Properties

Label 961.2.g.u.816.3
Level $961$
Weight $2$
Character 961.816
Analytic conductor $7.674$
Analytic rank $0$
Dimension $24$
CM discriminant -31
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(235,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([26]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(3\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{15}]$

Embedding invariants

Embedding label 816.3
Character \(\chi\) \(=\) 961.816
Dual form 961.2.g.u.338.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.91047 + 1.38804i) q^{2} +(1.10521 + 3.40149i) q^{4} +(-1.96900 - 3.41041i) q^{5} +(0.767781 + 0.163197i) q^{7} +(-1.15045 + 3.54072i) q^{8} +(2.93444 - 0.623735i) q^{9} +(0.972060 - 9.24853i) q^{10} +(1.24030 + 1.37749i) q^{14} +(-1.32560 + 0.963104i) q^{16} +(6.47193 + 2.88149i) q^{18} +(7.91216 - 3.52272i) q^{19} +(9.42431 - 10.4668i) q^{20} +(-5.25394 + 9.10008i) q^{25} +(0.293447 + 2.79196i) q^{28} +3.57653 q^{32} +(-0.955194 - 2.93979i) q^{35} +(5.36480 + 9.29211i) q^{36} +(20.0056 + 4.25232i) q^{38} +(14.3406 - 3.04818i) q^{40} +(-0.247538 + 2.35516i) q^{41} +(-7.90512 - 8.77952i) q^{45} +(-6.47214 + 4.70228i) q^{47} +(-5.83196 - 2.59656i) q^{49} +(-22.6687 + 10.0928i) q^{50} +(-1.46113 + 2.53075i) q^{56} +(-1.06941 - 10.1748i) q^{59} +2.35480 q^{63} +(9.48406 + 6.89057i) q^{64} +(6.00000 + 10.3923i) q^{67} +(2.25566 - 6.94221i) q^{70} +(-16.1756 + 3.43822i) q^{71} +(-1.16746 + 11.1076i) q^{72} +(20.7271 + 23.0198i) q^{76} +(5.89469 + 2.62449i) q^{80} +(8.22191 - 3.66063i) q^{81} +(-3.74196 + 4.15587i) q^{82} +(-2.91618 - 27.7456i) q^{90} -18.8918 q^{94} +(-27.5930 - 20.0475i) q^{95} +(3.16561 + 9.74276i) q^{97} +(-7.53766 - 13.0556i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 12 q^{4} - 6 q^{8} - 9 q^{9} - 9 q^{10} + 15 q^{14} - 24 q^{16} + 21 q^{20} - 60 q^{25} + 27 q^{28} + 48 q^{32} - 24 q^{35} + 72 q^{36} - 33 q^{38} - 18 q^{40} - 48 q^{47} + 21 q^{49} - 39 q^{50}+ \cdots - 228 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91047 + 1.38804i 1.35091 + 0.981490i 0.998966 + 0.0454672i \(0.0144777\pi\)
0.351939 + 0.936023i \(0.385522\pi\)
\(3\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(4\) 1.10521 + 3.40149i 0.552605 + 1.70074i
\(5\) −1.96900 3.41041i −0.880564 1.52518i −0.850715 0.525628i \(-0.823830\pi\)
−0.0298497 0.999554i \(-0.509503\pi\)
\(6\) 0 0
\(7\) 0.767781 + 0.163197i 0.290194 + 0.0616827i 0.350709 0.936485i \(-0.385941\pi\)
−0.0605145 + 0.998167i \(0.519274\pi\)
\(8\) −1.15045 + 3.54072i −0.406746 + 1.25183i
\(9\) 2.93444 0.623735i 0.978148 0.207912i
\(10\) 0.972060 9.24853i 0.307392 2.92464i
\(11\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(12\) 0 0
\(13\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(14\) 1.24030 + 1.37749i 0.331484 + 0.368150i
\(15\) 0 0
\(16\) −1.32560 + 0.963104i −0.331400 + 0.240776i
\(17\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(18\) 6.47193 + 2.88149i 1.52545 + 0.679173i
\(19\) 7.91216 3.52272i 1.81517 0.808168i 0.861210 0.508249i \(-0.169707\pi\)
0.953965 0.299918i \(-0.0969595\pi\)
\(20\) 9.42431 10.4668i 2.10734 2.34044i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(24\) 0 0
\(25\) −5.25394 + 9.10008i −1.05079 + 1.82002i
\(26\) 0 0
\(27\) 0 0
\(28\) 0.293447 + 2.79196i 0.0554563 + 0.527632i
\(29\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) 3.57653 0.632248
\(33\) 0 0
\(34\) 0 0
\(35\) −0.955194 2.93979i −0.161457 0.496914i
\(36\) 5.36480 + 9.29211i 0.894134 + 1.54868i
\(37\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(38\) 20.0056 + 4.25232i 3.24534 + 0.689818i
\(39\) 0 0
\(40\) 14.3406 3.04818i 2.26744 0.481960i
\(41\) −0.247538 + 2.35516i −0.0386589 + 0.367815i 0.958040 + 0.286633i \(0.0925360\pi\)
−0.996699 + 0.0811816i \(0.974131\pi\)
\(42\) 0 0
\(43\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(44\) 0 0
\(45\) −7.90512 8.77952i −1.17843 1.30877i
\(46\) 0 0
\(47\) −6.47214 + 4.70228i −0.944058 + 0.685898i −0.949394 0.314087i \(-0.898301\pi\)
0.00533600 + 0.999986i \(0.498301\pi\)
\(48\) 0 0
\(49\) −5.83196 2.59656i −0.833138 0.370937i
\(50\) −22.6687 + 10.0928i −3.20584 + 1.42733i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.46113 + 2.53075i −0.195252 + 0.338186i
\(57\) 0 0
\(58\) 0 0
\(59\) −1.06941 10.1748i −0.139225 1.32464i −0.811506 0.584345i \(-0.801352\pi\)
0.672280 0.740297i \(-0.265315\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 2.35480 0.296677
\(64\) 9.48406 + 6.89057i 1.18551 + 0.861321i
\(65\) 0 0
\(66\) 0 0
\(67\) 6.00000 + 10.3923i 0.733017 + 1.26962i 0.955588 + 0.294706i \(0.0952216\pi\)
−0.222571 + 0.974916i \(0.571445\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 2.25566 6.94221i 0.269603 0.829753i
\(71\) −16.1756 + 3.43822i −1.91969 + 0.408042i −0.919811 + 0.392363i \(0.871658\pi\)
−0.999877 + 0.0156796i \(0.995009\pi\)
\(72\) −1.16746 + 11.1076i −0.137586 + 1.30905i
\(73\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 20.7271 + 23.0198i 2.37756 + 2.64055i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(80\) 5.89469 + 2.62449i 0.659046 + 0.293426i
\(81\) 8.22191 3.66063i 0.913545 0.406737i
\(82\) −3.74196 + 4.15587i −0.413231 + 0.458939i
\(83\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(90\) −2.91618 27.7456i −0.307392 2.92464i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −18.8918 −1.94854
\(95\) −27.5930 20.0475i −2.83098 2.05683i
\(96\) 0 0
\(97\) 3.16561 + 9.74276i 0.321419 + 0.989227i 0.973031 + 0.230674i \(0.0740932\pi\)
−0.651612 + 0.758553i \(0.725907\pi\)
\(98\) −7.53766 13.0556i −0.761419 1.31882i
\(99\) 0 0
\(100\) −36.7605 7.81369i −3.67605 0.781369i
\(101\) 2.18714 6.73133i 0.217629 0.669792i −0.781328 0.624121i \(-0.785457\pi\)
0.998957 0.0456715i \(-0.0145427\pi\)
\(102\) 0 0
\(103\) 1.56449 14.8851i 0.154153 1.46667i −0.594706 0.803943i \(-0.702732\pi\)
0.748860 0.662728i \(-0.230602\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.69441 + 4.10305i 0.357152 + 0.396657i 0.894767 0.446533i \(-0.147341\pi\)
−0.537615 + 0.843190i \(0.680675\pi\)
\(108\) 0 0
\(109\) −12.0978 + 8.78959i −1.15876 + 0.841890i −0.989621 0.143702i \(-0.954099\pi\)
−0.169141 + 0.985592i \(0.554099\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.17495 + 0.523120i −0.111022 + 0.0494302i
\(113\) −14.2256 + 15.7992i −1.33824 + 1.48626i −0.664525 + 0.747266i \(0.731366\pi\)
−0.673711 + 0.738995i \(0.735301\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 12.0799 20.9229i 1.11204 1.92611i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.14981 + 10.9397i 0.104528 + 0.994522i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 21.6900 1.94001
\(126\) 4.49877 + 3.26855i 0.400783 + 0.291186i
\(127\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(128\) 6.34421 + 19.5255i 0.560754 + 1.72582i
\(129\) 0 0
\(130\) 0 0
\(131\) −19.5630 4.15823i −1.70922 0.363307i −0.753471 0.657481i \(-0.771622\pi\)
−0.955752 + 0.294174i \(0.904955\pi\)
\(132\) 0 0
\(133\) 6.64971 1.41344i 0.576603 0.122561i
\(134\) −2.96209 + 28.1824i −0.255885 + 2.43459i
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(138\) 0 0
\(139\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(140\) 8.94395 6.49816i 0.755902 0.549195i
\(141\) 0 0
\(142\) −35.6753 15.8837i −2.99381 1.33293i
\(143\) 0 0
\(144\) −3.28917 + 3.65300i −0.274098 + 0.304417i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.00000 + 8.66025i −0.409616 + 0.709476i −0.994847 0.101391i \(-0.967671\pi\)
0.585231 + 0.810867i \(0.301004\pi\)
\(150\) 0 0
\(151\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(152\) 3.37043 + 32.0675i 0.273378 + 2.60102i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.4697 + 13.4190i 1.47404 + 1.07095i 0.979418 + 0.201844i \(0.0646933\pi\)
0.494621 + 0.869109i \(0.335307\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −7.04220 12.1975i −0.556735 0.964293i
\(161\) 0 0
\(162\) 20.7888 + 4.41879i 1.63332 + 0.347173i
\(163\) 7.54402 23.2181i 0.590893 1.81858i 0.0167022 0.999861i \(-0.494683\pi\)
0.574191 0.818721i \(-0.305317\pi\)
\(164\) −8.28463 + 1.76095i −0.646921 + 0.137507i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(168\) 0 0
\(169\) −8.69870 9.66088i −0.669131 0.743145i
\(170\) 0 0
\(171\) 21.0205 15.2723i 1.60748 1.16790i
\(172\) 0 0
\(173\) 12.7896 + 5.69431i 0.972378 + 0.432931i 0.830540 0.556959i \(-0.188032\pi\)
0.141838 + 0.989890i \(0.454699\pi\)
\(174\) 0 0
\(175\) −5.51898 + 6.12945i −0.417196 + 0.463343i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(180\) 21.1266 36.5924i 1.57468 2.72743i
\(181\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −23.1478 16.8179i −1.68823 1.22657i
\(189\) 0 0
\(190\) −24.8889 76.6002i −1.80563 5.55716i
\(191\) 6.69861 + 11.6023i 0.484694 + 0.839515i 0.999845 0.0175844i \(-0.00559759\pi\)
−0.515151 + 0.857099i \(0.672264\pi\)
\(192\) 0 0
\(193\) 17.7242 + 3.76739i 1.27581 + 0.271183i 0.795521 0.605925i \(-0.207197\pi\)
0.480293 + 0.877108i \(0.340530\pi\)
\(194\) −7.47550 + 23.0072i −0.536710 + 1.65182i
\(195\) 0 0
\(196\) 2.38661 22.7071i 0.170472 1.62193i
\(197\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(198\) 0 0
\(199\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(200\) −26.1765 29.0719i −1.85096 2.05570i
\(201\) 0 0
\(202\) 13.5218 9.82416i 0.951390 0.691226i
\(203\) 0 0
\(204\) 0 0
\(205\) 8.51947 3.79311i 0.595026 0.264923i
\(206\) 23.6499 26.2659i 1.64777 1.83003i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −11.4215 + 19.7827i −0.786291 + 1.36190i 0.141933 + 0.989876i \(0.454668\pi\)
−0.928225 + 0.372021i \(0.878665\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.36286 + 12.9667i 0.0931631 + 0.886387i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −35.3128 −2.39168
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(224\) 2.74600 + 0.583680i 0.183475 + 0.0389987i
\(225\) −9.74133 + 29.9807i −0.649422 + 1.99872i
\(226\) −49.1075 + 10.4381i −3.26658 + 0.694333i
\(227\) −2.92680 + 27.8466i −0.194258 + 1.84824i 0.270392 + 0.962750i \(0.412847\pi\)
−0.464650 + 0.885494i \(0.653820\pi\)
\(228\) 0 0
\(229\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.99606 5.08294i 0.458327 0.332994i −0.334547 0.942379i \(-0.608583\pi\)
0.792875 + 0.609385i \(0.208583\pi\)
\(234\) 0 0
\(235\) 28.7804 + 12.8138i 1.87742 + 0.835883i
\(236\) 33.4274 14.8828i 2.17594 0.968790i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(240\) 0 0
\(241\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(242\) −12.9881 + 22.4960i −0.834905 + 1.44610i
\(243\) 0 0
\(244\) 0 0
\(245\) 2.62782 + 25.0020i 0.167885 + 1.59732i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 41.4381 + 30.1065i 2.62078 + 1.90410i
\(251\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(252\) 2.60255 + 8.00983i 0.163945 + 0.504572i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −7.73647 + 23.8104i −0.483529 + 1.48815i
\(257\) 23.8664 5.07297i 1.48875 0.316443i 0.609491 0.792793i \(-0.291374\pi\)
0.879256 + 0.476350i \(0.158040\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −31.6026 35.0983i −1.95242 2.16838i
\(263\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 14.6660 + 6.52971i 0.899228 + 0.400362i
\(267\) 0 0
\(268\) −28.7180 + 31.8946i −1.75423 + 1.94827i
\(269\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(270\) 0 0
\(271\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 11.5079 0.687727
\(281\) −0.624238 0.453536i −0.0372389 0.0270557i 0.569010 0.822331i \(-0.307327\pi\)
−0.606249 + 0.795275i \(0.707327\pi\)
\(282\) 0 0
\(283\) 1.23607 + 3.80423i 0.0734766 + 0.226138i 0.981050 0.193756i \(-0.0620672\pi\)
−0.907573 + 0.419894i \(0.862067\pi\)
\(284\) −29.5725 51.2210i −1.75480 3.03941i
\(285\) 0 0
\(286\) 0 0
\(287\) −0.574410 + 1.76785i −0.0339064 + 0.104353i
\(288\) 10.4951 2.23081i 0.618432 0.131452i
\(289\) 1.77698 16.9069i 0.104528 0.994522i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −17.3974 19.3218i −1.01637 1.12879i −0.991632 0.129096i \(-0.958793\pi\)
−0.0247346 0.999694i \(-0.507874\pi\)
\(294\) 0 0
\(295\) −32.5945 + 23.6813i −1.89772 + 1.37878i
\(296\) 0 0
\(297\) 0 0
\(298\) −21.5731 + 9.60496i −1.24970 + 0.556400i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −7.09561 + 12.2900i −0.406961 + 0.704877i
\(305\) 0 0
\(306\) 0 0
\(307\) 1.39760 + 13.2973i 0.0797654 + 0.758917i 0.959168 + 0.282838i \(0.0912758\pi\)
−0.879402 + 0.476079i \(0.842058\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −21.2466 −1.20478 −0.602391 0.798201i \(-0.705785\pi\)
−0.602391 + 0.798201i \(0.705785\pi\)
\(312\) 0 0
\(313\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(314\) 16.6596 + 51.2731i 0.940158 + 2.89351i
\(315\) −4.63661 8.03084i −0.261243 0.452487i
\(316\) 0 0
\(317\) −16.1886 3.44100i −0.909243 0.193266i −0.270531 0.962711i \(-0.587199\pi\)
−0.638712 + 0.769446i \(0.720533\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 4.82555 45.9121i 0.269757 2.56656i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 21.5385 + 23.9209i 1.19658 + 1.32894i
\(325\) 0 0
\(326\) 46.6402 33.8861i 2.58316 1.87678i
\(327\) 0 0
\(328\) −8.05420 3.58596i −0.444719 0.198002i
\(329\) −5.73658 + 2.55409i −0.316268 + 0.140812i
\(330\) 0 0
\(331\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 23.6280 40.9249i 1.29094 2.23597i
\(336\) 0 0
\(337\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(338\) −3.20893 30.5309i −0.174543 1.66066i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 61.3576 3.31784
\(343\) −8.49910 6.17496i −0.458908 0.333416i
\(344\) 0 0
\(345\) 0 0
\(346\) 16.5303 + 28.6313i 0.888673 + 1.53923i
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) −9.27051 + 28.5317i −0.496239 + 1.52727i 0.318778 + 0.947829i \(0.396728\pi\)
−0.815017 + 0.579437i \(0.803272\pi\)
\(350\) −19.0517 + 4.04957i −1.01836 + 0.216459i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(354\) 0 0
\(355\) 43.5755 + 48.3955i 2.31275 + 2.56857i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.0633 12.4946i −1.48112 0.659439i −0.502403 0.864634i \(-0.667550\pi\)
−0.978721 + 0.205195i \(0.934217\pi\)
\(360\) 40.1803 17.8894i 2.11769 0.942856i
\(361\) 37.4793 41.6250i 1.97259 2.19079i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) 0 0
\(369\) 0.742613 + 7.06549i 0.0386589 + 0.367815i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −38.5818 −1.99769 −0.998844 0.0480672i \(-0.984694\pi\)
−0.998844 + 0.0480672i \(0.984694\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −9.20361 28.3258i −0.474640 1.46079i
\(377\) 0 0
\(378\) 0 0
\(379\) −19.5630 4.15823i −1.00488 0.213594i −0.324054 0.946038i \(-0.605046\pi\)
−0.680827 + 0.732444i \(0.738379\pi\)
\(380\) 37.6952 116.014i 1.93372 5.95139i
\(381\) 0 0
\(382\) −3.30698 + 31.4638i −0.169200 + 1.60983i
\(383\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 28.6322 + 31.7993i 1.45734 + 1.61854i
\(387\) 0 0
\(388\) −29.6412 + 21.5356i −1.50480 + 1.09330i
\(389\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 15.9031 17.6622i 0.803227 0.892074i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.04674 15.6694i 0.454043 0.786425i −0.544590 0.838703i \(-0.683315\pi\)
0.998633 + 0.0522772i \(0.0166479\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.79972 17.1232i −0.0899858 0.856158i
\(401\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 25.3138 1.25941
\(405\) −28.6732 20.8323i −1.42478 1.03517i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(410\) 21.5412 + 4.57872i 1.06384 + 0.226127i
\(411\) 0 0
\(412\) 52.3605 11.1296i 2.57962 0.548315i
\(413\) 0.839417 7.98652i 0.0413050 0.392991i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.92665 1.39979i 0.0941229 0.0683843i −0.539728 0.841839i \(-0.681473\pi\)
0.633851 + 0.773455i \(0.281473\pi\)
\(420\) 0 0
\(421\) 9.33413 + 4.15582i 0.454918 + 0.202542i 0.621386 0.783504i \(-0.286570\pi\)
−0.166469 + 0.986047i \(0.553236\pi\)
\(422\) −49.2796 + 21.9407i −2.39889 + 1.06806i
\(423\) −16.0591 + 17.8355i −0.780822 + 0.867191i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −9.87339 + 17.1012i −0.477248 + 0.826618i
\(429\) 0 0
\(430\) 0 0
\(431\) −4.18114 39.7809i −0.201398 1.91618i −0.367420 0.930055i \(-0.619759\pi\)
0.166021 0.986122i \(-0.446908\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −43.2683 31.4363i −2.07218 1.50552i
\(437\) 0 0
\(438\) 0 0
\(439\) 18.4993 + 32.0417i 0.882923 + 1.52927i 0.848076 + 0.529874i \(0.177761\pi\)
0.0348463 + 0.999393i \(0.488906\pi\)
\(440\) 0 0
\(441\) −18.7331 3.98185i −0.892054 0.189612i
\(442\) 0 0
\(443\) 40.8228 8.67716i 1.93955 0.412264i 0.942632 0.333835i \(-0.108343\pi\)
0.996920 0.0784294i \(-0.0249905\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 6.15716 + 6.83822i 0.290899 + 0.323076i
\(449\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(450\) −60.2249 + 43.7559i −2.83903 + 2.06267i
\(451\) 0 0
\(452\) −69.4630 30.9269i −3.26726 1.45468i
\(453\) 0 0
\(454\) −44.2437 + 49.1376i −2.07646 + 2.30614i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(462\) 0 0
\(463\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 20.4211 0.945987
\(467\) 32.4941 + 23.6084i 1.50365 + 1.09247i 0.968899 + 0.247455i \(0.0795943\pi\)
0.534750 + 0.845010i \(0.320406\pi\)
\(468\) 0 0
\(469\) 2.91070 + 8.95820i 0.134403 + 0.413651i
\(470\) 37.1979 + 64.4286i 1.71581 + 2.97187i
\(471\) 0 0
\(472\) 37.2563 + 7.91908i 1.71486 + 0.364505i
\(473\) 0 0
\(474\) 0 0
\(475\) −9.51293 + 90.5095i −0.436483 + 4.15286i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −19.5046 21.6621i −0.891190 0.989766i 0.108801 0.994064i \(-0.465299\pi\)
−0.999991 + 0.00429710i \(0.998632\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −35.9406 + 16.0018i −1.63366 + 0.727354i
\(485\) 26.9937 29.9796i 1.22572 1.36130i
\(486\) 0 0
\(487\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −29.6834 + 51.4131i −1.34096 + 2.32261i
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.9804 −0.582251
\(498\) 0 0
\(499\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(500\) 23.9720 + 73.7783i 1.07206 + 3.29947i
\(501\) 0 0
\(502\) 0 0
\(503\) −22.3178 4.74380i −0.995103 0.211516i −0.318547 0.947907i \(-0.603195\pi\)
−0.676556 + 0.736391i \(0.736528\pi\)
\(504\) −2.70908 + 8.33770i −0.120672 + 0.371391i
\(505\) −27.2631 + 5.79495i −1.21319 + 0.257872i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −14.6113 + 10.6157i −0.645734 + 0.469154i
\(513\) 0 0
\(514\) 52.6375 + 23.4357i 2.32174 + 1.03371i
\(515\) −53.8447 + 23.9732i −2.37268 + 1.05639i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.00000 + 8.66025i −0.219054 + 0.379413i −0.954519 0.298150i \(-0.903630\pi\)
0.735465 + 0.677563i \(0.236964\pi\)
\(522\) 0 0
\(523\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(524\) −7.47699 71.1388i −0.326634 3.10771i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 18.6074 + 13.5191i 0.809017 + 0.587785i
\(530\) 0 0
\(531\) −9.48448 29.1902i −0.411591 1.26675i
\(532\) 12.1571 + 21.0567i 0.527078 + 0.912926i
\(533\) 0 0
\(534\) 0 0
\(535\) 6.71881 20.6784i 0.290479 0.894004i
\(536\) −43.6990 + 9.28851i −1.88751 + 0.401202i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 31.0863 + 34.5249i 1.33651 + 1.48434i 0.706310 + 0.707903i \(0.250359\pi\)
0.630196 + 0.776436i \(0.282975\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 53.7968 + 23.9519i 2.30440 + 1.02599i
\(546\) 0 0
\(547\) −25.8252 + 28.6817i −1.10420 + 1.22634i −0.132239 + 0.991218i \(0.542217\pi\)
−0.971965 + 0.235125i \(0.924450\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 4.09753 + 2.97703i 0.173152 + 0.125802i
\(561\) 0 0
\(562\) −0.563063 1.73293i −0.0237514 0.0730993i
\(563\) −22.4373 38.8625i −0.945619 1.63786i −0.754507 0.656292i \(-0.772124\pi\)
−0.191112 0.981568i \(-0.561209\pi\)
\(564\) 0 0
\(565\) 81.8920 + 17.4067i 3.44522 + 0.732305i
\(566\) −2.91894 + 8.98356i −0.122692 + 0.377607i
\(567\) 6.91003 1.46877i 0.290194 0.0616827i
\(568\) 6.43540 61.2288i 0.270023 2.56910i
\(569\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(570\) 0 0
\(571\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −3.55124 + 2.58012i −0.148226 + 0.107692i
\(575\) 0 0
\(576\) 32.1283 + 14.3044i 1.33868 + 0.596019i
\(577\) 16.4438 7.32126i 0.684565 0.304788i −0.0348259 0.999393i \(-0.511088\pi\)
0.719391 + 0.694605i \(0.244421\pi\)
\(578\) 26.8622 29.8335i 1.11732 1.24091i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −6.41786 61.0618i −0.265119 2.52244i
\(587\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −95.1411 −3.91690
\(591\) 0 0
\(592\) 0 0
\(593\) −14.8414 45.6770i −0.609462 1.87573i −0.462585 0.886575i \(-0.653078\pi\)
−0.146876 0.989155i \(-0.546922\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −34.9838 7.43603i −1.43299 0.304592i
\(597\) 0 0
\(598\) 0 0
\(599\) 4.03150 38.3572i 0.164723 1.56723i −0.530028 0.847980i \(-0.677819\pi\)
0.694751 0.719251i \(-0.255515\pi\)
\(600\) 0 0
\(601\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(602\) 0 0
\(603\) 24.0887 + 26.7532i 0.980968 + 1.08948i
\(604\) 0 0
\(605\) 35.0450 25.4617i 1.42478 1.03517i
\(606\) 0 0
\(607\) −43.8502 19.5234i −1.77982 0.792429i −0.981830 0.189764i \(-0.939228\pi\)
−0.797994 0.602665i \(-0.794105\pi\)
\(608\) 28.2981 12.5991i 1.14764 0.510963i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(614\) −15.7871 + 27.3440i −0.637114 + 1.10351i
\(615\) 0 0
\(616\) 0 0
\(617\) 2.29963 + 21.8795i 0.0925795 + 0.880835i 0.937977 + 0.346697i \(0.112697\pi\)
−0.845398 + 0.534138i \(0.820636\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −40.5909 29.4910i −1.62755 1.18248i
\(623\) 0 0
\(624\) 0 0
\(625\) −16.4380 28.4715i −0.657520 1.13886i
\(626\) 0 0
\(627\) 0 0
\(628\) −25.2317 + 77.6551i −1.00685 + 3.09878i
\(629\) 0 0
\(630\) 2.28901 21.7785i 0.0911963 0.867674i
\(631\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −26.1516 29.0443i −1.03861 1.15350i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −45.3218 + 20.1785i −1.79290 + 0.798251i
\(640\) 54.0981 60.0820i 2.13841 2.37495i
\(641\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(642\) 0 0
\(643\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(648\) 3.50238 + 33.3229i 0.137586 + 1.30905i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 87.3138 3.41947
\(653\) 37.2148 + 27.0381i 1.45633 + 1.05808i 0.984301 + 0.176499i \(0.0564772\pi\)
0.472026 + 0.881585i \(0.343523\pi\)
\(654\) 0 0
\(655\) 24.3382 + 74.9053i 0.950972 + 2.92679i
\(656\) −1.94013 3.36041i −0.0757494 0.131202i
\(657\) 0 0
\(658\) −14.5047 3.08308i −0.565453 0.120191i
\(659\) 0.250798 0.771878i 0.00976972 0.0300681i −0.946053 0.324012i \(-0.894968\pi\)
0.955823 + 0.293944i \(0.0949680\pi\)
\(660\) 0 0
\(661\) 3.37651 32.1253i 0.131331 1.24953i −0.708119 0.706093i \(-0.750456\pi\)
0.839450 0.543437i \(-0.182877\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −17.9137 19.8952i −0.694663 0.771502i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 101.946 45.3892i 3.93851 1.75354i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 23.2475 40.2658i 0.894134 1.54868i
\(677\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 0 0
\(679\) 0.840511 + 7.99693i 0.0322558 + 0.306894i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 37.0252 1.41673 0.708366 0.705846i \(-0.249433\pi\)
0.708366 + 0.705846i \(0.249433\pi\)
\(684\) 75.1807 + 54.6220i 2.87461 + 2.08852i
\(685\) 0 0
\(686\) −7.66619 23.5941i −0.292697 0.900827i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 17.7372 3.77016i 0.674756 0.143424i 0.142225 0.989834i \(-0.454574\pi\)
0.532531 + 0.846411i \(0.321241\pi\)
\(692\) −5.23390 + 49.7972i −0.198963 + 1.89301i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −57.3141 + 41.6411i −2.16937 + 1.57614i
\(699\) 0 0
\(700\) −26.9489 11.9984i −1.01857 0.453497i
\(701\) 45.3096 20.1731i 1.71132 0.761928i 0.713178 0.700983i \(-0.247255\pi\)
0.998141 0.0609456i \(-0.0194116\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.77778 4.81125i 0.104469 0.180946i
\(708\) 0 0
\(709\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(710\) 16.0749 + 152.942i 0.603280 + 5.73983i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −36.2711 62.8234i −1.35363 2.34455i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 18.9346 + 4.02468i 0.705651 + 0.149991i
\(721\) 3.63038 11.1732i 0.135203 0.416111i
\(722\) 129.380 27.5006i 4.81502 1.02346i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −35.2970 39.2013i −1.30909 1.45390i −0.808854 0.588010i \(-0.799912\pi\)
−0.500241 0.865886i \(-0.666755\pi\)
\(728\) 0 0
\(729\) 21.8435 15.8702i 0.809017 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 8.97341 9.96598i 0.331440 0.368102i −0.554273 0.832335i \(-0.687003\pi\)
0.885713 + 0.464233i \(0.153670\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −8.38842 + 14.5292i −0.308782 + 0.534826i
\(739\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 39.3800 1.44277
\(746\) −73.7092 53.5529i −2.69869 1.96071i
\(747\) 0 0
\(748\) 0 0
\(749\) 2.16689 + 3.75316i 0.0791765 + 0.137138i
\(750\) 0 0
\(751\) 23.8534 + 5.07019i 0.870423 + 0.185014i 0.621409 0.783486i \(-0.286560\pi\)
0.249013 + 0.968500i \(0.419894\pi\)
\(752\) 4.05067 12.4667i 0.147713 0.454613i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(758\) −31.6026 35.0983i −1.14786 1.27483i
\(759\) 0 0
\(760\) 102.727 74.6355i 3.72630 2.70732i
\(761\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(762\) 0 0
\(763\) −10.7229 + 4.77415i −0.388196 + 0.172836i
\(764\) −32.0618 + 35.6082i −1.15995 + 1.28826i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 26.3820 45.6949i 0.951358 1.64780i 0.208866 0.977944i \(-0.433023\pi\)
0.742491 0.669856i \(-0.233644\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.77421 + 64.4523i 0.243809 + 2.31969i
\(773\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −38.1383 −1.36909
\(777\) 0 0
\(778\) 0 0
\(779\) 6.33803 + 19.5064i 0.227083 + 0.698891i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 10.2316 2.17479i 0.365414 0.0776712i
\(785\) 9.39749 89.4111i 0.335411 3.19122i
\(786\) 0 0
\(787\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.5006 + 9.80873i −0.480025 + 0.348758i
\(792\) 0 0
\(793\) 0 0
\(794\) 39.0332 17.3787i 1.38524 0.616748i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −18.7909 + 32.5468i −0.664358 + 1.15070i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 21.3176 + 15.4881i 0.749950 + 0.544871i
\(809\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(810\) −25.8633 79.5989i −0.908742 2.79682i
\(811\) 6.00000 + 10.3923i 0.210688 + 0.364923i 0.951930 0.306315i \(-0.0990961\pi\)
−0.741242 + 0.671238i \(0.765763\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −94.0374 + 19.9883i −3.29399 + 0.700159i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 22.3180 + 24.7867i 0.779380 + 0.865589i
\(821\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(822\) 0 0
\(823\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(824\) 50.9041 + 22.6640i 1.77333 + 0.789537i
\(825\) 0 0
\(826\) 12.6893 14.0928i 0.441516 0.490353i
\(827\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(828\) 0 0
\(829\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 5.62376 0.194270
\(839\) −12.9443 9.40456i −0.446886 0.324682i 0.341479 0.939889i \(-0.389072\pi\)
−0.788365 + 0.615208i \(0.789072\pi\)
\(840\) 0 0
\(841\) −8.96149 27.5806i −0.309017 0.951057i
\(842\) 12.0641 + 20.8957i 0.415757 + 0.720113i
\(843\) 0 0
\(844\) −79.9138 16.9862i −2.75075 0.584689i
\(845\) −15.8198 + 48.6884i −0.544219 + 1.67493i
\(846\) −55.4368 + 11.7834i −1.90596 + 0.405123i
\(847\) −0.902527 + 8.58697i −0.0310112 + 0.295052i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 43.6869 31.7404i 1.49581 1.08677i 0.523799 0.851842i \(-0.324514\pi\)
0.972013 0.234929i \(-0.0754857\pi\)
\(854\) 0 0
\(855\) −93.4744 41.6175i −3.19676 1.42329i
\(856\) −18.7780 + 8.36051i −0.641819 + 0.285756i
\(857\) 25.4270 28.2395i 0.868569 0.964643i −0.131074 0.991373i \(-0.541843\pi\)
0.999643 + 0.0267295i \(0.00850928\pi\)
\(858\) 0 0
\(859\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 47.2294 81.8037i 1.60864 2.78624i
\(863\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) 0 0
\(865\) −5.76287 54.8300i −0.195943 1.86428i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −17.2036 52.9471i −0.582586 1.79301i
\(873\) 15.3662 + 26.6151i 0.520068 + 0.900783i
\(874\) 0 0
\(875\) 16.6532 + 3.53974i 0.562981 + 0.119665i
\(876\) 0 0
\(877\) −56.2176 + 11.9494i −1.89833 + 0.403503i −0.999402 0.0345867i \(-0.988989\pi\)
−0.898931 + 0.438090i \(0.855655\pi\)
\(878\) −9.13275 + 86.8923i −0.308215 + 2.93247i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(882\) −30.2621 33.6095i −1.01898 1.13169i
\(883\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 90.0349 + 40.0861i 3.02478 + 1.34672i
\(887\) −23.7609 + 10.5790i −0.797811 + 0.355208i −0.764817 0.644247i \(-0.777171\pi\)
−0.0329939 + 0.999456i \(0.510504\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −34.6438 + 60.0048i −1.15931 + 2.00798i
\(894\) 0 0
\(895\) 0 0
\(896\) 1.68447 + 16.0266i 0.0562741 + 0.535412i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −112.745 −3.75818
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −39.5746 68.5452i −1.31623 2.27978i
\(905\) 0 0
\(906\) 0 0
\(907\) 14.8372 45.6643i 0.492662 1.51626i −0.327906 0.944710i \(-0.606343\pi\)
0.820568 0.571549i \(-0.193657\pi\)
\(908\) −97.9546 + 20.8209i −3.25074 + 0.690966i
\(909\) 2.21948 21.1169i 0.0736154 0.700403i
\(910\) 0 0
\(911\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14.3415 6.38523i −0.473597 0.210859i
\(918\) 0 0
\(919\) −16.0591 + 17.8355i −0.529742 + 0.588338i −0.947314 0.320306i \(-0.896214\pi\)
0.417572 + 0.908644i \(0.362881\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −4.69346 44.6553i −0.154153 1.46667i
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −55.2904 −1.81207
\(932\) 25.0217 + 18.1793i 0.819612 + 0.595483i
\(933\) 0 0
\(934\) 29.3097 + 90.2061i 0.959044 + 2.95163i
\(935\) 0 0
\(936\) 0 0
\(937\) 41.0822 + 8.73229i 1.34210 + 0.285272i 0.822317 0.569029i \(-0.192681\pi\)
0.519779 + 0.854300i \(0.326014\pi\)
\(938\) −6.87352 + 21.1545i −0.224428 + 0.690719i
\(939\) 0 0
\(940\) −11.7778 + 112.058i −0.384149 + 3.65493i
\(941\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 11.2170 + 12.4577i 0.365081 + 0.405464i
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −143.805 + 159.711i −4.66564 + 5.18172i
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(954\) 0 0
\(955\) 26.3791 45.6900i 0.853609 1.47849i
\(956\) 0 0
\(957\) 0 0
\(958\) −7.19522 68.4579i −0.232467 2.21177i
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 13.4002 + 9.73585i 0.431817 + 0.313733i
\(964\) 0 0
\(965\) −22.0506 67.8647i −0.709834 2.18464i
\(966\) 0 0
\(967\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(968\) −40.0574 8.51446i −1.28749 0.273665i
\(969\) 0 0
\(970\) 93.1833 19.8067i 2.99194 0.635956i
\(971\) −2.92680 + 27.8466i −0.0939254 + 0.893640i 0.841534 + 0.540205i \(0.181653\pi\)
−0.935459 + 0.353435i \(0.885013\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −40.1468 + 29.1684i −1.28441 + 0.933179i −0.999677 0.0254283i \(-0.991905\pi\)
−0.284733 + 0.958607i \(0.591905\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −82.1397 + 36.5710i −2.62386 + 1.16822i
\(981\) −30.0180 + 33.3384i −0.958402 + 1.06441i
\(982\) 0 0
\(983\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −24.7987 18.0173i −0.786566 0.571474i
\(995\) 0 0
\(996\) 0 0
\(997\) −31.1049 53.8753i −0.985102 1.70625i −0.641483 0.767137i \(-0.721680\pi\)
−0.343619 0.939109i \(-0.611653\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.u.816.3 24
31.2 even 5 inner 961.2.g.u.846.1 24
31.3 odd 30 inner 961.2.g.u.338.3 24
31.4 even 5 961.2.c.g.439.1 6
31.5 even 3 961.2.d.m.374.3 12
31.6 odd 6 inner 961.2.g.u.732.3 24
31.7 even 15 961.2.c.g.521.1 6
31.8 even 5 inner 961.2.g.u.547.1 24
31.9 even 15 961.2.d.m.531.1 12
31.10 even 15 961.2.d.m.628.1 12
31.11 odd 30 961.2.a.g.1.1 3
31.12 odd 30 inner 961.2.g.u.448.1 24
31.13 odd 30 961.2.d.m.388.3 12
31.14 even 15 inner 961.2.g.u.844.1 24
31.15 odd 10 inner 961.2.g.u.235.3 24
31.16 even 5 inner 961.2.g.u.235.3 24
31.17 odd 30 inner 961.2.g.u.844.1 24
31.18 even 15 961.2.d.m.388.3 12
31.19 even 15 inner 961.2.g.u.448.1 24
31.20 even 15 961.2.a.g.1.1 3
31.21 odd 30 961.2.d.m.628.1 12
31.22 odd 30 961.2.d.m.531.1 12
31.23 odd 10 inner 961.2.g.u.547.1 24
31.24 odd 30 961.2.c.g.521.1 6
31.25 even 3 inner 961.2.g.u.732.3 24
31.26 odd 6 961.2.d.m.374.3 12
31.27 odd 10 961.2.c.g.439.1 6
31.28 even 15 inner 961.2.g.u.338.3 24
31.29 odd 10 inner 961.2.g.u.846.1 24
31.30 odd 2 CM 961.2.g.u.816.3 24
93.11 even 30 8649.2.a.q.1.3 3
93.20 odd 30 8649.2.a.q.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.g.1.1 3 31.11 odd 30
961.2.a.g.1.1 3 31.20 even 15
961.2.c.g.439.1 6 31.4 even 5
961.2.c.g.439.1 6 31.27 odd 10
961.2.c.g.521.1 6 31.7 even 15
961.2.c.g.521.1 6 31.24 odd 30
961.2.d.m.374.3 12 31.5 even 3
961.2.d.m.374.3 12 31.26 odd 6
961.2.d.m.388.3 12 31.13 odd 30
961.2.d.m.388.3 12 31.18 even 15
961.2.d.m.531.1 12 31.9 even 15
961.2.d.m.531.1 12 31.22 odd 30
961.2.d.m.628.1 12 31.10 even 15
961.2.d.m.628.1 12 31.21 odd 30
961.2.g.u.235.3 24 31.15 odd 10 inner
961.2.g.u.235.3 24 31.16 even 5 inner
961.2.g.u.338.3 24 31.3 odd 30 inner
961.2.g.u.338.3 24 31.28 even 15 inner
961.2.g.u.448.1 24 31.12 odd 30 inner
961.2.g.u.448.1 24 31.19 even 15 inner
961.2.g.u.547.1 24 31.8 even 5 inner
961.2.g.u.547.1 24 31.23 odd 10 inner
961.2.g.u.732.3 24 31.6 odd 6 inner
961.2.g.u.732.3 24 31.25 even 3 inner
961.2.g.u.816.3 24 1.1 even 1 trivial
961.2.g.u.816.3 24 31.30 odd 2 CM
961.2.g.u.844.1 24 31.14 even 15 inner
961.2.g.u.844.1 24 31.17 odd 30 inner
961.2.g.u.846.1 24 31.2 even 5 inner
961.2.g.u.846.1 24 31.29 odd 10 inner
8649.2.a.q.1.3 3 93.11 even 30
8649.2.a.q.1.3 3 93.20 odd 30