Properties

Label 936.4.c.d.649.18
Level $936$
Weight $4$
Character 936.649
Analytic conductor $55.226$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(649,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.2257877654\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 772 x^{18} + 254556 x^{16} + 46787036 x^{14} + 5240196398 x^{12} + 366523224996 x^{10} + \cdots + 24\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{66} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.18
Root \(10.4125i\) of defining polynomial
Character \(\chi\) \(=\) 936.649
Dual form 936.4.c.d.649.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+17.2883i q^{5} +1.33952i q^{7} -16.4827i q^{11} +(13.5060 + 44.8842i) q^{13} -99.2502 q^{17} +40.5282i q^{19} +125.857 q^{23} -173.887 q^{25} -51.7704 q^{29} +303.633i q^{31} -23.1580 q^{35} +85.9949i q^{37} -418.697i q^{41} -203.121 q^{43} +350.809i q^{47} +341.206 q^{49} -619.498 q^{53} +284.959 q^{55} -168.719i q^{59} +91.0490 q^{61} +(-775.973 + 233.496i) q^{65} -864.165i q^{67} +198.574i q^{71} +87.1751i q^{73} +22.0789 q^{77} -740.668 q^{79} -1066.25i q^{83} -1715.87i q^{85} -382.555i q^{89} +(-60.1230 + 18.0915i) q^{91} -700.665 q^{95} -1020.69i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 84 q^{13} - 412 q^{25} - 288 q^{43} + 284 q^{49} + 576 q^{55} + 104 q^{61} + 432 q^{79} + 624 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 17.2883i 1.54632i 0.634213 + 0.773158i \(0.281324\pi\)
−0.634213 + 0.773158i \(0.718676\pi\)
\(6\) 0 0
\(7\) 1.33952i 0.0723270i 0.999346 + 0.0361635i \(0.0115137\pi\)
−0.999346 + 0.0361635i \(0.988486\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 16.4827i 0.451794i −0.974151 0.225897i \(-0.927469\pi\)
0.974151 0.225897i \(-0.0725313\pi\)
\(12\) 0 0
\(13\) 13.5060 + 44.8842i 0.288145 + 0.957587i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −99.2502 −1.41598 −0.707991 0.706221i \(-0.750398\pi\)
−0.707991 + 0.706221i \(0.750398\pi\)
\(18\) 0 0
\(19\) 40.5282i 0.489358i 0.969604 + 0.244679i \(0.0786825\pi\)
−0.969604 + 0.244679i \(0.921317\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 125.857 1.14100 0.570500 0.821297i \(-0.306749\pi\)
0.570500 + 0.821297i \(0.306749\pi\)
\(24\) 0 0
\(25\) −173.887 −1.39110
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −51.7704 −0.331501 −0.165750 0.986168i \(-0.553005\pi\)
−0.165750 + 0.986168i \(0.553005\pi\)
\(30\) 0 0
\(31\) 303.633i 1.75917i 0.475745 + 0.879583i \(0.342178\pi\)
−0.475745 + 0.879583i \(0.657822\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −23.1580 −0.111840
\(36\) 0 0
\(37\) 85.9949i 0.382094i 0.981581 + 0.191047i \(0.0611883\pi\)
−0.981581 + 0.191047i \(0.938812\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 418.697i 1.59487i −0.603407 0.797434i \(-0.706190\pi\)
0.603407 0.797434i \(-0.293810\pi\)
\(42\) 0 0
\(43\) −203.121 −0.720365 −0.360183 0.932882i \(-0.617286\pi\)
−0.360183 + 0.932882i \(0.617286\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 350.809i 1.08874i 0.838845 + 0.544370i \(0.183231\pi\)
−0.838845 + 0.544370i \(0.816769\pi\)
\(48\) 0 0
\(49\) 341.206 0.994769
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −619.498 −1.60556 −0.802779 0.596276i \(-0.796646\pi\)
−0.802779 + 0.596276i \(0.796646\pi\)
\(54\) 0 0
\(55\) 284.959 0.698617
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 168.719i 0.372293i −0.982522 0.186146i \(-0.940400\pi\)
0.982522 0.186146i \(-0.0595999\pi\)
\(60\) 0 0
\(61\) 91.0490 0.191109 0.0955543 0.995424i \(-0.469538\pi\)
0.0955543 + 0.995424i \(0.469538\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −775.973 + 233.496i −1.48073 + 0.445564i
\(66\) 0 0
\(67\) 864.165i 1.57574i −0.615842 0.787869i \(-0.711184\pi\)
0.615842 0.787869i \(-0.288816\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 198.574i 0.331920i 0.986132 + 0.165960i \(0.0530723\pi\)
−0.986132 + 0.165960i \(0.946928\pi\)
\(72\) 0 0
\(73\) 87.1751i 0.139768i 0.997555 + 0.0698840i \(0.0222629\pi\)
−0.997555 + 0.0698840i \(0.977737\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 22.0789 0.0326769
\(78\) 0 0
\(79\) −740.668 −1.05483 −0.527416 0.849607i \(-0.676839\pi\)
−0.527416 + 0.849607i \(0.676839\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1066.25i 1.41007i −0.709174 0.705034i \(-0.750932\pi\)
0.709174 0.705034i \(-0.249068\pi\)
\(84\) 0 0
\(85\) 1715.87i 2.18956i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 382.555i 0.455627i −0.973705 0.227813i \(-0.926842\pi\)
0.973705 0.227813i \(-0.0731576\pi\)
\(90\) 0 0
\(91\) −60.1230 + 18.0915i −0.0692594 + 0.0208407i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −700.665 −0.756702
\(96\) 0 0
\(97\) 1020.69i 1.06840i −0.845357 0.534201i \(-0.820612\pi\)
0.845357 0.534201i \(-0.179388\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −442.610 −0.436053 −0.218026 0.975943i \(-0.569962\pi\)
−0.218026 + 0.975943i \(0.569962\pi\)
\(102\) 0 0
\(103\) 1350.29 1.29173 0.645866 0.763451i \(-0.276497\pi\)
0.645866 + 0.763451i \(0.276497\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1538.49 −1.39002 −0.695008 0.719002i \(-0.744599\pi\)
−0.695008 + 0.719002i \(0.744599\pi\)
\(108\) 0 0
\(109\) 745.005i 0.654666i 0.944909 + 0.327333i \(0.106150\pi\)
−0.944909 + 0.327333i \(0.893850\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1643.74 −1.36841 −0.684206 0.729289i \(-0.739851\pi\)
−0.684206 + 0.729289i \(0.739851\pi\)
\(114\) 0 0
\(115\) 2175.86i 1.76435i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 132.947i 0.102414i
\(120\) 0 0
\(121\) 1059.32 0.795882
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 845.175i 0.604758i
\(126\) 0 0
\(127\) 229.512 0.160362 0.0801808 0.996780i \(-0.474450\pi\)
0.0801808 + 0.996780i \(0.474450\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −960.594 −0.640668 −0.320334 0.947305i \(-0.603795\pi\)
−0.320334 + 0.947305i \(0.603795\pi\)
\(132\) 0 0
\(133\) −54.2881 −0.0353938
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 377.802i 0.235604i 0.993037 + 0.117802i \(0.0375849\pi\)
−0.993037 + 0.117802i \(0.962415\pi\)
\(138\) 0 0
\(139\) −1982.87 −1.20997 −0.604983 0.796239i \(-0.706820\pi\)
−0.604983 + 0.796239i \(0.706820\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 739.814 222.616i 0.432632 0.130182i
\(144\) 0 0
\(145\) 895.025i 0.512605i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 534.521i 0.293890i −0.989145 0.146945i \(-0.953056\pi\)
0.989145 0.146945i \(-0.0469441\pi\)
\(150\) 0 0
\(151\) 1479.80i 0.797511i 0.917057 + 0.398756i \(0.130558\pi\)
−0.917057 + 0.398756i \(0.869442\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5249.32 −2.72023
\(156\) 0 0
\(157\) −2873.65 −1.46078 −0.730389 0.683031i \(-0.760661\pi\)
−0.730389 + 0.683031i \(0.760661\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 168.587i 0.0825252i
\(162\) 0 0
\(163\) 2978.08i 1.43105i 0.698586 + 0.715526i \(0.253813\pi\)
−0.698586 + 0.715526i \(0.746187\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 751.862i 0.348388i −0.984711 0.174194i \(-0.944268\pi\)
0.984711 0.174194i \(-0.0557320\pi\)
\(168\) 0 0
\(169\) −1832.18 + 1212.41i −0.833945 + 0.551848i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 416.512 0.183045 0.0915227 0.995803i \(-0.470827\pi\)
0.0915227 + 0.995803i \(0.470827\pi\)
\(174\) 0 0
\(175\) 232.924i 0.100614i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4391.66 −1.83379 −0.916894 0.399132i \(-0.869312\pi\)
−0.916894 + 0.399132i \(0.869312\pi\)
\(180\) 0 0
\(181\) 2429.14 0.997550 0.498775 0.866731i \(-0.333783\pi\)
0.498775 + 0.866731i \(0.333783\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1486.71 −0.590838
\(186\) 0 0
\(187\) 1635.92i 0.639732i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1484.95 0.562551 0.281275 0.959627i \(-0.409243\pi\)
0.281275 + 0.959627i \(0.409243\pi\)
\(192\) 0 0
\(193\) 2413.60i 0.900182i −0.892983 0.450091i \(-0.851392\pi\)
0.892983 0.450091i \(-0.148608\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1217.73i 0.440403i 0.975454 + 0.220202i \(0.0706716\pi\)
−0.975454 + 0.220202i \(0.929328\pi\)
\(198\) 0 0
\(199\) −3803.60 −1.35492 −0.677462 0.735558i \(-0.736920\pi\)
−0.677462 + 0.735558i \(0.736920\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 69.3473i 0.0239765i
\(204\) 0 0
\(205\) 7238.59 2.46617
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 668.015 0.221089
\(210\) 0 0
\(211\) 4203.36 1.37143 0.685713 0.727872i \(-0.259490\pi\)
0.685713 + 0.727872i \(0.259490\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3511.63i 1.11391i
\(216\) 0 0
\(217\) −406.721 −0.127235
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1340.47 4454.76i −0.408008 1.35593i
\(222\) 0 0
\(223\) 3488.05i 1.04743i 0.851893 + 0.523715i \(0.175454\pi\)
−0.851893 + 0.523715i \(0.824546\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3099.32i 0.906208i −0.891458 0.453104i \(-0.850317\pi\)
0.891458 0.453104i \(-0.149683\pi\)
\(228\) 0 0
\(229\) 5024.62i 1.44994i −0.688781 0.724970i \(-0.741854\pi\)
0.688781 0.724970i \(-0.258146\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3763.69 1.05823 0.529115 0.848550i \(-0.322524\pi\)
0.529115 + 0.848550i \(0.322524\pi\)
\(234\) 0 0
\(235\) −6064.91 −1.68354
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3728.62i 1.00914i 0.863371 + 0.504569i \(0.168349\pi\)
−0.863371 + 0.504569i \(0.831651\pi\)
\(240\) 0 0
\(241\) 718.392i 0.192015i 0.995381 + 0.0960077i \(0.0306073\pi\)
−0.995381 + 0.0960077i \(0.969393\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5898.88i 1.53823i
\(246\) 0 0
\(247\) −1819.07 + 547.373i −0.468603 + 0.141006i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2207.13 −0.555032 −0.277516 0.960721i \(-0.589511\pi\)
−0.277516 + 0.960721i \(0.589511\pi\)
\(252\) 0 0
\(253\) 2074.47i 0.515497i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1478.59 −0.358879 −0.179439 0.983769i \(-0.557428\pi\)
−0.179439 + 0.983769i \(0.557428\pi\)
\(258\) 0 0
\(259\) −115.191 −0.0276357
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2587.04 0.606555 0.303277 0.952902i \(-0.401919\pi\)
0.303277 + 0.952902i \(0.401919\pi\)
\(264\) 0 0
\(265\) 10710.1i 2.48270i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4495.23 −1.01888 −0.509440 0.860506i \(-0.670148\pi\)
−0.509440 + 0.860506i \(0.670148\pi\)
\(270\) 0 0
\(271\) 3047.50i 0.683109i −0.939862 0.341555i \(-0.889047\pi\)
0.939862 0.341555i \(-0.110953\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2866.13i 0.628489i
\(276\) 0 0
\(277\) −4563.55 −0.989881 −0.494940 0.868927i \(-0.664810\pi\)
−0.494940 + 0.868927i \(0.664810\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3176.55i 0.674366i −0.941439 0.337183i \(-0.890526\pi\)
0.941439 0.337183i \(-0.109474\pi\)
\(282\) 0 0
\(283\) 7429.65 1.56059 0.780295 0.625411i \(-0.215069\pi\)
0.780295 + 0.625411i \(0.215069\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 560.851 0.115352
\(288\) 0 0
\(289\) 4937.60 1.00501
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1997.88i 0.398353i 0.979964 + 0.199176i \(0.0638267\pi\)
−0.979964 + 0.199176i \(0.936173\pi\)
\(294\) 0 0
\(295\) 2916.86 0.575683
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1699.82 + 5648.99i 0.328774 + 1.09261i
\(300\) 0 0
\(301\) 272.084i 0.0521019i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1574.09i 0.295514i
\(306\) 0 0
\(307\) 3896.95i 0.724464i 0.932088 + 0.362232i \(0.117985\pi\)
−0.932088 + 0.362232i \(0.882015\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5855.95 1.06772 0.533859 0.845573i \(-0.320741\pi\)
0.533859 + 0.845573i \(0.320741\pi\)
\(312\) 0 0
\(313\) −6573.33 −1.18705 −0.593525 0.804816i \(-0.702264\pi\)
−0.593525 + 0.804816i \(0.702264\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4104.55i 0.727238i −0.931548 0.363619i \(-0.881541\pi\)
0.931548 0.363619i \(-0.118459\pi\)
\(318\) 0 0
\(319\) 853.318i 0.149770i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4022.43i 0.692922i
\(324\) 0 0
\(325\) −2348.51 7804.77i −0.400837 1.33209i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −469.914 −0.0787454
\(330\) 0 0
\(331\) 8447.81i 1.40282i 0.712758 + 0.701410i \(0.247446\pi\)
−0.712758 + 0.701410i \(0.752554\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 14940.0 2.43659
\(336\) 0 0
\(337\) 11278.4 1.82307 0.911534 0.411224i \(-0.134899\pi\)
0.911534 + 0.411224i \(0.134899\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5004.71 0.794781
\(342\) 0 0
\(343\) 916.504i 0.144276i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6649.57 1.02873 0.514363 0.857573i \(-0.328028\pi\)
0.514363 + 0.857573i \(0.328028\pi\)
\(348\) 0 0
\(349\) 279.964i 0.0429402i −0.999769 0.0214701i \(-0.993165\pi\)
0.999769 0.0214701i \(-0.00683467\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3686.19i 0.555797i −0.960611 0.277898i \(-0.910362\pi\)
0.960611 0.277898i \(-0.0896378\pi\)
\(354\) 0 0
\(355\) −3433.01 −0.513254
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10399.8i 1.52892i 0.644671 + 0.764460i \(0.276995\pi\)
−0.644671 + 0.764460i \(0.723005\pi\)
\(360\) 0 0
\(361\) 5216.47 0.760529
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1507.11 −0.216126
\(366\) 0 0
\(367\) −7144.35 −1.01616 −0.508081 0.861309i \(-0.669645\pi\)
−0.508081 + 0.861309i \(0.669645\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 829.827i 0.116125i
\(372\) 0 0
\(373\) −3431.34 −0.476322 −0.238161 0.971226i \(-0.576545\pi\)
−0.238161 + 0.971226i \(0.576545\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −699.210 2323.67i −0.0955203 0.317441i
\(378\) 0 0
\(379\) 14342.7i 1.94390i 0.235196 + 0.971948i \(0.424427\pi\)
−0.235196 + 0.971948i \(0.575573\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5888.11i 0.785557i 0.919633 + 0.392778i \(0.128486\pi\)
−0.919633 + 0.392778i \(0.871514\pi\)
\(384\) 0 0
\(385\) 381.707i 0.0505288i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3245.91 0.423070 0.211535 0.977370i \(-0.432154\pi\)
0.211535 + 0.977370i \(0.432154\pi\)
\(390\) 0 0
\(391\) −12491.3 −1.61564
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12804.9i 1.63110i
\(396\) 0 0
\(397\) 413.285i 0.0522473i −0.999659 0.0261237i \(-0.991684\pi\)
0.999659 0.0261237i \(-0.00831637\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8404.94i 1.04669i 0.852121 + 0.523345i \(0.175316\pi\)
−0.852121 + 0.523345i \(0.824684\pi\)
\(402\) 0 0
\(403\) −13628.3 + 4100.87i −1.68455 + 0.506895i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1417.43 0.172628
\(408\) 0 0
\(409\) 11130.7i 1.34567i 0.739795 + 0.672833i \(0.234923\pi\)
−0.739795 + 0.672833i \(0.765077\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 226.001 0.0269268
\(414\) 0 0
\(415\) 18433.6 2.18041
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10209.4 1.19036 0.595180 0.803592i \(-0.297081\pi\)
0.595180 + 0.803592i \(0.297081\pi\)
\(420\) 0 0
\(421\) 8100.97i 0.937808i 0.883249 + 0.468904i \(0.155351\pi\)
−0.883249 + 0.468904i \(0.844649\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 17258.3 1.96977
\(426\) 0 0
\(427\) 121.961i 0.0138223i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7383.64i 0.825191i 0.910914 + 0.412595i \(0.135378\pi\)
−0.910914 + 0.412595i \(0.864622\pi\)
\(432\) 0 0
\(433\) −11312.3 −1.25551 −0.627756 0.778410i \(-0.716026\pi\)
−0.627756 + 0.778410i \(0.716026\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5100.76i 0.558357i
\(438\) 0 0
\(439\) 12699.3 1.38065 0.690325 0.723500i \(-0.257468\pi\)
0.690325 + 0.723500i \(0.257468\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1394.40 0.149549 0.0747744 0.997200i \(-0.476176\pi\)
0.0747744 + 0.997200i \(0.476176\pi\)
\(444\) 0 0
\(445\) 6613.75 0.704543
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10523.6i 1.10610i 0.833147 + 0.553052i \(0.186537\pi\)
−0.833147 + 0.553052i \(0.813463\pi\)
\(450\) 0 0
\(451\) −6901.28 −0.720551
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −312.772 1039.43i −0.0322263 0.107097i
\(456\) 0 0
\(457\) 14783.8i 1.51326i −0.653844 0.756629i \(-0.726845\pi\)
0.653844 0.756629i \(-0.273155\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3483.79i 0.351965i 0.984393 + 0.175983i \(0.0563103\pi\)
−0.984393 + 0.175983i \(0.943690\pi\)
\(462\) 0 0
\(463\) 451.040i 0.0452734i −0.999744 0.0226367i \(-0.992794\pi\)
0.999744 0.0226367i \(-0.00720610\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6717.97 0.665676 0.332838 0.942984i \(-0.391994\pi\)
0.332838 + 0.942984i \(0.391994\pi\)
\(468\) 0 0
\(469\) 1157.56 0.113968
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3348.00i 0.325457i
\(474\) 0 0
\(475\) 7047.32i 0.680743i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1562.03i 0.149000i −0.997221 0.0744999i \(-0.976264\pi\)
0.997221 0.0744999i \(-0.0237361\pi\)
\(480\) 0 0
\(481\) −3859.81 + 1161.45i −0.365888 + 0.110099i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17646.0 1.65209
\(486\) 0 0
\(487\) 3174.01i 0.295335i −0.989037 0.147668i \(-0.952823\pi\)
0.989037 0.147668i \(-0.0471766\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3038.22 −0.279253 −0.139626 0.990204i \(-0.544590\pi\)
−0.139626 + 0.990204i \(0.544590\pi\)
\(492\) 0 0
\(493\) 5138.22 0.469399
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −265.992 −0.0240068
\(498\) 0 0
\(499\) 8223.09i 0.737707i 0.929488 + 0.368854i \(0.120250\pi\)
−0.929488 + 0.368854i \(0.879750\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −18925.2 −1.67760 −0.838801 0.544438i \(-0.816743\pi\)
−0.838801 + 0.544438i \(0.816743\pi\)
\(504\) 0 0
\(505\) 7651.99i 0.674276i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16536.9i 1.44005i −0.693947 0.720026i \(-0.744130\pi\)
0.693947 0.720026i \(-0.255870\pi\)
\(510\) 0 0
\(511\) −116.772 −0.0101090
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 23344.3i 1.99743i
\(516\) 0 0
\(517\) 5782.30 0.491886
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19979.0 1.68003 0.840014 0.542565i \(-0.182547\pi\)
0.840014 + 0.542565i \(0.182547\pi\)
\(522\) 0 0
\(523\) 9944.23 0.831416 0.415708 0.909498i \(-0.363534\pi\)
0.415708 + 0.909498i \(0.363534\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 30135.7i 2.49095i
\(528\) 0 0
\(529\) 3673.00 0.301882
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 18792.9 5654.92i 1.52722 0.459553i
\(534\) 0 0
\(535\) 26598.0i 2.14941i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5624.00i 0.449430i
\(540\) 0 0
\(541\) 6330.16i 0.503059i −0.967850 0.251529i \(-0.919066\pi\)
0.967850 0.251529i \(-0.0809335\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12879.9 −1.01232
\(546\) 0 0
\(547\) 3405.93 0.266229 0.133114 0.991101i \(-0.457502\pi\)
0.133114 + 0.991101i \(0.457502\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2098.16i 0.162223i
\(552\) 0 0
\(553\) 992.136i 0.0762928i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17105.5i 1.30123i 0.759409 + 0.650613i \(0.225488\pi\)
−0.759409 + 0.650613i \(0.774512\pi\)
\(558\) 0 0
\(559\) −2743.35 9116.93i −0.207570 0.689812i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16065.5 1.20263 0.601313 0.799013i \(-0.294644\pi\)
0.601313 + 0.799013i \(0.294644\pi\)
\(564\) 0 0
\(565\) 28417.6i 2.11600i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4798.25 0.353521 0.176760 0.984254i \(-0.443438\pi\)
0.176760 + 0.984254i \(0.443438\pi\)
\(570\) 0 0
\(571\) −14322.9 −1.04973 −0.524863 0.851187i \(-0.675883\pi\)
−0.524863 + 0.851187i \(0.675883\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −21884.9 −1.58724
\(576\) 0 0
\(577\) 7218.09i 0.520785i 0.965503 + 0.260393i \(0.0838520\pi\)
−0.965503 + 0.260393i \(0.916148\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1428.25 0.101986
\(582\) 0 0
\(583\) 10211.0i 0.725382i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21791.8i 1.53227i 0.642678 + 0.766137i \(0.277823\pi\)
−0.642678 + 0.766137i \(0.722177\pi\)
\(588\) 0 0
\(589\) −12305.7 −0.860862
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18073.3i 1.25157i −0.779995 0.625786i \(-0.784778\pi\)
0.779995 0.625786i \(-0.215222\pi\)
\(594\) 0 0
\(595\) 2298.44 0.158364
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6806.01 0.464250 0.232125 0.972686i \(-0.425432\pi\)
0.232125 + 0.972686i \(0.425432\pi\)
\(600\) 0 0
\(601\) −4385.26 −0.297635 −0.148817 0.988865i \(-0.547547\pi\)
−0.148817 + 0.988865i \(0.547547\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 18313.9i 1.23069i
\(606\) 0 0
\(607\) 20310.8 1.35814 0.679071 0.734073i \(-0.262383\pi\)
0.679071 + 0.734073i \(0.262383\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15745.8 + 4738.03i −1.04256 + 0.313715i
\(612\) 0 0
\(613\) 23747.4i 1.56468i 0.622853 + 0.782339i \(0.285974\pi\)
−0.622853 + 0.782339i \(0.714026\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6584.00i 0.429598i 0.976658 + 0.214799i \(0.0689096\pi\)
−0.976658 + 0.214799i \(0.931090\pi\)
\(618\) 0 0
\(619\) 4151.45i 0.269565i 0.990875 + 0.134783i \(0.0430336\pi\)
−0.990875 + 0.134783i \(0.956966\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 512.439 0.0329541
\(624\) 0 0
\(625\) −7124.20 −0.455949
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8535.01i 0.541039i
\(630\) 0 0
\(631\) 7471.18i 0.471352i −0.971832 0.235676i \(-0.924270\pi\)
0.971832 0.235676i \(-0.0757304\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3967.89i 0.247970i
\(636\) 0 0
\(637\) 4608.32 + 15314.7i 0.286638 + 0.952577i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −20633.5 −1.27141 −0.635705 0.771932i \(-0.719290\pi\)
−0.635705 + 0.771932i \(0.719290\pi\)
\(642\) 0 0
\(643\) 1331.30i 0.0816507i −0.999166 0.0408253i \(-0.987001\pi\)
0.999166 0.0408253i \(-0.0129987\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20430.6 −1.24144 −0.620718 0.784034i \(-0.713159\pi\)
−0.620718 + 0.784034i \(0.713159\pi\)
\(648\) 0 0
\(649\) −2780.94 −0.168200
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4573.33 −0.274071 −0.137035 0.990566i \(-0.543757\pi\)
−0.137035 + 0.990566i \(0.543757\pi\)
\(654\) 0 0
\(655\) 16607.1i 0.990675i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23726.7 1.40252 0.701261 0.712905i \(-0.252621\pi\)
0.701261 + 0.712905i \(0.252621\pi\)
\(660\) 0 0
\(661\) 24731.0i 1.45526i 0.685970 + 0.727629i \(0.259378\pi\)
−0.685970 + 0.727629i \(0.740622\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 938.551i 0.0547300i
\(666\) 0 0
\(667\) −6515.67 −0.378243
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1500.74i 0.0863417i
\(672\) 0 0
\(673\) 13664.6 0.782660 0.391330 0.920250i \(-0.372015\pi\)
0.391330 + 0.920250i \(0.372015\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −17331.5 −0.983906 −0.491953 0.870622i \(-0.663717\pi\)
−0.491953 + 0.870622i \(0.663717\pi\)
\(678\) 0 0
\(679\) 1367.23 0.0772744
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27747.6i 1.55451i −0.629184 0.777257i \(-0.716611\pi\)
0.629184 0.777257i \(-0.283389\pi\)
\(684\) 0 0
\(685\) −6531.57 −0.364319
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8366.93 27805.7i −0.462634 1.53746i
\(690\) 0 0
\(691\) 11477.2i 0.631857i −0.948783 0.315929i \(-0.897684\pi\)
0.948783 0.315929i \(-0.102316\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 34280.6i 1.87099i
\(696\) 0 0
\(697\) 41555.8i 2.25830i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −29086.2 −1.56715 −0.783574 0.621299i \(-0.786605\pi\)
−0.783574 + 0.621299i \(0.786605\pi\)
\(702\) 0 0
\(703\) −3485.22 −0.186981
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 592.882i 0.0315384i
\(708\) 0 0
\(709\) 3149.07i 0.166806i 0.996516 + 0.0834032i \(0.0265789\pi\)
−0.996516 + 0.0834032i \(0.973421\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 38214.4i 2.00721i
\(714\) 0 0
\(715\) 3848.66 + 12790.2i 0.201303 + 0.668986i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12432.9 −0.644880 −0.322440 0.946590i \(-0.604503\pi\)
−0.322440 + 0.946590i \(0.604503\pi\)
\(720\) 0 0
\(721\) 1808.74i 0.0934271i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9002.20 0.461149
\(726\) 0 0
\(727\) 4756.17 0.242636 0.121318 0.992614i \(-0.461288\pi\)
0.121318 + 0.992614i \(0.461288\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20159.8 1.02003
\(732\) 0 0
\(733\) 1633.85i 0.0823294i 0.999152 + 0.0411647i \(0.0131068\pi\)
−0.999152 + 0.0411647i \(0.986893\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14243.8 −0.711909
\(738\) 0 0
\(739\) 18777.7i 0.934709i 0.884070 + 0.467355i \(0.154793\pi\)
−0.884070 + 0.467355i \(0.845207\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 39073.1i 1.92928i 0.263577 + 0.964638i \(0.415098\pi\)
−0.263577 + 0.964638i \(0.584902\pi\)
\(744\) 0 0
\(745\) 9240.99 0.454448
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2060.84i 0.100536i
\(750\) 0 0
\(751\) −30055.7 −1.46038 −0.730192 0.683242i \(-0.760570\pi\)
−0.730192 + 0.683242i \(0.760570\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25583.3 −1.23321
\(756\) 0 0
\(757\) −27033.8 −1.29797 −0.648983 0.760802i \(-0.724806\pi\)
−0.648983 + 0.760802i \(0.724806\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6219.42i 0.296260i −0.988968 0.148130i \(-0.952675\pi\)
0.988968 0.148130i \(-0.0473254\pi\)
\(762\) 0 0
\(763\) −997.946 −0.0473500
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7572.79 2278.71i 0.356503 0.107274i
\(768\) 0 0
\(769\) 15898.2i 0.745518i 0.927928 + 0.372759i \(0.121588\pi\)
−0.927928 + 0.372759i \(0.878412\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5912.88i 0.275125i −0.990493 0.137562i \(-0.956073\pi\)
0.990493 0.137562i \(-0.0439268\pi\)
\(774\) 0 0
\(775\) 52797.9i 2.44717i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16969.0 0.780461
\(780\) 0 0
\(781\) 3273.04 0.149960
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 49680.6i 2.25883i
\(786\) 0 0
\(787\) 33010.4i 1.49516i 0.664171 + 0.747581i \(0.268785\pi\)
−0.664171 + 0.747581i \(0.731215\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2201.82i 0.0989731i
\(792\) 0 0
\(793\) 1229.71 + 4086.66i 0.0550670 + 0.183003i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −37181.2 −1.65248 −0.826240 0.563318i \(-0.809524\pi\)
−0.826240 + 0.563318i \(0.809524\pi\)
\(798\) 0 0
\(799\) 34817.9i 1.54164i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1436.88 0.0631464
\(804\) 0 0
\(805\) −2914.60 −0.127610
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −21539.0 −0.936060 −0.468030 0.883713i \(-0.655036\pi\)
−0.468030 + 0.883713i \(0.655036\pi\)
\(810\) 0 0
\(811\) 228.372i 0.00988807i −0.999988 0.00494403i \(-0.998426\pi\)
0.999988 0.00494403i \(-0.00157374\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −51486.1 −2.21286
\(816\) 0 0
\(817\) 8232.13i 0.352516i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2897.96i 0.123190i −0.998101 0.0615952i \(-0.980381\pi\)
0.998101 0.0615952i \(-0.0196188\pi\)
\(822\) 0 0
\(823\) 27421.6 1.16143 0.580714 0.814108i \(-0.302773\pi\)
0.580714 + 0.814108i \(0.302773\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26237.4i 1.10322i 0.834101 + 0.551611i \(0.185987\pi\)
−0.834101 + 0.551611i \(0.814013\pi\)
\(828\) 0 0
\(829\) −24444.9 −1.02413 −0.512067 0.858946i \(-0.671120\pi\)
−0.512067 + 0.858946i \(0.671120\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −33864.7 −1.40858
\(834\) 0 0
\(835\) 12998.5 0.538719
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7472.74i 0.307494i −0.988110 0.153747i \(-0.950866\pi\)
0.988110 0.153747i \(-0.0491341\pi\)
\(840\) 0 0
\(841\) −21708.8 −0.890107
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −20960.6 31675.3i −0.853332 1.28954i
\(846\) 0 0
\(847\) 1418.97i 0.0575638i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 10823.1i 0.435969i
\(852\) 0 0
\(853\) 5909.06i 0.237189i −0.992943 0.118595i \(-0.962161\pi\)
0.992943 0.118595i \(-0.0378389\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28020.8 1.11689 0.558444 0.829542i \(-0.311399\pi\)
0.558444 + 0.829542i \(0.311399\pi\)
\(858\) 0 0
\(859\) 33349.5 1.32464 0.662322 0.749219i \(-0.269571\pi\)
0.662322 + 0.749219i \(0.269571\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8614.68i 0.339800i −0.985461 0.169900i \(-0.945656\pi\)
0.985461 0.169900i \(-0.0543444\pi\)
\(864\) 0 0
\(865\) 7200.81i 0.283046i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12208.2i 0.476566i
\(870\) 0 0
\(871\) 38787.3 11671.4i 1.50891 0.454041i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1132.12 0.0437403
\(876\) 0 0
\(877\) 33898.9i 1.30523i 0.757691 + 0.652613i \(0.226327\pi\)
−0.757691 + 0.652613i \(0.773673\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9645.86 −0.368873 −0.184437 0.982844i \(-0.559046\pi\)
−0.184437 + 0.982844i \(0.559046\pi\)
\(882\) 0 0
\(883\) −3982.78 −0.151791 −0.0758953 0.997116i \(-0.524181\pi\)
−0.0758953 + 0.997116i \(0.524181\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −35181.8 −1.33178 −0.665891 0.746049i \(-0.731948\pi\)
−0.665891 + 0.746049i \(0.731948\pi\)
\(888\) 0 0
\(889\) 307.435i 0.0115985i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14217.7 −0.532784
\(894\) 0 0
\(895\) 75924.5i 2.83562i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15719.2i 0.583165i
\(900\) 0 0
\(901\) 61485.3 2.27344
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 41995.8i 1.54253i
\(906\) 0 0
\(907\) −40259.6 −1.47387 −0.736934 0.675965i \(-0.763727\pi\)
−0.736934 + 0.675965i \(0.763727\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 31942.1 1.16168 0.580839 0.814018i \(-0.302724\pi\)
0.580839 + 0.814018i \(0.302724\pi\)
\(912\) 0 0
\(913\) −17574.6 −0.637060
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1286.73i 0.0463376i
\(918\) 0 0
\(919\) −4761.17 −0.170899 −0.0854496 0.996342i \(-0.527233\pi\)
−0.0854496 + 0.996342i \(0.527233\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8912.81 + 2681.93i −0.317843 + 0.0956412i
\(924\) 0 0
\(925\) 14953.4i 0.531529i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 26291.6i 0.928526i 0.885697 + 0.464263i \(0.153681\pi\)
−0.885697 + 0.464263i \(0.846319\pi\)
\(930\) 0 0
\(931\) 13828.4i 0.486798i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −28282.3 −0.989229
\(936\) 0 0
\(937\) 50820.0 1.77184 0.885921 0.463835i \(-0.153527\pi\)
0.885921 + 0.463835i \(0.153527\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 18005.6i 0.623769i −0.950120 0.311885i \(-0.899040\pi\)
0.950120 0.311885i \(-0.100960\pi\)
\(942\) 0 0
\(943\) 52696.0i 1.81974i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13145.9i 0.451094i −0.974232 0.225547i \(-0.927583\pi\)
0.974232 0.225547i \(-0.0724169\pi\)
\(948\) 0 0
\(949\) −3912.78 + 1177.38i −0.133840 + 0.0402735i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −9472.99 −0.321994 −0.160997 0.986955i \(-0.551471\pi\)
−0.160997 + 0.986955i \(0.551471\pi\)
\(954\) 0 0
\(955\) 25672.3i 0.869882i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −506.072 −0.0170406
\(960\) 0 0
\(961\) −62402.2 −2.09467
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 41727.2 1.39197
\(966\) 0 0
\(967\) 42074.2i 1.39919i −0.714541 0.699594i \(-0.753364\pi\)
0.714541 0.699594i \(-0.246636\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 139.025 0.00459479 0.00229739 0.999997i \(-0.499269\pi\)
0.00229739 + 0.999997i \(0.499269\pi\)
\(972\) 0 0
\(973\) 2656.09i 0.0875132i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 51136.1i 1.67450i −0.546818 0.837251i \(-0.684161\pi\)
0.546818 0.837251i \(-0.315839\pi\)
\(978\) 0 0
\(979\) −6305.56 −0.205849
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13373.1i 0.433911i 0.976182 + 0.216955i \(0.0696126\pi\)
−0.976182 + 0.216955i \(0.930387\pi\)
\(984\) 0 0
\(985\) −21052.5 −0.681003
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −25564.3 −0.821937
\(990\) 0 0
\(991\) 22640.2 0.725722 0.362861 0.931843i \(-0.381800\pi\)
0.362861 + 0.931843i \(0.381800\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 65757.9i 2.09514i
\(996\) 0 0
\(997\) −1503.11 −0.0477473 −0.0238737 0.999715i \(-0.507600\pi\)
−0.0238737 + 0.999715i \(0.507600\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.4.c.d.649.18 yes 20
3.2 odd 2 inner 936.4.c.d.649.4 yes 20
13.12 even 2 inner 936.4.c.d.649.3 20
39.38 odd 2 inner 936.4.c.d.649.17 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.4.c.d.649.3 20 13.12 even 2 inner
936.4.c.d.649.4 yes 20 3.2 odd 2 inner
936.4.c.d.649.17 yes 20 39.38 odd 2 inner
936.4.c.d.649.18 yes 20 1.1 even 1 trivial