Properties

Label 961.2.d.m.388.3
Level $961$
Weight $2$
Character 961.388
Analytic conductor $7.674$
Analytic rank $0$
Dimension $12$
CM discriminant -31
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 6x^{10} - x^{9} + 36x^{8} + 18x^{7} + 217x^{6} + 72x^{5} + 1284x^{4} + 215x^{3} + 36x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{5}]$

Embedding invariants

Embedding label 388.3
Root \(0.729734 - 2.24589i\) of defining polynomial
Character \(\chi\) \(=\) 961.388
Dual form 961.2.d.m.374.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.91047 - 1.38804i) q^{2} +(1.10521 - 3.40149i) q^{4} +3.93800 q^{5} +(-0.242558 + 0.746517i) q^{7} +(-1.15045 - 3.54072i) q^{8} +(-0.927051 - 2.85317i) q^{9} +(7.52343 - 5.46609i) q^{10} +(0.572793 + 1.76288i) q^{14} +(-1.32560 - 0.963104i) q^{16} +(-5.73141 - 4.16411i) q^{18} +(-7.00685 + 5.09077i) q^{19} +(4.35232 - 13.3951i) q^{20} +10.5079 q^{25} +(2.27119 + 1.65012i) q^{28} +3.57653 q^{32} +(-0.955194 + 2.93979i) q^{35} -10.7296 q^{36} +(-6.32018 + 19.4515i) q^{38} +(-4.53048 - 13.9434i) q^{40} +(-1.91586 + 1.39196i) q^{41} +(-3.65073 - 11.2358i) q^{45} +(-6.47214 - 4.70228i) q^{47} +(5.16467 + 3.75235i) q^{49} +(20.0750 - 14.5853i) q^{50} +2.92226 q^{56} +(-8.27690 - 6.01352i) q^{59} +2.35480 q^{63} +(9.48406 - 6.89057i) q^{64} -12.0000 q^{67} +(2.25566 + 6.94221i) q^{70} +(5.11020 + 15.7276i) q^{71} +(-9.03576 + 6.56486i) q^{72} +(9.57216 + 29.4601i) q^{76} +(-5.22022 - 3.79271i) q^{80} +(-7.28115 + 5.29007i) q^{81} +(-1.72811 + 5.31857i) q^{82} +(-22.5703 - 16.3983i) q^{90} -18.8918 q^{94} +(-27.5930 + 20.0475i) q^{95} +(3.16561 - 9.74276i) q^{97} +15.0753 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{4} - 3 q^{8} + 9 q^{9} + 9 q^{10} - 15 q^{14} - 12 q^{16} - 21 q^{20} + 60 q^{25} - 27 q^{28} + 24 q^{32} - 12 q^{35} - 72 q^{36} + 33 q^{38} + 18 q^{40} - 24 q^{47} - 21 q^{49} + 39 q^{50}+ \cdots + 228 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91047 1.38804i 1.35091 0.981490i 0.351939 0.936023i \(-0.385522\pi\)
0.998966 0.0454672i \(-0.0144777\pi\)
\(3\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(4\) 1.10521 3.40149i 0.552605 1.70074i
\(5\) 3.93800 1.76113 0.880564 0.473927i \(-0.157164\pi\)
0.880564 + 0.473927i \(0.157164\pi\)
\(6\) 0 0
\(7\) −0.242558 + 0.746517i −0.0916783 + 0.282157i −0.986374 0.164520i \(-0.947393\pi\)
0.894695 + 0.446677i \(0.147393\pi\)
\(8\) −1.15045 3.54072i −0.406746 1.25183i
\(9\) −0.927051 2.85317i −0.309017 0.951057i
\(10\) 7.52343 5.46609i 2.37912 1.72853i
\(11\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(12\) 0 0
\(13\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(14\) 0.572793 + 1.76288i 0.153085 + 0.471148i
\(15\) 0 0
\(16\) −1.32560 0.963104i −0.331400 0.240776i
\(17\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(18\) −5.73141 4.16411i −1.35091 0.981490i
\(19\) −7.00685 + 5.09077i −1.60748 + 1.16790i −0.736719 + 0.676199i \(0.763626\pi\)
−0.870762 + 0.491705i \(0.836374\pi\)
\(20\) 4.35232 13.3951i 0.973209 2.99523i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(24\) 0 0
\(25\) 10.5079 2.10157
\(26\) 0 0
\(27\) 0 0
\(28\) 2.27119 + 1.65012i 0.429214 + 0.311842i
\(29\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) 3.57653 0.632248
\(33\) 0 0
\(34\) 0 0
\(35\) −0.955194 + 2.93979i −0.161457 + 0.496914i
\(36\) −10.7296 −1.78827
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −6.32018 + 19.4515i −1.02527 + 3.15545i
\(39\) 0 0
\(40\) −4.53048 13.9434i −0.716332 2.20464i
\(41\) −1.91586 + 1.39196i −0.299207 + 0.217387i −0.727252 0.686371i \(-0.759203\pi\)
0.428044 + 0.903758i \(0.359203\pi\)
\(42\) 0 0
\(43\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(44\) 0 0
\(45\) −3.65073 11.2358i −0.544219 1.67493i
\(46\) 0 0
\(47\) −6.47214 4.70228i −0.944058 0.685898i 0.00533600 0.999986i \(-0.498301\pi\)
−0.949394 + 0.314087i \(0.898301\pi\)
\(48\) 0 0
\(49\) 5.16467 + 3.75235i 0.737809 + 0.536050i
\(50\) 20.0750 14.5853i 2.83903 2.06267i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.92226 0.390503
\(57\) 0 0
\(58\) 0 0
\(59\) −8.27690 6.01352i −1.07756 0.782893i −0.100304 0.994957i \(-0.531982\pi\)
−0.977256 + 0.212063i \(0.931982\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 2.35480 0.296677
\(64\) 9.48406 6.89057i 1.18551 0.861321i
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 2.25566 + 6.94221i 0.269603 + 0.829753i
\(71\) 5.11020 + 15.7276i 0.606469 + 1.86652i 0.486360 + 0.873759i \(0.338325\pi\)
0.120109 + 0.992761i \(0.461675\pi\)
\(72\) −9.03576 + 6.56486i −1.06487 + 0.773677i
\(73\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 9.57216 + 29.4601i 1.09800 + 3.37930i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(80\) −5.22022 3.79271i −0.583638 0.424038i
\(81\) −7.28115 + 5.29007i −0.809017 + 0.587785i
\(82\) −1.72811 + 5.31857i −0.190838 + 0.587338i
\(83\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(90\) −22.5703 16.3983i −2.37912 1.72853i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −18.8918 −1.94854
\(95\) −27.5930 + 20.0475i −2.83098 + 2.05683i
\(96\) 0 0
\(97\) 3.16561 9.74276i 0.321419 0.989227i −0.651612 0.758553i \(-0.725907\pi\)
0.973031 0.230674i \(-0.0740932\pi\)
\(98\) 15.0753 1.52284
\(99\) 0 0
\(100\) 11.6134 35.7424i 1.16134 3.57424i
\(101\) 2.18714 + 6.73133i 0.217629 + 0.669792i 0.998957 + 0.0456715i \(0.0145427\pi\)
−0.781328 + 0.624121i \(0.785457\pi\)
\(102\) 0 0
\(103\) 12.1086 8.79743i 1.19310 0.866836i 0.199510 0.979896i \(-0.436065\pi\)
0.993588 + 0.113059i \(0.0360650\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.70615 + 5.25098i 0.164939 + 0.507631i 0.999032 0.0439935i \(-0.0140081\pi\)
−0.834092 + 0.551625i \(0.814008\pi\)
\(108\) 0 0
\(109\) −12.0978 8.78959i −1.15876 0.841890i −0.169141 0.985592i \(-0.554099\pi\)
−0.989621 + 0.143702i \(0.954099\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.04051 0.755973i 0.0983188 0.0714328i
\(113\) −6.56967 + 20.2194i −0.618022 + 1.90208i −0.303133 + 0.952948i \(0.598033\pi\)
−0.314889 + 0.949128i \(0.601967\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −24.1597 −2.22408
\(119\) 0 0
\(120\) 0 0
\(121\) 8.89919 + 6.46564i 0.809017 + 0.587785i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 21.6900 1.94001
\(126\) 4.49877 3.26855i 0.400783 0.291186i
\(127\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(128\) 6.34421 19.5255i 0.560754 1.72582i
\(129\) 0 0
\(130\) 0 0
\(131\) 6.18034 19.0211i 0.539979 1.66188i −0.192659 0.981266i \(-0.561711\pi\)
0.732638 0.680618i \(-0.238289\pi\)
\(132\) 0 0
\(133\) −2.10078 6.46554i −0.182161 0.560633i
\(134\) −22.9256 + 16.6564i −1.98047 + 1.43890i
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(138\) 0 0
\(139\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(140\) 8.94395 + 6.49816i 0.755902 + 0.549195i
\(141\) 0 0
\(142\) 31.5933 + 22.9539i 2.65125 + 1.92625i
\(143\) 0 0
\(144\) −1.51900 + 4.67501i −0.126583 + 0.389584i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(152\) 26.0861 + 18.9526i 2.11586 + 1.53726i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.4697 13.4190i 1.47404 1.07095i 0.494621 0.869109i \(-0.335307\pi\)
0.979418 0.201844i \(-0.0646933\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 14.0844 1.11347
\(161\) 0 0
\(162\) −6.56761 + 20.2130i −0.516000 + 1.58808i
\(163\) 7.54402 + 23.2181i 0.590893 + 1.81858i 0.574191 + 0.818721i \(0.305317\pi\)
0.0167022 + 0.999861i \(0.494683\pi\)
\(164\) 2.61729 + 8.05518i 0.204376 + 0.629004i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(168\) 0 0
\(169\) −4.01722 12.3637i −0.309017 0.951057i
\(170\) 0 0
\(171\) 21.0205 + 15.2723i 1.60748 + 1.16790i
\(172\) 0 0
\(173\) −11.3262 8.22899i −0.861118 0.625639i 0.0670709 0.997748i \(-0.478635\pi\)
−0.928189 + 0.372109i \(0.878635\pi\)
\(174\) 0 0
\(175\) −2.54877 + 7.84430i −0.192669 + 0.592973i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(180\) −42.2532 −3.14937
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −23.1478 + 16.8179i −1.68823 + 1.22657i
\(189\) 0 0
\(190\) −24.8889 + 76.6002i −1.80563 + 5.55716i
\(191\) −13.3972 −0.969388 −0.484694 0.874684i \(-0.661069\pi\)
−0.484694 + 0.874684i \(0.661069\pi\)
\(192\) 0 0
\(193\) −5.59943 + 17.2333i −0.403056 + 1.24048i 0.519451 + 0.854500i \(0.326136\pi\)
−0.922508 + 0.385979i \(0.873864\pi\)
\(194\) −7.47550 23.0072i −0.536710 1.65182i
\(195\) 0 0
\(196\) 18.4716 13.4204i 1.31940 0.958601i
\(197\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(198\) 0 0
\(199\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(200\) −12.0888 37.2055i −0.854807 2.63082i
\(201\) 0 0
\(202\) 13.5218 + 9.82416i 0.951390 + 0.691226i
\(203\) 0 0
\(204\) 0 0
\(205\) −7.54467 + 5.48152i −0.526943 + 0.382846i
\(206\) 10.9220 33.6144i 0.760971 2.34203i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 22.8431 1.57258 0.786291 0.617856i \(-0.211998\pi\)
0.786291 + 0.617856i \(0.211998\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 10.5481 + 7.66363i 0.721052 + 0.523875i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −35.3128 −2.39168
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) −0.867517 + 2.66994i −0.0579634 + 0.178393i
\(225\) −9.74133 29.9807i −0.649422 1.99872i
\(226\) 15.5141 + 47.7474i 1.03198 + 3.17611i
\(227\) −22.6525 + 16.4580i −1.50350 + 1.09235i −0.534535 + 0.845146i \(0.679513\pi\)
−0.968962 + 0.247209i \(0.920487\pi\)
\(228\) 0 0
\(229\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.99606 + 5.08294i 0.458327 + 0.332994i 0.792875 0.609385i \(-0.208583\pi\)
−0.334547 + 0.942379i \(0.608583\pi\)
\(234\) 0 0
\(235\) −25.4873 18.5176i −1.66261 1.20796i
\(236\) −29.6026 + 21.5076i −1.92697 + 1.40002i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(240\) 0 0
\(241\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(242\) 25.9762 1.66981
\(243\) 0 0
\(244\) 0 0
\(245\) 20.3385 + 14.7768i 1.29938 + 0.944053i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 41.4381 30.1065i 2.62078 1.90410i
\(251\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(252\) 2.60255 8.00983i 0.163945 0.504572i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −7.73647 23.8104i −0.483529 1.48815i
\(257\) −7.53990 23.2054i −0.470326 1.44751i −0.852159 0.523283i \(-0.824707\pi\)
0.381833 0.924231i \(-0.375293\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −14.5947 44.9178i −0.901662 2.77503i
\(263\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −12.9879 9.43624i −0.796338 0.578573i
\(267\) 0 0
\(268\) −13.2625 + 40.8178i −0.810137 + 2.49335i
\(269\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(270\) 0 0
\(271\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 11.5079 0.687727
\(281\) −0.624238 + 0.453536i −0.0372389 + 0.0270557i −0.606249 0.795275i \(-0.707327\pi\)
0.569010 + 0.822331i \(0.307327\pi\)
\(282\) 0 0
\(283\) 1.23607 3.80423i 0.0734766 0.226138i −0.907573 0.419894i \(-0.862067\pi\)
0.981050 + 0.193756i \(0.0620672\pi\)
\(284\) 59.1450 3.50961
\(285\) 0 0
\(286\) 0 0
\(287\) −0.574410 1.76785i −0.0339064 0.104353i
\(288\) −3.31563 10.2045i −0.195375 0.601304i
\(289\) 13.7533 9.99235i 0.809017 0.587785i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −8.03444 24.7275i −0.469377 1.44459i −0.853393 0.521268i \(-0.825459\pi\)
0.384016 0.923326i \(-0.374541\pi\)
\(294\) 0 0
\(295\) −32.5945 23.6813i −1.89772 1.37878i
\(296\) 0 0
\(297\) 0 0
\(298\) 19.1047 13.8804i 1.10670 0.804068i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 14.1912 0.813922
\(305\) 0 0
\(306\) 0 0
\(307\) 10.8170 + 7.85901i 0.617359 + 0.448537i 0.851998 0.523545i \(-0.175391\pi\)
−0.234639 + 0.972083i \(0.575391\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −21.2466 −1.20478 −0.602391 0.798201i \(-0.705785\pi\)
−0.602391 + 0.798201i \(0.705785\pi\)
\(312\) 0 0
\(313\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(314\) 16.6596 51.2731i 0.940158 2.89351i
\(315\) 9.27322 0.522487
\(316\) 0 0
\(317\) 5.11432 15.7403i 0.287249 0.884061i −0.698467 0.715642i \(-0.746134\pi\)
0.985716 0.168418i \(-0.0538659\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 37.3482 27.1351i 2.08783 1.51690i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 9.94689 + 30.6134i 0.552605 + 1.70074i
\(325\) 0 0
\(326\) 46.6402 + 33.8861i 2.58316 + 1.87678i
\(327\) 0 0
\(328\) 7.13263 + 5.18216i 0.393834 + 0.286137i
\(329\) 5.08020 3.69098i 0.280080 0.203490i
\(330\) 0 0
\(331\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −47.2560 −2.58187
\(336\) 0 0
\(337\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(338\) −24.8361 18.0445i −1.35091 0.981490i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 61.3576 3.31784
\(343\) −8.49910 + 6.17496i −0.458908 + 0.333416i
\(344\) 0 0
\(345\) 0 0
\(346\) −33.0606 −1.77735
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −9.27051 28.5317i −0.496239 1.52727i −0.815017 0.579437i \(-0.803272\pi\)
0.318778 0.947829i \(-0.396728\pi\)
\(350\) 6.01884 + 18.5241i 0.321720 + 0.990153i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(354\) 0 0
\(355\) 20.1240 + 61.9352i 1.06807 + 3.28718i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.8523 + 18.0562i 1.31165 + 0.952971i 0.999996 + 0.00277654i \(0.000883801\pi\)
0.311656 + 0.950195i \(0.399116\pi\)
\(360\) −35.5829 + 25.8525i −1.87538 + 1.36254i
\(361\) 17.3086 53.2705i 0.910980 2.80371i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 5.74759 + 4.17587i 0.299207 + 0.217387i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −38.5818 −1.99769 −0.998844 0.0480672i \(-0.984694\pi\)
−0.998844 + 0.0480672i \(0.984694\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −9.20361 + 28.3258i −0.474640 + 1.46079i
\(377\) 0 0
\(378\) 0 0
\(379\) 6.18034 19.0211i 0.317463 0.977050i −0.657266 0.753659i \(-0.728287\pi\)
0.974729 0.223391i \(-0.0717128\pi\)
\(380\) 37.6952 + 116.014i 1.93372 + 5.95139i
\(381\) 0 0
\(382\) −25.5949 + 18.5958i −1.30955 + 0.951445i
\(383\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 13.2229 + 40.6959i 0.673027 + 2.07137i
\(387\) 0 0
\(388\) −29.6412 21.5356i −1.50480 1.09330i
\(389\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 7.34434 22.6036i 0.370945 1.14165i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −18.0935 −0.908086 −0.454043 0.890980i \(-0.650019\pi\)
−0.454043 + 0.890980i \(0.650019\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −13.9292 10.1202i −0.696462 0.506009i
\(401\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 25.3138 1.25941
\(405\) −28.6732 + 20.8323i −1.42478 + 1.03517i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) −6.80530 + 20.9446i −0.336090 + 1.03438i
\(411\) 0 0
\(412\) −16.5418 50.9103i −0.814954 2.50817i
\(413\) 6.49682 4.72022i 0.319688 0.232267i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.92665 + 1.39979i 0.0941229 + 0.0683843i 0.633851 0.773455i \(-0.281473\pi\)
−0.539728 + 0.841839i \(0.681473\pi\)
\(420\) 0 0
\(421\) −8.26611 6.00568i −0.402866 0.292699i 0.367842 0.929888i \(-0.380097\pi\)
−0.770707 + 0.637189i \(0.780097\pi\)
\(422\) 43.6410 31.7070i 2.12441 1.54347i
\(423\) −7.41641 + 22.8254i −0.360598 + 1.10981i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 19.7468 0.954497
\(429\) 0 0
\(430\) 0 0
\(431\) −32.3607 23.5114i −1.55876 1.13250i −0.937018 0.349282i \(-0.886425\pi\)
−0.621742 0.783222i \(-0.713575\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −43.2683 + 31.4363i −2.07218 + 1.50552i
\(437\) 0 0
\(438\) 0 0
\(439\) −36.9986 −1.76585 −0.882923 0.469519i \(-0.844428\pi\)
−0.882923 + 0.469519i \(0.844428\pi\)
\(440\) 0 0
\(441\) 5.91818 18.2143i 0.281818 0.867347i
\(442\) 0 0
\(443\) −12.8968 39.6922i −0.612744 1.88583i −0.430538 0.902572i \(-0.641676\pi\)
−0.182206 0.983260i \(-0.558324\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 2.84349 + 8.75137i 0.134342 + 0.413463i
\(449\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(450\) −60.2249 43.7559i −2.83903 2.06267i
\(451\) 0 0
\(452\) 61.5150 + 44.6933i 2.89342 + 2.10219i
\(453\) 0 0
\(454\) −20.4326 + 62.8849i −0.958947 + 2.95134i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(462\) 0 0
\(463\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 20.4211 0.945987
\(467\) 32.4941 23.6084i 1.50365 1.09247i 0.534750 0.845010i \(-0.320406\pi\)
0.968899 0.247455i \(-0.0795943\pi\)
\(468\) 0 0
\(469\) 2.91070 8.95820i 0.134403 0.413651i
\(470\) −74.3958 −3.43162
\(471\) 0 0
\(472\) −11.7700 + 36.2245i −0.541760 + 1.66737i
\(473\) 0 0
\(474\) 0 0
\(475\) −73.6271 + 53.4932i −3.37824 + 2.45444i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.00761 27.7226i −0.411568 1.26668i −0.915285 0.402807i \(-0.868034\pi\)
0.503717 0.863869i \(-0.331966\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 31.8283 23.1246i 1.44674 1.05112i
\(485\) 12.4662 38.3670i 0.566061 1.74216i
\(486\) 0 0
\(487\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 59.3667 2.68191
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.9804 −0.582251
\(498\) 0 0
\(499\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(500\) 23.9720 73.7783i 1.07206 3.29947i
\(501\) 0 0
\(502\) 0 0
\(503\) 7.05066 21.6997i 0.314373 0.967542i −0.661638 0.749823i \(-0.730138\pi\)
0.976012 0.217719i \(-0.0698615\pi\)
\(504\) −2.70908 8.33770i −0.120672 0.371391i
\(505\) 8.61297 + 26.5080i 0.383272 + 1.17959i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −14.6113 10.6157i −0.645734 0.469154i
\(513\) 0 0
\(514\) −46.6147 33.8676i −2.05609 1.49383i
\(515\) 47.6838 34.6443i 2.10120 1.52661i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(524\) −57.8695 42.0447i −2.52804 1.83673i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 18.6074 13.5191i 0.809017 0.587785i
\(530\) 0 0
\(531\) −9.48448 + 29.1902i −0.411591 + 1.26675i
\(532\) −24.3142 −1.05416
\(533\) 0 0
\(534\) 0 0
\(535\) 6.71881 + 20.6784i 0.290479 + 0.894004i
\(536\) 13.8054 + 42.4887i 0.596303 + 1.83523i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.3562 + 44.1840i 0.617223 + 1.89962i 0.357316 + 0.933984i \(0.383692\pi\)
0.259907 + 0.965634i \(0.416308\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −47.6413 34.6134i −2.04073 1.48268i
\(546\) 0 0
\(547\) −11.9265 + 36.7061i −0.509942 + 1.56944i 0.282358 + 0.959309i \(0.408883\pi\)
−0.792300 + 0.610131i \(0.791117\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 4.09753 2.97703i 0.173152 0.125802i
\(561\) 0 0
\(562\) −0.563063 + 1.73293i −0.0237514 + 0.0730993i
\(563\) 44.8746 1.89124 0.945619 0.325277i \(-0.105457\pi\)
0.945619 + 0.325277i \(0.105457\pi\)
\(564\) 0 0
\(565\) −25.8714 + 79.6239i −1.08842 + 3.34980i
\(566\) −2.91894 8.98356i −0.122692 0.377607i
\(567\) −2.18302 6.71865i −0.0916783 0.282157i
\(568\) 49.8080 36.1876i 2.08990 1.51840i
\(569\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(570\) 0 0
\(571\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −3.55124 2.58012i −0.148226 0.107692i
\(575\) 0 0
\(576\) −28.4522 20.6717i −1.18551 0.861321i
\(577\) −14.5623 + 10.5801i −0.606237 + 0.440457i −0.848087 0.529857i \(-0.822246\pi\)
0.241850 + 0.970314i \(0.422246\pi\)
\(578\) 12.4055 38.1801i 0.516000 1.58808i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −49.6722 36.0889i −2.05194 1.49082i
\(587\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −95.1411 −3.91690
\(591\) 0 0
\(592\) 0 0
\(593\) −14.8414 + 45.6770i −0.609462 + 1.87573i −0.146876 + 0.989155i \(0.546922\pi\)
−0.462585 + 0.886575i \(0.653078\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 11.0521 34.0149i 0.452712 1.39330i
\(597\) 0 0
\(598\) 0 0
\(599\) 31.2025 22.6700i 1.27490 0.926269i 0.275514 0.961297i \(-0.411152\pi\)
0.999386 + 0.0350277i \(0.0111520\pi\)
\(600\) 0 0
\(601\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(602\) 0 0
\(603\) 11.1246 + 34.2380i 0.453029 + 1.39428i
\(604\) 0 0
\(605\) 35.0450 + 25.4617i 1.42478 + 1.03517i
\(606\) 0 0
\(607\) 38.8328 + 28.2137i 1.57618 + 1.14516i 0.920920 + 0.389751i \(0.127439\pi\)
0.655255 + 0.755408i \(0.272561\pi\)
\(608\) −25.0602 + 18.2073i −1.01633 + 0.738405i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(614\) 31.5741 1.27423
\(615\) 0 0
\(616\) 0 0
\(617\) 17.7984 + 12.9313i 0.716536 + 0.520594i 0.885275 0.465067i \(-0.153970\pi\)
−0.168740 + 0.985661i \(0.553970\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −40.5909 + 29.4910i −1.62755 + 1.18248i
\(623\) 0 0
\(624\) 0 0
\(625\) 32.8760 1.31504
\(626\) 0 0
\(627\) 0 0
\(628\) −25.2317 77.6551i −1.00685 3.09878i
\(629\) 0 0
\(630\) 17.7162 12.8716i 0.705830 0.512815i
\(631\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −12.0773 37.1701i −0.479651 1.47621i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 40.1360 29.1605i 1.58776 1.15357i
\(640\) 24.9835 76.8913i 0.987560 3.03940i
\(641\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(642\) 0 0
\(643\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(648\) 27.1073 + 19.6946i 1.06487 + 0.773677i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 87.3138 3.41947
\(653\) 37.2148 27.0381i 1.45633 1.05808i 0.472026 0.881585i \(-0.343523\pi\)
0.984301 0.176499i \(-0.0564772\pi\)
\(654\) 0 0
\(655\) 24.3382 74.9053i 0.950972 2.92679i
\(656\) 3.88026 0.151499
\(657\) 0 0
\(658\) 4.58234 14.1030i 0.178638 0.549792i
\(659\) 0.250798 + 0.771878i 0.00976972 + 0.0300681i 0.955823 0.293944i \(-0.0949680\pi\)
−0.946053 + 0.324012i \(0.894968\pi\)
\(660\) 0 0
\(661\) 26.1331 18.9868i 1.01646 0.738501i 0.0509058 0.998703i \(-0.483789\pi\)
0.965554 + 0.260202i \(0.0837892\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.27288 25.4613i −0.320809 0.987347i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) −90.2812 + 65.5931i −3.48787 + 2.53408i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −46.4950 −1.78827
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 6.50529 + 4.72637i 0.249650 + 0.181381i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 37.0252 1.41673 0.708366 0.705846i \(-0.249433\pi\)
0.708366 + 0.705846i \(0.249433\pi\)
\(684\) 75.1807 54.6220i 2.87461 2.08852i
\(685\) 0 0
\(686\) −7.66619 + 23.5941i −0.292697 + 0.900827i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −5.60355 17.2460i −0.213169 0.656068i −0.999279 0.0379799i \(-0.987908\pi\)
0.786109 0.618088i \(-0.212092\pi\)
\(692\) −40.5087 + 29.4313i −1.53991 + 1.11881i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −57.3141 41.6411i −2.16937 1.57614i
\(699\) 0 0
\(700\) 23.8654 + 17.3392i 0.902026 + 0.655360i
\(701\) −40.1252 + 29.1527i −1.51551 + 1.10108i −0.551851 + 0.833943i \(0.686078\pi\)
−0.963658 + 0.267139i \(0.913922\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.55556 −0.208938
\(708\) 0 0
\(709\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(710\) 124.415 + 90.3925i 4.66920 + 3.39237i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 72.5422 2.70725
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −5.98184 + 18.4102i −0.222930 + 0.686107i
\(721\) 3.63038 + 11.1732i 0.135203 + 0.416111i
\(722\) −40.8738 125.797i −1.52116 4.68166i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −16.3008 50.1688i −0.604564 1.86066i −0.499759 0.866164i \(-0.666578\pi\)
−0.104805 0.994493i \(-0.533422\pi\)
\(728\) 0 0
\(729\) 21.8435 + 15.8702i 0.809017 + 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 4.14409 12.7542i 0.153065 0.471087i −0.844894 0.534933i \(-0.820337\pi\)
0.997960 + 0.0638465i \(0.0203368\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 16.7768 0.617564
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 39.3800 1.44277
\(746\) −73.7092 + 53.5529i −2.69869 + 1.96071i
\(747\) 0 0
\(748\) 0 0
\(749\) −4.33378 −0.158353
\(750\) 0 0
\(751\) −7.53578 + 23.1927i −0.274984 + 0.846315i 0.714239 + 0.699902i \(0.246773\pi\)
−0.989224 + 0.146413i \(0.953227\pi\)
\(752\) 4.05067 + 12.4667i 0.147713 + 0.454613i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(758\) −14.5947 44.9178i −0.530103 1.63149i
\(759\) 0 0
\(760\) 102.727 + 74.6355i 3.72630 + 2.70732i
\(761\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(762\) 0 0
\(763\) 9.49600 6.89925i 0.343778 0.249770i
\(764\) −14.8067 + 45.5704i −0.535689 + 1.64868i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −52.7639 −1.90272 −0.951358 0.308089i \(-0.900311\pi\)
−0.951358 + 0.308089i \(0.900311\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 52.4302 + 38.0928i 1.88701 + 1.37099i
\(773\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −38.1383 −1.36909
\(777\) 0 0
\(778\) 0 0
\(779\) 6.33803 19.5064i 0.227083 0.698891i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −3.23237 9.94823i −0.115442 0.355294i
\(785\) 72.7336 52.8440i 2.59597 1.88608i
\(786\) 0 0
\(787\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.5006 9.80873i −0.480025 0.348758i
\(792\) 0 0
\(793\) 0 0
\(794\) −34.5670 + 25.1144i −1.22674 + 0.891277i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 37.5818 1.32872
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 21.3176 15.4881i 0.749950 0.544871i
\(809\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(810\) −25.8633 + 79.5989i −0.908742 + 2.79682i
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 29.7084 + 91.4330i 1.04064 + 3.20276i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 10.3069 + 31.7213i 0.359932 + 1.10776i
\(821\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(822\) 0 0
\(823\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(824\) −45.0796 32.7523i −1.57042 1.14098i
\(825\) 0 0
\(826\) 5.86014 18.0356i 0.203900 0.627540i
\(827\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(828\) 0 0
\(829\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 5.62376 0.194270
\(839\) −12.9443 + 9.40456i −0.446886 + 0.324682i −0.788365 0.615208i \(-0.789072\pi\)
0.341479 + 0.939889i \(0.389072\pi\)
\(840\) 0 0
\(841\) −8.96149 + 27.5806i −0.309017 + 0.951057i
\(842\) −24.1282 −0.831514
\(843\) 0 0
\(844\) 25.2464 77.7005i 0.869017 2.67456i
\(845\) −15.8198 48.6884i −0.544219 1.67493i
\(846\) 17.5136 + 53.9014i 0.602131 + 1.85317i
\(847\) −6.98527 + 5.07510i −0.240017 + 0.174382i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 43.6869 + 31.7404i 1.49581 + 1.08677i 0.972013 + 0.234929i \(0.0754857\pi\)
0.523799 + 0.851842i \(0.324514\pi\)
\(854\) 0 0
\(855\) 82.7790 + 60.1425i 2.83098 + 2.05683i
\(856\) 16.6294 12.0820i 0.568382 0.412954i
\(857\) 11.7426 36.1401i 0.401121 1.23452i −0.522970 0.852351i \(-0.675176\pi\)
0.924091 0.382173i \(-0.124824\pi\)
\(858\) 0 0
\(859\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −94.4588 −3.21728
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −44.6028 32.4058i −1.51654 1.10183i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −17.2036 + 52.9471i −0.582586 + 1.79301i
\(873\) −30.7324 −1.04014
\(874\) 0 0
\(875\) −5.26109 + 16.1920i −0.177857 + 0.547388i
\(876\) 0 0
\(877\) 17.7603 + 54.6606i 0.599723 + 1.84576i 0.529654 + 0.848214i \(0.322322\pi\)
0.0700687 + 0.997542i \(0.477678\pi\)
\(878\) −70.6846 + 51.3554i −2.38549 + 1.73316i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(882\) −13.9756 43.0125i −0.470583 1.44831i
\(883\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −79.7331 57.9295i −2.67869 1.94618i
\(887\) 21.0421 15.2880i 0.706525 0.513321i −0.175526 0.984475i \(-0.556162\pi\)
0.882051 + 0.471154i \(0.156162\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 69.2875 2.31862
\(894\) 0 0
\(895\) 0 0
\(896\) 13.0372 + 9.47211i 0.435544 + 0.316441i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −112.745 −3.75818
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 79.1492 2.63246
\(905\) 0 0
\(906\) 0 0
\(907\) 14.8372 + 45.6643i 0.492662 + 1.51626i 0.820568 + 0.571549i \(0.193657\pi\)
−0.327906 + 0.944710i \(0.606343\pi\)
\(908\) 30.9459 + 95.2416i 1.02698 + 3.16070i
\(909\) 17.1780 12.4806i 0.569759 0.413954i
\(910\) 0 0
\(911\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.7005 + 9.22745i 0.419407 + 0.304717i
\(918\) 0 0
\(919\) −7.41641 + 22.8254i −0.244645 + 0.752939i 0.751050 + 0.660245i \(0.229548\pi\)
−0.995695 + 0.0926936i \(0.970452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −36.3259 26.3923i −1.19310 0.866836i
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −55.2904 −1.81207
\(932\) 25.0217 18.1793i 0.819612 0.595483i
\(933\) 0 0
\(934\) 29.3097 90.2061i 0.959044 2.95163i
\(935\) 0 0
\(936\) 0 0
\(937\) −12.9787 + 39.9444i −0.423996 + 1.30493i 0.479956 + 0.877292i \(0.340653\pi\)
−0.903952 + 0.427633i \(0.859347\pi\)
\(938\) −6.87352 21.1545i −0.224428 0.690719i
\(939\) 0 0
\(940\) −91.1562 + 66.2289i −2.97319 + 2.16015i
\(941\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 5.18021 + 15.9430i 0.168601 + 0.518902i
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −66.4117 + 204.394i −2.15468 + 6.63142i
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(954\) 0 0
\(955\) −52.7583 −1.70722
\(956\) 0 0
\(957\) 0 0
\(958\) −55.6887 40.4602i −1.79922 1.30721i
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 13.4002 9.73585i 0.431817 0.313733i
\(964\) 0 0
\(965\) −22.0506 + 67.8647i −0.709834 + 2.18464i
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 12.6550 38.9480i 0.406746 1.25183i
\(969\) 0 0
\(970\) −29.4385 90.6025i −0.945215 2.90907i
\(971\) −22.6525 + 16.4580i −0.726953 + 0.528162i −0.888598 0.458687i \(-0.848320\pi\)
0.161645 + 0.986849i \(0.448320\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −40.1468 29.1684i −1.28441 0.933179i −0.284733 0.958607i \(-0.591905\pi\)
−0.999677 + 0.0254283i \(0.991905\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 72.7413 52.8496i 2.32363 1.68822i
\(981\) −13.8629 + 42.6656i −0.442608 + 1.36221i
\(982\) 0 0
\(983\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −24.7987 + 18.0173i −0.786566 + 0.571474i
\(995\) 0 0
\(996\) 0 0
\(997\) 62.2098 1.97020 0.985102 0.171972i \(-0.0550138\pi\)
0.985102 + 0.171972i \(0.0550138\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.m.388.3 12
31.2 even 5 inner 961.2.d.m.374.3 12
31.3 odd 30 961.2.g.u.547.1 24
31.4 even 5 inner 961.2.d.m.628.1 12
31.5 even 3 961.2.g.u.338.3 24
31.6 odd 6 961.2.g.u.235.3 24
31.7 even 15 961.2.g.u.846.1 24
31.8 even 5 961.2.a.g.1.1 3
31.9 even 15 961.2.c.g.521.1 6
31.10 even 15 961.2.g.u.732.3 24
31.11 odd 30 961.2.g.u.448.1 24
31.12 odd 30 961.2.g.u.816.3 24
31.13 odd 30 961.2.g.u.844.1 24
31.14 even 15 961.2.c.g.439.1 6
31.15 odd 10 inner 961.2.d.m.531.1 12
31.16 even 5 inner 961.2.d.m.531.1 12
31.17 odd 30 961.2.c.g.439.1 6
31.18 even 15 961.2.g.u.844.1 24
31.19 even 15 961.2.g.u.816.3 24
31.20 even 15 961.2.g.u.448.1 24
31.21 odd 30 961.2.g.u.732.3 24
31.22 odd 30 961.2.c.g.521.1 6
31.23 odd 10 961.2.a.g.1.1 3
31.24 odd 30 961.2.g.u.846.1 24
31.25 even 3 961.2.g.u.235.3 24
31.26 odd 6 961.2.g.u.338.3 24
31.27 odd 10 inner 961.2.d.m.628.1 12
31.28 even 15 961.2.g.u.547.1 24
31.29 odd 10 inner 961.2.d.m.374.3 12
31.30 odd 2 CM 961.2.d.m.388.3 12
93.8 odd 10 8649.2.a.q.1.3 3
93.23 even 10 8649.2.a.q.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.g.1.1 3 31.8 even 5
961.2.a.g.1.1 3 31.23 odd 10
961.2.c.g.439.1 6 31.14 even 15
961.2.c.g.439.1 6 31.17 odd 30
961.2.c.g.521.1 6 31.9 even 15
961.2.c.g.521.1 6 31.22 odd 30
961.2.d.m.374.3 12 31.2 even 5 inner
961.2.d.m.374.3 12 31.29 odd 10 inner
961.2.d.m.388.3 12 1.1 even 1 trivial
961.2.d.m.388.3 12 31.30 odd 2 CM
961.2.d.m.531.1 12 31.15 odd 10 inner
961.2.d.m.531.1 12 31.16 even 5 inner
961.2.d.m.628.1 12 31.4 even 5 inner
961.2.d.m.628.1 12 31.27 odd 10 inner
961.2.g.u.235.3 24 31.6 odd 6
961.2.g.u.235.3 24 31.25 even 3
961.2.g.u.338.3 24 31.5 even 3
961.2.g.u.338.3 24 31.26 odd 6
961.2.g.u.448.1 24 31.11 odd 30
961.2.g.u.448.1 24 31.20 even 15
961.2.g.u.547.1 24 31.3 odd 30
961.2.g.u.547.1 24 31.28 even 15
961.2.g.u.732.3 24 31.10 even 15
961.2.g.u.732.3 24 31.21 odd 30
961.2.g.u.816.3 24 31.12 odd 30
961.2.g.u.816.3 24 31.19 even 15
961.2.g.u.844.1 24 31.13 odd 30
961.2.g.u.844.1 24 31.18 even 15
961.2.g.u.846.1 24 31.7 even 15
961.2.g.u.846.1 24 31.24 odd 30
8649.2.a.q.1.3 3 93.8 odd 10
8649.2.a.q.1.3 3 93.23 even 10