Properties

Label 950.2.j.e.49.2
Level $950$
Weight $2$
Character 950.49
Analytic conductor $7.586$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [950,2,Mod(49,950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("950.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 950.49
Dual form 950.2.j.e.349.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{6} -4.00000i q^{7} +1.00000i q^{8} +(-1.00000 - 1.73205i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{6} -4.00000i q^{7} +1.00000i q^{8} +(-1.00000 - 1.73205i) q^{9} +3.00000 q^{11} +1.00000i q^{12} +(-1.73205 + 1.00000i) q^{13} +(2.00000 - 3.46410i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(5.19615 + 3.00000i) q^{17} -2.00000i q^{18} +(3.50000 + 2.59808i) q^{19} +(2.00000 - 3.46410i) q^{21} +(2.59808 + 1.50000i) q^{22} +(5.19615 - 3.00000i) q^{23} +(-0.500000 + 0.866025i) q^{24} -2.00000 q^{26} -5.00000i q^{27} +(3.46410 - 2.00000i) q^{28} +2.00000 q^{31} +(-0.866025 + 0.500000i) q^{32} +(2.59808 + 1.50000i) q^{33} +(3.00000 + 5.19615i) q^{34} +(1.00000 - 1.73205i) q^{36} -10.0000i q^{37} +(1.73205 + 4.00000i) q^{38} -2.00000 q^{39} +(-4.50000 + 7.79423i) q^{41} +(3.46410 - 2.00000i) q^{42} +(-3.46410 - 2.00000i) q^{43} +(1.50000 + 2.59808i) q^{44} +6.00000 q^{46} +(-0.866025 + 0.500000i) q^{48} -9.00000 q^{49} +(3.00000 + 5.19615i) q^{51} +(-1.73205 - 1.00000i) q^{52} +(-5.19615 + 3.00000i) q^{53} +(2.50000 - 4.33013i) q^{54} +4.00000 q^{56} +(1.73205 + 4.00000i) q^{57} +(-4.50000 + 7.79423i) q^{59} +(2.00000 + 3.46410i) q^{61} +(1.73205 + 1.00000i) q^{62} +(-6.92820 + 4.00000i) q^{63} -1.00000 q^{64} +(1.50000 + 2.59808i) q^{66} +(-6.06218 + 3.50000i) q^{67} +6.00000i q^{68} +6.00000 q^{69} +(3.00000 - 5.19615i) q^{71} +(1.73205 - 1.00000i) q^{72} +(-0.866025 - 0.500000i) q^{73} +(5.00000 - 8.66025i) q^{74} +(-0.500000 + 4.33013i) q^{76} -12.0000i q^{77} +(-1.73205 - 1.00000i) q^{78} +(-2.00000 + 3.46410i) q^{79} +(-0.500000 + 0.866025i) q^{81} +(-7.79423 + 4.50000i) q^{82} -3.00000i q^{83} +4.00000 q^{84} +(-2.00000 - 3.46410i) q^{86} +3.00000i q^{88} +(3.00000 + 5.19615i) q^{89} +(4.00000 + 6.92820i) q^{91} +(5.19615 + 3.00000i) q^{92} +(1.73205 + 1.00000i) q^{93} -1.00000 q^{96} +(-14.7224 - 8.50000i) q^{97} +(-7.79423 - 4.50000i) q^{98} +(-3.00000 - 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 2 q^{6} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} + 2 q^{6} - 4 q^{9} + 12 q^{11} + 8 q^{14} - 2 q^{16} + 14 q^{19} + 8 q^{21} - 2 q^{24} - 8 q^{26} + 8 q^{31} + 12 q^{34} + 4 q^{36} - 8 q^{39} - 18 q^{41} + 6 q^{44} + 24 q^{46} - 36 q^{49} + 12 q^{51} + 10 q^{54} + 16 q^{56} - 18 q^{59} + 8 q^{61} - 4 q^{64} + 6 q^{66} + 24 q^{69} + 12 q^{71} + 20 q^{74} - 2 q^{76} - 8 q^{79} - 2 q^{81} + 16 q^{84} - 8 q^{86} + 12 q^{89} + 16 q^{91} - 4 q^{96} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i 0.728714 0.684819i \(-0.240119\pi\)
−0.228714 + 0.973494i \(0.573452\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0.500000 + 0.866025i 0.204124 + 0.353553i
\(7\) 4.00000i 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 1.73205i −0.333333 0.577350i
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −1.73205 + 1.00000i −0.480384 + 0.277350i −0.720577 0.693375i \(-0.756123\pi\)
0.240192 + 0.970725i \(0.422790\pi\)
\(14\) 2.00000 3.46410i 0.534522 0.925820i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 5.19615 + 3.00000i 1.26025 + 0.727607i 0.973123 0.230285i \(-0.0739659\pi\)
0.287129 + 0.957892i \(0.407299\pi\)
\(18\) 2.00000i 0.471405i
\(19\) 3.50000 + 2.59808i 0.802955 + 0.596040i
\(20\) 0 0
\(21\) 2.00000 3.46410i 0.436436 0.755929i
\(22\) 2.59808 + 1.50000i 0.553912 + 0.319801i
\(23\) 5.19615 3.00000i 1.08347 0.625543i 0.151642 0.988436i \(-0.451544\pi\)
0.931831 + 0.362892i \(0.118211\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 5.00000i 0.962250i
\(28\) 3.46410 2.00000i 0.654654 0.377964i
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 2.59808 + 1.50000i 0.452267 + 0.261116i
\(34\) 3.00000 + 5.19615i 0.514496 + 0.891133i
\(35\) 0 0
\(36\) 1.00000 1.73205i 0.166667 0.288675i
\(37\) 10.0000i 1.64399i −0.569495 0.821995i \(-0.692861\pi\)
0.569495 0.821995i \(-0.307139\pi\)
\(38\) 1.73205 + 4.00000i 0.280976 + 0.648886i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −4.50000 + 7.79423i −0.702782 + 1.21725i 0.264704 + 0.964330i \(0.414726\pi\)
−0.967486 + 0.252924i \(0.918608\pi\)
\(42\) 3.46410 2.00000i 0.534522 0.308607i
\(43\) −3.46410 2.00000i −0.528271 0.304997i 0.212041 0.977261i \(-0.431989\pi\)
−0.740312 + 0.672264i \(0.765322\pi\)
\(44\) 1.50000 + 2.59808i 0.226134 + 0.391675i
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) −0.866025 + 0.500000i −0.125000 + 0.0721688i
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 3.00000 + 5.19615i 0.420084 + 0.727607i
\(52\) −1.73205 1.00000i −0.240192 0.138675i
\(53\) −5.19615 + 3.00000i −0.713746 + 0.412082i −0.812447 0.583036i \(-0.801865\pi\)
0.0987002 + 0.995117i \(0.468532\pi\)
\(54\) 2.50000 4.33013i 0.340207 0.589256i
\(55\) 0 0
\(56\) 4.00000 0.534522
\(57\) 1.73205 + 4.00000i 0.229416 + 0.529813i
\(58\) 0 0
\(59\) −4.50000 + 7.79423i −0.585850 + 1.01472i 0.408919 + 0.912571i \(0.365906\pi\)
−0.994769 + 0.102151i \(0.967427\pi\)
\(60\) 0 0
\(61\) 2.00000 + 3.46410i 0.256074 + 0.443533i 0.965187 0.261562i \(-0.0842377\pi\)
−0.709113 + 0.705095i \(0.750904\pi\)
\(62\) 1.73205 + 1.00000i 0.219971 + 0.127000i
\(63\) −6.92820 + 4.00000i −0.872872 + 0.503953i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 1.50000 + 2.59808i 0.184637 + 0.319801i
\(67\) −6.06218 + 3.50000i −0.740613 + 0.427593i −0.822292 0.569066i \(-0.807305\pi\)
0.0816792 + 0.996659i \(0.473972\pi\)
\(68\) 6.00000i 0.727607i
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) 1.73205 1.00000i 0.204124 0.117851i
\(73\) −0.866025 0.500000i −0.101361 0.0585206i 0.448463 0.893801i \(-0.351972\pi\)
−0.549823 + 0.835281i \(0.685305\pi\)
\(74\) 5.00000 8.66025i 0.581238 1.00673i
\(75\) 0 0
\(76\) −0.500000 + 4.33013i −0.0573539 + 0.496700i
\(77\) 12.0000i 1.36753i
\(78\) −1.73205 1.00000i −0.196116 0.113228i
\(79\) −2.00000 + 3.46410i −0.225018 + 0.389742i −0.956325 0.292306i \(-0.905577\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −7.79423 + 4.50000i −0.860729 + 0.496942i
\(83\) 3.00000i 0.329293i −0.986353 0.164646i \(-0.947352\pi\)
0.986353 0.164646i \(-0.0526483\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) −2.00000 3.46410i −0.215666 0.373544i
\(87\) 0 0
\(88\) 3.00000i 0.319801i
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 0 0
\(91\) 4.00000 + 6.92820i 0.419314 + 0.726273i
\(92\) 5.19615 + 3.00000i 0.541736 + 0.312772i
\(93\) 1.73205 + 1.00000i 0.179605 + 0.103695i
\(94\) 0 0
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −14.7224 8.50000i −1.49484 0.863044i −0.494854 0.868976i \(-0.664778\pi\)
−0.999982 + 0.00593185i \(0.998112\pi\)
\(98\) −7.79423 4.50000i −0.787336 0.454569i
\(99\) −3.00000 5.19615i −0.301511 0.522233i
\(100\) 0 0
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 6.00000i 0.594089i
\(103\) 2.00000i 0.197066i −0.995134 0.0985329i \(-0.968585\pi\)
0.995134 0.0985329i \(-0.0314150\pi\)
\(104\) −1.00000 1.73205i −0.0980581 0.169842i
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 4.33013 2.50000i 0.416667 0.240563i
\(109\) −8.00000 + 13.8564i −0.766261 + 1.32720i 0.173316 + 0.984866i \(0.444552\pi\)
−0.939577 + 0.342337i \(0.888782\pi\)
\(110\) 0 0
\(111\) 5.00000 8.66025i 0.474579 0.821995i
\(112\) 3.46410 + 2.00000i 0.327327 + 0.188982i
\(113\) 15.0000i 1.41108i −0.708669 0.705541i \(-0.750704\pi\)
0.708669 0.705541i \(-0.249296\pi\)
\(114\) −0.500000 + 4.33013i −0.0468293 + 0.405554i
\(115\) 0 0
\(116\) 0 0
\(117\) 3.46410 + 2.00000i 0.320256 + 0.184900i
\(118\) −7.79423 + 4.50000i −0.717517 + 0.414259i
\(119\) 12.0000 20.7846i 1.10004 1.90532i
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 4.00000i 0.362143i
\(123\) −7.79423 + 4.50000i −0.702782 + 0.405751i
\(124\) 1.00000 + 1.73205i 0.0898027 + 0.155543i
\(125\) 0 0
\(126\) −8.00000 −0.712697
\(127\) 1.73205 1.00000i 0.153695 0.0887357i −0.421180 0.906977i \(-0.638384\pi\)
0.574875 + 0.818241i \(0.305051\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) −2.00000 3.46410i −0.176090 0.304997i
\(130\) 0 0
\(131\) −4.50000 + 7.79423i −0.393167 + 0.680985i −0.992865 0.119241i \(-0.961954\pi\)
0.599699 + 0.800226i \(0.295287\pi\)
\(132\) 3.00000i 0.261116i
\(133\) 10.3923 14.0000i 0.901127 1.21395i
\(134\) −7.00000 −0.604708
\(135\) 0 0
\(136\) −3.00000 + 5.19615i −0.257248 + 0.445566i
\(137\) 7.79423 4.50000i 0.665906 0.384461i −0.128618 0.991694i \(-0.541054\pi\)
0.794524 + 0.607233i \(0.207721\pi\)
\(138\) 5.19615 + 3.00000i 0.442326 + 0.255377i
\(139\) 5.50000 + 9.52628i 0.466504 + 0.808008i 0.999268 0.0382553i \(-0.0121800\pi\)
−0.532764 + 0.846264i \(0.678847\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.19615 3.00000i 0.436051 0.251754i
\(143\) −5.19615 + 3.00000i −0.434524 + 0.250873i
\(144\) 2.00000 0.166667
\(145\) 0 0
\(146\) −0.500000 0.866025i −0.0413803 0.0716728i
\(147\) −7.79423 4.50000i −0.642857 0.371154i
\(148\) 8.66025 5.00000i 0.711868 0.410997i
\(149\) 9.00000 15.5885i 0.737309 1.27706i −0.216394 0.976306i \(-0.569430\pi\)
0.953703 0.300750i \(-0.0972370\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) −2.59808 + 3.50000i −0.210732 + 0.283887i
\(153\) 12.0000i 0.970143i
\(154\) 6.00000 10.3923i 0.483494 0.837436i
\(155\) 0 0
\(156\) −1.00000 1.73205i −0.0800641 0.138675i
\(157\) 13.8564 + 8.00000i 1.10586 + 0.638470i 0.937754 0.347299i \(-0.112901\pi\)
0.168107 + 0.985769i \(0.446235\pi\)
\(158\) −3.46410 + 2.00000i −0.275589 + 0.159111i
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −12.0000 20.7846i −0.945732 1.63806i
\(162\) −0.866025 + 0.500000i −0.0680414 + 0.0392837i
\(163\) 19.0000i 1.48819i 0.668071 + 0.744097i \(0.267120\pi\)
−0.668071 + 0.744097i \(0.732880\pi\)
\(164\) −9.00000 −0.702782
\(165\) 0 0
\(166\) 1.50000 2.59808i 0.116423 0.201650i
\(167\) −20.7846 + 12.0000i −1.60836 + 0.928588i −0.618624 + 0.785687i \(0.712310\pi\)
−0.989737 + 0.142901i \(0.954357\pi\)
\(168\) 3.46410 + 2.00000i 0.267261 + 0.154303i
\(169\) −4.50000 + 7.79423i −0.346154 + 0.599556i
\(170\) 0 0
\(171\) 1.00000 8.66025i 0.0764719 0.662266i
\(172\) 4.00000i 0.304997i
\(173\) 5.19615 + 3.00000i 0.395056 + 0.228086i 0.684349 0.729155i \(-0.260087\pi\)
−0.289292 + 0.957241i \(0.593420\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.50000 + 2.59808i −0.113067 + 0.195837i
\(177\) −7.79423 + 4.50000i −0.585850 + 0.338241i
\(178\) 6.00000i 0.449719i
\(179\) −9.00000 −0.672692 −0.336346 0.941739i \(-0.609191\pi\)
−0.336346 + 0.941739i \(0.609191\pi\)
\(180\) 0 0
\(181\) −1.00000 1.73205i −0.0743294 0.128742i 0.826465 0.562988i \(-0.190348\pi\)
−0.900794 + 0.434246i \(0.857015\pi\)
\(182\) 8.00000i 0.592999i
\(183\) 4.00000i 0.295689i
\(184\) 3.00000 + 5.19615i 0.221163 + 0.383065i
\(185\) 0 0
\(186\) 1.00000 + 1.73205i 0.0733236 + 0.127000i
\(187\) 15.5885 + 9.00000i 1.13994 + 0.658145i
\(188\) 0 0
\(189\) −20.0000 −1.45479
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 1.73205 + 1.00000i 0.124676 + 0.0719816i 0.561041 0.827788i \(-0.310401\pi\)
−0.436365 + 0.899770i \(0.643734\pi\)
\(194\) −8.50000 14.7224i −0.610264 1.05701i
\(195\) 0 0
\(196\) −4.50000 7.79423i −0.321429 0.556731i
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 6.00000i 0.426401i
\(199\) −5.00000 8.66025i −0.354441 0.613909i 0.632581 0.774494i \(-0.281995\pi\)
−0.987022 + 0.160585i \(0.948662\pi\)
\(200\) 0 0
\(201\) −7.00000 −0.493742
\(202\) 0 0
\(203\) 0 0
\(204\) −3.00000 + 5.19615i −0.210042 + 0.363803i
\(205\) 0 0
\(206\) 1.00000 1.73205i 0.0696733 0.120678i
\(207\) −10.3923 6.00000i −0.722315 0.417029i
\(208\) 2.00000i 0.138675i
\(209\) 10.5000 + 7.79423i 0.726300 + 0.539138i
\(210\) 0 0
\(211\) −10.0000 + 17.3205i −0.688428 + 1.19239i 0.283918 + 0.958849i \(0.408366\pi\)
−0.972346 + 0.233544i \(0.924968\pi\)
\(212\) −5.19615 3.00000i −0.356873 0.206041i
\(213\) 5.19615 3.00000i 0.356034 0.205557i
\(214\) 0 0
\(215\) 0 0
\(216\) 5.00000 0.340207
\(217\) 8.00000i 0.543075i
\(218\) −13.8564 + 8.00000i −0.938474 + 0.541828i
\(219\) −0.500000 0.866025i −0.0337869 0.0585206i
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 8.66025 5.00000i 0.581238 0.335578i
\(223\) 12.1244 + 7.00000i 0.811907 + 0.468755i 0.847618 0.530607i \(-0.178036\pi\)
−0.0357107 + 0.999362i \(0.511370\pi\)
\(224\) 2.00000 + 3.46410i 0.133631 + 0.231455i
\(225\) 0 0
\(226\) 7.50000 12.9904i 0.498893 0.864107i
\(227\) 3.00000i 0.199117i 0.995032 + 0.0995585i \(0.0317430\pi\)
−0.995032 + 0.0995585i \(0.968257\pi\)
\(228\) −2.59808 + 3.50000i −0.172062 + 0.231793i
\(229\) 16.0000 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(230\) 0 0
\(231\) 6.00000 10.3923i 0.394771 0.683763i
\(232\) 0 0
\(233\) 2.59808 + 1.50000i 0.170206 + 0.0982683i 0.582683 0.812700i \(-0.302003\pi\)
−0.412477 + 0.910968i \(0.635336\pi\)
\(234\) 2.00000 + 3.46410i 0.130744 + 0.226455i
\(235\) 0 0
\(236\) −9.00000 −0.585850
\(237\) −3.46410 + 2.00000i −0.225018 + 0.129914i
\(238\) 20.7846 12.0000i 1.34727 0.777844i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −2.50000 4.33013i −0.161039 0.278928i 0.774202 0.632938i \(-0.218151\pi\)
−0.935242 + 0.354010i \(0.884818\pi\)
\(242\) −1.73205 1.00000i −0.111340 0.0642824i
\(243\) −13.8564 + 8.00000i −0.888889 + 0.513200i
\(244\) −2.00000 + 3.46410i −0.128037 + 0.221766i
\(245\) 0 0
\(246\) −9.00000 −0.573819
\(247\) −8.66025 1.00000i −0.551039 0.0636285i
\(248\) 2.00000i 0.127000i
\(249\) 1.50000 2.59808i 0.0950586 0.164646i
\(250\) 0 0
\(251\) 1.50000 + 2.59808i 0.0946792 + 0.163989i 0.909475 0.415759i \(-0.136484\pi\)
−0.814795 + 0.579748i \(0.803151\pi\)
\(252\) −6.92820 4.00000i −0.436436 0.251976i
\(253\) 15.5885 9.00000i 0.980038 0.565825i
\(254\) 2.00000 0.125491
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 2.59808 1.50000i 0.162064 0.0935674i −0.416775 0.909010i \(-0.636840\pi\)
0.578838 + 0.815442i \(0.303506\pi\)
\(258\) 4.00000i 0.249029i
\(259\) −40.0000 −2.48548
\(260\) 0 0
\(261\) 0 0
\(262\) −7.79423 + 4.50000i −0.481529 + 0.278011i
\(263\) −10.3923 6.00000i −0.640817 0.369976i 0.144112 0.989561i \(-0.453967\pi\)
−0.784929 + 0.619586i \(0.787301\pi\)
\(264\) −1.50000 + 2.59808i −0.0923186 + 0.159901i
\(265\) 0 0
\(266\) 16.0000 6.92820i 0.981023 0.424795i
\(267\) 6.00000i 0.367194i
\(268\) −6.06218 3.50000i −0.370306 0.213797i
\(269\) 6.00000 10.3923i 0.365826 0.633630i −0.623082 0.782157i \(-0.714120\pi\)
0.988908 + 0.148527i \(0.0474530\pi\)
\(270\) 0 0
\(271\) 8.00000 13.8564i 0.485965 0.841717i −0.513905 0.857847i \(-0.671801\pi\)
0.999870 + 0.0161307i \(0.00513477\pi\)
\(272\) −5.19615 + 3.00000i −0.315063 + 0.181902i
\(273\) 8.00000i 0.484182i
\(274\) 9.00000 0.543710
\(275\) 0 0
\(276\) 3.00000 + 5.19615i 0.180579 + 0.312772i
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 11.0000i 0.659736i
\(279\) −2.00000 3.46410i −0.119737 0.207390i
\(280\) 0 0
\(281\) −13.5000 23.3827i −0.805342 1.39489i −0.916060 0.401042i \(-0.868648\pi\)
0.110717 0.993852i \(-0.464685\pi\)
\(282\) 0 0
\(283\) 4.33013 + 2.50000i 0.257399 + 0.148610i 0.623148 0.782104i \(-0.285854\pi\)
−0.365748 + 0.930714i \(0.619187\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) −6.00000 −0.354787
\(287\) 31.1769 + 18.0000i 1.84032 + 1.06251i
\(288\) 1.73205 + 1.00000i 0.102062 + 0.0589256i
\(289\) 9.50000 + 16.4545i 0.558824 + 0.967911i
\(290\) 0 0
\(291\) −8.50000 14.7224i −0.498279 0.863044i
\(292\) 1.00000i 0.0585206i
\(293\) 24.0000i 1.40209i −0.713115 0.701047i \(-0.752716\pi\)
0.713115 0.701047i \(-0.247284\pi\)
\(294\) −4.50000 7.79423i −0.262445 0.454569i
\(295\) 0 0
\(296\) 10.0000 0.581238
\(297\) 15.0000i 0.870388i
\(298\) 15.5885 9.00000i 0.903015 0.521356i
\(299\) −6.00000 + 10.3923i −0.346989 + 0.601003i
\(300\) 0 0
\(301\) −8.00000 + 13.8564i −0.461112 + 0.798670i
\(302\) −8.66025 5.00000i −0.498342 0.287718i
\(303\) 0 0
\(304\) −4.00000 + 1.73205i −0.229416 + 0.0993399i
\(305\) 0 0
\(306\) 6.00000 10.3923i 0.342997 0.594089i
\(307\) 6.06218 + 3.50000i 0.345987 + 0.199756i 0.662916 0.748694i \(-0.269319\pi\)
−0.316929 + 0.948449i \(0.602652\pi\)
\(308\) 10.3923 6.00000i 0.592157 0.341882i
\(309\) 1.00000 1.73205i 0.0568880 0.0985329i
\(310\) 0 0
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 2.00000i 0.113228i
\(313\) 16.4545 9.50000i 0.930062 0.536972i 0.0432311 0.999065i \(-0.486235\pi\)
0.886831 + 0.462093i \(0.152902\pi\)
\(314\) 8.00000 + 13.8564i 0.451466 + 0.781962i
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) −15.5885 + 9.00000i −0.875535 + 0.505490i −0.869184 0.494489i \(-0.835355\pi\)
−0.00635137 + 0.999980i \(0.502022\pi\)
\(318\) −5.19615 3.00000i −0.291386 0.168232i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 24.0000i 1.33747i
\(323\) 10.3923 + 24.0000i 0.578243 + 1.33540i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −9.50000 + 16.4545i −0.526156 + 0.911330i
\(327\) −13.8564 + 8.00000i −0.766261 + 0.442401i
\(328\) −7.79423 4.50000i −0.430364 0.248471i
\(329\) 0 0
\(330\) 0 0
\(331\) 5.00000 0.274825 0.137412 0.990514i \(-0.456121\pi\)
0.137412 + 0.990514i \(0.456121\pi\)
\(332\) 2.59808 1.50000i 0.142588 0.0823232i
\(333\) −17.3205 + 10.0000i −0.949158 + 0.547997i
\(334\) −24.0000 −1.31322
\(335\) 0 0
\(336\) 2.00000 + 3.46410i 0.109109 + 0.188982i
\(337\) −9.52628 5.50000i −0.518930 0.299604i 0.217567 0.976045i \(-0.430188\pi\)
−0.736497 + 0.676441i \(0.763521\pi\)
\(338\) −7.79423 + 4.50000i −0.423950 + 0.244768i
\(339\) 7.50000 12.9904i 0.407344 0.705541i
\(340\) 0 0
\(341\) 6.00000 0.324918
\(342\) 5.19615 7.00000i 0.280976 0.378517i
\(343\) 8.00000i 0.431959i
\(344\) 2.00000 3.46410i 0.107833 0.186772i
\(345\) 0 0
\(346\) 3.00000 + 5.19615i 0.161281 + 0.279347i
\(347\) 7.79423 + 4.50000i 0.418416 + 0.241573i 0.694399 0.719590i \(-0.255670\pi\)
−0.275983 + 0.961162i \(0.589003\pi\)
\(348\) 0 0
\(349\) 4.00000 0.214115 0.107058 0.994253i \(-0.465857\pi\)
0.107058 + 0.994253i \(0.465857\pi\)
\(350\) 0 0
\(351\) 5.00000 + 8.66025i 0.266880 + 0.462250i
\(352\) −2.59808 + 1.50000i −0.138478 + 0.0799503i
\(353\) 3.00000i 0.159674i −0.996808 0.0798369i \(-0.974560\pi\)
0.996808 0.0798369i \(-0.0254400\pi\)
\(354\) −9.00000 −0.478345
\(355\) 0 0
\(356\) −3.00000 + 5.19615i −0.159000 + 0.275396i
\(357\) 20.7846 12.0000i 1.10004 0.635107i
\(358\) −7.79423 4.50000i −0.411938 0.237832i
\(359\) −3.00000 + 5.19615i −0.158334 + 0.274242i −0.934268 0.356572i \(-0.883946\pi\)
0.775934 + 0.630814i \(0.217279\pi\)
\(360\) 0 0
\(361\) 5.50000 + 18.1865i 0.289474 + 0.957186i
\(362\) 2.00000i 0.105118i
\(363\) −1.73205 1.00000i −0.0909091 0.0524864i
\(364\) −4.00000 + 6.92820i −0.209657 + 0.363137i
\(365\) 0 0
\(366\) −2.00000 + 3.46410i −0.104542 + 0.181071i
\(367\) −19.0526 + 11.0000i −0.994535 + 0.574195i −0.906627 0.421933i \(-0.861352\pi\)
−0.0879086 + 0.996129i \(0.528018\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 18.0000 0.937043
\(370\) 0 0
\(371\) 12.0000 + 20.7846i 0.623009 + 1.07908i
\(372\) 2.00000i 0.103695i
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) 9.00000 + 15.5885i 0.465379 + 0.806060i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) −17.3205 10.0000i −0.890871 0.514344i
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) 10.3923 + 6.00000i 0.531717 + 0.306987i
\(383\) −31.1769 18.0000i −1.59307 0.919757i −0.992777 0.119974i \(-0.961719\pi\)
−0.600289 0.799783i \(-0.704948\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) 0 0
\(386\) 1.00000 + 1.73205i 0.0508987 + 0.0881591i
\(387\) 8.00000i 0.406663i
\(388\) 17.0000i 0.863044i
\(389\) −18.0000 31.1769i −0.912636 1.58073i −0.810326 0.585980i \(-0.800710\pi\)
−0.102311 0.994753i \(-0.532624\pi\)
\(390\) 0 0
\(391\) 36.0000 1.82060
\(392\) 9.00000i 0.454569i
\(393\) −7.79423 + 4.50000i −0.393167 + 0.226995i
\(394\) −9.00000 + 15.5885i −0.453413 + 0.785335i
\(395\) 0 0
\(396\) 3.00000 5.19615i 0.150756 0.261116i
\(397\) 8.66025 + 5.00000i 0.434646 + 0.250943i 0.701324 0.712843i \(-0.252593\pi\)
−0.266678 + 0.963786i \(0.585926\pi\)
\(398\) 10.0000i 0.501255i
\(399\) 16.0000 6.92820i 0.801002 0.346844i
\(400\) 0 0
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) −6.06218 3.50000i −0.302354 0.174564i
\(403\) −3.46410 + 2.00000i −0.172559 + 0.0996271i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 30.0000i 1.48704i
\(408\) −5.19615 + 3.00000i −0.257248 + 0.148522i
\(409\) 2.50000 + 4.33013i 0.123617 + 0.214111i 0.921192 0.389109i \(-0.127217\pi\)
−0.797574 + 0.603220i \(0.793884\pi\)
\(410\) 0 0
\(411\) 9.00000 0.443937
\(412\) 1.73205 1.00000i 0.0853320 0.0492665i
\(413\) 31.1769 + 18.0000i 1.53412 + 0.885722i
\(414\) −6.00000 10.3923i −0.294884 0.510754i
\(415\) 0 0
\(416\) 1.00000 1.73205i 0.0490290 0.0849208i
\(417\) 11.0000i 0.538672i
\(418\) 5.19615 + 12.0000i 0.254152 + 0.586939i
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 5.00000 8.66025i 0.243685 0.422075i −0.718076 0.695965i \(-0.754977\pi\)
0.961761 + 0.273890i \(0.0883103\pi\)
\(422\) −17.3205 + 10.0000i −0.843149 + 0.486792i
\(423\) 0 0
\(424\) −3.00000 5.19615i −0.145693 0.252347i
\(425\) 0 0
\(426\) 6.00000 0.290701
\(427\) 13.8564 8.00000i 0.670559 0.387147i
\(428\) 0 0
\(429\) −6.00000 −0.289683
\(430\) 0 0
\(431\) 15.0000 + 25.9808i 0.722525 + 1.25145i 0.959985 + 0.280052i \(0.0903517\pi\)
−0.237460 + 0.971397i \(0.576315\pi\)
\(432\) 4.33013 + 2.50000i 0.208333 + 0.120281i
\(433\) −22.5167 + 13.0000i −1.08208 + 0.624740i −0.931457 0.363851i \(-0.881462\pi\)
−0.150624 + 0.988591i \(0.548128\pi\)
\(434\) 4.00000 6.92820i 0.192006 0.332564i
\(435\) 0 0
\(436\) −16.0000 −0.766261
\(437\) 25.9808 + 3.00000i 1.24283 + 0.143509i
\(438\) 1.00000i 0.0477818i
\(439\) 7.00000 12.1244i 0.334092 0.578664i −0.649218 0.760602i \(-0.724904\pi\)
0.983310 + 0.181938i \(0.0582371\pi\)
\(440\) 0 0
\(441\) 9.00000 + 15.5885i 0.428571 + 0.742307i
\(442\) −10.3923 6.00000i −0.494312 0.285391i
\(443\) −7.79423 + 4.50000i −0.370315 + 0.213801i −0.673596 0.739100i \(-0.735251\pi\)
0.303281 + 0.952901i \(0.401918\pi\)
\(444\) 10.0000 0.474579
\(445\) 0 0
\(446\) 7.00000 + 12.1244i 0.331460 + 0.574105i
\(447\) 15.5885 9.00000i 0.737309 0.425685i
\(448\) 4.00000i 0.188982i
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) −13.5000 + 23.3827i −0.635690 + 1.10105i
\(452\) 12.9904 7.50000i 0.611016 0.352770i
\(453\) −8.66025 5.00000i −0.406894 0.234920i
\(454\) −1.50000 + 2.59808i −0.0703985 + 0.121934i
\(455\) 0 0
\(456\) −4.00000 + 1.73205i −0.187317 + 0.0811107i
\(457\) 5.00000i 0.233890i 0.993138 + 0.116945i \(0.0373101\pi\)
−0.993138 + 0.116945i \(0.962690\pi\)
\(458\) 13.8564 + 8.00000i 0.647467 + 0.373815i
\(459\) 15.0000 25.9808i 0.700140 1.21268i
\(460\) 0 0
\(461\) −3.00000 + 5.19615i −0.139724 + 0.242009i −0.927392 0.374091i \(-0.877955\pi\)
0.787668 + 0.616100i \(0.211288\pi\)
\(462\) 10.3923 6.00000i 0.483494 0.279145i
\(463\) 34.0000i 1.58011i 0.613033 + 0.790057i \(0.289949\pi\)
−0.613033 + 0.790057i \(0.710051\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.50000 + 2.59808i 0.0694862 + 0.120354i
\(467\) 27.0000i 1.24941i −0.780860 0.624705i \(-0.785219\pi\)
0.780860 0.624705i \(-0.214781\pi\)
\(468\) 4.00000i 0.184900i
\(469\) 14.0000 + 24.2487i 0.646460 + 1.11970i
\(470\) 0 0
\(471\) 8.00000 + 13.8564i 0.368621 + 0.638470i
\(472\) −7.79423 4.50000i −0.358758 0.207129i
\(473\) −10.3923 6.00000i −0.477839 0.275880i
\(474\) −4.00000 −0.183726
\(475\) 0 0
\(476\) 24.0000 1.10004
\(477\) 10.3923 + 6.00000i 0.475831 + 0.274721i
\(478\) 10.3923 + 6.00000i 0.475333 + 0.274434i
\(479\) 18.0000 + 31.1769i 0.822441 + 1.42451i 0.903859 + 0.427830i \(0.140722\pi\)
−0.0814184 + 0.996680i \(0.525945\pi\)
\(480\) 0 0
\(481\) 10.0000 + 17.3205i 0.455961 + 0.789747i
\(482\) 5.00000i 0.227744i
\(483\) 24.0000i 1.09204i
\(484\) −1.00000 1.73205i −0.0454545 0.0787296i
\(485\) 0 0
\(486\) −16.0000 −0.725775
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) −3.46410 + 2.00000i −0.156813 + 0.0905357i
\(489\) −9.50000 + 16.4545i −0.429605 + 0.744097i
\(490\) 0 0
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) −7.79423 4.50000i −0.351391 0.202876i
\(493\) 0 0
\(494\) −7.00000 5.19615i −0.314945 0.233786i
\(495\) 0 0
\(496\) −1.00000 + 1.73205i −0.0449013 + 0.0777714i
\(497\) −20.7846 12.0000i −0.932317 0.538274i
\(498\) 2.59808 1.50000i 0.116423 0.0672166i
\(499\) −12.5000 + 21.6506i −0.559577 + 0.969216i 0.437955 + 0.898997i \(0.355703\pi\)
−0.997532 + 0.0702185i \(0.977630\pi\)
\(500\) 0 0
\(501\) −24.0000 −1.07224
\(502\) 3.00000i 0.133897i
\(503\) −5.19615 + 3.00000i −0.231685 + 0.133763i −0.611349 0.791361i \(-0.709373\pi\)
0.379664 + 0.925124i \(0.376040\pi\)
\(504\) −4.00000 6.92820i −0.178174 0.308607i
\(505\) 0 0
\(506\) 18.0000 0.800198
\(507\) −7.79423 + 4.50000i −0.346154 + 0.199852i
\(508\) 1.73205 + 1.00000i 0.0768473 + 0.0443678i
\(509\) −12.0000 20.7846i −0.531891 0.921262i −0.999307 0.0372243i \(-0.988148\pi\)
0.467416 0.884037i \(-0.345185\pi\)
\(510\) 0 0
\(511\) −2.00000 + 3.46410i −0.0884748 + 0.153243i
\(512\) 1.00000i 0.0441942i
\(513\) 12.9904 17.5000i 0.573539 0.772644i
\(514\) 3.00000 0.132324
\(515\) 0 0
\(516\) 2.00000 3.46410i 0.0880451 0.152499i
\(517\) 0 0
\(518\) −34.6410 20.0000i −1.52204 0.878750i
\(519\) 3.00000 + 5.19615i 0.131685 + 0.228086i
\(520\) 0 0
\(521\) 9.00000 0.394297 0.197149 0.980374i \(-0.436832\pi\)
0.197149 + 0.980374i \(0.436832\pi\)
\(522\) 0 0
\(523\) 24.2487 14.0000i 1.06032 0.612177i 0.134801 0.990873i \(-0.456961\pi\)
0.925521 + 0.378695i \(0.123627\pi\)
\(524\) −9.00000 −0.393167
\(525\) 0 0
\(526\) −6.00000 10.3923i −0.261612 0.453126i
\(527\) 10.3923 + 6.00000i 0.452696 + 0.261364i
\(528\) −2.59808 + 1.50000i −0.113067 + 0.0652791i
\(529\) 6.50000 11.2583i 0.282609 0.489493i
\(530\) 0 0
\(531\) 18.0000 0.781133
\(532\) 17.3205 + 2.00000i 0.750939 + 0.0867110i
\(533\) 18.0000i 0.779667i
\(534\) −3.00000 + 5.19615i −0.129823 + 0.224860i
\(535\) 0 0
\(536\) −3.50000 6.06218i −0.151177 0.261846i
\(537\) −7.79423 4.50000i −0.336346 0.194189i
\(538\) 10.3923 6.00000i 0.448044 0.258678i
\(539\) −27.0000 −1.16297
\(540\) 0 0
\(541\) −22.0000 38.1051i −0.945854 1.63827i −0.754032 0.656837i \(-0.771894\pi\)
−0.191821 0.981430i \(-0.561439\pi\)
\(542\) 13.8564 8.00000i 0.595184 0.343629i
\(543\) 2.00000i 0.0858282i
\(544\) −6.00000 −0.257248
\(545\) 0 0
\(546\) −4.00000 + 6.92820i −0.171184 + 0.296500i
\(547\) −3.46410 + 2.00000i −0.148114 + 0.0855138i −0.572226 0.820096i \(-0.693920\pi\)
0.424111 + 0.905610i \(0.360587\pi\)
\(548\) 7.79423 + 4.50000i 0.332953 + 0.192230i
\(549\) 4.00000 6.92820i 0.170716 0.295689i
\(550\) 0 0
\(551\) 0 0
\(552\) 6.00000i 0.255377i
\(553\) 13.8564 + 8.00000i 0.589234 + 0.340195i
\(554\) −4.00000 + 6.92820i −0.169944 + 0.294351i
\(555\) 0 0
\(556\) −5.50000 + 9.52628i −0.233252 + 0.404004i
\(557\) 20.7846 12.0000i 0.880672 0.508456i 0.00979220 0.999952i \(-0.496883\pi\)
0.870880 + 0.491496i \(0.163550\pi\)
\(558\) 4.00000i 0.169334i
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 9.00000 + 15.5885i 0.379980 + 0.658145i
\(562\) 27.0000i 1.13893i
\(563\) 21.0000i 0.885044i 0.896758 + 0.442522i \(0.145916\pi\)
−0.896758 + 0.442522i \(0.854084\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2.50000 + 4.33013i 0.105083 + 0.182009i
\(567\) 3.46410 + 2.00000i 0.145479 + 0.0839921i
\(568\) 5.19615 + 3.00000i 0.218026 + 0.125877i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −7.00000 −0.292941 −0.146470 0.989215i \(-0.546791\pi\)
−0.146470 + 0.989215i \(0.546791\pi\)
\(572\) −5.19615 3.00000i −0.217262 0.125436i
\(573\) 10.3923 + 6.00000i 0.434145 + 0.250654i
\(574\) 18.0000 + 31.1769i 0.751305 + 1.30130i
\(575\) 0 0
\(576\) 1.00000 + 1.73205i 0.0416667 + 0.0721688i
\(577\) 11.0000i 0.457936i 0.973434 + 0.228968i \(0.0735351\pi\)
−0.973434 + 0.228968i \(0.926465\pi\)
\(578\) 19.0000i 0.790296i
\(579\) 1.00000 + 1.73205i 0.0415586 + 0.0719816i
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 17.0000i 0.704673i
\(583\) −15.5885 + 9.00000i −0.645608 + 0.372742i
\(584\) 0.500000 0.866025i 0.0206901 0.0358364i
\(585\) 0 0
\(586\) 12.0000 20.7846i 0.495715 0.858604i
\(587\) 10.3923 + 6.00000i 0.428936 + 0.247647i 0.698893 0.715226i \(-0.253676\pi\)
−0.269957 + 0.962872i \(0.587010\pi\)
\(588\) 9.00000i 0.371154i
\(589\) 7.00000 + 5.19615i 0.288430 + 0.214104i
\(590\) 0 0
\(591\) −9.00000 + 15.5885i −0.370211 + 0.641223i
\(592\) 8.66025 + 5.00000i 0.355934 + 0.205499i
\(593\) 18.1865 10.5000i 0.746831 0.431183i −0.0777165 0.996976i \(-0.524763\pi\)
0.824548 + 0.565792i \(0.191430\pi\)
\(594\) 7.50000 12.9904i 0.307729 0.533002i
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) 10.0000i 0.409273i
\(598\) −10.3923 + 6.00000i −0.424973 + 0.245358i
\(599\) −3.00000 5.19615i −0.122577 0.212309i 0.798206 0.602384i \(-0.205782\pi\)
−0.920783 + 0.390075i \(0.872449\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) −13.8564 + 8.00000i −0.564745 + 0.326056i
\(603\) 12.1244 + 7.00000i 0.493742 + 0.285062i
\(604\) −5.00000 8.66025i −0.203447 0.352381i
\(605\) 0 0
\(606\) 0 0
\(607\) 20.0000i 0.811775i 0.913923 + 0.405887i \(0.133038\pi\)
−0.913923 + 0.405887i \(0.866962\pi\)
\(608\) −4.33013 0.500000i −0.175610 0.0202777i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 10.3923 6.00000i 0.420084 0.242536i
\(613\) 1.73205 + 1.00000i 0.0699569 + 0.0403896i 0.534570 0.845124i \(-0.320473\pi\)
−0.464614 + 0.885514i \(0.653807\pi\)
\(614\) 3.50000 + 6.06218i 0.141249 + 0.244650i
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) 2.59808 1.50000i 0.104595 0.0603877i −0.446790 0.894639i \(-0.647433\pi\)
0.551385 + 0.834251i \(0.314100\pi\)
\(618\) 1.73205 1.00000i 0.0696733 0.0402259i
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) −15.0000 25.9808i −0.601929 1.04257i
\(622\) −25.9808 15.0000i −1.04173 0.601445i
\(623\) 20.7846 12.0000i 0.832718 0.480770i
\(624\) 1.00000 1.73205i 0.0400320 0.0693375i
\(625\) 0 0
\(626\) 19.0000 0.759393
\(627\) 5.19615 + 12.0000i 0.207514 + 0.479234i
\(628\) 16.0000i 0.638470i
\(629\) 30.0000 51.9615i 1.19618 2.07184i
\(630\) 0 0
\(631\) 14.0000 + 24.2487i 0.557331 + 0.965326i 0.997718 + 0.0675178i \(0.0215080\pi\)
−0.440387 + 0.897808i \(0.645159\pi\)
\(632\) −3.46410 2.00000i −0.137795 0.0795557i
\(633\) −17.3205 + 10.0000i −0.688428 + 0.397464i
\(634\) −18.0000 −0.714871
\(635\) 0 0
\(636\) −3.00000 5.19615i −0.118958 0.206041i
\(637\) 15.5885 9.00000i 0.617637 0.356593i
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) 19.5000 33.7750i 0.770204 1.33403i −0.167247 0.985915i \(-0.553488\pi\)
0.937451 0.348117i \(-0.113179\pi\)
\(642\) 0 0
\(643\) −37.2391 21.5000i −1.46857 0.847877i −0.469187 0.883099i \(-0.655453\pi\)
−0.999380 + 0.0352216i \(0.988786\pi\)
\(644\) 12.0000 20.7846i 0.472866 0.819028i
\(645\) 0 0
\(646\) −3.00000 + 25.9808i −0.118033 + 1.02220i
\(647\) 18.0000i 0.707653i 0.935311 + 0.353827i \(0.115120\pi\)
−0.935311 + 0.353827i \(0.884880\pi\)
\(648\) −0.866025 0.500000i −0.0340207 0.0196419i
\(649\) −13.5000 + 23.3827i −0.529921 + 0.917851i
\(650\) 0 0
\(651\) 4.00000 6.92820i 0.156772 0.271538i
\(652\) −16.4545 + 9.50000i −0.644407 + 0.372049i
\(653\) 12.0000i 0.469596i 0.972044 + 0.234798i \(0.0754429\pi\)
−0.972044 + 0.234798i \(0.924557\pi\)
\(654\) −16.0000 −0.625650
\(655\) 0 0
\(656\) −4.50000 7.79423i −0.175695 0.304314i
\(657\) 2.00000i 0.0780274i
\(658\) 0 0
\(659\) 18.0000 + 31.1769i 0.701180 + 1.21448i 0.968052 + 0.250748i \(0.0806766\pi\)
−0.266872 + 0.963732i \(0.585990\pi\)
\(660\) 0 0
\(661\) 20.0000 + 34.6410i 0.777910 + 1.34738i 0.933144 + 0.359502i \(0.117053\pi\)
−0.155235 + 0.987878i \(0.549613\pi\)
\(662\) 4.33013 + 2.50000i 0.168295 + 0.0971653i
\(663\) −10.3923 6.00000i −0.403604 0.233021i
\(664\) 3.00000 0.116423
\(665\) 0 0
\(666\) −20.0000 −0.774984
\(667\) 0 0
\(668\) −20.7846 12.0000i −0.804181 0.464294i
\(669\) 7.00000 + 12.1244i 0.270636 + 0.468755i
\(670\) 0 0
\(671\) 6.00000 + 10.3923i 0.231627 + 0.401190i
\(672\) 4.00000i 0.154303i
\(673\) 14.0000i 0.539660i −0.962908 0.269830i \(-0.913032\pi\)
0.962908 0.269830i \(-0.0869676\pi\)
\(674\) −5.50000 9.52628i −0.211852 0.366939i
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 42.0000i 1.61419i −0.590421 0.807096i \(-0.701038\pi\)
0.590421 0.807096i \(-0.298962\pi\)
\(678\) 12.9904 7.50000i 0.498893 0.288036i
\(679\) −34.0000 + 58.8897i −1.30480 + 2.25998i
\(680\) 0 0
\(681\) −1.50000 + 2.59808i −0.0574801 + 0.0995585i
\(682\) 5.19615 + 3.00000i 0.198971 + 0.114876i
\(683\) 36.0000i 1.37750i 0.724998 + 0.688751i \(0.241841\pi\)
−0.724998 + 0.688751i \(0.758159\pi\)
\(684\) 8.00000 3.46410i 0.305888 0.132453i
\(685\) 0 0
\(686\) −4.00000 + 6.92820i −0.152721 + 0.264520i
\(687\) 13.8564 + 8.00000i 0.528655 + 0.305219i
\(688\) 3.46410 2.00000i 0.132068 0.0762493i
\(689\) 6.00000 10.3923i 0.228582 0.395915i
\(690\) 0 0
\(691\) 44.0000 1.67384 0.836919 0.547326i \(-0.184354\pi\)
0.836919 + 0.547326i \(0.184354\pi\)
\(692\) 6.00000i 0.228086i
\(693\) −20.7846 + 12.0000i −0.789542 + 0.455842i
\(694\) 4.50000 + 7.79423i 0.170818 + 0.295865i
\(695\) 0 0
\(696\) 0 0
\(697\) −46.7654 + 27.0000i −1.77136 + 1.02270i
\(698\) 3.46410 + 2.00000i 0.131118 + 0.0757011i
\(699\) 1.50000 + 2.59808i 0.0567352 + 0.0982683i
\(700\) 0 0
\(701\) 12.0000 20.7846i 0.453234 0.785024i −0.545351 0.838208i \(-0.683604\pi\)
0.998585 + 0.0531839i \(0.0169370\pi\)
\(702\) 10.0000i 0.377426i
\(703\) 25.9808 35.0000i 0.979883 1.32005i
\(704\) −3.00000 −0.113067
\(705\) 0 0
\(706\) 1.50000 2.59808i 0.0564532 0.0977799i
\(707\) 0 0
\(708\) −7.79423 4.50000i −0.292925 0.169120i
\(709\) 7.00000 + 12.1244i 0.262891 + 0.455340i 0.967009 0.254743i \(-0.0819909\pi\)
−0.704118 + 0.710083i \(0.748658\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) −5.19615 + 3.00000i −0.194734 + 0.112430i
\(713\) 10.3923 6.00000i 0.389195 0.224702i
\(714\) 24.0000 0.898177
\(715\) 0 0
\(716\) −4.50000 7.79423i −0.168173 0.291284i
\(717\) 10.3923 + 6.00000i 0.388108 + 0.224074i
\(718\) −5.19615 + 3.00000i −0.193919 + 0.111959i
\(719\) 15.0000 25.9808i 0.559406 0.968919i −0.438141 0.898906i \(-0.644363\pi\)
0.997546 0.0700124i \(-0.0223039\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) −4.33013 + 18.5000i −0.161151 + 0.688499i
\(723\) 5.00000i 0.185952i
\(724\) 1.00000 1.73205i 0.0371647 0.0643712i
\(725\) 0 0
\(726\) −1.00000 1.73205i −0.0371135 0.0642824i
\(727\) −27.7128 16.0000i −1.02781 0.593407i −0.111454 0.993770i \(-0.535551\pi\)
−0.916357 + 0.400362i \(0.868884\pi\)
\(728\) −6.92820 + 4.00000i −0.256776 + 0.148250i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −12.0000 20.7846i −0.443836 0.768747i
\(732\) −3.46410 + 2.00000i −0.128037 + 0.0739221i
\(733\) 22.0000i 0.812589i 0.913742 + 0.406294i \(0.133179\pi\)
−0.913742 + 0.406294i \(0.866821\pi\)
\(734\) −22.0000 −0.812035
\(735\) 0 0
\(736\) −3.00000 + 5.19615i −0.110581 + 0.191533i
\(737\) −18.1865 + 10.5000i −0.669910 + 0.386772i
\(738\) 15.5885 + 9.00000i 0.573819 + 0.331295i
\(739\) 17.5000 30.3109i 0.643748 1.11500i −0.340841 0.940121i \(-0.610712\pi\)
0.984589 0.174883i \(-0.0559548\pi\)
\(740\) 0 0
\(741\) −7.00000 5.19615i −0.257151 0.190885i
\(742\) 24.0000i 0.881068i
\(743\) −15.5885 9.00000i −0.571885 0.330178i 0.186017 0.982547i \(-0.440442\pi\)
−0.757902 + 0.652369i \(0.773775\pi\)
\(744\) −1.00000 + 1.73205i −0.0366618 + 0.0635001i
\(745\) 0 0
\(746\) −2.00000 + 3.46410i −0.0732252 + 0.126830i
\(747\) −5.19615 + 3.00000i −0.190117 + 0.109764i
\(748\) 18.0000i 0.658145i
\(749\) 0 0
\(750\) 0 0
\(751\) −19.0000 32.9090i −0.693320 1.20087i −0.970744 0.240118i \(-0.922814\pi\)
0.277424 0.960748i \(-0.410519\pi\)
\(752\) 0 0
\(753\) 3.00000i 0.109326i
\(754\) 0 0
\(755\) 0 0
\(756\) −10.0000 17.3205i −0.363696 0.629941i
\(757\) 8.66025 + 5.00000i 0.314762 + 0.181728i 0.649056 0.760741i \(-0.275164\pi\)
−0.334293 + 0.942469i \(0.608498\pi\)
\(758\) 24.2487 + 14.0000i 0.880753 + 0.508503i
\(759\) 18.0000 0.653359
\(760\) 0 0
\(761\) −39.0000 −1.41375 −0.706874 0.707339i \(-0.749895\pi\)
−0.706874 + 0.707339i \(0.749895\pi\)
\(762\) 1.73205 + 1.00000i 0.0627456 + 0.0362262i
\(763\) 55.4256 + 32.0000i 2.00654 + 1.15848i
\(764\) 6.00000 + 10.3923i 0.217072 + 0.375980i
\(765\) 0 0
\(766\) −18.0000 31.1769i −0.650366 1.12647i
\(767\) 18.0000i 0.649942i
\(768\) 1.00000i 0.0360844i
\(769\) 1.00000 + 1.73205i 0.0360609 + 0.0624593i 0.883493 0.468445i \(-0.155186\pi\)
−0.847432 + 0.530904i \(0.821852\pi\)
\(770\) 0 0
\(771\) 3.00000 0.108042
\(772\) 2.00000i 0.0719816i
\(773\) 41.5692 24.0000i 1.49514 0.863220i 0.495156 0.868804i \(-0.335111\pi\)
0.999984 + 0.00558380i \(0.00177739\pi\)
\(774\) −4.00000 + 6.92820i −0.143777 + 0.249029i
\(775\) 0 0
\(776\) 8.50000 14.7224i 0.305132 0.528505i
\(777\) −34.6410 20.0000i −1.24274 0.717496i
\(778\) 36.0000i 1.29066i
\(779\) −36.0000 + 15.5885i −1.28983 + 0.558514i
\(780\) 0 0
\(781\) 9.00000 15.5885i 0.322045 0.557799i
\(782\) 31.1769 + 18.0000i 1.11488 + 0.643679i
\(783\) 0 0
\(784\) 4.50000 7.79423i 0.160714 0.278365i
\(785\) 0 0
\(786\) −9.00000 −0.321019
\(787\) 7.00000i 0.249523i −0.992187 0.124762i \(-0.960183\pi\)
0.992187 0.124762i \(-0.0398166\pi\)
\(788\) −15.5885 + 9.00000i −0.555316 + 0.320612i
\(789\) −6.00000 10.3923i −0.213606 0.369976i
\(790\) 0 0
\(791\) −60.0000 −2.13335
\(792\) 5.19615 3.00000i 0.184637 0.106600i
\(793\) −6.92820 4.00000i −0.246028 0.142044i
\(794\) 5.00000 + 8.66025i 0.177443 + 0.307341i
\(795\) 0 0
\(796\) 5.00000 8.66025i 0.177220 0.306955i
\(797\) 6.00000i 0.212531i 0.994338 + 0.106265i \(0.0338893\pi\)
−0.994338 + 0.106265i \(0.966111\pi\)
\(798\) 17.3205 + 2.00000i 0.613139 + 0.0707992i
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 10.3923i 0.212000 0.367194i
\(802\) 23.3827 13.5000i 0.825671 0.476702i
\(803\) −2.59808 1.50000i −0.0916841 0.0529339i
\(804\) −3.50000 6.06218i −0.123435 0.213797i
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) 10.3923 6.00000i 0.365826 0.211210i
\(808\) 0 0
\(809\) −45.0000 −1.58212 −0.791058 0.611741i \(-0.790469\pi\)
−0.791058 + 0.611741i \(0.790469\pi\)
\(810\) 0 0
\(811\) 8.00000 + 13.8564i 0.280918 + 0.486564i 0.971611 0.236584i \(-0.0760278\pi\)
−0.690693 + 0.723148i \(0.742694\pi\)
\(812\) 0 0
\(813\) 13.8564 8.00000i 0.485965 0.280572i
\(814\) 15.0000 25.9808i 0.525750 0.910625i
\(815\) 0 0
\(816\) −6.00000 −0.210042
\(817\) −6.92820 16.0000i −0.242387 0.559769i
\(818\) 5.00000i 0.174821i
\(819\) 8.00000 13.8564i 0.279543 0.484182i
\(820\) 0 0
\(821\) −9.00000 15.5885i −0.314102 0.544041i 0.665144 0.746715i \(-0.268370\pi\)
−0.979246 + 0.202674i \(0.935037\pi\)
\(822\) 7.79423 + 4.50000i 0.271855 + 0.156956i
\(823\) −12.1244 + 7.00000i −0.422628 + 0.244005i −0.696201 0.717847i \(-0.745128\pi\)
0.273573 + 0.961851i \(0.411795\pi\)
\(824\) 2.00000 0.0696733
\(825\) 0 0
\(826\) 18.0000 + 31.1769i 0.626300 + 1.08478i
\(827\) −33.7750 + 19.5000i −1.17447 + 0.678081i −0.954729 0.297477i \(-0.903855\pi\)
−0.219742 + 0.975558i \(0.570522\pi\)
\(828\) 12.0000i 0.417029i
\(829\) −44.0000 −1.52818 −0.764092 0.645108i \(-0.776812\pi\)
−0.764092 + 0.645108i \(0.776812\pi\)
\(830\) 0 0
\(831\) −4.00000 + 6.92820i −0.138758 + 0.240337i
\(832\) 1.73205 1.00000i 0.0600481 0.0346688i
\(833\) −46.7654 27.0000i −1.62032 0.935495i
\(834\) −5.50000 + 9.52628i −0.190449 + 0.329868i
\(835\) 0 0
\(836\) −1.50000 + 12.9904i −0.0518786 + 0.449282i
\(837\) 10.0000i 0.345651i
\(838\) 10.3923 + 6.00000i 0.358996 + 0.207267i
\(839\) −6.00000 + 10.3923i −0.207143 + 0.358782i −0.950813 0.309764i \(-0.899750\pi\)
0.743670 + 0.668546i \(0.233083\pi\)
\(840\) 0 0
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) 8.66025 5.00000i 0.298452 0.172311i
\(843\) 27.0000i 0.929929i
\(844\) −20.0000 −0.688428
\(845\) 0 0
\(846\) 0 0
\(847\) 8.00000i 0.274883i
\(848\) 6.00000i 0.206041i
\(849\) 2.50000 + 4.33013i 0.0857998 + 0.148610i
\(850\) 0 0
\(851\) −30.0000 51.9615i −1.02839 1.78122i
\(852\) 5.19615 + 3.00000i 0.178017 + 0.102778i
\(853\) −19.0526 11.0000i −0.652347 0.376633i 0.137008 0.990570i \(-0.456251\pi\)
−0.789355 + 0.613937i \(0.789585\pi\)
\(854\) 16.0000 0.547509
\(855\) 0 0
\(856\) 0 0
\(857\) 2.59808 + 1.50000i 0.0887486 + 0.0512390i 0.543718 0.839268i \(-0.317016\pi\)
−0.454969 + 0.890507i \(0.650350\pi\)
\(858\) −5.19615 3.00000i −0.177394 0.102418i
\(859\) −21.5000 37.2391i −0.733571 1.27058i −0.955348 0.295484i \(-0.904519\pi\)
0.221777 0.975097i \(-0.428814\pi\)
\(860\) 0 0
\(861\) 18.0000 + 31.1769i 0.613438 + 1.06251i
\(862\) 30.0000i 1.02180i
\(863\) 18.0000i 0.612727i −0.951915 0.306364i \(-0.900888\pi\)
0.951915 0.306364i \(-0.0991123\pi\)
\(864\) 2.50000 + 4.33013i 0.0850517 + 0.147314i
\(865\) 0 0
\(866\) −26.0000 −0.883516
\(867\) 19.0000i 0.645274i
\(868\) 6.92820 4.00000i 0.235159 0.135769i
\(869\) −6.00000 + 10.3923i −0.203536 + 0.352535i
\(870\) 0 0
\(871\) 7.00000 12.1244i 0.237186 0.410818i
\(872\) −13.8564 8.00000i −0.469237 0.270914i
\(873\) 34.0000i 1.15073i
\(874\) 21.0000 + 15.5885i 0.710336 + 0.527287i
\(875\) 0 0
\(876\) 0.500000 0.866025i 0.0168934 0.0292603i
\(877\) −17.3205 10.0000i −0.584872 0.337676i 0.178195 0.983995i \(-0.442974\pi\)
−0.763067 + 0.646319i \(0.776307\pi\)
\(878\) 12.1244 7.00000i 0.409177 0.236239i
\(879\) 12.0000 20.7846i 0.404750 0.701047i
\(880\) 0 0
\(881\) −9.00000 −0.303218 −0.151609 0.988441i \(-0.548445\pi\)
−0.151609 + 0.988441i \(0.548445\pi\)
\(882\) 18.0000i 0.606092i
\(883\) 16.4545 9.50000i 0.553737 0.319700i −0.196891 0.980425i \(-0.563084\pi\)
0.750628 + 0.660725i \(0.229751\pi\)
\(884\) −6.00000 10.3923i −0.201802 0.349531i
\(885\) 0 0
\(886\) −9.00000 −0.302361
\(887\) 41.5692 24.0000i 1.39576 0.805841i 0.401813 0.915722i \(-0.368380\pi\)
0.993945 + 0.109881i \(0.0350469\pi\)
\(888\) 8.66025 + 5.00000i 0.290619 + 0.167789i
\(889\) −4.00000 6.92820i −0.134156 0.232364i
\(890\) 0 0
\(891\) −1.50000 + 2.59808i −0.0502519 + 0.0870388i
\(892\) 14.0000i 0.468755i
\(893\) 0 0
\(894\) 18.0000 0.602010
\(895\) 0 0
\(896\) −2.00000 + 3.46410i −0.0668153 + 0.115728i
\(897\) −10.3923 + 6.00000i −0.346989 + 0.200334i
\(898\) −7.79423 4.50000i −0.260097 0.150167i
\(899\) 0 0
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) −23.3827 + 13.5000i −0.778558 + 0.449501i
\(903\) −13.8564 + 8.00000i −0.461112 + 0.266223i
\(904\) 15.0000 0.498893
\(905\) 0 0
\(906\) −5.00000 8.66025i −0.166114 0.287718i
\(907\) −14.7224 8.50000i −0.488850 0.282238i 0.235247 0.971936i \(-0.424410\pi\)
−0.724097 + 0.689698i \(0.757743\pi\)
\(908\) −2.59808 + 1.50000i −0.0862202 + 0.0497792i
\(909\) 0 0
\(910\) 0 0
\(911\) 30.0000 0.993944 0.496972 0.867766i \(-0.334445\pi\)
0.496972 + 0.867766i \(0.334445\pi\)
\(912\) −4.33013 0.500000i −0.143385 0.0165567i
\(913\) 9.00000i 0.297857i
\(914\) −2.50000 + 4.33013i −0.0826927 + 0.143228i
\(915\) 0 0
\(916\) 8.00000 + 13.8564i 0.264327 + 0.457829i
\(917\) 31.1769 + 18.0000i 1.02955 + 0.594412i
\(918\) 25.9808 15.0000i 0.857493 0.495074i
\(919\) 10.0000 0.329870 0.164935 0.986304i \(-0.447259\pi\)
0.164935 + 0.986304i \(0.447259\pi\)
\(920\) 0 0
\(921\) 3.50000 + 6.06218i 0.115329 + 0.199756i
\(922\) −5.19615 + 3.00000i −0.171126 + 0.0987997i
\(923\) 12.0000i 0.394985i
\(924\) 12.0000 0.394771
\(925\) 0 0
\(926\) −17.0000 + 29.4449i −0.558655 + 0.967618i
\(927\) −3.46410 + 2.00000i −0.113776 + 0.0656886i
\(928\) 0 0
\(929\) −1.50000 + 2.59808i −0.0492134 + 0.0852401i −0.889583 0.456774i \(-0.849005\pi\)
0.840369 + 0.542014i \(0.182338\pi\)
\(930\) 0 0
\(931\) −31.5000 23.3827i −1.03237 0.766337i
\(932\) 3.00000i 0.0982683i
\(933\) −25.9808 15.0000i −0.850572 0.491078i
\(934\) 13.5000 23.3827i 0.441733 0.765105i
\(935\) 0 0
\(936\) −2.00000 + 3.46410i −0.0653720 + 0.113228i
\(937\) 30.3109 17.5000i 0.990214 0.571700i 0.0848755 0.996392i \(-0.472951\pi\)
0.905338 + 0.424691i \(0.139617\pi\)
\(938\) 28.0000i 0.914232i
\(939\) 19.0000 0.620042
\(940\) 0 0
\(941\) 21.0000 + 36.3731i 0.684580 + 1.18573i 0.973568 + 0.228395i \(0.0733479\pi\)
−0.288988 + 0.957333i \(0.593319\pi\)
\(942\) 16.0000i 0.521308i
\(943\) 54.0000i 1.75848i
\(944\) −4.50000 7.79423i −0.146463 0.253681i
\(945\) 0 0
\(946\) −6.00000 10.3923i −0.195077 0.337883i
\(947\) −51.9615 30.0000i −1.68852 0.974869i −0.955651 0.294502i \(-0.904846\pi\)
−0.732872 0.680367i \(-0.761821\pi\)
\(948\) −3.46410 2.00000i −0.112509 0.0649570i
\(949\) 2.00000 0.0649227
\(950\) 0 0
\(951\) −18.0000 −0.583690
\(952\) 20.7846 + 12.0000i 0.673633 + 0.388922i
\(953\) −12.9904 7.50000i −0.420800 0.242949i 0.274620 0.961553i \(-0.411448\pi\)
−0.695419 + 0.718604i \(0.744781\pi\)
\(954\) 6.00000 + 10.3923i 0.194257 + 0.336463i
\(955\) 0 0
\(956\) 6.00000 + 10.3923i 0.194054 + 0.336111i
\(957\) 0 0
\(958\) 36.0000i 1.16311i
\(959\) −18.0000 31.1769i −0.581250 1.00676i
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 20.0000i 0.644826i
\(963\) 0 0
\(964\) 2.50000 4.33013i 0.0805196 0.139464i
\(965\) 0 0
\(966\) 12.0000 20.7846i 0.386094 0.668734i
\(967\) 29.4449 + 17.0000i 0.946883 + 0.546683i 0.892111 0.451816i \(-0.149224\pi\)
0.0547717 + 0.998499i \(0.482557\pi\)
\(968\) 2.00000i 0.0642824i
\(969\) −3.00000 + 25.9808i −0.0963739 + 0.834622i
\(970\) 0 0
\(971\) −10.5000 + 18.1865i −0.336961 + 0.583634i −0.983860 0.178942i \(-0.942732\pi\)
0.646899 + 0.762576i \(0.276066\pi\)
\(972\) −13.8564 8.00000i −0.444444 0.256600i
\(973\) 38.1051 22.0000i 1.22159 0.705288i
\(974\) −1.00000 + 1.73205i −0.0320421 + 0.0554985i
\(975\) 0 0
\(976\) −4.00000 −0.128037
\(977\) 33.0000i 1.05576i 0.849318 + 0.527882i \(0.177014\pi\)
−0.849318 + 0.527882i \(0.822986\pi\)
\(978\) −16.4545 + 9.50000i −0.526156 + 0.303777i
\(979\) 9.00000 + 15.5885i 0.287641 + 0.498209i
\(980\) 0 0
\(981\) 32.0000 1.02168
\(982\) 0 0
\(983\) 20.7846 + 12.0000i 0.662926 + 0.382741i 0.793391 0.608712i \(-0.208314\pi\)
−0.130465 + 0.991453i \(0.541647\pi\)
\(984\) −4.50000 7.79423i −0.143455 0.248471i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −3.46410 8.00000i −0.110208 0.254514i
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −4.00000 + 6.92820i −0.127064 + 0.220082i −0.922538 0.385906i \(-0.873889\pi\)
0.795474 + 0.605988i \(0.207222\pi\)
\(992\) −1.73205 + 1.00000i −0.0549927 + 0.0317500i
\(993\) 4.33013 + 2.50000i 0.137412 + 0.0793351i
\(994\) −12.0000 20.7846i −0.380617 0.659248i
\(995\) 0 0
\(996\) 3.00000 0.0950586
\(997\) −3.46410 + 2.00000i −0.109709 + 0.0633406i −0.553851 0.832616i \(-0.686842\pi\)
0.444141 + 0.895957i \(0.353509\pi\)
\(998\) −21.6506 + 12.5000i −0.685339 + 0.395681i
\(999\) −50.0000 −1.58193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 950.2.j.e.49.2 4
5.2 odd 4 950.2.e.d.201.1 2
5.3 odd 4 38.2.c.a.11.1 yes 2
5.4 even 2 inner 950.2.j.e.49.1 4
15.8 even 4 342.2.g.b.163.1 2
19.7 even 3 inner 950.2.j.e.349.1 4
20.3 even 4 304.2.i.c.49.1 2
40.3 even 4 1216.2.i.d.961.1 2
40.13 odd 4 1216.2.i.h.961.1 2
60.23 odd 4 2736.2.s.m.1873.1 2
95.3 even 36 722.2.e.i.99.1 6
95.7 odd 12 950.2.e.d.501.1 2
95.8 even 12 722.2.a.d.1.1 1
95.13 even 36 722.2.e.i.415.1 6
95.18 even 4 722.2.c.b.429.1 2
95.23 odd 36 722.2.e.j.423.1 6
95.28 odd 36 722.2.e.j.245.1 6
95.33 even 36 722.2.e.i.389.1 6
95.43 odd 36 722.2.e.j.389.1 6
95.48 even 36 722.2.e.i.245.1 6
95.53 even 36 722.2.e.i.423.1 6
95.63 odd 36 722.2.e.j.415.1 6
95.64 even 6 inner 950.2.j.e.349.2 4
95.68 odd 12 722.2.a.c.1.1 1
95.73 odd 36 722.2.e.j.99.1 6
95.78 even 36 722.2.e.i.595.1 6
95.83 odd 12 38.2.c.a.7.1 2
95.88 even 12 722.2.c.b.653.1 2
95.93 odd 36 722.2.e.j.595.1 6
285.8 odd 12 6498.2.a.e.1.1 1
285.68 even 12 6498.2.a.s.1.1 1
285.83 even 12 342.2.g.b.235.1 2
380.83 even 12 304.2.i.c.273.1 2
380.103 odd 12 5776.2.a.n.1.1 1
380.163 even 12 5776.2.a.g.1.1 1
760.83 even 12 1216.2.i.d.577.1 2
760.653 odd 12 1216.2.i.h.577.1 2
1140.83 odd 12 2736.2.s.m.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.2.c.a.7.1 2 95.83 odd 12
38.2.c.a.11.1 yes 2 5.3 odd 4
304.2.i.c.49.1 2 20.3 even 4
304.2.i.c.273.1 2 380.83 even 12
342.2.g.b.163.1 2 15.8 even 4
342.2.g.b.235.1 2 285.83 even 12
722.2.a.c.1.1 1 95.68 odd 12
722.2.a.d.1.1 1 95.8 even 12
722.2.c.b.429.1 2 95.18 even 4
722.2.c.b.653.1 2 95.88 even 12
722.2.e.i.99.1 6 95.3 even 36
722.2.e.i.245.1 6 95.48 even 36
722.2.e.i.389.1 6 95.33 even 36
722.2.e.i.415.1 6 95.13 even 36
722.2.e.i.423.1 6 95.53 even 36
722.2.e.i.595.1 6 95.78 even 36
722.2.e.j.99.1 6 95.73 odd 36
722.2.e.j.245.1 6 95.28 odd 36
722.2.e.j.389.1 6 95.43 odd 36
722.2.e.j.415.1 6 95.63 odd 36
722.2.e.j.423.1 6 95.23 odd 36
722.2.e.j.595.1 6 95.93 odd 36
950.2.e.d.201.1 2 5.2 odd 4
950.2.e.d.501.1 2 95.7 odd 12
950.2.j.e.49.1 4 5.4 even 2 inner
950.2.j.e.49.2 4 1.1 even 1 trivial
950.2.j.e.349.1 4 19.7 even 3 inner
950.2.j.e.349.2 4 95.64 even 6 inner
1216.2.i.d.577.1 2 760.83 even 12
1216.2.i.d.961.1 2 40.3 even 4
1216.2.i.h.577.1 2 760.653 odd 12
1216.2.i.h.961.1 2 40.13 odd 4
2736.2.s.m.577.1 2 1140.83 odd 12
2736.2.s.m.1873.1 2 60.23 odd 4
5776.2.a.g.1.1 1 380.163 even 12
5776.2.a.n.1.1 1 380.103 odd 12
6498.2.a.e.1.1 1 285.8 odd 12
6498.2.a.s.1.1 1 285.68 even 12