Properties

Label 961.2.a.g.1.1
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $0$
Dimension $3$
CM discriminant -31
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(1,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.1
Root \(-2.36147\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.36147 q^{2} +3.57653 q^{4} +3.93800 q^{5} -0.784934 q^{7} -3.72294 q^{8} -3.00000 q^{9} -9.29947 q^{10} +1.85360 q^{14} +1.63853 q^{16} +7.08441 q^{18} +8.66094 q^{19} +14.0844 q^{20} +10.5079 q^{25} -2.80734 q^{28} +3.57653 q^{32} -3.09107 q^{35} -10.7296 q^{36} -20.4525 q^{38} -14.6609 q^{40} +2.36814 q^{41} -11.8140 q^{45} +8.00000 q^{47} -6.38388 q^{49} -24.8140 q^{50} +2.92226 q^{56} +10.2308 q^{59} +2.35480 q^{63} -11.7229 q^{64} -12.0000 q^{67} +7.29947 q^{70} +16.5369 q^{71} +11.1688 q^{72} +30.9762 q^{76} +6.45254 q^{80} +9.00000 q^{81} -5.59228 q^{82} +27.8984 q^{90} -18.8918 q^{94} +34.1068 q^{95} +10.2441 q^{97} +15.0753 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} + 3 q^{8} - 9 q^{9} - 9 q^{10} + 15 q^{14} + 12 q^{16} + 21 q^{20} + 15 q^{25} + 27 q^{28} + 6 q^{32} + 12 q^{35} - 18 q^{36} - 33 q^{38} - 18 q^{40} + 24 q^{47} + 21 q^{49} - 39 q^{50} + 30 q^{56}+ \cdots + 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.36147 −1.66981 −0.834905 0.550394i \(-0.814478\pi\)
−0.834905 + 0.550394i \(0.814478\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 3.57653 1.78827
\(5\) 3.93800 1.76113 0.880564 0.473927i \(-0.157164\pi\)
0.880564 + 0.473927i \(0.157164\pi\)
\(6\) 0 0
\(7\) −0.784934 −0.296677 −0.148339 0.988937i \(-0.547393\pi\)
−0.148339 + 0.988937i \(0.547393\pi\)
\(8\) −3.72294 −1.31626
\(9\) −3.00000 −1.00000
\(10\) −9.29947 −2.94075
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 1.85360 0.495395
\(15\) 0 0
\(16\) 1.63853 0.409633
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 7.08441 1.66981
\(19\) 8.66094 1.98696 0.993478 0.114023i \(-0.0363739\pi\)
0.993478 + 0.114023i \(0.0363739\pi\)
\(20\) 14.0844 3.14937
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 10.5079 2.10157
\(26\) 0 0
\(27\) 0 0
\(28\) −2.80734 −0.530538
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) 3.57653 0.632248
\(33\) 0 0
\(34\) 0 0
\(35\) −3.09107 −0.522487
\(36\) −10.7296 −1.78827
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −20.4525 −3.31784
\(39\) 0 0
\(40\) −14.6609 −2.31810
\(41\) 2.36814 0.369841 0.184920 0.982754i \(-0.440797\pi\)
0.184920 + 0.982754i \(0.440797\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −11.8140 −1.76113
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −6.38388 −0.911983
\(50\) −24.8140 −3.50923
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.92226 0.390503
\(57\) 0 0
\(58\) 0 0
\(59\) 10.2308 1.33194 0.665969 0.745979i \(-0.268018\pi\)
0.665969 + 0.745979i \(0.268018\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 2.35480 0.296677
\(64\) −11.7229 −1.46537
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 7.29947 0.872454
\(71\) 16.5369 1.96257 0.981287 0.192549i \(-0.0616755\pi\)
0.981287 + 0.192549i \(0.0616755\pi\)
\(72\) 11.1688 1.31626
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 30.9762 3.55321
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 6.45254 0.721416
\(81\) 9.00000 1.00000
\(82\) −5.59228 −0.617564
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 27.8984 2.94075
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −18.8918 −1.94854
\(95\) 34.1068 3.49929
\(96\) 0 0
\(97\) 10.2441 1.04014 0.520068 0.854125i \(-0.325907\pi\)
0.520068 + 0.854125i \(0.325907\pi\)
\(98\) 15.0753 1.52284
\(99\) 0 0
\(100\) 37.5818 3.75818
\(101\) 7.07774 0.704261 0.352131 0.935951i \(-0.385457\pi\)
0.352131 + 0.935951i \(0.385457\pi\)
\(102\) 0 0
\(103\) −14.9671 −1.47475 −0.737375 0.675483i \(-0.763935\pi\)
−0.737375 + 0.675483i \(0.763935\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.52120 0.533755 0.266878 0.963730i \(-0.414008\pi\)
0.266878 + 0.963730i \(0.414008\pi\)
\(108\) 0 0
\(109\) 14.9537 1.43231 0.716155 0.697942i \(-0.245901\pi\)
0.716155 + 0.697942i \(0.245901\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.28614 −0.121529
\(113\) −21.2599 −1.99996 −0.999981 0.00618051i \(-0.998033\pi\)
−0.999981 + 0.00618051i \(0.998033\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −24.1597 −2.22408
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 21.6900 1.94001
\(126\) −5.56079 −0.495395
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 20.5303 1.81464
\(129\) 0 0
\(130\) 0 0
\(131\) 20.0000 1.74741 0.873704 0.486458i \(-0.161711\pi\)
0.873704 + 0.486458i \(0.161711\pi\)
\(132\) 0 0
\(133\) −6.79827 −0.589485
\(134\) 28.3376 2.44800
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) −11.0553 −0.934346
\(141\) 0 0
\(142\) −39.0515 −3.27713
\(143\) 0 0
\(144\) −4.91559 −0.409633
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −32.2441 −2.61535
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −22.8298 −1.82201 −0.911006 0.412392i \(-0.864693\pi\)
−0.911006 + 0.412392i \(0.864693\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 14.0844 1.11347
\(161\) 0 0
\(162\) −21.2532 −1.66981
\(163\) 24.4130 1.91217 0.956085 0.293089i \(-0.0946833\pi\)
0.956085 + 0.293089i \(0.0946833\pi\)
\(164\) 8.46972 0.661374
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −25.9828 −1.98696
\(172\) 0 0
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) −8.24799 −0.623489
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −42.2532 −3.14937
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 28.6123 2.08676
\(189\) 0 0
\(190\) −80.5422 −5.84314
\(191\) −13.3972 −0.969388 −0.484694 0.874684i \(-0.661069\pi\)
−0.484694 + 0.874684i \(0.661069\pi\)
\(192\) 0 0
\(193\) −18.1201 −1.30432 −0.652158 0.758083i \(-0.726136\pi\)
−0.652158 + 0.758083i \(0.726136\pi\)
\(194\) −24.1912 −1.73683
\(195\) 0 0
\(196\) −22.8322 −1.63087
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −39.1201 −2.76621
\(201\) 0 0
\(202\) −16.7139 −1.17598
\(203\) 0 0
\(204\) 0 0
\(205\) 9.32573 0.651337
\(206\) 35.3443 2.46255
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 22.8431 1.57258 0.786291 0.617856i \(-0.211998\pi\)
0.786291 + 0.617856i \(0.211998\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −13.0382 −0.891270
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −35.3128 −2.39168
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) −2.80734 −0.187574
\(225\) −31.5236 −2.10157
\(226\) 50.2046 3.33956
\(227\) 28.0000 1.85843 0.929213 0.369546i \(-0.120487\pi\)
0.929213 + 0.369546i \(0.120487\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.64761 −0.566524 −0.283262 0.959043i \(-0.591417\pi\)
−0.283262 + 0.959043i \(0.591417\pi\)
\(234\) 0 0
\(235\) 31.5040 2.05510
\(236\) 36.5908 2.38186
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 25.9762 1.66981
\(243\) 0 0
\(244\) 0 0
\(245\) −25.1397 −1.60612
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −51.2203 −3.23946
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 8.42203 0.530538
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −25.0357 −1.56473
\(257\) −24.3996 −1.52201 −0.761003 0.648748i \(-0.775293\pi\)
−0.761003 + 0.648748i \(0.775293\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −47.2294 −2.91784
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 16.0539 0.984328
\(267\) 0 0
\(268\) −42.9184 −2.62166
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 11.5079 0.687727
\(281\) 0.771601 0.0460298 0.0230149 0.999735i \(-0.492673\pi\)
0.0230149 + 0.999735i \(0.492673\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 59.1450 3.50961
\(285\) 0 0
\(286\) 0 0
\(287\) −1.85883 −0.109723
\(288\) −10.7296 −0.632248
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −26.0000 −1.51894 −0.759468 0.650545i \(-0.774541\pi\)
−0.759468 + 0.650545i \(0.774541\pi\)
\(294\) 0 0
\(295\) 40.2890 2.34571
\(296\) 0 0
\(297\) 0 0
\(298\) −23.6147 −1.36796
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 14.1912 0.813922
\(305\) 0 0
\(306\) 0 0
\(307\) −13.3705 −0.763097 −0.381549 0.924349i \(-0.624609\pi\)
−0.381549 + 0.924349i \(0.624609\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −21.2466 −1.20478 −0.602391 0.798201i \(-0.705785\pi\)
−0.602391 + 0.798201i \(0.705785\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 53.9118 3.04242
\(315\) 9.27322 0.522487
\(316\) 0 0
\(317\) 16.5503 0.929556 0.464778 0.885427i \(-0.346134\pi\)
0.464778 + 0.885427i \(0.346134\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −46.1650 −2.58070
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 32.1888 1.78827
\(325\) 0 0
\(326\) −57.6504 −3.19296
\(327\) 0 0
\(328\) −8.81642 −0.486805
\(329\) −6.27947 −0.346199
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −47.2560 −2.58187
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 30.6991 1.66981
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 61.3576 3.31784
\(343\) 10.5055 0.567242
\(344\) 0 0
\(345\) 0 0
\(346\) −33.0606 −1.77735
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 19.4774 1.04111
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 65.1226 3.45635
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −30.7191 −1.62129 −0.810646 0.585537i \(-0.800884\pi\)
−0.810646 + 0.585537i \(0.800884\pi\)
\(360\) 43.9828 2.31810
\(361\) 56.0119 2.94799
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −7.10441 −0.369841
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −38.5818 −1.99769 −0.998844 0.0480672i \(-0.984694\pi\)
−0.998844 + 0.0480672i \(0.984694\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −29.7835 −1.53597
\(377\) 0 0
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 121.984 6.25766
\(381\) 0 0
\(382\) 31.6371 1.61869
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 42.7902 2.17796
\(387\) 0 0
\(388\) 36.6385 1.86004
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 23.7668 1.20040
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −18.0935 −0.908086 −0.454043 0.890980i \(-0.650019\pi\)
−0.454043 + 0.890980i \(0.650019\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 17.2175 0.860874
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 25.3138 1.25941
\(405\) 35.4420 1.76113
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) −22.0224 −1.08761
\(411\) 0 0
\(412\) −53.5303 −2.63725
\(413\) −8.03051 −0.395156
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.38147 −0.116342 −0.0581712 0.998307i \(-0.518527\pi\)
−0.0581712 + 0.998307i \(0.518527\pi\)
\(420\) 0 0
\(421\) 10.2175 0.497969 0.248985 0.968507i \(-0.419903\pi\)
0.248985 + 0.968507i \(0.419903\pi\)
\(422\) −53.9432 −2.62592
\(423\) −24.0000 −1.16692
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 19.7468 0.954497
\(429\) 0 0
\(430\) 0 0
\(431\) 40.0000 1.92673 0.963366 0.268190i \(-0.0864254\pi\)
0.963366 + 0.268190i \(0.0864254\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 53.4826 2.56135
\(437\) 0 0
\(438\) 0 0
\(439\) −36.9986 −1.76585 −0.882923 0.469519i \(-0.844428\pi\)
−0.882923 + 0.469519i \(0.844428\pi\)
\(440\) 0 0
\(441\) 19.1516 0.911983
\(442\) 0 0
\(443\) −41.7348 −1.98288 −0.991441 0.130556i \(-0.958324\pi\)
−0.991441 + 0.130556i \(0.958324\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 9.20173 0.434741
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 74.4420 3.50923
\(451\) 0 0
\(452\) −76.0367 −3.57647
\(453\) 0 0
\(454\) −66.1211 −3.10322
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 20.4211 0.945987
\(467\) −40.1650 −1.85861 −0.929307 0.369309i \(-0.879594\pi\)
−0.929307 + 0.369309i \(0.879594\pi\)
\(468\) 0 0
\(469\) 9.41921 0.434939
\(470\) −74.3958 −3.43162
\(471\) 0 0
\(472\) −38.0887 −1.75317
\(473\) 0 0
\(474\) 0 0
\(475\) 91.0081 4.17574
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −29.1492 −1.33186 −0.665931 0.746013i \(-0.731966\pi\)
−0.665931 + 0.746013i \(0.731966\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −39.3419 −1.78827
\(485\) 40.3415 1.83181
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 59.3667 2.68191
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.9804 −0.582251
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 77.5751 3.46926
\(501\) 0 0
\(502\) 0 0
\(503\) 22.8164 1.01733 0.508667 0.860963i \(-0.330138\pi\)
0.508667 + 0.860963i \(0.330138\pi\)
\(504\) −8.76678 −0.390503
\(505\) 27.8722 1.24029
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 18.0606 0.798172
\(513\) 0 0
\(514\) 57.6189 2.54146
\(515\) −58.9404 −2.59722
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 71.5307 3.12483
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −30.6924 −1.33194
\(532\) −24.3142 −1.05416
\(533\) 0 0
\(534\) 0 0
\(535\) 21.7425 0.940011
\(536\) 44.6753 1.92968
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 46.4578 1.99738 0.998688 0.0512107i \(-0.0163080\pi\)
0.998688 + 0.0512107i \(0.0163080\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 58.8879 2.52248
\(546\) 0 0
\(547\) −38.5951 −1.65021 −0.825104 0.564981i \(-0.808883\pi\)
−0.825104 + 0.564981i \(0.808883\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −5.06482 −0.214028
\(561\) 0 0
\(562\) −1.82211 −0.0768611
\(563\) 44.8746 1.89124 0.945619 0.325277i \(-0.105457\pi\)
0.945619 + 0.325277i \(0.105457\pi\)
\(564\) 0 0
\(565\) −83.7215 −3.52219
\(566\) −9.44588 −0.397040
\(567\) −7.06441 −0.296677
\(568\) −61.5660 −2.58325
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 4.38957 0.183217
\(575\) 0 0
\(576\) 35.1688 1.46537
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 40.1450 1.66981
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 61.3982 2.53634
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −95.1411 −3.91690
\(591\) 0 0
\(592\) 0 0
\(593\) −48.0276 −1.97226 −0.986129 0.165978i \(-0.946922\pi\)
−0.986129 + 0.165978i \(0.946922\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 35.7653 1.46501
\(597\) 0 0
\(598\) 0 0
\(599\) −38.5684 −1.57586 −0.787932 0.615763i \(-0.788848\pi\)
−0.787932 + 0.615763i \(0.788848\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 36.0000 1.46603
\(604\) 0 0
\(605\) −43.3180 −1.76113
\(606\) 0 0
\(607\) −48.0000 −1.94826 −0.974130 0.225989i \(-0.927439\pi\)
−0.974130 + 0.225989i \(0.927439\pi\)
\(608\) 30.9762 1.25625
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 31.5741 1.27423
\(615\) 0 0
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 50.1731 2.01176
\(623\) 0 0
\(624\) 0 0
\(625\) 32.8760 1.31504
\(626\) 0 0
\(627\) 0 0
\(628\) −81.6514 −3.25825
\(629\) 0 0
\(630\) −21.8984 −0.872454
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −39.0830 −1.55218
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −49.6108 −1.96257
\(640\) 80.8483 3.19581
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −33.5064 −1.31626
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 87.3138 3.41947
\(653\) −46.0000 −1.80012 −0.900060 0.435767i \(-0.856477\pi\)
−0.900060 + 0.435767i \(0.856477\pi\)
\(654\) 0 0
\(655\) 78.7601 3.07741
\(656\) 3.88026 0.151499
\(657\) 0 0
\(658\) 14.8288 0.578086
\(659\) 0.811601 0.0316155 0.0158077 0.999875i \(-0.494968\pi\)
0.0158077 + 0.999875i \(0.494968\pi\)
\(660\) 0 0
\(661\) −32.3023 −1.25641 −0.628207 0.778046i \(-0.716211\pi\)
−0.628207 + 0.778046i \(0.716211\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −26.7716 −1.03816
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 111.594 4.31124
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −46.4950 −1.78827
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) −8.04098 −0.308584
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 37.0252 1.41673 0.708366 0.705846i \(-0.249433\pi\)
0.708366 + 0.705846i \(0.249433\pi\)
\(684\) −92.9285 −3.55321
\(685\) 0 0
\(686\) −24.8083 −0.947186
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −18.1335 −0.689830 −0.344915 0.938634i \(-0.612092\pi\)
−0.344915 + 0.938634i \(0.612092\pi\)
\(692\) 50.0715 1.90343
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 70.8441 2.68149
\(699\) 0 0
\(700\) −29.4992 −1.11497
\(701\) 49.5975 1.87327 0.936636 0.350304i \(-0.113922\pi\)
0.936636 + 0.350304i \(0.113922\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.55556 −0.208938
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) −153.785 −5.77144
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 72.5422 2.70725
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −19.3576 −0.721416
\(721\) 11.7482 0.437525
\(722\) −132.270 −4.92259
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −52.7506 −1.95641 −0.978205 0.207640i \(-0.933422\pi\)
−0.978205 + 0.207640i \(0.933422\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 13.4105 0.495330 0.247665 0.968846i \(-0.420337\pi\)
0.247665 + 0.968846i \(0.420337\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 16.7768 0.617564
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 39.3800 1.44277
\(746\) 91.1096 3.33576
\(747\) 0 0
\(748\) 0 0
\(749\) −4.33378 −0.158353
\(750\) 0 0
\(751\) −24.3863 −0.889868 −0.444934 0.895563i \(-0.646773\pi\)
−0.444934 + 0.895563i \(0.646773\pi\)
\(752\) 13.1082 0.478009
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) −47.2294 −1.71545
\(759\) 0 0
\(760\) −126.978 −4.60596
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) −11.7377 −0.424933
\(764\) −47.9156 −1.73353
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −52.7639 −1.90272 −0.951358 0.308089i \(-0.900311\pi\)
−0.951358 + 0.308089i \(0.900311\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −64.8073 −2.33247
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −38.1383 −1.36909
\(777\) 0 0
\(778\) 0 0
\(779\) 20.5103 0.734857
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −10.4602 −0.373578
\(785\) −89.9036 −3.20880
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 16.6876 0.593343
\(792\) 0 0
\(793\) 0 0
\(794\) 42.7272 1.51633
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 37.5818 1.32872
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −26.3500 −0.926989
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) −83.6953 −2.94075
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 96.1383 3.36758
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 33.3538 1.16476
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 55.7215 1.94115
\(825\) 0 0
\(826\) 18.9638 0.659835
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 5.62376 0.194270
\(839\) 16.0000 0.552381 0.276191 0.961103i \(-0.410928\pi\)
0.276191 + 0.961103i \(0.410928\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −24.1282 −0.831514
\(843\) 0 0
\(844\) 81.6991 2.81220
\(845\) −51.1940 −1.76113
\(846\) 56.6753 1.94854
\(847\) 8.63427 0.296677
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −54.0000 −1.84892 −0.924462 0.381273i \(-0.875486\pi\)
−0.924462 + 0.381273i \(0.875486\pi\)
\(854\) 0 0
\(855\) −102.320 −3.49929
\(856\) −20.5551 −0.702559
\(857\) 38.0000 1.29806 0.649028 0.760765i \(-0.275176\pi\)
0.649028 + 0.760765i \(0.275176\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −94.4588 −3.21728
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 55.1320 1.87455
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −55.6719 −1.88529
\(873\) −30.7324 −1.04014
\(874\) 0 0
\(875\) −17.0252 −0.575558
\(876\) 0 0
\(877\) 57.4735 1.94074 0.970371 0.241618i \(-0.0776781\pi\)
0.970371 + 0.241618i \(0.0776781\pi\)
\(878\) 87.3710 2.94863
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) −45.2260 −1.52284
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 98.5555 3.31104
\(887\) −26.0095 −0.873313 −0.436657 0.899628i \(-0.643838\pi\)
−0.436657 + 0.899628i \(0.643838\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 69.2875 2.31862
\(894\) 0 0
\(895\) 0 0
\(896\) −16.1149 −0.538362
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −112.745 −3.75818
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 79.1492 2.63246
\(905\) 0 0
\(906\) 0 0
\(907\) 48.0143 1.59429 0.797144 0.603789i \(-0.206343\pi\)
0.797144 + 0.603789i \(0.206343\pi\)
\(908\) 100.143 3.32336
\(909\) −21.2332 −0.704261
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.6987 −0.518416
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 44.9012 1.47475
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −55.2904 −1.81207
\(932\) −30.9285 −1.01310
\(933\) 0 0
\(934\) 94.8483 3.10353
\(935\) 0 0
\(936\) 0 0
\(937\) −42.0000 −1.37208 −0.686040 0.727564i \(-0.740653\pi\)
−0.686040 + 0.727564i \(0.740653\pi\)
\(938\) −22.2432 −0.726265
\(939\) 0 0
\(940\) 112.675 3.67506
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 16.7635 0.545605
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −214.913 −6.97269
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) −52.7583 −1.70722
\(956\) 0 0
\(957\) 0 0
\(958\) 68.8350 2.22396
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) −16.5636 −0.533755
\(964\) 0 0
\(965\) −71.3572 −2.29707
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 40.9523 1.31626
\(969\) 0 0
\(970\) −95.2651 −3.05878
\(971\) 28.0000 0.898563 0.449281 0.893390i \(-0.351680\pi\)
0.449281 + 0.893390i \(0.351680\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 49.6242 1.58762 0.793809 0.608167i \(-0.208095\pi\)
0.793809 + 0.608167i \(0.208095\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −89.9131 −2.87217
\(981\) −44.8612 −1.43231
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 30.6528 0.972249
\(995\) 0 0
\(996\) 0 0
\(997\) 62.2098 1.97020 0.985102 0.171972i \(-0.0550138\pi\)
0.985102 + 0.171972i \(0.0550138\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.g.1.1 3
3.2 odd 2 8649.2.a.q.1.3 3
31.2 even 5 961.2.d.m.531.1 12
31.3 odd 30 961.2.g.u.846.1 24
31.4 even 5 961.2.d.m.388.3 12
31.5 even 3 961.2.c.g.521.1 6
31.6 odd 6 961.2.c.g.439.1 6
31.7 even 15 961.2.g.u.235.3 24
31.8 even 5 961.2.d.m.374.3 12
31.9 even 15 961.2.g.u.732.3 24
31.10 even 15 961.2.g.u.844.1 24
31.11 odd 30 961.2.g.u.338.3 24
31.12 odd 30 961.2.g.u.547.1 24
31.13 odd 30 961.2.g.u.448.1 24
31.14 even 15 961.2.g.u.816.3 24
31.15 odd 10 961.2.d.m.628.1 12
31.16 even 5 961.2.d.m.628.1 12
31.17 odd 30 961.2.g.u.816.3 24
31.18 even 15 961.2.g.u.448.1 24
31.19 even 15 961.2.g.u.547.1 24
31.20 even 15 961.2.g.u.338.3 24
31.21 odd 30 961.2.g.u.844.1 24
31.22 odd 30 961.2.g.u.732.3 24
31.23 odd 10 961.2.d.m.374.3 12
31.24 odd 30 961.2.g.u.235.3 24
31.25 even 3 961.2.c.g.439.1 6
31.26 odd 6 961.2.c.g.521.1 6
31.27 odd 10 961.2.d.m.388.3 12
31.28 even 15 961.2.g.u.846.1 24
31.29 odd 10 961.2.d.m.531.1 12
31.30 odd 2 CM 961.2.a.g.1.1 3
93.92 even 2 8649.2.a.q.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.g.1.1 3 1.1 even 1 trivial
961.2.a.g.1.1 3 31.30 odd 2 CM
961.2.c.g.439.1 6 31.6 odd 6
961.2.c.g.439.1 6 31.25 even 3
961.2.c.g.521.1 6 31.5 even 3
961.2.c.g.521.1 6 31.26 odd 6
961.2.d.m.374.3 12 31.8 even 5
961.2.d.m.374.3 12 31.23 odd 10
961.2.d.m.388.3 12 31.4 even 5
961.2.d.m.388.3 12 31.27 odd 10
961.2.d.m.531.1 12 31.2 even 5
961.2.d.m.531.1 12 31.29 odd 10
961.2.d.m.628.1 12 31.15 odd 10
961.2.d.m.628.1 12 31.16 even 5
961.2.g.u.235.3 24 31.7 even 15
961.2.g.u.235.3 24 31.24 odd 30
961.2.g.u.338.3 24 31.11 odd 30
961.2.g.u.338.3 24 31.20 even 15
961.2.g.u.448.1 24 31.13 odd 30
961.2.g.u.448.1 24 31.18 even 15
961.2.g.u.547.1 24 31.12 odd 30
961.2.g.u.547.1 24 31.19 even 15
961.2.g.u.732.3 24 31.9 even 15
961.2.g.u.732.3 24 31.22 odd 30
961.2.g.u.816.3 24 31.14 even 15
961.2.g.u.816.3 24 31.17 odd 30
961.2.g.u.844.1 24 31.10 even 15
961.2.g.u.844.1 24 31.21 odd 30
961.2.g.u.846.1 24 31.3 odd 30
961.2.g.u.846.1 24 31.28 even 15
8649.2.a.q.1.3 3 3.2 odd 2
8649.2.a.q.1.3 3 93.92 even 2