) 0 0
\(921\) −4.45878e6 −0.173208
\(922\) 0 0
\(923\) 794040. 0.0306788
\(924\) 0 0
\(925\) 4.06036e7 1.56031
\(926\) 0 0
\(927\) 1.12640e7 0.430521
\(928\) 0 0
\(929\) −1.29929e7 −0.493933 −0.246967 0.969024i \(-0.579434\pi\)
−0.246967 + 0.969024i \(0.579434\pi\)
\(930\) 0 0
\(931\) −1.31476e6 −0.0497133
\(932\) 0 0
\(933\) −1.94368e7 −0.731006
\(934\) 0 0
\(935\) −9.14812e6 −0.342218
\(936\) 0 0
\(937\) 2.87830e6 0.107099 0.0535497 0.998565i \(-0.482946\pi\)
0.0535497 + 0.998565i \(0.482946\pi\)
\(938\) 0 0
\(939\) −1.21281e7 −0.448880
\(940\) 0 0
\(941\) −1.11189e7 −0.409345 −0.204672 0.978831i \(-0.565613\pi\)
−0.204672 + 0.978831i \(0.565613\pi\)
\(942\) 0 0
\(943\) 188000. 0.00688460
\(944\) 0 0
\(945\) 2.18919e6 0.0797450
\(946\) 0 0
\(947\) 1.59967e7 0.579638 0.289819 0.957081i \(-0.406405\pi\)
0.289819 + 0.957081i \(0.406405\pi\)
\(948\) 0 0
\(949\) −2.58250e6 −0.0930840
\(950\) 0 0
\(951\) −9.10494e6 −0.326457
\(952\) 0 0
\(953\) 3.80244e7 1.35622 0.678110 0.734960i \(-0.262799\pi\)
0.678110 + 0.734960i \(0.262799\pi\)
\(954\) 0 0
\(955\) −1.06040e6 −0.0376235
\(956\) 0 0
\(957\) −8.97777e6 −0.316875
\(958\) 0 0
\(959\) 6.40111e6 0.224755
\(960\) 0 0
\(961\) −2.74235e7 −0.957889
\(962\) 0 0
\(963\) −1.00999e7 −0.350955
\(964\) 0 0
\(965\) 4.85293e6 0.167759
\(966\) 0 0
\(967\) −2.60950e6 −0.0897409 −0.0448705 0.998993i \(-0.514288\pi\)
−0.0448705 + 0.998993i \(0.514288\pi\)
\(968\) 0 0
\(969\) 6.90413e6 0.236211
\(970\) 0 0
\(971\) −1.40618e7 −0.478623 −0.239312 0.970943i \(-0.576922\pi\)
−0.239312 + 0.970943i \(0.576922\pi\)
\(972\) 0 0
\(973\) 6.03716e7 2.04433
\(974\) 0 0
\(975\) 1.88417e6 0.0634758
\(976\) 0 0
\(977\) 4.66346e7 1.56305 0.781523 0.623876i \(-0.214443\pi\)
0.781523 + 0.623876i \(0.214443\pi\)
\(978\) 0 0
\(979\) 4.22669e6 0.140943
\(980\) 0 0
\(981\) −958716. −0.0318066
\(982\) 0 0
\(983\) 2.96980e6 0.0980263 0.0490132 0.998798i \(-0.484392\pi\)
0.0490132 + 0.998798i \(0.484392\pi\)
\(984\) 0 0
\(985\) −9.50212e6 −0.312054
\(986\) 0 0
\(987\) −1.81531e7 −0.593142
\(988\) 0 0
\(989\) 401460. 0.0130512
\(990\) 0 0
\(991\) −3.88690e7 −1.25724 −0.628621 0.777712i \(-0.716380\pi\)
−0.628621 + 0.777712i \(0.716380\pi\)
\(992\) 0 0
\(993\) 1.41356e7 0.454926
\(994\) 0 0
\(995\) 4.35118e6 0.139331
\(996\) 0 0
\(997\) −4.92115e7 −1.56794 −0.783969 0.620801i \(-0.786808\pi\)
−0.783969 + 0.620801i \(0.786808\pi\)
\(998\) 0 0
\(999\) −1.10283e7 −0.349619
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.6.a.f.1.1 1
4.3 odd 2 114.6.a.c.1.1 1
12.11 even 2 342.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
114.6.a.c.1.1 1 4.3 odd 2
342.6.a.a.1.1 1 12.11 even 2
912.6.a.f.1.1 1 1.1 even 1 trivial