Properties

Label 912.6.a.s
Level $912$
Weight $6$
Character orbit 912.a
Self dual yes
Analytic conductor $146.270$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,6,Mod(1,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.270043669\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4327x^{2} + 78705x - 258666 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 228)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 q^{3} + ( - \beta_{2} + 29) q^{5} + ( - \beta_1 + 8) q^{7} + 81 q^{9} + ( - \beta_{3} + 4 \beta_{2} + \cdots + 33) q^{11} + ( - 9 \beta_{2} - \beta_1 + 157) q^{13} + ( - 9 \beta_{2} + 261) q^{15}+ \cdots + ( - 81 \beta_{3} + 324 \beta_{2} + \cdots + 2673) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 36 q^{3} + 117 q^{5} + 33 q^{7} + 324 q^{9} + 129 q^{11} + 638 q^{13} + 1053 q^{15} + 285 q^{17} + 1444 q^{19} + 297 q^{21} + 2340 q^{23} + 3629 q^{25} + 2916 q^{27} + 438 q^{29} - 160 q^{31} + 1161 q^{33}+ \cdots + 10449 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 4327x^{2} + 78705x - 258666 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 5\nu^{3} + 196\nu^{2} - 19991\nu - 140614 ) / 1732 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{3} + 31\nu^{2} - 11908\nu + 103034 ) / 866 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -13\nu^{3} + 10\nu^{2} + 61849\nu - 762282 ) / 1732 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 3\beta_{2} - \beta _1 + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 57\beta_{2} + 71\beta _1 + 12986 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3959\beta_{3} + 14229\beta_{2} - 4703\beta _1 - 332318 ) / 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.29948
55.1334
−73.3165
14.8836
0 9.00000 0 −31.7936 0 136.490 0 81.0000 0
1.2 0 9.00000 0 −21.2328 0 −102.241 0 81.0000 0
1.3 0 9.00000 0 74.6969 0 −227.637 0 81.0000 0
1.4 0 9.00000 0 95.3295 0 226.388 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.6.a.s 4
4.b odd 2 1 228.6.a.c 4
12.b even 2 1 684.6.a.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
228.6.a.c 4 4.b odd 2 1
684.6.a.c 4 12.b even 2 1
912.6.a.s 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 117T_{5}^{3} - 1220T_{5}^{2} + 262812T_{5} + 4807024 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(912))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 9)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 117 T^{3} + \cdots + 4807024 \) Copy content Toggle raw display
$7$ \( T^{4} - 33 T^{3} + \cdots + 719152128 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 2947580480 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 34302938368 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 2211826294584 \) Copy content Toggle raw display
$19$ \( (T - 361)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 6466156229824 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 41401237109728 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 1260880553600 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 39\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 54\!\cdots\!32 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 28\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 63\!\cdots\!28 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 52\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 16\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 23\!\cdots\!12 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 30\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 20\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 51\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 33\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 96\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 80\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 39\!\cdots\!44 \) Copy content Toggle raw display
show more
show less